ath9k: Fix incorrect sequence numbering for unaggregated QoS Frame.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath9k / xmit.c
blob1ea9428c0cd21bf22c9433cef4e7287017e8f67c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "core.h"
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
59 * Insert a chain of ath_buf (descriptors) on a txq and
60 * assume the descriptors are already chained together by caller.
61 * NB: must be called with txq lock held
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head)
67 struct ath_hal *ah = sc->sc_ah;
68 struct ath_buf *bf;
71 * Insert the frame on the outbound list and
72 * pass it on to the hardware.
75 if (list_empty(head))
76 return;
78 bf = list_first_entry(head, struct ath_buf, list);
80 list_splice_tail_init(head, &txq->axq_q);
81 txq->axq_depth++;
82 txq->axq_totalqueued++;
83 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
85 DPRINTF(sc, ATH_DBG_QUEUE,
86 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
88 if (txq->axq_link == NULL) {
89 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
90 DPRINTF(sc, ATH_DBG_XMIT,
91 "TXDP[%u] = %llx (%p)\n",
92 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
93 } else {
94 *txq->axq_link = bf->bf_daddr;
95 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
96 txq->axq_qnum, txq->axq_link,
97 ito64(bf->bf_daddr), bf->bf_desc);
99 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
100 ath9k_hw_txstart(ah, txq->axq_qnum);
103 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
104 struct ath_xmit_status *tx_status)
106 struct ieee80211_hw *hw = sc->hw;
107 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
108 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
109 int hdrlen, padsize;
111 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
113 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
114 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
115 kfree(tx_info_priv);
116 tx_info->rate_driver_data[0] = NULL;
119 if (tx_status->flags & ATH_TX_BAR) {
120 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
121 tx_status->flags &= ~ATH_TX_BAR;
124 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
125 /* Frame was ACKed */
126 tx_info->flags |= IEEE80211_TX_STAT_ACK;
129 tx_info->status.rates[0].count = tx_status->retries;
130 if (tx_info->status.rates[0].flags & IEEE80211_TX_RC_MCS) {
131 /* Change idx from internal table index to MCS index */
132 int idx = tx_info->status.rates[0].idx;
133 struct ath_rate_table *rate_table = sc->cur_rate_table;
134 if (idx >= 0 && idx < rate_table->rate_cnt)
135 tx_info->status.rates[0].idx =
136 rate_table->info[idx].ratecode & 0x7f;
139 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
140 padsize = hdrlen & 3;
141 if (padsize && hdrlen >= 24) {
143 * Remove MAC header padding before giving the frame back to
144 * mac80211.
146 memmove(skb->data + padsize, skb->data, hdrlen);
147 skb_pull(skb, padsize);
150 ieee80211_tx_status(hw, skb);
153 /* Check if it's okay to send out aggregates */
155 static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
157 struct ath_atx_tid *tid;
158 tid = ATH_AN_2_TID(an, tidno);
160 if (tid->state & AGGR_ADDBA_COMPLETE ||
161 tid->state & AGGR_ADDBA_PROGRESS)
162 return 1;
163 else
164 return 0;
167 static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
168 struct ath_beacon_config *conf)
170 struct ieee80211_hw *hw = sc->hw;
172 /* fill in beacon config data */
174 conf->beacon_interval = hw->conf.beacon_int;
175 conf->listen_interval = 100;
176 conf->dtim_count = 1;
177 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
180 /* Calculate Atheros packet type from IEEE80211 packet header */
182 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
184 struct ieee80211_hdr *hdr;
185 enum ath9k_pkt_type htype;
186 __le16 fc;
188 hdr = (struct ieee80211_hdr *)skb->data;
189 fc = hdr->frame_control;
191 if (ieee80211_is_beacon(fc))
192 htype = ATH9K_PKT_TYPE_BEACON;
193 else if (ieee80211_is_probe_resp(fc))
194 htype = ATH9K_PKT_TYPE_PROBE_RESP;
195 else if (ieee80211_is_atim(fc))
196 htype = ATH9K_PKT_TYPE_ATIM;
197 else if (ieee80211_is_pspoll(fc))
198 htype = ATH9K_PKT_TYPE_PSPOLL;
199 else
200 htype = ATH9K_PKT_TYPE_NORMAL;
202 return htype;
205 static bool is_pae(struct sk_buff *skb)
207 struct ieee80211_hdr *hdr;
208 __le16 fc;
210 hdr = (struct ieee80211_hdr *)skb->data;
211 fc = hdr->frame_control;
213 if (ieee80211_is_data(fc)) {
214 if (ieee80211_is_nullfunc(fc) ||
215 /* Port Access Entity (IEEE 802.1X) */
216 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
217 return true;
221 return false;
224 static int get_hw_crypto_keytype(struct sk_buff *skb)
226 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
228 if (tx_info->control.hw_key) {
229 if (tx_info->control.hw_key->alg == ALG_WEP)
230 return ATH9K_KEY_TYPE_WEP;
231 else if (tx_info->control.hw_key->alg == ALG_TKIP)
232 return ATH9K_KEY_TYPE_TKIP;
233 else if (tx_info->control.hw_key->alg == ALG_CCMP)
234 return ATH9K_KEY_TYPE_AES;
237 return ATH9K_KEY_TYPE_CLEAR;
240 /* Called only when tx aggregation is enabled and HT is supported */
242 static void assign_aggr_tid_seqno(struct sk_buff *skb,
243 struct ath_buf *bf)
245 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
246 struct ieee80211_hdr *hdr;
247 struct ath_node *an;
248 struct ath_atx_tid *tid;
249 __le16 fc;
250 u8 *qc;
252 if (!tx_info->control.sta)
253 return;
255 an = (struct ath_node *)tx_info->control.sta->drv_priv;
256 hdr = (struct ieee80211_hdr *)skb->data;
257 fc = hdr->frame_control;
259 /* Get tidno */
261 if (ieee80211_is_data_qos(fc)) {
262 qc = ieee80211_get_qos_ctl(hdr);
263 bf->bf_tidno = qc[0] & 0xf;
266 /* Get seqno */
267 /* For HT capable stations, we save tidno for later use.
268 * We also override seqno set by upper layer with the one
269 * in tx aggregation state.
271 * If fragmentation is on, the sequence number is
272 * not overridden, since it has been
273 * incremented by the fragmentation routine.
275 * FIXME: check if the fragmentation threshold exceeds
276 * IEEE80211 max.
278 tid = ATH_AN_2_TID(an, bf->bf_tidno);
279 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
280 IEEE80211_SEQ_SEQ_SHIFT);
281 bf->bf_seqno = tid->seq_next;
282 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
285 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
286 struct ath_txq *txq)
288 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
289 int flags = 0;
291 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
292 flags |= ATH9K_TXDESC_INTREQ;
294 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
295 flags |= ATH9K_TXDESC_NOACK;
296 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
297 flags |= ATH9K_TXDESC_RTSENA;
299 return flags;
302 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
304 struct ath_buf *bf = NULL;
306 spin_lock_bh(&sc->tx.txbuflock);
308 if (unlikely(list_empty(&sc->tx.txbuf))) {
309 spin_unlock_bh(&sc->tx.txbuflock);
310 return NULL;
313 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
314 list_del(&bf->list);
316 spin_unlock_bh(&sc->tx.txbuflock);
318 return bf;
321 /* To complete a chain of buffers associated a frame */
323 static void ath_tx_complete_buf(struct ath_softc *sc,
324 struct ath_buf *bf,
325 struct list_head *bf_q,
326 int txok, int sendbar)
328 struct sk_buff *skb = bf->bf_mpdu;
329 struct ath_xmit_status tx_status;
330 unsigned long flags;
333 * Set retry information.
334 * NB: Don't use the information in the descriptor, because the frame
335 * could be software retried.
337 tx_status.retries = bf->bf_retries;
338 tx_status.flags = 0;
340 if (sendbar)
341 tx_status.flags = ATH_TX_BAR;
343 if (!txok) {
344 tx_status.flags |= ATH_TX_ERROR;
346 if (bf_isxretried(bf))
347 tx_status.flags |= ATH_TX_XRETRY;
350 /* Unmap this frame */
351 pci_unmap_single(sc->pdev,
352 bf->bf_dmacontext,
353 skb->len,
354 PCI_DMA_TODEVICE);
355 /* complete this frame */
356 ath_tx_complete(sc, skb, &tx_status);
359 * Return the list of ath_buf of this mpdu to free queue
361 spin_lock_irqsave(&sc->tx.txbuflock, flags);
362 list_splice_tail_init(bf_q, &sc->tx.txbuf);
363 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
367 * queue up a dest/ac pair for tx scheduling
368 * NB: must be called with txq lock held
371 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
373 struct ath_atx_ac *ac = tid->ac;
376 * if tid is paused, hold off
378 if (tid->paused)
379 return;
382 * add tid to ac atmost once
384 if (tid->sched)
385 return;
387 tid->sched = true;
388 list_add_tail(&tid->list, &ac->tid_q);
391 * add node ac to txq atmost once
393 if (ac->sched)
394 return;
396 ac->sched = true;
397 list_add_tail(&ac->list, &txq->axq_acq);
400 /* pause a tid */
402 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
404 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
406 spin_lock_bh(&txq->axq_lock);
408 tid->paused++;
410 spin_unlock_bh(&txq->axq_lock);
413 /* resume a tid and schedule aggregate */
415 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
417 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
419 ASSERT(tid->paused > 0);
420 spin_lock_bh(&txq->axq_lock);
422 tid->paused--;
424 if (tid->paused > 0)
425 goto unlock;
427 if (list_empty(&tid->buf_q))
428 goto unlock;
431 * Add this TID to scheduler and try to send out aggregates
433 ath_tx_queue_tid(txq, tid);
434 ath_txq_schedule(sc, txq);
435 unlock:
436 spin_unlock_bh(&txq->axq_lock);
439 /* Compute the number of bad frames */
441 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
442 int txok)
444 struct ath_buf *bf_last = bf->bf_lastbf;
445 struct ath_desc *ds = bf_last->bf_desc;
446 u16 seq_st = 0;
447 u32 ba[WME_BA_BMP_SIZE >> 5];
448 int ba_index;
449 int nbad = 0;
450 int isaggr = 0;
452 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
453 return 0;
455 isaggr = bf_isaggr(bf);
456 if (isaggr) {
457 seq_st = ATH_DS_BA_SEQ(ds);
458 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
461 while (bf) {
462 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
463 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
464 nbad++;
466 bf = bf->bf_next;
469 return nbad;
472 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
474 struct sk_buff *skb;
475 struct ieee80211_hdr *hdr;
477 bf->bf_state.bf_type |= BUF_RETRY;
478 bf->bf_retries++;
480 skb = bf->bf_mpdu;
481 hdr = (struct ieee80211_hdr *)skb->data;
482 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
485 /* Update block ack window */
487 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
488 int seqno)
490 int index, cindex;
492 index = ATH_BA_INDEX(tid->seq_start, seqno);
493 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
495 tid->tx_buf[cindex] = NULL;
497 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
498 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
499 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
504 * ath_pkt_dur - compute packet duration (NB: not NAV)
506 * rix - rate index
507 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
508 * width - 0 for 20 MHz, 1 for 40 MHz
509 * half_gi - to use 4us v/s 3.6 us for symbol time
511 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
512 int width, int half_gi, bool shortPreamble)
514 struct ath_rate_table *rate_table = sc->cur_rate_table;
515 u32 nbits, nsymbits, duration, nsymbols;
516 u8 rc;
517 int streams, pktlen;
519 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
520 rc = rate_table->info[rix].ratecode;
522 /* for legacy rates, use old function to compute packet duration */
523 if (!IS_HT_RATE(rc))
524 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
525 rix, shortPreamble);
527 /* find number of symbols: PLCP + data */
528 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
529 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
530 nsymbols = (nbits + nsymbits - 1) / nsymbits;
532 if (!half_gi)
533 duration = SYMBOL_TIME(nsymbols);
534 else
535 duration = SYMBOL_TIME_HALFGI(nsymbols);
537 /* addup duration for legacy/ht training and signal fields */
538 streams = HT_RC_2_STREAMS(rc);
539 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
541 return duration;
544 /* Rate module function to set rate related fields in tx descriptor */
546 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
548 struct ath_hal *ah = sc->sc_ah;
549 struct ath_rate_table *rt;
550 struct ath_desc *ds = bf->bf_desc;
551 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
552 struct ath9k_11n_rate_series series[4];
553 struct sk_buff *skb;
554 struct ieee80211_tx_info *tx_info;
555 struct ieee80211_tx_rate *rates;
556 struct ieee80211_hdr *hdr;
557 int i, flags, rtsctsena = 0;
558 u32 ctsduration = 0;
559 u8 rix = 0, cix, ctsrate = 0;
560 __le16 fc;
562 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
564 skb = (struct sk_buff *)bf->bf_mpdu;
565 hdr = (struct ieee80211_hdr *)skb->data;
566 fc = hdr->frame_control;
567 tx_info = IEEE80211_SKB_CB(skb);
568 rates = tx_info->control.rates;
570 if (ieee80211_has_morefrags(fc) ||
571 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
572 rates[1].count = rates[2].count = rates[3].count = 0;
573 rates[1].idx = rates[2].idx = rates[3].idx = 0;
574 rates[0].count = ATH_TXMAXTRY;
577 /* get the cix for the lowest valid rix */
578 rt = sc->cur_rate_table;
579 for (i = 3; i >= 0; i--) {
580 if (rates[i].count && (rates[i].idx >= 0)) {
581 rix = rates[i].idx;
582 break;
586 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
587 cix = rt->info[rix].ctrl_rate;
590 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
591 * just CTS. Note that this is only done for OFDM/HT unicast frames.
593 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
594 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
595 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
596 if (sc->sc_protmode == PROT_M_RTSCTS)
597 flags = ATH9K_TXDESC_RTSENA;
598 else if (sc->sc_protmode == PROT_M_CTSONLY)
599 flags = ATH9K_TXDESC_CTSENA;
601 cix = rt->info[sc->sc_protrix].ctrl_rate;
602 rtsctsena = 1;
605 /* For 11n, the default behavior is to enable RTS for hw retried frames.
606 * We enable the global flag here and let rate series flags determine
607 * which rates will actually use RTS.
609 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
610 /* 802.11g protection not needed, use our default behavior */
611 if (!rtsctsena)
612 flags = ATH9K_TXDESC_RTSENA;
615 /* Set protection if aggregate protection on */
616 if (sc->sc_config.ath_aggr_prot &&
617 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
618 flags = ATH9K_TXDESC_RTSENA;
619 cix = rt->info[sc->sc_protrix].ctrl_rate;
620 rtsctsena = 1;
623 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
624 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
625 flags &= ~(ATH9K_TXDESC_RTSENA);
628 * CTS transmit rate is derived from the transmit rate by looking in the
629 * h/w rate table. We must also factor in whether or not a short
630 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
632 ctsrate = rt->info[cix].ratecode |
633 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
635 for (i = 0; i < 4; i++) {
636 if (!rates[i].count || (rates[i].idx < 0))
637 continue;
639 rix = rates[i].idx;
641 series[i].Rate = rt->info[rix].ratecode |
642 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
644 series[i].Tries = rates[i].count;
646 series[i].RateFlags = (
647 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
648 ATH9K_RATESERIES_RTS_CTS : 0) |
649 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
650 ATH9K_RATESERIES_2040 : 0) |
651 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
652 ATH9K_RATESERIES_HALFGI : 0);
654 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
655 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
656 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
657 bf_isshpreamble(bf));
659 series[i].ChSel = sc->sc_tx_chainmask;
661 if (rtsctsena)
662 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
665 /* set dur_update_en for l-sig computation except for PS-Poll frames */
666 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
667 ctsrate, ctsduration,
668 series, 4, flags);
670 if (sc->sc_config.ath_aggr_prot && flags)
671 ath9k_hw_set11n_burstduration(ah, ds, 8192);
675 * Function to send a normal HT (non-AMPDU) frame
676 * NB: must be called with txq lock held
678 static int ath_tx_send_normal(struct ath_softc *sc,
679 struct ath_txq *txq,
680 struct ath_atx_tid *tid,
681 struct list_head *bf_head)
683 struct ath_buf *bf;
685 BUG_ON(list_empty(bf_head));
687 bf = list_first_entry(bf_head, struct ath_buf, list);
688 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
690 /* update starting sequence number for subsequent ADDBA request */
691 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
693 /* Queue to h/w without aggregation */
694 bf->bf_nframes = 1;
695 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
696 ath_buf_set_rate(sc, bf);
697 ath_tx_txqaddbuf(sc, txq, bf_head);
699 return 0;
702 /* flush tid's software queue and send frames as non-ampdu's */
704 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
706 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
707 struct ath_buf *bf;
708 struct list_head bf_head;
709 INIT_LIST_HEAD(&bf_head);
711 ASSERT(tid->paused > 0);
712 spin_lock_bh(&txq->axq_lock);
714 tid->paused--;
716 if (tid->paused > 0) {
717 spin_unlock_bh(&txq->axq_lock);
718 return;
721 while (!list_empty(&tid->buf_q)) {
722 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
723 ASSERT(!bf_isretried(bf));
724 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
725 ath_tx_send_normal(sc, txq, tid, &bf_head);
728 spin_unlock_bh(&txq->axq_lock);
731 /* Completion routine of an aggregate */
733 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
734 struct ath_txq *txq,
735 struct ath_buf *bf,
736 struct list_head *bf_q,
737 int txok)
739 struct ath_node *an = NULL;
740 struct sk_buff *skb;
741 struct ieee80211_tx_info *tx_info;
742 struct ath_atx_tid *tid = NULL;
743 struct ath_buf *bf_last = bf->bf_lastbf;
744 struct ath_desc *ds = bf_last->bf_desc;
745 struct ath_buf *bf_next, *bf_lastq = NULL;
746 struct list_head bf_head, bf_pending;
747 u16 seq_st = 0;
748 u32 ba[WME_BA_BMP_SIZE >> 5];
749 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
751 skb = (struct sk_buff *)bf->bf_mpdu;
752 tx_info = IEEE80211_SKB_CB(skb);
754 if (tx_info->control.sta) {
755 an = (struct ath_node *)tx_info->control.sta->drv_priv;
756 tid = ATH_AN_2_TID(an, bf->bf_tidno);
759 isaggr = bf_isaggr(bf);
760 if (isaggr) {
761 if (txok) {
762 if (ATH_DS_TX_BA(ds)) {
764 * extract starting sequence and
765 * block-ack bitmap
767 seq_st = ATH_DS_BA_SEQ(ds);
768 memcpy(ba,
769 ATH_DS_BA_BITMAP(ds),
770 WME_BA_BMP_SIZE >> 3);
771 } else {
772 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
775 * AR5416 can become deaf/mute when BA
776 * issue happens. Chip needs to be reset.
777 * But AP code may have sychronization issues
778 * when perform internal reset in this routine.
779 * Only enable reset in STA mode for now.
781 if (sc->sc_ah->ah_opmode ==
782 NL80211_IFTYPE_STATION)
783 needreset = 1;
785 } else {
786 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
790 INIT_LIST_HEAD(&bf_pending);
791 INIT_LIST_HEAD(&bf_head);
793 while (bf) {
794 txfail = txpending = 0;
795 bf_next = bf->bf_next;
797 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
798 /* transmit completion, subframe is
799 * acked by block ack */
800 } else if (!isaggr && txok) {
801 /* transmit completion */
802 } else {
804 if (!(tid->state & AGGR_CLEANUP) &&
805 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
806 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
807 ath_tx_set_retry(sc, bf);
808 txpending = 1;
809 } else {
810 bf->bf_state.bf_type |= BUF_XRETRY;
811 txfail = 1;
812 sendbar = 1;
814 } else {
816 * cleanup in progress, just fail
817 * the un-acked sub-frames
819 txfail = 1;
823 * Remove ath_buf's of this sub-frame from aggregate queue.
825 if (bf_next == NULL) { /* last subframe in the aggregate */
826 ASSERT(bf->bf_lastfrm == bf_last);
829 * The last descriptor of the last sub frame could be
830 * a holding descriptor for h/w. If that's the case,
831 * bf->bf_lastfrm won't be in the bf_q.
832 * Make sure we handle bf_q properly here.
835 if (!list_empty(bf_q)) {
836 bf_lastq = list_entry(bf_q->prev,
837 struct ath_buf, list);
838 list_cut_position(&bf_head,
839 bf_q, &bf_lastq->list);
840 } else {
842 * XXX: if the last subframe only has one
843 * descriptor which is also being used as
844 * a holding descriptor. Then the ath_buf
845 * is not in the bf_q at all.
847 INIT_LIST_HEAD(&bf_head);
849 } else {
850 ASSERT(!list_empty(bf_q));
851 list_cut_position(&bf_head,
852 bf_q, &bf->bf_lastfrm->list);
855 if (!txpending) {
857 * complete the acked-ones/xretried ones; update
858 * block-ack window
860 spin_lock_bh(&txq->axq_lock);
861 ath_tx_update_baw(sc, tid, bf->bf_seqno);
862 spin_unlock_bh(&txq->axq_lock);
864 /* complete this sub-frame */
865 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
866 } else {
868 * retry the un-acked ones
871 * XXX: if the last descriptor is holding descriptor,
872 * in order to requeue the frame to software queue, we
873 * need to allocate a new descriptor and
874 * copy the content of holding descriptor to it.
876 if (bf->bf_next == NULL &&
877 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
878 struct ath_buf *tbf;
880 /* allocate new descriptor */
881 spin_lock_bh(&sc->tx.txbuflock);
882 ASSERT(!list_empty((&sc->tx.txbuf)));
883 tbf = list_first_entry(&sc->tx.txbuf,
884 struct ath_buf, list);
885 list_del(&tbf->list);
886 spin_unlock_bh(&sc->tx.txbuflock);
888 ATH_TXBUF_RESET(tbf);
890 /* copy descriptor content */
891 tbf->bf_mpdu = bf_last->bf_mpdu;
892 tbf->bf_buf_addr = bf_last->bf_buf_addr;
893 *(tbf->bf_desc) = *(bf_last->bf_desc);
895 /* link it to the frame */
896 if (bf_lastq) {
897 bf_lastq->bf_desc->ds_link =
898 tbf->bf_daddr;
899 bf->bf_lastfrm = tbf;
900 ath9k_hw_cleartxdesc(sc->sc_ah,
901 bf->bf_lastfrm->bf_desc);
902 } else {
903 tbf->bf_state = bf_last->bf_state;
904 tbf->bf_lastfrm = tbf;
905 ath9k_hw_cleartxdesc(sc->sc_ah,
906 tbf->bf_lastfrm->bf_desc);
908 /* copy the DMA context */
909 tbf->bf_dmacontext =
910 bf_last->bf_dmacontext;
912 list_add_tail(&tbf->list, &bf_head);
913 } else {
915 * Clear descriptor status words for
916 * software retry
918 ath9k_hw_cleartxdesc(sc->sc_ah,
919 bf->bf_lastfrm->bf_desc);
923 * Put this buffer to the temporary pending
924 * queue to retain ordering
926 list_splice_tail_init(&bf_head, &bf_pending);
929 bf = bf_next;
932 if (tid->state & AGGR_CLEANUP) {
933 /* check to see if we're done with cleaning the h/w queue */
934 spin_lock_bh(&txq->axq_lock);
936 if (tid->baw_head == tid->baw_tail) {
937 tid->state &= ~AGGR_ADDBA_COMPLETE;
938 tid->addba_exchangeattempts = 0;
939 spin_unlock_bh(&txq->axq_lock);
941 tid->state &= ~AGGR_CLEANUP;
943 /* send buffered frames as singles */
944 ath_tx_flush_tid(sc, tid);
945 } else
946 spin_unlock_bh(&txq->axq_lock);
948 return;
952 * prepend un-acked frames to the beginning of the pending frame queue
954 if (!list_empty(&bf_pending)) {
955 spin_lock_bh(&txq->axq_lock);
956 /* Note: we _prepend_, we _do_not_ at to
957 * the end of the queue ! */
958 list_splice(&bf_pending, &tid->buf_q);
959 ath_tx_queue_tid(txq, tid);
960 spin_unlock_bh(&txq->axq_lock);
963 if (needreset)
964 ath_reset(sc, false);
966 return;
969 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
971 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
972 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
973 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
975 tx_info_priv->update_rc = false;
976 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
977 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
979 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
980 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
981 if (bf_isdata(bf)) {
982 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
983 sizeof(tx_info_priv->tx));
984 tx_info_priv->n_frames = bf->bf_nframes;
985 tx_info_priv->n_bad_frames = nbad;
986 tx_info_priv->update_rc = true;
991 /* Process completed xmit descriptors from the specified queue */
993 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
995 struct ath_hal *ah = sc->sc_ah;
996 struct ath_buf *bf, *lastbf, *bf_held = NULL;
997 struct list_head bf_head;
998 struct ath_desc *ds;
999 int txok, nbad = 0;
1000 int status;
1002 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1003 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1004 txq->axq_link);
1006 for (;;) {
1007 spin_lock_bh(&txq->axq_lock);
1008 if (list_empty(&txq->axq_q)) {
1009 txq->axq_link = NULL;
1010 txq->axq_linkbuf = NULL;
1011 spin_unlock_bh(&txq->axq_lock);
1012 break;
1014 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1017 * There is a race condition that a BH gets scheduled
1018 * after sw writes TxE and before hw re-load the last
1019 * descriptor to get the newly chained one.
1020 * Software must keep the last DONE descriptor as a
1021 * holding descriptor - software does so by marking
1022 * it with the STALE flag.
1024 bf_held = NULL;
1025 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1026 bf_held = bf;
1027 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1028 /* FIXME:
1029 * The holding descriptor is the last
1030 * descriptor in queue. It's safe to remove
1031 * the last holding descriptor in BH context.
1033 spin_unlock_bh(&txq->axq_lock);
1034 break;
1035 } else {
1036 /* Lets work with the next buffer now */
1037 bf = list_entry(bf_held->list.next,
1038 struct ath_buf, list);
1042 lastbf = bf->bf_lastbf;
1043 ds = lastbf->bf_desc; /* NB: last decriptor */
1045 status = ath9k_hw_txprocdesc(ah, ds);
1046 if (status == -EINPROGRESS) {
1047 spin_unlock_bh(&txq->axq_lock);
1048 break;
1050 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1051 txq->axq_lastdsWithCTS = NULL;
1052 if (ds == txq->axq_gatingds)
1053 txq->axq_gatingds = NULL;
1056 * Remove ath_buf's of the same transmit unit from txq,
1057 * however leave the last descriptor back as the holding
1058 * descriptor for hw.
1060 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1061 INIT_LIST_HEAD(&bf_head);
1063 if (!list_is_singular(&lastbf->list))
1064 list_cut_position(&bf_head,
1065 &txq->axq_q, lastbf->list.prev);
1067 txq->axq_depth--;
1069 if (bf_isaggr(bf))
1070 txq->axq_aggr_depth--;
1072 txok = (ds->ds_txstat.ts_status == 0);
1074 spin_unlock_bh(&txq->axq_lock);
1076 if (bf_held) {
1077 list_del(&bf_held->list);
1078 spin_lock_bh(&sc->tx.txbuflock);
1079 list_add_tail(&bf_held->list, &sc->tx.txbuf);
1080 spin_unlock_bh(&sc->tx.txbuflock);
1083 if (!bf_isampdu(bf)) {
1085 * This frame is sent out as a single frame.
1086 * Use hardware retry status for this frame.
1088 bf->bf_retries = ds->ds_txstat.ts_longretry;
1089 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1090 bf->bf_state.bf_type |= BUF_XRETRY;
1091 nbad = 0;
1092 } else {
1093 nbad = ath_tx_num_badfrms(sc, bf, txok);
1096 ath_tx_rc_status(bf, ds, nbad);
1099 * Complete this transmit unit
1101 if (bf_isampdu(bf))
1102 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1103 else
1104 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1106 /* Wake up mac80211 queue */
1108 spin_lock_bh(&txq->axq_lock);
1109 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1110 (ATH_TXBUF - 20)) {
1111 int qnum;
1112 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1113 if (qnum != -1) {
1114 ieee80211_wake_queue(sc->hw, qnum);
1115 txq->stopped = 0;
1121 * schedule any pending packets if aggregation is enabled
1123 if (sc->sc_flags & SC_OP_TXAGGR)
1124 ath_txq_schedule(sc, txq);
1125 spin_unlock_bh(&txq->axq_lock);
1129 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1131 struct ath_hal *ah = sc->sc_ah;
1133 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1134 DPRINTF(sc, ATH_DBG_XMIT, "tx queue [%u] %x, link %p\n",
1135 txq->axq_qnum, ath9k_hw_gettxbuf(ah, txq->axq_qnum),
1136 txq->axq_link);
1139 /* Drain only the data queues */
1141 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1143 struct ath_hal *ah = sc->sc_ah;
1144 int i, status, npend = 0;
1146 if (!(sc->sc_flags & SC_OP_INVALID)) {
1147 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1148 if (ATH_TXQ_SETUP(sc, i)) {
1149 ath_tx_stopdma(sc, &sc->tx.txq[i]);
1150 /* The TxDMA may not really be stopped.
1151 * Double check the hal tx pending count */
1152 npend += ath9k_hw_numtxpending(ah,
1153 sc->tx.txq[i].axq_qnum);
1158 if (npend) {
1159 /* TxDMA not stopped, reset the hal */
1160 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1162 spin_lock_bh(&sc->sc_resetlock);
1163 if (!ath9k_hw_reset(ah,
1164 sc->sc_ah->ah_curchan,
1165 sc->tx_chan_width,
1166 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1167 sc->sc_ht_extprotspacing, true, &status)) {
1169 DPRINTF(sc, ATH_DBG_FATAL,
1170 "Unable to reset hardware; hal status %u\n",
1171 status);
1173 spin_unlock_bh(&sc->sc_resetlock);
1176 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1177 if (ATH_TXQ_SETUP(sc, i))
1178 ath_tx_draintxq(sc, &sc->tx.txq[i], retry_tx);
1182 /* Add a sub-frame to block ack window */
1184 static void ath_tx_addto_baw(struct ath_softc *sc,
1185 struct ath_atx_tid *tid,
1186 struct ath_buf *bf)
1188 int index, cindex;
1190 if (bf_isretried(bf))
1191 return;
1193 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1194 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1196 ASSERT(tid->tx_buf[cindex] == NULL);
1197 tid->tx_buf[cindex] = bf;
1199 if (index >= ((tid->baw_tail - tid->baw_head) &
1200 (ATH_TID_MAX_BUFS - 1))) {
1201 tid->baw_tail = cindex;
1202 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1207 * Function to send an A-MPDU
1208 * NB: must be called with txq lock held
1210 static int ath_tx_send_ampdu(struct ath_softc *sc,
1211 struct ath_atx_tid *tid,
1212 struct list_head *bf_head,
1213 struct ath_tx_control *txctl)
1215 struct ath_buf *bf;
1217 BUG_ON(list_empty(bf_head));
1219 bf = list_first_entry(bf_head, struct ath_buf, list);
1220 bf->bf_state.bf_type |= BUF_AMPDU;
1223 * Do not queue to h/w when any of the following conditions is true:
1224 * - there are pending frames in software queue
1225 * - the TID is currently paused for ADDBA/BAR request
1226 * - seqno is not within block-ack window
1227 * - h/w queue depth exceeds low water mark
1229 if (!list_empty(&tid->buf_q) || tid->paused ||
1230 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1231 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1233 * Add this frame to software queue for scheduling later
1234 * for aggregation.
1236 list_splice_tail_init(bf_head, &tid->buf_q);
1237 ath_tx_queue_tid(txctl->txq, tid);
1238 return 0;
1241 /* Add sub-frame to BAW */
1242 ath_tx_addto_baw(sc, tid, bf);
1244 /* Queue to h/w without aggregation */
1245 bf->bf_nframes = 1;
1246 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1247 ath_buf_set_rate(sc, bf);
1248 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1250 return 0;
1254 * looks up the rate
1255 * returns aggr limit based on lowest of the rates
1257 static u32 ath_lookup_rate(struct ath_softc *sc,
1258 struct ath_buf *bf,
1259 struct ath_atx_tid *tid)
1261 struct ath_rate_table *rate_table = sc->cur_rate_table;
1262 struct sk_buff *skb;
1263 struct ieee80211_tx_info *tx_info;
1264 struct ieee80211_tx_rate *rates;
1265 struct ath_tx_info_priv *tx_info_priv;
1266 u32 max_4ms_framelen, frame_length;
1267 u16 aggr_limit, legacy = 0, maxampdu;
1268 int i;
1270 skb = (struct sk_buff *)bf->bf_mpdu;
1271 tx_info = IEEE80211_SKB_CB(skb);
1272 rates = tx_info->control.rates;
1273 tx_info_priv =
1274 (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
1277 * Find the lowest frame length among the rate series that will have a
1278 * 4ms transmit duration.
1279 * TODO - TXOP limit needs to be considered.
1281 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1283 for (i = 0; i < 4; i++) {
1284 if (rates[i].count) {
1285 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
1286 legacy = 1;
1287 break;
1290 frame_length =
1291 rate_table->info[rates[i].idx].max_4ms_framelen;
1292 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1297 * limit aggregate size by the minimum rate if rate selected is
1298 * not a probe rate, if rate selected is a probe rate then
1299 * avoid aggregation of this packet.
1301 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1302 return 0;
1304 aggr_limit = min(max_4ms_framelen,
1305 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1308 * h/w can accept aggregates upto 16 bit lengths (65535).
1309 * The IE, however can hold upto 65536, which shows up here
1310 * as zero. Ignore 65536 since we are constrained by hw.
1312 maxampdu = tid->an->maxampdu;
1313 if (maxampdu)
1314 aggr_limit = min(aggr_limit, maxampdu);
1316 return aggr_limit;
1320 * returns the number of delimiters to be added to
1321 * meet the minimum required mpdudensity.
1322 * caller should make sure that the rate is HT rate .
1324 static int ath_compute_num_delims(struct ath_softc *sc,
1325 struct ath_atx_tid *tid,
1326 struct ath_buf *bf,
1327 u16 frmlen)
1329 struct ath_rate_table *rt = sc->cur_rate_table;
1330 struct sk_buff *skb = bf->bf_mpdu;
1331 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1332 u32 nsymbits, nsymbols, mpdudensity;
1333 u16 minlen;
1334 u8 rc, flags, rix;
1335 int width, half_gi, ndelim, mindelim;
1337 /* Select standard number of delimiters based on frame length alone */
1338 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1341 * If encryption enabled, hardware requires some more padding between
1342 * subframes.
1343 * TODO - this could be improved to be dependent on the rate.
1344 * The hardware can keep up at lower rates, but not higher rates
1346 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1347 ndelim += ATH_AGGR_ENCRYPTDELIM;
1350 * Convert desired mpdu density from microeconds to bytes based
1351 * on highest rate in rate series (i.e. first rate) to determine
1352 * required minimum length for subframe. Take into account
1353 * whether high rate is 20 or 40Mhz and half or full GI.
1355 mpdudensity = tid->an->mpdudensity;
1358 * If there is no mpdu density restriction, no further calculation
1359 * is needed.
1361 if (mpdudensity == 0)
1362 return ndelim;
1364 rix = tx_info->control.rates[0].idx;
1365 flags = tx_info->control.rates[0].flags;
1366 rc = rt->info[rix].ratecode;
1367 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
1368 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
1370 if (half_gi)
1371 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1372 else
1373 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1375 if (nsymbols == 0)
1376 nsymbols = 1;
1378 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1379 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1381 /* Is frame shorter than required minimum length? */
1382 if (frmlen < minlen) {
1383 /* Get the minimum number of delimiters required. */
1384 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1385 ndelim = max(mindelim, ndelim);
1388 return ndelim;
1392 * For aggregation from software buffer queue.
1393 * NB: must be called with txq lock held
1395 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1396 struct ath_atx_tid *tid,
1397 struct list_head *bf_q,
1398 struct ath_buf **bf_last,
1399 struct aggr_rifs_param *param,
1400 int *prev_frames)
1402 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1403 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1404 struct list_head bf_head;
1405 int rl = 0, nframes = 0, ndelim;
1406 u16 aggr_limit = 0, al = 0, bpad = 0,
1407 al_delta, h_baw = tid->baw_size / 2;
1408 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1409 int prev_al = 0;
1410 INIT_LIST_HEAD(&bf_head);
1412 BUG_ON(list_empty(&tid->buf_q));
1414 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1416 do {
1417 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1420 * do not step over block-ack window
1422 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1423 status = ATH_AGGR_BAW_CLOSED;
1424 break;
1427 if (!rl) {
1428 aggr_limit = ath_lookup_rate(sc, bf, tid);
1429 rl = 1;
1433 * do not exceed aggregation limit
1435 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1437 if (nframes && (aggr_limit <
1438 (al + bpad + al_delta + prev_al))) {
1439 status = ATH_AGGR_LIMITED;
1440 break;
1444 * do not exceed subframe limit
1446 if ((nframes + *prev_frames) >=
1447 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1448 status = ATH_AGGR_LIMITED;
1449 break;
1453 * add padding for previous frame to aggregation length
1455 al += bpad + al_delta;
1458 * Get the delimiters needed to meet the MPDU
1459 * density for this node.
1461 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
1463 bpad = PADBYTES(al_delta) + (ndelim << 2);
1465 bf->bf_next = NULL;
1466 bf->bf_lastfrm->bf_desc->ds_link = 0;
1469 * this packet is part of an aggregate
1470 * - remove all descriptors belonging to this frame from
1471 * software queue
1472 * - add it to block ack window
1473 * - set up descriptors for aggregation
1475 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1476 ath_tx_addto_baw(sc, tid, bf);
1478 list_for_each_entry(tbf, &bf_head, list) {
1479 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1480 tbf->bf_desc, ndelim);
1484 * link buffers of this frame to the aggregate
1486 list_splice_tail_init(&bf_head, bf_q);
1487 nframes++;
1489 if (bf_prev) {
1490 bf_prev->bf_next = bf;
1491 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1493 bf_prev = bf;
1495 #ifdef AGGR_NOSHORT
1497 * terminate aggregation on a small packet boundary
1499 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1500 status = ATH_AGGR_SHORTPKT;
1501 break;
1503 #endif
1504 } while (!list_empty(&tid->buf_q));
1506 bf_first->bf_al = al;
1507 bf_first->bf_nframes = nframes;
1508 *bf_last = bf_prev;
1509 return status;
1510 #undef PADBYTES
1514 * process pending frames possibly doing a-mpdu aggregation
1515 * NB: must be called with txq lock held
1517 static void ath_tx_sched_aggr(struct ath_softc *sc,
1518 struct ath_txq *txq, struct ath_atx_tid *tid)
1520 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1521 enum ATH_AGGR_STATUS status;
1522 struct list_head bf_q;
1523 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1524 int prev_frames = 0;
1526 do {
1527 if (list_empty(&tid->buf_q))
1528 return;
1530 INIT_LIST_HEAD(&bf_q);
1532 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1533 &prev_frames);
1536 * no frames picked up to be aggregated; block-ack
1537 * window is not open
1539 if (list_empty(&bf_q))
1540 break;
1542 bf = list_first_entry(&bf_q, struct ath_buf, list);
1543 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1544 bf->bf_lastbf = bf_last;
1547 * if only one frame, send as non-aggregate
1549 if (bf->bf_nframes == 1) {
1550 ASSERT(bf->bf_lastfrm == bf_last);
1552 bf->bf_state.bf_type &= ~BUF_AGGR;
1554 * clear aggr bits for every descriptor
1555 * XXX TODO: is there a way to optimize it?
1557 list_for_each_entry(tbf, &bf_q, list) {
1558 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1561 ath_buf_set_rate(sc, bf);
1562 ath_tx_txqaddbuf(sc, txq, &bf_q);
1563 continue;
1567 * setup first desc with rate and aggr info
1569 bf->bf_state.bf_type |= BUF_AGGR;
1570 ath_buf_set_rate(sc, bf);
1571 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1574 * anchor last frame of aggregate correctly
1576 ASSERT(bf_lastaggr);
1577 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1578 tbf = bf_lastaggr;
1579 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1581 /* XXX: We don't enter into this loop, consider removing this */
1582 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1583 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1584 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1587 txq->axq_aggr_depth++;
1590 * Normal aggregate, queue to hardware
1592 ath_tx_txqaddbuf(sc, txq, &bf_q);
1594 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1595 status != ATH_AGGR_BAW_CLOSED);
1598 /* Called with txq lock held */
1600 static void ath_tid_drain(struct ath_softc *sc,
1601 struct ath_txq *txq,
1602 struct ath_atx_tid *tid)
1605 struct ath_buf *bf;
1606 struct list_head bf_head;
1607 INIT_LIST_HEAD(&bf_head);
1609 for (;;) {
1610 if (list_empty(&tid->buf_q))
1611 break;
1612 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1614 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1616 /* update baw for software retried frame */
1617 if (bf_isretried(bf))
1618 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1621 * do not indicate packets while holding txq spinlock.
1622 * unlock is intentional here
1624 spin_unlock(&txq->axq_lock);
1626 /* complete this sub-frame */
1627 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1629 spin_lock(&txq->axq_lock);
1633 * TODO: For frame(s) that are in the retry state, we will reuse the
1634 * sequence number(s) without setting the retry bit. The
1635 * alternative is to give up on these and BAR the receiver's window
1636 * forward.
1638 tid->seq_next = tid->seq_start;
1639 tid->baw_tail = tid->baw_head;
1643 * Drain all pending buffers
1644 * NB: must be called with txq lock held
1646 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1647 struct ath_txq *txq)
1649 struct ath_atx_ac *ac, *ac_tmp;
1650 struct ath_atx_tid *tid, *tid_tmp;
1652 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1653 list_del(&ac->list);
1654 ac->sched = false;
1655 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1656 list_del(&tid->list);
1657 tid->sched = false;
1658 ath_tid_drain(sc, txq, tid);
1663 static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1664 struct sk_buff *skb,
1665 struct ath_tx_control *txctl)
1667 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1668 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1669 struct ath_tx_info_priv *tx_info_priv;
1670 int hdrlen;
1671 __le16 fc;
1673 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1674 if (unlikely(!tx_info_priv))
1675 return -ENOMEM;
1676 tx_info->rate_driver_data[0] = tx_info_priv;
1677 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1678 fc = hdr->frame_control;
1680 ATH_TXBUF_RESET(bf);
1682 /* Frame type */
1684 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1686 ieee80211_is_data(fc) ?
1687 (bf->bf_state.bf_type |= BUF_DATA) :
1688 (bf->bf_state.bf_type &= ~BUF_DATA);
1689 ieee80211_is_back_req(fc) ?
1690 (bf->bf_state.bf_type |= BUF_BAR) :
1691 (bf->bf_state.bf_type &= ~BUF_BAR);
1692 ieee80211_is_pspoll(fc) ?
1693 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1694 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1695 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1696 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1697 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1698 (sc->hw->conf.ht.enabled && !is_pae(skb) &&
1699 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1700 (bf->bf_state.bf_type |= BUF_HT) :
1701 (bf->bf_state.bf_type &= ~BUF_HT);
1703 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1705 /* Crypto */
1707 bf->bf_keytype = get_hw_crypto_keytype(skb);
1709 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1710 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1711 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1712 } else {
1713 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1716 /* Assign seqno, tidno */
1718 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1719 assign_aggr_tid_seqno(skb, bf);
1721 /* DMA setup */
1722 bf->bf_mpdu = skb;
1724 bf->bf_dmacontext = pci_map_single(sc->pdev, skb->data,
1725 skb->len, PCI_DMA_TODEVICE);
1726 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->bf_dmacontext))) {
1727 bf->bf_mpdu = NULL;
1728 DPRINTF(sc, ATH_DBG_CONFIG,
1729 "pci_dma_mapping_error() on TX\n");
1730 return -ENOMEM;
1733 bf->bf_buf_addr = bf->bf_dmacontext;
1734 return 0;
1737 /* FIXME: tx power */
1738 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1739 struct ath_tx_control *txctl)
1741 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1742 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1743 struct ath_node *an = NULL;
1744 struct list_head bf_head;
1745 struct ath_desc *ds;
1746 struct ath_atx_tid *tid;
1747 struct ath_hal *ah = sc->sc_ah;
1748 int frm_type;
1750 frm_type = get_hw_packet_type(skb);
1752 INIT_LIST_HEAD(&bf_head);
1753 list_add_tail(&bf->list, &bf_head);
1755 /* setup descriptor */
1757 ds = bf->bf_desc;
1758 ds->ds_link = 0;
1759 ds->ds_data = bf->bf_buf_addr;
1761 /* Formulate first tx descriptor with tx controls */
1763 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1764 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1766 ath9k_hw_filltxdesc(ah, ds,
1767 skb->len, /* segment length */
1768 true, /* first segment */
1769 true, /* last segment */
1770 ds); /* first descriptor */
1772 bf->bf_lastfrm = bf;
1774 spin_lock_bh(&txctl->txq->axq_lock);
1776 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1777 tx_info->control.sta) {
1778 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1779 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1781 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1783 * Try aggregation if it's a unicast data frame
1784 * and the destination is HT capable.
1786 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1787 } else {
1789 * Send this frame as regular when ADDBA
1790 * exchange is neither complete nor pending.
1792 ath_tx_send_normal(sc, txctl->txq,
1793 tid, &bf_head);
1795 } else {
1796 bf->bf_lastbf = bf;
1797 bf->bf_nframes = 1;
1799 ath_buf_set_rate(sc, bf);
1800 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1803 spin_unlock_bh(&txctl->txq->axq_lock);
1806 /* Upon failure caller should free skb */
1807 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1808 struct ath_tx_control *txctl)
1810 struct ath_buf *bf;
1811 int r;
1813 /* Check if a tx buffer is available */
1815 bf = ath_tx_get_buffer(sc);
1816 if (!bf) {
1817 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1818 return -1;
1821 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1822 if (unlikely(r)) {
1823 struct ath_txq *txq = txctl->txq;
1825 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1827 /* upon ath_tx_processq() this TX queue will be resumed, we
1828 * guarantee this will happen by knowing beforehand that
1829 * we will at least have to run TX completionon one buffer
1830 * on the queue */
1831 spin_lock_bh(&txq->axq_lock);
1832 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1833 ieee80211_stop_queue(sc->hw,
1834 skb_get_queue_mapping(skb));
1835 txq->stopped = 1;
1837 spin_unlock_bh(&txq->axq_lock);
1839 spin_lock_bh(&sc->tx.txbuflock);
1840 list_add_tail(&bf->list, &sc->tx.txbuf);
1841 spin_unlock_bh(&sc->tx.txbuflock);
1843 return r;
1846 ath_tx_start_dma(sc, bf, txctl);
1848 return 0;
1851 /* Initialize TX queue and h/w */
1853 int ath_tx_init(struct ath_softc *sc, int nbufs)
1855 int error = 0;
1857 do {
1858 spin_lock_init(&sc->tx.txbuflock);
1860 /* Setup tx descriptors */
1861 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
1862 "tx", nbufs, 1);
1863 if (error != 0) {
1864 DPRINTF(sc, ATH_DBG_FATAL,
1865 "Failed to allocate tx descriptors: %d\n",
1866 error);
1867 break;
1870 /* XXX allocate beacon state together with vap */
1871 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
1872 "beacon", ATH_BCBUF, 1);
1873 if (error != 0) {
1874 DPRINTF(sc, ATH_DBG_FATAL,
1875 "Failed to allocate beacon descriptors: %d\n",
1876 error);
1877 break;
1880 } while (0);
1882 if (error != 0)
1883 ath_tx_cleanup(sc);
1885 return error;
1888 /* Reclaim all tx queue resources */
1890 int ath_tx_cleanup(struct ath_softc *sc)
1892 /* cleanup beacon descriptors */
1893 if (sc->beacon.bdma.dd_desc_len != 0)
1894 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
1896 /* cleanup tx descriptors */
1897 if (sc->tx.txdma.dd_desc_len != 0)
1898 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
1900 return 0;
1903 /* Setup a h/w transmit queue */
1905 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1907 struct ath_hal *ah = sc->sc_ah;
1908 struct ath9k_tx_queue_info qi;
1909 int qnum;
1911 memset(&qi, 0, sizeof(qi));
1912 qi.tqi_subtype = subtype;
1913 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1914 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1915 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1916 qi.tqi_physCompBuf = 0;
1919 * Enable interrupts only for EOL and DESC conditions.
1920 * We mark tx descriptors to receive a DESC interrupt
1921 * when a tx queue gets deep; otherwise waiting for the
1922 * EOL to reap descriptors. Note that this is done to
1923 * reduce interrupt load and this only defers reaping
1924 * descriptors, never transmitting frames. Aside from
1925 * reducing interrupts this also permits more concurrency.
1926 * The only potential downside is if the tx queue backs
1927 * up in which case the top half of the kernel may backup
1928 * due to a lack of tx descriptors.
1930 * The UAPSD queue is an exception, since we take a desc-
1931 * based intr on the EOSP frames.
1933 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1934 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1935 else
1936 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1937 TXQ_FLAG_TXDESCINT_ENABLE;
1938 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1939 if (qnum == -1) {
1941 * NB: don't print a message, this happens
1942 * normally on parts with too few tx queues
1944 return NULL;
1946 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
1947 DPRINTF(sc, ATH_DBG_FATAL,
1948 "qnum %u out of range, max %u!\n",
1949 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
1950 ath9k_hw_releasetxqueue(ah, qnum);
1951 return NULL;
1953 if (!ATH_TXQ_SETUP(sc, qnum)) {
1954 struct ath_txq *txq = &sc->tx.txq[qnum];
1956 txq->axq_qnum = qnum;
1957 txq->axq_link = NULL;
1958 INIT_LIST_HEAD(&txq->axq_q);
1959 INIT_LIST_HEAD(&txq->axq_acq);
1960 spin_lock_init(&txq->axq_lock);
1961 txq->axq_depth = 0;
1962 txq->axq_aggr_depth = 0;
1963 txq->axq_totalqueued = 0;
1964 txq->axq_linkbuf = NULL;
1965 sc->tx.txqsetup |= 1<<qnum;
1967 return &sc->tx.txq[qnum];
1970 /* Reclaim resources for a setup queue */
1972 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1974 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1975 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1979 * Setup a hardware data transmit queue for the specified
1980 * access control. The hal may not support all requested
1981 * queues in which case it will return a reference to a
1982 * previously setup queue. We record the mapping from ac's
1983 * to h/w queues for use by ath_tx_start and also track
1984 * the set of h/w queues being used to optimize work in the
1985 * transmit interrupt handler and related routines.
1988 int ath_tx_setup(struct ath_softc *sc, int haltype)
1990 struct ath_txq *txq;
1992 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1993 DPRINTF(sc, ATH_DBG_FATAL,
1994 "HAL AC %u out of range, max %zu!\n",
1995 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1996 return 0;
1998 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1999 if (txq != NULL) {
2000 sc->tx.hwq_map[haltype] = txq->axq_qnum;
2001 return 1;
2002 } else
2003 return 0;
2006 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2008 int qnum;
2010 switch (qtype) {
2011 case ATH9K_TX_QUEUE_DATA:
2012 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
2013 DPRINTF(sc, ATH_DBG_FATAL,
2014 "HAL AC %u out of range, max %zu!\n",
2015 haltype, ARRAY_SIZE(sc->tx.hwq_map));
2016 return -1;
2018 qnum = sc->tx.hwq_map[haltype];
2019 break;
2020 case ATH9K_TX_QUEUE_BEACON:
2021 qnum = sc->beacon.beaconq;
2022 break;
2023 case ATH9K_TX_QUEUE_CAB:
2024 qnum = sc->beacon.cabq->axq_qnum;
2025 break;
2026 default:
2027 qnum = -1;
2029 return qnum;
2032 /* Get a transmit queue, if available */
2034 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2036 struct ath_txq *txq = NULL;
2037 int qnum;
2039 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
2040 txq = &sc->tx.txq[qnum];
2042 spin_lock_bh(&txq->axq_lock);
2044 /* Try to avoid running out of descriptors */
2045 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
2046 DPRINTF(sc, ATH_DBG_FATAL,
2047 "TX queue: %d is full, depth: %d\n",
2048 qnum, txq->axq_depth);
2049 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
2050 txq->stopped = 1;
2051 spin_unlock_bh(&txq->axq_lock);
2052 return NULL;
2055 spin_unlock_bh(&txq->axq_lock);
2057 return txq;
2060 /* Update parameters for a transmit queue */
2062 int ath_txq_update(struct ath_softc *sc, int qnum,
2063 struct ath9k_tx_queue_info *qinfo)
2065 struct ath_hal *ah = sc->sc_ah;
2066 int error = 0;
2067 struct ath9k_tx_queue_info qi;
2069 if (qnum == sc->beacon.beaconq) {
2071 * XXX: for beacon queue, we just save the parameter.
2072 * It will be picked up by ath_beaconq_config when
2073 * it's necessary.
2075 sc->beacon.beacon_qi = *qinfo;
2076 return 0;
2079 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
2081 ath9k_hw_get_txq_props(ah, qnum, &qi);
2082 qi.tqi_aifs = qinfo->tqi_aifs;
2083 qi.tqi_cwmin = qinfo->tqi_cwmin;
2084 qi.tqi_cwmax = qinfo->tqi_cwmax;
2085 qi.tqi_burstTime = qinfo->tqi_burstTime;
2086 qi.tqi_readyTime = qinfo->tqi_readyTime;
2088 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2089 DPRINTF(sc, ATH_DBG_FATAL,
2090 "Unable to update hardware queue %u!\n", qnum);
2091 error = -EIO;
2092 } else {
2093 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2096 return error;
2099 int ath_cabq_update(struct ath_softc *sc)
2101 struct ath9k_tx_queue_info qi;
2102 int qnum = sc->beacon.cabq->axq_qnum;
2103 struct ath_beacon_config conf;
2105 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2107 * Ensure the readytime % is within the bounds.
2109 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2110 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2111 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2112 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2114 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2115 qi.tqi_readyTime =
2116 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2117 ath_txq_update(sc, qnum, &qi);
2119 return 0;
2122 /* Deferred processing of transmit interrupt */
2124 void ath_tx_tasklet(struct ath_softc *sc)
2126 int i;
2127 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2129 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2132 * Process each active queue.
2134 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2135 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2136 ath_tx_processq(sc, &sc->tx.txq[i]);
2140 void ath_tx_draintxq(struct ath_softc *sc,
2141 struct ath_txq *txq, bool retry_tx)
2143 struct ath_buf *bf, *lastbf;
2144 struct list_head bf_head;
2146 INIT_LIST_HEAD(&bf_head);
2149 * NB: this assumes output has been stopped and
2150 * we do not need to block ath_tx_tasklet
2152 for (;;) {
2153 spin_lock_bh(&txq->axq_lock);
2155 if (list_empty(&txq->axq_q)) {
2156 txq->axq_link = NULL;
2157 txq->axq_linkbuf = NULL;
2158 spin_unlock_bh(&txq->axq_lock);
2159 break;
2162 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2164 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2165 list_del(&bf->list);
2166 spin_unlock_bh(&txq->axq_lock);
2168 spin_lock_bh(&sc->tx.txbuflock);
2169 list_add_tail(&bf->list, &sc->tx.txbuf);
2170 spin_unlock_bh(&sc->tx.txbuflock);
2171 continue;
2174 lastbf = bf->bf_lastbf;
2175 if (!retry_tx)
2176 lastbf->bf_desc->ds_txstat.ts_flags =
2177 ATH9K_TX_SW_ABORTED;
2179 /* remove ath_buf's of the same mpdu from txq */
2180 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2181 txq->axq_depth--;
2183 spin_unlock_bh(&txq->axq_lock);
2185 if (bf_isampdu(bf))
2186 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2187 else
2188 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2191 /* flush any pending frames if aggregation is enabled */
2192 if (sc->sc_flags & SC_OP_TXAGGR) {
2193 if (!retry_tx) {
2194 spin_lock_bh(&txq->axq_lock);
2195 ath_txq_drain_pending_buffers(sc, txq);
2196 spin_unlock_bh(&txq->axq_lock);
2201 /* Drain the transmit queues and reclaim resources */
2203 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2205 /* stop beacon queue. The beacon will be freed when
2206 * we go to INIT state */
2207 if (!(sc->sc_flags & SC_OP_INVALID)) {
2208 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2209 DPRINTF(sc, ATH_DBG_XMIT, "beacon queue %x\n",
2210 ath9k_hw_gettxbuf(sc->sc_ah, sc->beacon.beaconq));
2213 ath_drain_txdataq(sc, retry_tx);
2216 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2218 return sc->tx.txq[qnum].axq_depth;
2221 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2223 return sc->tx.txq[qnum].axq_aggr_depth;
2226 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
2228 struct ath_atx_tid *txtid;
2230 if (!(sc->sc_flags & SC_OP_TXAGGR))
2231 return false;
2233 txtid = ATH_AN_2_TID(an, tidno);
2235 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2236 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
2237 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2238 txtid->addba_exchangeattempts++;
2239 return true;
2243 return false;
2246 /* Start TX aggregation */
2248 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
2249 u16 tid, u16 *ssn)
2251 struct ath_atx_tid *txtid;
2252 struct ath_node *an;
2254 an = (struct ath_node *)sta->drv_priv;
2256 if (sc->sc_flags & SC_OP_TXAGGR) {
2257 txtid = ATH_AN_2_TID(an, tid);
2258 txtid->state |= AGGR_ADDBA_PROGRESS;
2259 ath_tx_pause_tid(sc, txtid);
2262 return 0;
2265 /* Stop tx aggregation */
2267 int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2269 struct ath_node *an = (struct ath_node *)sta->drv_priv;
2271 ath_tx_aggr_teardown(sc, an, tid);
2272 return 0;
2275 /* Resume tx aggregation */
2277 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2279 struct ath_atx_tid *txtid;
2280 struct ath_node *an;
2282 an = (struct ath_node *)sta->drv_priv;
2284 if (sc->sc_flags & SC_OP_TXAGGR) {
2285 txtid = ATH_AN_2_TID(an, tid);
2286 txtid->baw_size =
2287 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
2288 txtid->state |= AGGR_ADDBA_COMPLETE;
2289 txtid->state &= ~AGGR_ADDBA_PROGRESS;
2290 ath_tx_resume_tid(sc, txtid);
2295 * Performs transmit side cleanup when TID changes from aggregated to
2296 * unaggregated.
2297 * - Pause the TID and mark cleanup in progress
2298 * - Discard all retry frames from the s/w queue.
2301 void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
2303 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2304 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
2305 struct ath_buf *bf;
2306 struct list_head bf_head;
2307 INIT_LIST_HEAD(&bf_head);
2309 if (txtid->state & AGGR_CLEANUP) /* cleanup is in progress */
2310 return;
2312 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
2313 txtid->addba_exchangeattempts = 0;
2314 return;
2317 /* TID must be paused first */
2318 ath_tx_pause_tid(sc, txtid);
2320 /* drop all software retried frames and mark this TID */
2321 spin_lock_bh(&txq->axq_lock);
2322 while (!list_empty(&txtid->buf_q)) {
2323 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2324 if (!bf_isretried(bf)) {
2326 * NB: it's based on the assumption that
2327 * software retried frame will always stay
2328 * at the head of software queue.
2330 break;
2332 list_cut_position(&bf_head,
2333 &txtid->buf_q, &bf->bf_lastfrm->list);
2334 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2336 /* complete this sub-frame */
2337 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2340 if (txtid->baw_head != txtid->baw_tail) {
2341 spin_unlock_bh(&txq->axq_lock);
2342 txtid->state |= AGGR_CLEANUP;
2343 } else {
2344 txtid->state &= ~AGGR_ADDBA_COMPLETE;
2345 txtid->addba_exchangeattempts = 0;
2346 spin_unlock_bh(&txq->axq_lock);
2347 ath_tx_flush_tid(sc, txtid);
2352 * Tx scheduling logic
2353 * NB: must be called with txq lock held
2356 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2358 struct ath_atx_ac *ac;
2359 struct ath_atx_tid *tid;
2361 /* nothing to schedule */
2362 if (list_empty(&txq->axq_acq))
2363 return;
2365 * get the first node/ac pair on the queue
2367 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2368 list_del(&ac->list);
2369 ac->sched = false;
2372 * process a single tid per destination
2374 do {
2375 /* nothing to schedule */
2376 if (list_empty(&ac->tid_q))
2377 return;
2379 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2380 list_del(&tid->list);
2381 tid->sched = false;
2383 if (tid->paused) /* check next tid to keep h/w busy */
2384 continue;
2386 if ((txq->axq_depth % 2) == 0)
2387 ath_tx_sched_aggr(sc, txq, tid);
2390 * add tid to round-robin queue if more frames
2391 * are pending for the tid
2393 if (!list_empty(&tid->buf_q))
2394 ath_tx_queue_tid(txq, tid);
2396 /* only schedule one TID at a time */
2397 break;
2398 } while (!list_empty(&ac->tid_q));
2401 * schedule AC if more TIDs need processing
2403 if (!list_empty(&ac->tid_q)) {
2405 * add dest ac to txq if not already added
2407 if (!ac->sched) {
2408 ac->sched = true;
2409 list_add_tail(&ac->list, &txq->axq_acq);
2414 /* Initialize per-node transmit state */
2416 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2418 struct ath_atx_tid *tid;
2419 struct ath_atx_ac *ac;
2420 int tidno, acno;
2423 * Init per tid tx state
2425 for (tidno = 0, tid = &an->tid[tidno];
2426 tidno < WME_NUM_TID;
2427 tidno++, tid++) {
2428 tid->an = an;
2429 tid->tidno = tidno;
2430 tid->seq_start = tid->seq_next = 0;
2431 tid->baw_size = WME_MAX_BA;
2432 tid->baw_head = tid->baw_tail = 0;
2433 tid->sched = false;
2434 tid->paused = false;
2435 tid->state &= ~AGGR_CLEANUP;
2436 INIT_LIST_HEAD(&tid->buf_q);
2438 acno = TID_TO_WME_AC(tidno);
2439 tid->ac = &an->ac[acno];
2441 /* ADDBA state */
2442 tid->state &= ~AGGR_ADDBA_COMPLETE;
2443 tid->state &= ~AGGR_ADDBA_PROGRESS;
2444 tid->addba_exchangeattempts = 0;
2448 * Init per ac tx state
2450 for (acno = 0, ac = &an->ac[acno];
2451 acno < WME_NUM_AC; acno++, ac++) {
2452 ac->sched = false;
2453 INIT_LIST_HEAD(&ac->tid_q);
2455 switch (acno) {
2456 case WME_AC_BE:
2457 ac->qnum = ath_tx_get_qnum(sc,
2458 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2459 break;
2460 case WME_AC_BK:
2461 ac->qnum = ath_tx_get_qnum(sc,
2462 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2463 break;
2464 case WME_AC_VI:
2465 ac->qnum = ath_tx_get_qnum(sc,
2466 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2467 break;
2468 case WME_AC_VO:
2469 ac->qnum = ath_tx_get_qnum(sc,
2470 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2471 break;
2476 /* Cleanupthe pending buffers for the node. */
2478 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2480 int i;
2481 struct ath_atx_ac *ac, *ac_tmp;
2482 struct ath_atx_tid *tid, *tid_tmp;
2483 struct ath_txq *txq;
2484 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2485 if (ATH_TXQ_SETUP(sc, i)) {
2486 txq = &sc->tx.txq[i];
2488 spin_lock(&txq->axq_lock);
2490 list_for_each_entry_safe(ac,
2491 ac_tmp, &txq->axq_acq, list) {
2492 tid = list_first_entry(&ac->tid_q,
2493 struct ath_atx_tid, list);
2494 if (tid && tid->an != an)
2495 continue;
2496 list_del(&ac->list);
2497 ac->sched = false;
2499 list_for_each_entry_safe(tid,
2500 tid_tmp, &ac->tid_q, list) {
2501 list_del(&tid->list);
2502 tid->sched = false;
2503 ath_tid_drain(sc, txq, tid);
2504 tid->state &= ~AGGR_ADDBA_COMPLETE;
2505 tid->addba_exchangeattempts = 0;
2506 tid->state &= ~AGGR_CLEANUP;
2510 spin_unlock(&txq->axq_lock);
2515 void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2517 int hdrlen, padsize;
2518 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2519 struct ath_tx_control txctl;
2521 memset(&txctl, 0, sizeof(struct ath_tx_control));
2524 * As a temporary workaround, assign seq# here; this will likely need
2525 * to be cleaned up to work better with Beacon transmission and virtual
2526 * BSSes.
2528 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2529 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2530 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2531 sc->tx.seq_no += 0x10;
2532 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2533 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2536 /* Add the padding after the header if this is not already done */
2537 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2538 if (hdrlen & 3) {
2539 padsize = hdrlen % 4;
2540 if (skb_headroom(skb) < padsize) {
2541 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
2542 dev_kfree_skb_any(skb);
2543 return;
2545 skb_push(skb, padsize);
2546 memmove(skb->data, skb->data + padsize, hdrlen);
2549 txctl.txq = sc->beacon.cabq;
2551 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
2553 if (ath_tx_start(sc, skb, &txctl) != 0) {
2554 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
2555 goto exit;
2558 return;
2559 exit:
2560 dev_kfree_skb_any(skb);