[POWERPC] Simplify rtas_change_msi() error semantics
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob3169bed0b4d0e44166b37c48ed663d516a9ccba5
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 (freezing(t)) ||
103 PENDING(&t->pending, &t->blocked) ||
104 PENDING(&t->signal->shared_pending, &t->blocked)) {
105 set_tsk_thread_flag(t, TIF_SIGPENDING);
106 return 1;
109 * We must never clear the flag in another thread, or in current
110 * when it's possible the current syscall is returning -ERESTART*.
111 * So we don't clear it here, and only callers who know they should do.
113 return 0;
117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
118 * This is superfluous when called on current, the wakeup is a harmless no-op.
120 void recalc_sigpending_and_wake(struct task_struct *t)
122 if (recalc_sigpending_tsk(t))
123 signal_wake_up(t, 0);
126 void recalc_sigpending(void)
128 if (!recalc_sigpending_tsk(current))
129 clear_thread_flag(TIF_SIGPENDING);
133 /* Given the mask, find the first available signal that should be serviced. */
135 int next_signal(struct sigpending *pending, sigset_t *mask)
137 unsigned long i, *s, *m, x;
138 int sig = 0;
140 s = pending->signal.sig;
141 m = mask->sig;
142 switch (_NSIG_WORDS) {
143 default:
144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
145 if ((x = *s &~ *m) != 0) {
146 sig = ffz(~x) + i*_NSIG_BPW + 1;
147 break;
149 break;
151 case 2: if ((x = s[0] &~ m[0]) != 0)
152 sig = 1;
153 else if ((x = s[1] &~ m[1]) != 0)
154 sig = _NSIG_BPW + 1;
155 else
156 break;
157 sig += ffz(~x);
158 break;
160 case 1: if ((x = *s &~ *m) != 0)
161 sig = ffz(~x) + 1;
162 break;
165 return sig;
168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
169 int override_rlimit)
171 struct sigqueue *q = NULL;
172 struct user_struct *user;
175 * In order to avoid problems with "switch_user()", we want to make
176 * sure that the compiler doesn't re-load "t->user"
178 user = t->user;
179 barrier();
180 atomic_inc(&user->sigpending);
181 if (override_rlimit ||
182 atomic_read(&user->sigpending) <=
183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
184 q = kmem_cache_alloc(sigqueue_cachep, flags);
185 if (unlikely(q == NULL)) {
186 atomic_dec(&user->sigpending);
187 } else {
188 INIT_LIST_HEAD(&q->list);
189 q->flags = 0;
190 q->user = get_uid(user);
192 return(q);
195 static void __sigqueue_free(struct sigqueue *q)
197 if (q->flags & SIGQUEUE_PREALLOC)
198 return;
199 atomic_dec(&q->user->sigpending);
200 free_uid(q->user);
201 kmem_cache_free(sigqueue_cachep, q);
204 void flush_sigqueue(struct sigpending *queue)
206 struct sigqueue *q;
208 sigemptyset(&queue->signal);
209 while (!list_empty(&queue->list)) {
210 q = list_entry(queue->list.next, struct sigqueue , list);
211 list_del_init(&q->list);
212 __sigqueue_free(q);
217 * Flush all pending signals for a task.
219 void flush_signals(struct task_struct *t)
221 unsigned long flags;
223 spin_lock_irqsave(&t->sighand->siglock, flags);
224 clear_tsk_thread_flag(t,TIF_SIGPENDING);
225 flush_sigqueue(&t->pending);
226 flush_sigqueue(&t->signal->shared_pending);
227 spin_unlock_irqrestore(&t->sighand->siglock, flags);
230 void ignore_signals(struct task_struct *t)
232 int i;
234 for (i = 0; i < _NSIG; ++i)
235 t->sighand->action[i].sa.sa_handler = SIG_IGN;
237 flush_signals(t);
241 * Flush all handlers for a task.
244 void
245 flush_signal_handlers(struct task_struct *t, int force_default)
247 int i;
248 struct k_sigaction *ka = &t->sighand->action[0];
249 for (i = _NSIG ; i != 0 ; i--) {
250 if (force_default || ka->sa.sa_handler != SIG_IGN)
251 ka->sa.sa_handler = SIG_DFL;
252 ka->sa.sa_flags = 0;
253 sigemptyset(&ka->sa.sa_mask);
254 ka++;
258 int unhandled_signal(struct task_struct *tsk, int sig)
260 if (is_init(tsk))
261 return 1;
262 if (tsk->ptrace & PT_PTRACED)
263 return 0;
264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
269 /* Notify the system that a driver wants to block all signals for this
270 * process, and wants to be notified if any signals at all were to be
271 * sent/acted upon. If the notifier routine returns non-zero, then the
272 * signal will be acted upon after all. If the notifier routine returns 0,
273 * then then signal will be blocked. Only one block per process is
274 * allowed. priv is a pointer to private data that the notifier routine
275 * can use to determine if the signal should be blocked or not. */
277 void
278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
280 unsigned long flags;
282 spin_lock_irqsave(&current->sighand->siglock, flags);
283 current->notifier_mask = mask;
284 current->notifier_data = priv;
285 current->notifier = notifier;
286 spin_unlock_irqrestore(&current->sighand->siglock, flags);
289 /* Notify the system that blocking has ended. */
291 void
292 unblock_all_signals(void)
294 unsigned long flags;
296 spin_lock_irqsave(&current->sighand->siglock, flags);
297 current->notifier = NULL;
298 current->notifier_data = NULL;
299 recalc_sigpending();
300 spin_unlock_irqrestore(&current->sighand->siglock, flags);
303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
305 struct sigqueue *q, *first = NULL;
306 int still_pending = 0;
308 if (unlikely(!sigismember(&list->signal, sig)))
309 return 0;
312 * Collect the siginfo appropriate to this signal. Check if
313 * there is another siginfo for the same signal.
315 list_for_each_entry(q, &list->list, list) {
316 if (q->info.si_signo == sig) {
317 if (first) {
318 still_pending = 1;
319 break;
321 first = q;
324 if (first) {
325 list_del_init(&first->list);
326 copy_siginfo(info, &first->info);
327 __sigqueue_free(first);
328 if (!still_pending)
329 sigdelset(&list->signal, sig);
330 } else {
332 /* Ok, it wasn't in the queue. This must be
333 a fast-pathed signal or we must have been
334 out of queue space. So zero out the info.
336 sigdelset(&list->signal, sig);
337 info->si_signo = sig;
338 info->si_errno = 0;
339 info->si_code = 0;
340 info->si_pid = 0;
341 info->si_uid = 0;
343 return 1;
346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
347 siginfo_t *info)
349 int sig = next_signal(pending, mask);
351 if (sig) {
352 if (current->notifier) {
353 if (sigismember(current->notifier_mask, sig)) {
354 if (!(current->notifier)(current->notifier_data)) {
355 clear_thread_flag(TIF_SIGPENDING);
356 return 0;
361 if (!collect_signal(sig, pending, info))
362 sig = 0;
365 return sig;
369 * Dequeue a signal and return the element to the caller, which is
370 * expected to free it.
372 * All callers have to hold the siglock.
374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
376 int signr = 0;
378 /* We only dequeue private signals from ourselves, we don't let
379 * signalfd steal them
381 if (likely(tsk == current))
382 signr = __dequeue_signal(&tsk->pending, mask, info);
383 if (!signr) {
384 signr = __dequeue_signal(&tsk->signal->shared_pending,
385 mask, info);
387 * itimer signal ?
389 * itimers are process shared and we restart periodic
390 * itimers in the signal delivery path to prevent DoS
391 * attacks in the high resolution timer case. This is
392 * compliant with the old way of self restarting
393 * itimers, as the SIGALRM is a legacy signal and only
394 * queued once. Changing the restart behaviour to
395 * restart the timer in the signal dequeue path is
396 * reducing the timer noise on heavy loaded !highres
397 * systems too.
399 if (unlikely(signr == SIGALRM)) {
400 struct hrtimer *tmr = &tsk->signal->real_timer;
402 if (!hrtimer_is_queued(tmr) &&
403 tsk->signal->it_real_incr.tv64 != 0) {
404 hrtimer_forward(tmr, tmr->base->get_time(),
405 tsk->signal->it_real_incr);
406 hrtimer_restart(tmr);
410 if (likely(tsk == current))
411 recalc_sigpending();
412 if (signr && unlikely(sig_kernel_stop(signr))) {
414 * Set a marker that we have dequeued a stop signal. Our
415 * caller might release the siglock and then the pending
416 * stop signal it is about to process is no longer in the
417 * pending bitmasks, but must still be cleared by a SIGCONT
418 * (and overruled by a SIGKILL). So those cases clear this
419 * shared flag after we've set it. Note that this flag may
420 * remain set after the signal we return is ignored or
421 * handled. That doesn't matter because its only purpose
422 * is to alert stop-signal processing code when another
423 * processor has come along and cleared the flag.
425 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
426 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
428 if (signr && likely(tsk == current) &&
429 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
430 info->si_sys_private){
432 * Release the siglock to ensure proper locking order
433 * of timer locks outside of siglocks. Note, we leave
434 * irqs disabled here, since the posix-timers code is
435 * about to disable them again anyway.
437 spin_unlock(&tsk->sighand->siglock);
438 do_schedule_next_timer(info);
439 spin_lock(&tsk->sighand->siglock);
441 return signr;
445 * Tell a process that it has a new active signal..
447 * NOTE! we rely on the previous spin_lock to
448 * lock interrupts for us! We can only be called with
449 * "siglock" held, and the local interrupt must
450 * have been disabled when that got acquired!
452 * No need to set need_resched since signal event passing
453 * goes through ->blocked
455 void signal_wake_up(struct task_struct *t, int resume)
457 unsigned int mask;
459 set_tsk_thread_flag(t, TIF_SIGPENDING);
462 * For SIGKILL, we want to wake it up in the stopped/traced case.
463 * We don't check t->state here because there is a race with it
464 * executing another processor and just now entering stopped state.
465 * By using wake_up_state, we ensure the process will wake up and
466 * handle its death signal.
468 mask = TASK_INTERRUPTIBLE;
469 if (resume)
470 mask |= TASK_STOPPED | TASK_TRACED;
471 if (!wake_up_state(t, mask))
472 kick_process(t);
476 * Remove signals in mask from the pending set and queue.
477 * Returns 1 if any signals were found.
479 * All callers must be holding the siglock.
481 * This version takes a sigset mask and looks at all signals,
482 * not just those in the first mask word.
484 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
486 struct sigqueue *q, *n;
487 sigset_t m;
489 sigandsets(&m, mask, &s->signal);
490 if (sigisemptyset(&m))
491 return 0;
493 signandsets(&s->signal, &s->signal, mask);
494 list_for_each_entry_safe(q, n, &s->list, list) {
495 if (sigismember(mask, q->info.si_signo)) {
496 list_del_init(&q->list);
497 __sigqueue_free(q);
500 return 1;
503 * Remove signals in mask from the pending set and queue.
504 * Returns 1 if any signals were found.
506 * All callers must be holding the siglock.
508 static int rm_from_queue(unsigned long mask, struct sigpending *s)
510 struct sigqueue *q, *n;
512 if (!sigtestsetmask(&s->signal, mask))
513 return 0;
515 sigdelsetmask(&s->signal, mask);
516 list_for_each_entry_safe(q, n, &s->list, list) {
517 if (q->info.si_signo < SIGRTMIN &&
518 (mask & sigmask(q->info.si_signo))) {
519 list_del_init(&q->list);
520 __sigqueue_free(q);
523 return 1;
527 * Bad permissions for sending the signal
529 static int check_kill_permission(int sig, struct siginfo *info,
530 struct task_struct *t)
532 int error = -EINVAL;
533 if (!valid_signal(sig))
534 return error;
536 error = audit_signal_info(sig, t); /* Let audit system see the signal */
537 if (error)
538 return error;
540 error = -EPERM;
541 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
542 && ((sig != SIGCONT) ||
543 (process_session(current) != process_session(t)))
544 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
545 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
546 && !capable(CAP_KILL))
547 return error;
549 return security_task_kill(t, info, sig, 0);
552 /* forward decl */
553 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
556 * Handle magic process-wide effects of stop/continue signals.
557 * Unlike the signal actions, these happen immediately at signal-generation
558 * time regardless of blocking, ignoring, or handling. This does the
559 * actual continuing for SIGCONT, but not the actual stopping for stop
560 * signals. The process stop is done as a signal action for SIG_DFL.
562 static void handle_stop_signal(int sig, struct task_struct *p)
564 struct task_struct *t;
566 if (p->signal->flags & SIGNAL_GROUP_EXIT)
568 * The process is in the middle of dying already.
570 return;
572 if (sig_kernel_stop(sig)) {
574 * This is a stop signal. Remove SIGCONT from all queues.
576 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
577 t = p;
578 do {
579 rm_from_queue(sigmask(SIGCONT), &t->pending);
580 t = next_thread(t);
581 } while (t != p);
582 } else if (sig == SIGCONT) {
584 * Remove all stop signals from all queues,
585 * and wake all threads.
587 if (unlikely(p->signal->group_stop_count > 0)) {
589 * There was a group stop in progress. We'll
590 * pretend it finished before we got here. We are
591 * obliged to report it to the parent: if the
592 * SIGSTOP happened "after" this SIGCONT, then it
593 * would have cleared this pending SIGCONT. If it
594 * happened "before" this SIGCONT, then the parent
595 * got the SIGCHLD about the stop finishing before
596 * the continue happened. We do the notification
597 * now, and it's as if the stop had finished and
598 * the SIGCHLD was pending on entry to this kill.
600 p->signal->group_stop_count = 0;
601 p->signal->flags = SIGNAL_STOP_CONTINUED;
602 spin_unlock(&p->sighand->siglock);
603 do_notify_parent_cldstop(p, CLD_STOPPED);
604 spin_lock(&p->sighand->siglock);
606 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
607 t = p;
608 do {
609 unsigned int state;
610 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
613 * If there is a handler for SIGCONT, we must make
614 * sure that no thread returns to user mode before
615 * we post the signal, in case it was the only
616 * thread eligible to run the signal handler--then
617 * it must not do anything between resuming and
618 * running the handler. With the TIF_SIGPENDING
619 * flag set, the thread will pause and acquire the
620 * siglock that we hold now and until we've queued
621 * the pending signal.
623 * Wake up the stopped thread _after_ setting
624 * TIF_SIGPENDING
626 state = TASK_STOPPED;
627 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
628 set_tsk_thread_flag(t, TIF_SIGPENDING);
629 state |= TASK_INTERRUPTIBLE;
631 wake_up_state(t, state);
633 t = next_thread(t);
634 } while (t != p);
636 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
638 * We were in fact stopped, and are now continued.
639 * Notify the parent with CLD_CONTINUED.
641 p->signal->flags = SIGNAL_STOP_CONTINUED;
642 p->signal->group_exit_code = 0;
643 spin_unlock(&p->sighand->siglock);
644 do_notify_parent_cldstop(p, CLD_CONTINUED);
645 spin_lock(&p->sighand->siglock);
646 } else {
648 * We are not stopped, but there could be a stop
649 * signal in the middle of being processed after
650 * being removed from the queue. Clear that too.
652 p->signal->flags = 0;
654 } else if (sig == SIGKILL) {
656 * Make sure that any pending stop signal already dequeued
657 * is undone by the wakeup for SIGKILL.
659 p->signal->flags = 0;
663 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
664 struct sigpending *signals)
666 struct sigqueue * q = NULL;
667 int ret = 0;
670 * Deliver the signal to listening signalfds. This must be called
671 * with the sighand lock held.
673 signalfd_notify(t, sig);
676 * fast-pathed signals for kernel-internal things like SIGSTOP
677 * or SIGKILL.
679 if (info == SEND_SIG_FORCED)
680 goto out_set;
682 /* Real-time signals must be queued if sent by sigqueue, or
683 some other real-time mechanism. It is implementation
684 defined whether kill() does so. We attempt to do so, on
685 the principle of least surprise, but since kill is not
686 allowed to fail with EAGAIN when low on memory we just
687 make sure at least one signal gets delivered and don't
688 pass on the info struct. */
690 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
691 (is_si_special(info) ||
692 info->si_code >= 0)));
693 if (q) {
694 list_add_tail(&q->list, &signals->list);
695 switch ((unsigned long) info) {
696 case (unsigned long) SEND_SIG_NOINFO:
697 q->info.si_signo = sig;
698 q->info.si_errno = 0;
699 q->info.si_code = SI_USER;
700 q->info.si_pid = current->pid;
701 q->info.si_uid = current->uid;
702 break;
703 case (unsigned long) SEND_SIG_PRIV:
704 q->info.si_signo = sig;
705 q->info.si_errno = 0;
706 q->info.si_code = SI_KERNEL;
707 q->info.si_pid = 0;
708 q->info.si_uid = 0;
709 break;
710 default:
711 copy_siginfo(&q->info, info);
712 break;
714 } else if (!is_si_special(info)) {
715 if (sig >= SIGRTMIN && info->si_code != SI_USER)
717 * Queue overflow, abort. We may abort if the signal was rt
718 * and sent by user using something other than kill().
720 return -EAGAIN;
723 out_set:
724 sigaddset(&signals->signal, sig);
725 return ret;
728 #define LEGACY_QUEUE(sigptr, sig) \
729 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
731 int print_fatal_signals;
733 static void print_fatal_signal(struct pt_regs *regs, int signr)
735 printk("%s/%d: potentially unexpected fatal signal %d.\n",
736 current->comm, current->pid, signr);
738 #ifdef __i386__
739 printk("code at %08lx: ", regs->eip);
741 int i;
742 for (i = 0; i < 16; i++) {
743 unsigned char insn;
745 __get_user(insn, (unsigned char *)(regs->eip + i));
746 printk("%02x ", insn);
749 #endif
750 printk("\n");
751 show_regs(regs);
754 static int __init setup_print_fatal_signals(char *str)
756 get_option (&str, &print_fatal_signals);
758 return 1;
761 __setup("print-fatal-signals=", setup_print_fatal_signals);
763 static int
764 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
766 int ret = 0;
768 BUG_ON(!irqs_disabled());
769 assert_spin_locked(&t->sighand->siglock);
771 /* Short-circuit ignored signals. */
772 if (sig_ignored(t, sig))
773 goto out;
775 /* Support queueing exactly one non-rt signal, so that we
776 can get more detailed information about the cause of
777 the signal. */
778 if (LEGACY_QUEUE(&t->pending, sig))
779 goto out;
781 ret = send_signal(sig, info, t, &t->pending);
782 if (!ret && !sigismember(&t->blocked, sig))
783 signal_wake_up(t, sig == SIGKILL);
784 out:
785 return ret;
789 * Force a signal that the process can't ignore: if necessary
790 * we unblock the signal and change any SIG_IGN to SIG_DFL.
792 * Note: If we unblock the signal, we always reset it to SIG_DFL,
793 * since we do not want to have a signal handler that was blocked
794 * be invoked when user space had explicitly blocked it.
796 * We don't want to have recursive SIGSEGV's etc, for example.
799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
801 unsigned long int flags;
802 int ret, blocked, ignored;
803 struct k_sigaction *action;
805 spin_lock_irqsave(&t->sighand->siglock, flags);
806 action = &t->sighand->action[sig-1];
807 ignored = action->sa.sa_handler == SIG_IGN;
808 blocked = sigismember(&t->blocked, sig);
809 if (blocked || ignored) {
810 action->sa.sa_handler = SIG_DFL;
811 if (blocked) {
812 sigdelset(&t->blocked, sig);
813 recalc_sigpending_and_wake(t);
816 ret = specific_send_sig_info(sig, info, t);
817 spin_unlock_irqrestore(&t->sighand->siglock, flags);
819 return ret;
822 void
823 force_sig_specific(int sig, struct task_struct *t)
825 force_sig_info(sig, SEND_SIG_FORCED, t);
829 * Test if P wants to take SIG. After we've checked all threads with this,
830 * it's equivalent to finding no threads not blocking SIG. Any threads not
831 * blocking SIG were ruled out because they are not running and already
832 * have pending signals. Such threads will dequeue from the shared queue
833 * as soon as they're available, so putting the signal on the shared queue
834 * will be equivalent to sending it to one such thread.
836 static inline int wants_signal(int sig, struct task_struct *p)
838 if (sigismember(&p->blocked, sig))
839 return 0;
840 if (p->flags & PF_EXITING)
841 return 0;
842 if (sig == SIGKILL)
843 return 1;
844 if (p->state & (TASK_STOPPED | TASK_TRACED))
845 return 0;
846 return task_curr(p) || !signal_pending(p);
849 static void
850 __group_complete_signal(int sig, struct task_struct *p)
852 struct task_struct *t;
855 * Now find a thread we can wake up to take the signal off the queue.
857 * If the main thread wants the signal, it gets first crack.
858 * Probably the least surprising to the average bear.
860 if (wants_signal(sig, p))
861 t = p;
862 else if (thread_group_empty(p))
864 * There is just one thread and it does not need to be woken.
865 * It will dequeue unblocked signals before it runs again.
867 return;
868 else {
870 * Otherwise try to find a suitable thread.
872 t = p->signal->curr_target;
873 if (t == NULL)
874 /* restart balancing at this thread */
875 t = p->signal->curr_target = p;
877 while (!wants_signal(sig, t)) {
878 t = next_thread(t);
879 if (t == p->signal->curr_target)
881 * No thread needs to be woken.
882 * Any eligible threads will see
883 * the signal in the queue soon.
885 return;
887 p->signal->curr_target = t;
891 * Found a killable thread. If the signal will be fatal,
892 * then start taking the whole group down immediately.
894 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
895 !sigismember(&t->real_blocked, sig) &&
896 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
898 * This signal will be fatal to the whole group.
900 if (!sig_kernel_coredump(sig)) {
902 * Start a group exit and wake everybody up.
903 * This way we don't have other threads
904 * running and doing things after a slower
905 * thread has the fatal signal pending.
907 p->signal->flags = SIGNAL_GROUP_EXIT;
908 p->signal->group_exit_code = sig;
909 p->signal->group_stop_count = 0;
910 t = p;
911 do {
912 sigaddset(&t->pending.signal, SIGKILL);
913 signal_wake_up(t, 1);
914 t = next_thread(t);
915 } while (t != p);
916 return;
920 * There will be a core dump. We make all threads other
921 * than the chosen one go into a group stop so that nothing
922 * happens until it gets scheduled, takes the signal off
923 * the shared queue, and does the core dump. This is a
924 * little more complicated than strictly necessary, but it
925 * keeps the signal state that winds up in the core dump
926 * unchanged from the death state, e.g. which thread had
927 * the core-dump signal unblocked.
929 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
930 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
931 p->signal->group_stop_count = 0;
932 p->signal->group_exit_task = t;
933 t = p;
934 do {
935 p->signal->group_stop_count++;
936 signal_wake_up(t, 0);
937 t = next_thread(t);
938 } while (t != p);
939 wake_up_process(p->signal->group_exit_task);
940 return;
944 * The signal is already in the shared-pending queue.
945 * Tell the chosen thread to wake up and dequeue it.
947 signal_wake_up(t, sig == SIGKILL);
948 return;
952 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
954 int ret = 0;
956 assert_spin_locked(&p->sighand->siglock);
957 handle_stop_signal(sig, p);
959 /* Short-circuit ignored signals. */
960 if (sig_ignored(p, sig))
961 return ret;
963 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
964 /* This is a non-RT signal and we already have one queued. */
965 return ret;
968 * Put this signal on the shared-pending queue, or fail with EAGAIN.
969 * We always use the shared queue for process-wide signals,
970 * to avoid several races.
972 ret = send_signal(sig, info, p, &p->signal->shared_pending);
973 if (unlikely(ret))
974 return ret;
976 __group_complete_signal(sig, p);
977 return 0;
981 * Nuke all other threads in the group.
983 void zap_other_threads(struct task_struct *p)
985 struct task_struct *t;
987 p->signal->flags = SIGNAL_GROUP_EXIT;
988 p->signal->group_stop_count = 0;
990 if (thread_group_empty(p))
991 return;
993 for (t = next_thread(p); t != p; t = next_thread(t)) {
995 * Don't bother with already dead threads
997 if (t->exit_state)
998 continue;
1000 /* SIGKILL will be handled before any pending SIGSTOP */
1001 sigaddset(&t->pending.signal, SIGKILL);
1002 signal_wake_up(t, 1);
1007 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1011 struct sighand_struct *sighand;
1013 for (;;) {
1014 sighand = rcu_dereference(tsk->sighand);
1015 if (unlikely(sighand == NULL))
1016 break;
1018 spin_lock_irqsave(&sighand->siglock, *flags);
1019 if (likely(sighand == tsk->sighand))
1020 break;
1021 spin_unlock_irqrestore(&sighand->siglock, *flags);
1024 return sighand;
1027 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1029 unsigned long flags;
1030 int ret;
1032 ret = check_kill_permission(sig, info, p);
1034 if (!ret && sig) {
1035 ret = -ESRCH;
1036 if (lock_task_sighand(p, &flags)) {
1037 ret = __group_send_sig_info(sig, info, p);
1038 unlock_task_sighand(p, &flags);
1042 return ret;
1046 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1047 * control characters do (^C, ^Z etc)
1050 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1052 struct task_struct *p = NULL;
1053 int retval, success;
1055 success = 0;
1056 retval = -ESRCH;
1057 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1058 int err = group_send_sig_info(sig, info, p);
1059 success |= !err;
1060 retval = err;
1061 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1062 return success ? 0 : retval;
1065 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1067 int retval;
1069 read_lock(&tasklist_lock);
1070 retval = __kill_pgrp_info(sig, info, pgrp);
1071 read_unlock(&tasklist_lock);
1073 return retval;
1076 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1078 int error;
1079 struct task_struct *p;
1081 rcu_read_lock();
1082 if (unlikely(sig_needs_tasklist(sig)))
1083 read_lock(&tasklist_lock);
1085 p = pid_task(pid, PIDTYPE_PID);
1086 error = -ESRCH;
1087 if (p)
1088 error = group_send_sig_info(sig, info, p);
1090 if (unlikely(sig_needs_tasklist(sig)))
1091 read_unlock(&tasklist_lock);
1092 rcu_read_unlock();
1093 return error;
1097 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1099 int error;
1100 rcu_read_lock();
1101 error = kill_pid_info(sig, info, find_pid(pid));
1102 rcu_read_unlock();
1103 return error;
1106 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1107 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1108 uid_t uid, uid_t euid, u32 secid)
1110 int ret = -EINVAL;
1111 struct task_struct *p;
1113 if (!valid_signal(sig))
1114 return ret;
1116 read_lock(&tasklist_lock);
1117 p = pid_task(pid, PIDTYPE_PID);
1118 if (!p) {
1119 ret = -ESRCH;
1120 goto out_unlock;
1122 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1123 && (euid != p->suid) && (euid != p->uid)
1124 && (uid != p->suid) && (uid != p->uid)) {
1125 ret = -EPERM;
1126 goto out_unlock;
1128 ret = security_task_kill(p, info, sig, secid);
1129 if (ret)
1130 goto out_unlock;
1131 if (sig && p->sighand) {
1132 unsigned long flags;
1133 spin_lock_irqsave(&p->sighand->siglock, flags);
1134 ret = __group_send_sig_info(sig, info, p);
1135 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1137 out_unlock:
1138 read_unlock(&tasklist_lock);
1139 return ret;
1141 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1144 * kill_something_info() interprets pid in interesting ways just like kill(2).
1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1147 * is probably wrong. Should make it like BSD or SYSV.
1150 static int kill_something_info(int sig, struct siginfo *info, int pid)
1152 int ret;
1153 rcu_read_lock();
1154 if (!pid) {
1155 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1156 } else if (pid == -1) {
1157 int retval = 0, count = 0;
1158 struct task_struct * p;
1160 read_lock(&tasklist_lock);
1161 for_each_process(p) {
1162 if (p->pid > 1 && p->tgid != current->tgid) {
1163 int err = group_send_sig_info(sig, info, p);
1164 ++count;
1165 if (err != -EPERM)
1166 retval = err;
1169 read_unlock(&tasklist_lock);
1170 ret = count ? retval : -ESRCH;
1171 } else if (pid < 0) {
1172 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1173 } else {
1174 ret = kill_pid_info(sig, info, find_pid(pid));
1176 rcu_read_unlock();
1177 return ret;
1181 * These are for backward compatibility with the rest of the kernel source.
1185 * These two are the most common entry points. They send a signal
1186 * just to the specific thread.
1189 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1191 int ret;
1192 unsigned long flags;
1195 * Make sure legacy kernel users don't send in bad values
1196 * (normal paths check this in check_kill_permission).
1198 if (!valid_signal(sig))
1199 return -EINVAL;
1202 * We need the tasklist lock even for the specific
1203 * thread case (when we don't need to follow the group
1204 * lists) in order to avoid races with "p->sighand"
1205 * going away or changing from under us.
1207 read_lock(&tasklist_lock);
1208 spin_lock_irqsave(&p->sighand->siglock, flags);
1209 ret = specific_send_sig_info(sig, info, p);
1210 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1211 read_unlock(&tasklist_lock);
1212 return ret;
1215 #define __si_special(priv) \
1216 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1219 send_sig(int sig, struct task_struct *p, int priv)
1221 return send_sig_info(sig, __si_special(priv), p);
1225 * This is the entry point for "process-wide" signals.
1226 * They will go to an appropriate thread in the thread group.
1229 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1231 int ret;
1232 read_lock(&tasklist_lock);
1233 ret = group_send_sig_info(sig, info, p);
1234 read_unlock(&tasklist_lock);
1235 return ret;
1238 void
1239 force_sig(int sig, struct task_struct *p)
1241 force_sig_info(sig, SEND_SIG_PRIV, p);
1245 * When things go south during signal handling, we
1246 * will force a SIGSEGV. And if the signal that caused
1247 * the problem was already a SIGSEGV, we'll want to
1248 * make sure we don't even try to deliver the signal..
1251 force_sigsegv(int sig, struct task_struct *p)
1253 if (sig == SIGSEGV) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&p->sighand->siglock, flags);
1256 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1257 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1259 force_sig(SIGSEGV, p);
1260 return 0;
1263 int kill_pgrp(struct pid *pid, int sig, int priv)
1265 return kill_pgrp_info(sig, __si_special(priv), pid);
1267 EXPORT_SYMBOL(kill_pgrp);
1269 int kill_pid(struct pid *pid, int sig, int priv)
1271 return kill_pid_info(sig, __si_special(priv), pid);
1273 EXPORT_SYMBOL(kill_pid);
1276 kill_proc(pid_t pid, int sig, int priv)
1278 return kill_proc_info(sig, __si_special(priv), pid);
1282 * These functions support sending signals using preallocated sigqueue
1283 * structures. This is needed "because realtime applications cannot
1284 * afford to lose notifications of asynchronous events, like timer
1285 * expirations or I/O completions". In the case of Posix Timers
1286 * we allocate the sigqueue structure from the timer_create. If this
1287 * allocation fails we are able to report the failure to the application
1288 * with an EAGAIN error.
1291 struct sigqueue *sigqueue_alloc(void)
1293 struct sigqueue *q;
1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1296 q->flags |= SIGQUEUE_PREALLOC;
1297 return(q);
1300 void sigqueue_free(struct sigqueue *q)
1302 unsigned long flags;
1303 spinlock_t *lock = &current->sighand->siglock;
1305 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1307 * If the signal is still pending remove it from the
1308 * pending queue. We must hold ->siglock while testing
1309 * q->list to serialize with collect_signal().
1311 spin_lock_irqsave(lock, flags);
1312 if (!list_empty(&q->list))
1313 list_del_init(&q->list);
1314 spin_unlock_irqrestore(lock, flags);
1316 q->flags &= ~SIGQUEUE_PREALLOC;
1317 __sigqueue_free(q);
1320 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1322 unsigned long flags;
1323 int ret = 0;
1325 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1328 * The rcu based delayed sighand destroy makes it possible to
1329 * run this without tasklist lock held. The task struct itself
1330 * cannot go away as create_timer did get_task_struct().
1332 * We return -1, when the task is marked exiting, so
1333 * posix_timer_event can redirect it to the group leader
1335 rcu_read_lock();
1337 if (!likely(lock_task_sighand(p, &flags))) {
1338 ret = -1;
1339 goto out_err;
1342 if (unlikely(!list_empty(&q->list))) {
1344 * If an SI_TIMER entry is already queue just increment
1345 * the overrun count.
1347 BUG_ON(q->info.si_code != SI_TIMER);
1348 q->info.si_overrun++;
1349 goto out;
1351 /* Short-circuit ignored signals. */
1352 if (sig_ignored(p, sig)) {
1353 ret = 1;
1354 goto out;
1357 * Deliver the signal to listening signalfds. This must be called
1358 * with the sighand lock held.
1360 signalfd_notify(p, sig);
1362 list_add_tail(&q->list, &p->pending.list);
1363 sigaddset(&p->pending.signal, sig);
1364 if (!sigismember(&p->blocked, sig))
1365 signal_wake_up(p, sig == SIGKILL);
1367 out:
1368 unlock_task_sighand(p, &flags);
1369 out_err:
1370 rcu_read_unlock();
1372 return ret;
1376 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1378 unsigned long flags;
1379 int ret = 0;
1381 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1383 read_lock(&tasklist_lock);
1384 /* Since it_lock is held, p->sighand cannot be NULL. */
1385 spin_lock_irqsave(&p->sighand->siglock, flags);
1386 handle_stop_signal(sig, p);
1388 /* Short-circuit ignored signals. */
1389 if (sig_ignored(p, sig)) {
1390 ret = 1;
1391 goto out;
1394 if (unlikely(!list_empty(&q->list))) {
1396 * If an SI_TIMER entry is already queue just increment
1397 * the overrun count. Other uses should not try to
1398 * send the signal multiple times.
1400 BUG_ON(q->info.si_code != SI_TIMER);
1401 q->info.si_overrun++;
1402 goto out;
1405 * Deliver the signal to listening signalfds. This must be called
1406 * with the sighand lock held.
1408 signalfd_notify(p, sig);
1411 * Put this signal on the shared-pending queue.
1412 * We always use the shared queue for process-wide signals,
1413 * to avoid several races.
1415 list_add_tail(&q->list, &p->signal->shared_pending.list);
1416 sigaddset(&p->signal->shared_pending.signal, sig);
1418 __group_complete_signal(sig, p);
1419 out:
1420 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1421 read_unlock(&tasklist_lock);
1422 return ret;
1426 * Wake up any threads in the parent blocked in wait* syscalls.
1428 static inline void __wake_up_parent(struct task_struct *p,
1429 struct task_struct *parent)
1431 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1435 * Let a parent know about the death of a child.
1436 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1439 void do_notify_parent(struct task_struct *tsk, int sig)
1441 struct siginfo info;
1442 unsigned long flags;
1443 struct sighand_struct *psig;
1445 BUG_ON(sig == -1);
1447 /* do_notify_parent_cldstop should have been called instead. */
1448 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1450 BUG_ON(!tsk->ptrace &&
1451 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1453 info.si_signo = sig;
1454 info.si_errno = 0;
1455 info.si_pid = tsk->pid;
1456 info.si_uid = tsk->uid;
1458 /* FIXME: find out whether or not this is supposed to be c*time. */
1459 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1460 tsk->signal->utime));
1461 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1462 tsk->signal->stime));
1464 info.si_status = tsk->exit_code & 0x7f;
1465 if (tsk->exit_code & 0x80)
1466 info.si_code = CLD_DUMPED;
1467 else if (tsk->exit_code & 0x7f)
1468 info.si_code = CLD_KILLED;
1469 else {
1470 info.si_code = CLD_EXITED;
1471 info.si_status = tsk->exit_code >> 8;
1474 psig = tsk->parent->sighand;
1475 spin_lock_irqsave(&psig->siglock, flags);
1476 if (!tsk->ptrace && sig == SIGCHLD &&
1477 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1478 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1480 * We are exiting and our parent doesn't care. POSIX.1
1481 * defines special semantics for setting SIGCHLD to SIG_IGN
1482 * or setting the SA_NOCLDWAIT flag: we should be reaped
1483 * automatically and not left for our parent's wait4 call.
1484 * Rather than having the parent do it as a magic kind of
1485 * signal handler, we just set this to tell do_exit that we
1486 * can be cleaned up without becoming a zombie. Note that
1487 * we still call __wake_up_parent in this case, because a
1488 * blocked sys_wait4 might now return -ECHILD.
1490 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1491 * is implementation-defined: we do (if you don't want
1492 * it, just use SIG_IGN instead).
1494 tsk->exit_signal = -1;
1495 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1496 sig = 0;
1498 if (valid_signal(sig) && sig > 0)
1499 __group_send_sig_info(sig, &info, tsk->parent);
1500 __wake_up_parent(tsk, tsk->parent);
1501 spin_unlock_irqrestore(&psig->siglock, flags);
1504 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1506 struct siginfo info;
1507 unsigned long flags;
1508 struct task_struct *parent;
1509 struct sighand_struct *sighand;
1511 if (tsk->ptrace & PT_PTRACED)
1512 parent = tsk->parent;
1513 else {
1514 tsk = tsk->group_leader;
1515 parent = tsk->real_parent;
1518 info.si_signo = SIGCHLD;
1519 info.si_errno = 0;
1520 info.si_pid = tsk->pid;
1521 info.si_uid = tsk->uid;
1523 /* FIXME: find out whether or not this is supposed to be c*time. */
1524 info.si_utime = cputime_to_jiffies(tsk->utime);
1525 info.si_stime = cputime_to_jiffies(tsk->stime);
1527 info.si_code = why;
1528 switch (why) {
1529 case CLD_CONTINUED:
1530 info.si_status = SIGCONT;
1531 break;
1532 case CLD_STOPPED:
1533 info.si_status = tsk->signal->group_exit_code & 0x7f;
1534 break;
1535 case CLD_TRAPPED:
1536 info.si_status = tsk->exit_code & 0x7f;
1537 break;
1538 default:
1539 BUG();
1542 sighand = parent->sighand;
1543 spin_lock_irqsave(&sighand->siglock, flags);
1544 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1545 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1546 __group_send_sig_info(SIGCHLD, &info, parent);
1548 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1550 __wake_up_parent(tsk, parent);
1551 spin_unlock_irqrestore(&sighand->siglock, flags);
1554 static inline int may_ptrace_stop(void)
1556 if (!likely(current->ptrace & PT_PTRACED))
1557 return 0;
1559 if (unlikely(current->parent == current->real_parent &&
1560 (current->ptrace & PT_ATTACHED)))
1561 return 0;
1564 * Are we in the middle of do_coredump?
1565 * If so and our tracer is also part of the coredump stopping
1566 * is a deadlock situation, and pointless because our tracer
1567 * is dead so don't allow us to stop.
1568 * If SIGKILL was already sent before the caller unlocked
1569 * ->siglock we must see ->core_waiters != 0. Otherwise it
1570 * is safe to enter schedule().
1572 if (unlikely(current->mm->core_waiters) &&
1573 unlikely(current->mm == current->parent->mm))
1574 return 0;
1576 return 1;
1580 * This must be called with current->sighand->siglock held.
1582 * This should be the path for all ptrace stops.
1583 * We always set current->last_siginfo while stopped here.
1584 * That makes it a way to test a stopped process for
1585 * being ptrace-stopped vs being job-control-stopped.
1587 * If we actually decide not to stop at all because the tracer is gone,
1588 * we leave nostop_code in current->exit_code.
1590 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1593 * If there is a group stop in progress,
1594 * we must participate in the bookkeeping.
1596 if (current->signal->group_stop_count > 0)
1597 --current->signal->group_stop_count;
1599 current->last_siginfo = info;
1600 current->exit_code = exit_code;
1602 /* Let the debugger run. */
1603 set_current_state(TASK_TRACED);
1604 spin_unlock_irq(&current->sighand->siglock);
1605 try_to_freeze();
1606 read_lock(&tasklist_lock);
1607 if (may_ptrace_stop()) {
1608 do_notify_parent_cldstop(current, CLD_TRAPPED);
1609 read_unlock(&tasklist_lock);
1610 schedule();
1611 } else {
1613 * By the time we got the lock, our tracer went away.
1614 * Don't stop here.
1616 read_unlock(&tasklist_lock);
1617 set_current_state(TASK_RUNNING);
1618 current->exit_code = nostop_code;
1622 * We are back. Now reacquire the siglock before touching
1623 * last_siginfo, so that we are sure to have synchronized with
1624 * any signal-sending on another CPU that wants to examine it.
1626 spin_lock_irq(&current->sighand->siglock);
1627 current->last_siginfo = NULL;
1630 * Queued signals ignored us while we were stopped for tracing.
1631 * So check for any that we should take before resuming user mode.
1632 * This sets TIF_SIGPENDING, but never clears it.
1634 recalc_sigpending_tsk(current);
1637 void ptrace_notify(int exit_code)
1639 siginfo_t info;
1641 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1643 memset(&info, 0, sizeof info);
1644 info.si_signo = SIGTRAP;
1645 info.si_code = exit_code;
1646 info.si_pid = current->pid;
1647 info.si_uid = current->uid;
1649 /* Let the debugger run. */
1650 spin_lock_irq(&current->sighand->siglock);
1651 ptrace_stop(exit_code, 0, &info);
1652 spin_unlock_irq(&current->sighand->siglock);
1655 static void
1656 finish_stop(int stop_count)
1659 * If there are no other threads in the group, or if there is
1660 * a group stop in progress and we are the last to stop,
1661 * report to the parent. When ptraced, every thread reports itself.
1663 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1664 read_lock(&tasklist_lock);
1665 do_notify_parent_cldstop(current, CLD_STOPPED);
1666 read_unlock(&tasklist_lock);
1669 do {
1670 schedule();
1671 } while (try_to_freeze());
1673 * Now we don't run again until continued.
1675 current->exit_code = 0;
1679 * This performs the stopping for SIGSTOP and other stop signals.
1680 * We have to stop all threads in the thread group.
1681 * Returns nonzero if we've actually stopped and released the siglock.
1682 * Returns zero if we didn't stop and still hold the siglock.
1684 static int do_signal_stop(int signr)
1686 struct signal_struct *sig = current->signal;
1687 int stop_count;
1689 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1690 return 0;
1692 if (sig->group_stop_count > 0) {
1694 * There is a group stop in progress. We don't need to
1695 * start another one.
1697 stop_count = --sig->group_stop_count;
1698 } else {
1700 * There is no group stop already in progress.
1701 * We must initiate one now.
1703 struct task_struct *t;
1705 sig->group_exit_code = signr;
1707 stop_count = 0;
1708 for (t = next_thread(current); t != current; t = next_thread(t))
1710 * Setting state to TASK_STOPPED for a group
1711 * stop is always done with the siglock held,
1712 * so this check has no races.
1714 if (!t->exit_state &&
1715 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1716 stop_count++;
1717 signal_wake_up(t, 0);
1719 sig->group_stop_count = stop_count;
1722 if (stop_count == 0)
1723 sig->flags = SIGNAL_STOP_STOPPED;
1724 current->exit_code = sig->group_exit_code;
1725 __set_current_state(TASK_STOPPED);
1727 spin_unlock_irq(&current->sighand->siglock);
1728 finish_stop(stop_count);
1729 return 1;
1733 * Do appropriate magic when group_stop_count > 0.
1734 * We return nonzero if we stopped, after releasing the siglock.
1735 * We return zero if we still hold the siglock and should look
1736 * for another signal without checking group_stop_count again.
1738 static int handle_group_stop(void)
1740 int stop_count;
1742 if (current->signal->group_exit_task == current) {
1744 * Group stop is so we can do a core dump,
1745 * We are the initiating thread, so get on with it.
1747 current->signal->group_exit_task = NULL;
1748 return 0;
1751 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1753 * Group stop is so another thread can do a core dump,
1754 * or else we are racing against a death signal.
1755 * Just punt the stop so we can get the next signal.
1757 return 0;
1760 * There is a group stop in progress. We stop
1761 * without any associated signal being in our queue.
1763 stop_count = --current->signal->group_stop_count;
1764 if (stop_count == 0)
1765 current->signal->flags = SIGNAL_STOP_STOPPED;
1766 current->exit_code = current->signal->group_exit_code;
1767 set_current_state(TASK_STOPPED);
1768 spin_unlock_irq(&current->sighand->siglock);
1769 finish_stop(stop_count);
1770 return 1;
1773 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1774 struct pt_regs *regs, void *cookie)
1776 sigset_t *mask = &current->blocked;
1777 int signr = 0;
1779 try_to_freeze();
1781 relock:
1782 spin_lock_irq(&current->sighand->siglock);
1783 for (;;) {
1784 struct k_sigaction *ka;
1786 if (unlikely(current->signal->group_stop_count > 0) &&
1787 handle_group_stop())
1788 goto relock;
1790 signr = dequeue_signal(current, mask, info);
1792 if (!signr)
1793 break; /* will return 0 */
1795 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1796 ptrace_signal_deliver(regs, cookie);
1798 /* Let the debugger run. */
1799 ptrace_stop(signr, signr, info);
1801 /* We're back. Did the debugger cancel the sig? */
1802 signr = current->exit_code;
1803 if (signr == 0)
1804 continue;
1806 current->exit_code = 0;
1808 /* Update the siginfo structure if the signal has
1809 changed. If the debugger wanted something
1810 specific in the siginfo structure then it should
1811 have updated *info via PTRACE_SETSIGINFO. */
1812 if (signr != info->si_signo) {
1813 info->si_signo = signr;
1814 info->si_errno = 0;
1815 info->si_code = SI_USER;
1816 info->si_pid = current->parent->pid;
1817 info->si_uid = current->parent->uid;
1820 /* If the (new) signal is now blocked, requeue it. */
1821 if (sigismember(&current->blocked, signr)) {
1822 specific_send_sig_info(signr, info, current);
1823 continue;
1827 ka = &current->sighand->action[signr-1];
1828 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1829 continue;
1830 if (ka->sa.sa_handler != SIG_DFL) {
1831 /* Run the handler. */
1832 *return_ka = *ka;
1834 if (ka->sa.sa_flags & SA_ONESHOT)
1835 ka->sa.sa_handler = SIG_DFL;
1837 break; /* will return non-zero "signr" value */
1841 * Now we are doing the default action for this signal.
1843 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1844 continue;
1847 * Init of a pid space gets no signals it doesn't want from
1848 * within that pid space. It can of course get signals from
1849 * its parent pid space.
1851 if (current == child_reaper(current))
1852 continue;
1854 if (sig_kernel_stop(signr)) {
1856 * The default action is to stop all threads in
1857 * the thread group. The job control signals
1858 * do nothing in an orphaned pgrp, but SIGSTOP
1859 * always works. Note that siglock needs to be
1860 * dropped during the call to is_orphaned_pgrp()
1861 * because of lock ordering with tasklist_lock.
1862 * This allows an intervening SIGCONT to be posted.
1863 * We need to check for that and bail out if necessary.
1865 if (signr != SIGSTOP) {
1866 spin_unlock_irq(&current->sighand->siglock);
1868 /* signals can be posted during this window */
1870 if (is_current_pgrp_orphaned())
1871 goto relock;
1873 spin_lock_irq(&current->sighand->siglock);
1876 if (likely(do_signal_stop(signr))) {
1877 /* It released the siglock. */
1878 goto relock;
1882 * We didn't actually stop, due to a race
1883 * with SIGCONT or something like that.
1885 continue;
1888 spin_unlock_irq(&current->sighand->siglock);
1891 * Anything else is fatal, maybe with a core dump.
1893 current->flags |= PF_SIGNALED;
1894 if ((signr != SIGKILL) && print_fatal_signals)
1895 print_fatal_signal(regs, signr);
1896 if (sig_kernel_coredump(signr)) {
1898 * If it was able to dump core, this kills all
1899 * other threads in the group and synchronizes with
1900 * their demise. If we lost the race with another
1901 * thread getting here, it set group_exit_code
1902 * first and our do_group_exit call below will use
1903 * that value and ignore the one we pass it.
1905 do_coredump((long)signr, signr, regs);
1909 * Death signals, no core dump.
1911 do_group_exit(signr);
1912 /* NOTREACHED */
1914 spin_unlock_irq(&current->sighand->siglock);
1915 return signr;
1918 EXPORT_SYMBOL(recalc_sigpending);
1919 EXPORT_SYMBOL_GPL(dequeue_signal);
1920 EXPORT_SYMBOL(flush_signals);
1921 EXPORT_SYMBOL(force_sig);
1922 EXPORT_SYMBOL(kill_proc);
1923 EXPORT_SYMBOL(ptrace_notify);
1924 EXPORT_SYMBOL(send_sig);
1925 EXPORT_SYMBOL(send_sig_info);
1926 EXPORT_SYMBOL(sigprocmask);
1927 EXPORT_SYMBOL(block_all_signals);
1928 EXPORT_SYMBOL(unblock_all_signals);
1932 * System call entry points.
1935 asmlinkage long sys_restart_syscall(void)
1937 struct restart_block *restart = &current_thread_info()->restart_block;
1938 return restart->fn(restart);
1941 long do_no_restart_syscall(struct restart_block *param)
1943 return -EINTR;
1947 * We don't need to get the kernel lock - this is all local to this
1948 * particular thread.. (and that's good, because this is _heavily_
1949 * used by various programs)
1953 * This is also useful for kernel threads that want to temporarily
1954 * (or permanently) block certain signals.
1956 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1957 * interface happily blocks "unblockable" signals like SIGKILL
1958 * and friends.
1960 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1962 int error;
1964 spin_lock_irq(&current->sighand->siglock);
1965 if (oldset)
1966 *oldset = current->blocked;
1968 error = 0;
1969 switch (how) {
1970 case SIG_BLOCK:
1971 sigorsets(&current->blocked, &current->blocked, set);
1972 break;
1973 case SIG_UNBLOCK:
1974 signandsets(&current->blocked, &current->blocked, set);
1975 break;
1976 case SIG_SETMASK:
1977 current->blocked = *set;
1978 break;
1979 default:
1980 error = -EINVAL;
1982 recalc_sigpending();
1983 spin_unlock_irq(&current->sighand->siglock);
1985 return error;
1988 asmlinkage long
1989 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1991 int error = -EINVAL;
1992 sigset_t old_set, new_set;
1994 /* XXX: Don't preclude handling different sized sigset_t's. */
1995 if (sigsetsize != sizeof(sigset_t))
1996 goto out;
1998 if (set) {
1999 error = -EFAULT;
2000 if (copy_from_user(&new_set, set, sizeof(*set)))
2001 goto out;
2002 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2004 error = sigprocmask(how, &new_set, &old_set);
2005 if (error)
2006 goto out;
2007 if (oset)
2008 goto set_old;
2009 } else if (oset) {
2010 spin_lock_irq(&current->sighand->siglock);
2011 old_set = current->blocked;
2012 spin_unlock_irq(&current->sighand->siglock);
2014 set_old:
2015 error = -EFAULT;
2016 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2017 goto out;
2019 error = 0;
2020 out:
2021 return error;
2024 long do_sigpending(void __user *set, unsigned long sigsetsize)
2026 long error = -EINVAL;
2027 sigset_t pending;
2029 if (sigsetsize > sizeof(sigset_t))
2030 goto out;
2032 spin_lock_irq(&current->sighand->siglock);
2033 sigorsets(&pending, &current->pending.signal,
2034 &current->signal->shared_pending.signal);
2035 spin_unlock_irq(&current->sighand->siglock);
2037 /* Outside the lock because only this thread touches it. */
2038 sigandsets(&pending, &current->blocked, &pending);
2040 error = -EFAULT;
2041 if (!copy_to_user(set, &pending, sigsetsize))
2042 error = 0;
2044 out:
2045 return error;
2048 asmlinkage long
2049 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2051 return do_sigpending(set, sigsetsize);
2054 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2056 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2058 int err;
2060 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2061 return -EFAULT;
2062 if (from->si_code < 0)
2063 return __copy_to_user(to, from, sizeof(siginfo_t))
2064 ? -EFAULT : 0;
2066 * If you change siginfo_t structure, please be sure
2067 * this code is fixed accordingly.
2068 * Please remember to update the signalfd_copyinfo() function
2069 * inside fs/signalfd.c too, in case siginfo_t changes.
2070 * It should never copy any pad contained in the structure
2071 * to avoid security leaks, but must copy the generic
2072 * 3 ints plus the relevant union member.
2074 err = __put_user(from->si_signo, &to->si_signo);
2075 err |= __put_user(from->si_errno, &to->si_errno);
2076 err |= __put_user((short)from->si_code, &to->si_code);
2077 switch (from->si_code & __SI_MASK) {
2078 case __SI_KILL:
2079 err |= __put_user(from->si_pid, &to->si_pid);
2080 err |= __put_user(from->si_uid, &to->si_uid);
2081 break;
2082 case __SI_TIMER:
2083 err |= __put_user(from->si_tid, &to->si_tid);
2084 err |= __put_user(from->si_overrun, &to->si_overrun);
2085 err |= __put_user(from->si_ptr, &to->si_ptr);
2086 break;
2087 case __SI_POLL:
2088 err |= __put_user(from->si_band, &to->si_band);
2089 err |= __put_user(from->si_fd, &to->si_fd);
2090 break;
2091 case __SI_FAULT:
2092 err |= __put_user(from->si_addr, &to->si_addr);
2093 #ifdef __ARCH_SI_TRAPNO
2094 err |= __put_user(from->si_trapno, &to->si_trapno);
2095 #endif
2096 break;
2097 case __SI_CHLD:
2098 err |= __put_user(from->si_pid, &to->si_pid);
2099 err |= __put_user(from->si_uid, &to->si_uid);
2100 err |= __put_user(from->si_status, &to->si_status);
2101 err |= __put_user(from->si_utime, &to->si_utime);
2102 err |= __put_user(from->si_stime, &to->si_stime);
2103 break;
2104 case __SI_RT: /* This is not generated by the kernel as of now. */
2105 case __SI_MESGQ: /* But this is */
2106 err |= __put_user(from->si_pid, &to->si_pid);
2107 err |= __put_user(from->si_uid, &to->si_uid);
2108 err |= __put_user(from->si_ptr, &to->si_ptr);
2109 break;
2110 default: /* this is just in case for now ... */
2111 err |= __put_user(from->si_pid, &to->si_pid);
2112 err |= __put_user(from->si_uid, &to->si_uid);
2113 break;
2115 return err;
2118 #endif
2120 asmlinkage long
2121 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2122 siginfo_t __user *uinfo,
2123 const struct timespec __user *uts,
2124 size_t sigsetsize)
2126 int ret, sig;
2127 sigset_t these;
2128 struct timespec ts;
2129 siginfo_t info;
2130 long timeout = 0;
2132 /* XXX: Don't preclude handling different sized sigset_t's. */
2133 if (sigsetsize != sizeof(sigset_t))
2134 return -EINVAL;
2136 if (copy_from_user(&these, uthese, sizeof(these)))
2137 return -EFAULT;
2140 * Invert the set of allowed signals to get those we
2141 * want to block.
2143 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2144 signotset(&these);
2146 if (uts) {
2147 if (copy_from_user(&ts, uts, sizeof(ts)))
2148 return -EFAULT;
2149 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2150 || ts.tv_sec < 0)
2151 return -EINVAL;
2154 spin_lock_irq(&current->sighand->siglock);
2155 sig = dequeue_signal(current, &these, &info);
2156 if (!sig) {
2157 timeout = MAX_SCHEDULE_TIMEOUT;
2158 if (uts)
2159 timeout = (timespec_to_jiffies(&ts)
2160 + (ts.tv_sec || ts.tv_nsec));
2162 if (timeout) {
2163 /* None ready -- temporarily unblock those we're
2164 * interested while we are sleeping in so that we'll
2165 * be awakened when they arrive. */
2166 current->real_blocked = current->blocked;
2167 sigandsets(&current->blocked, &current->blocked, &these);
2168 recalc_sigpending();
2169 spin_unlock_irq(&current->sighand->siglock);
2171 timeout = schedule_timeout_interruptible(timeout);
2173 spin_lock_irq(&current->sighand->siglock);
2174 sig = dequeue_signal(current, &these, &info);
2175 current->blocked = current->real_blocked;
2176 siginitset(&current->real_blocked, 0);
2177 recalc_sigpending();
2180 spin_unlock_irq(&current->sighand->siglock);
2182 if (sig) {
2183 ret = sig;
2184 if (uinfo) {
2185 if (copy_siginfo_to_user(uinfo, &info))
2186 ret = -EFAULT;
2188 } else {
2189 ret = -EAGAIN;
2190 if (timeout)
2191 ret = -EINTR;
2194 return ret;
2197 asmlinkage long
2198 sys_kill(int pid, int sig)
2200 struct siginfo info;
2202 info.si_signo = sig;
2203 info.si_errno = 0;
2204 info.si_code = SI_USER;
2205 info.si_pid = current->tgid;
2206 info.si_uid = current->uid;
2208 return kill_something_info(sig, &info, pid);
2211 static int do_tkill(int tgid, int pid, int sig)
2213 int error;
2214 struct siginfo info;
2215 struct task_struct *p;
2217 error = -ESRCH;
2218 info.si_signo = sig;
2219 info.si_errno = 0;
2220 info.si_code = SI_TKILL;
2221 info.si_pid = current->tgid;
2222 info.si_uid = current->uid;
2224 read_lock(&tasklist_lock);
2225 p = find_task_by_pid(pid);
2226 if (p && (tgid <= 0 || p->tgid == tgid)) {
2227 error = check_kill_permission(sig, &info, p);
2229 * The null signal is a permissions and process existence
2230 * probe. No signal is actually delivered.
2232 if (!error && sig && p->sighand) {
2233 spin_lock_irq(&p->sighand->siglock);
2234 handle_stop_signal(sig, p);
2235 error = specific_send_sig_info(sig, &info, p);
2236 spin_unlock_irq(&p->sighand->siglock);
2239 read_unlock(&tasklist_lock);
2241 return error;
2245 * sys_tgkill - send signal to one specific thread
2246 * @tgid: the thread group ID of the thread
2247 * @pid: the PID of the thread
2248 * @sig: signal to be sent
2250 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2251 * exists but it's not belonging to the target process anymore. This
2252 * method solves the problem of threads exiting and PIDs getting reused.
2254 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2256 /* This is only valid for single tasks */
2257 if (pid <= 0 || tgid <= 0)
2258 return -EINVAL;
2260 return do_tkill(tgid, pid, sig);
2264 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2266 asmlinkage long
2267 sys_tkill(int pid, int sig)
2269 /* This is only valid for single tasks */
2270 if (pid <= 0)
2271 return -EINVAL;
2273 return do_tkill(0, pid, sig);
2276 asmlinkage long
2277 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2279 siginfo_t info;
2281 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2282 return -EFAULT;
2284 /* Not even root can pretend to send signals from the kernel.
2285 Nor can they impersonate a kill(), which adds source info. */
2286 if (info.si_code >= 0)
2287 return -EPERM;
2288 info.si_signo = sig;
2290 /* POSIX.1b doesn't mention process groups. */
2291 return kill_proc_info(sig, &info, pid);
2294 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2296 struct k_sigaction *k;
2297 sigset_t mask;
2299 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2300 return -EINVAL;
2302 k = &current->sighand->action[sig-1];
2304 spin_lock_irq(&current->sighand->siglock);
2305 if (signal_pending(current)) {
2307 * If there might be a fatal signal pending on multiple
2308 * threads, make sure we take it before changing the action.
2310 spin_unlock_irq(&current->sighand->siglock);
2311 return -ERESTARTNOINTR;
2314 if (oact)
2315 *oact = *k;
2317 if (act) {
2318 sigdelsetmask(&act->sa.sa_mask,
2319 sigmask(SIGKILL) | sigmask(SIGSTOP));
2320 *k = *act;
2322 * POSIX 3.3.1.3:
2323 * "Setting a signal action to SIG_IGN for a signal that is
2324 * pending shall cause the pending signal to be discarded,
2325 * whether or not it is blocked."
2327 * "Setting a signal action to SIG_DFL for a signal that is
2328 * pending and whose default action is to ignore the signal
2329 * (for example, SIGCHLD), shall cause the pending signal to
2330 * be discarded, whether or not it is blocked"
2332 if (act->sa.sa_handler == SIG_IGN ||
2333 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2334 struct task_struct *t = current;
2335 sigemptyset(&mask);
2336 sigaddset(&mask, sig);
2337 rm_from_queue_full(&mask, &t->signal->shared_pending);
2338 do {
2339 rm_from_queue_full(&mask, &t->pending);
2340 recalc_sigpending_and_wake(t);
2341 t = next_thread(t);
2342 } while (t != current);
2346 spin_unlock_irq(&current->sighand->siglock);
2347 return 0;
2350 int
2351 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2353 stack_t oss;
2354 int error;
2356 if (uoss) {
2357 oss.ss_sp = (void __user *) current->sas_ss_sp;
2358 oss.ss_size = current->sas_ss_size;
2359 oss.ss_flags = sas_ss_flags(sp);
2362 if (uss) {
2363 void __user *ss_sp;
2364 size_t ss_size;
2365 int ss_flags;
2367 error = -EFAULT;
2368 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2369 || __get_user(ss_sp, &uss->ss_sp)
2370 || __get_user(ss_flags, &uss->ss_flags)
2371 || __get_user(ss_size, &uss->ss_size))
2372 goto out;
2374 error = -EPERM;
2375 if (on_sig_stack(sp))
2376 goto out;
2378 error = -EINVAL;
2381 * Note - this code used to test ss_flags incorrectly
2382 * old code may have been written using ss_flags==0
2383 * to mean ss_flags==SS_ONSTACK (as this was the only
2384 * way that worked) - this fix preserves that older
2385 * mechanism
2387 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2388 goto out;
2390 if (ss_flags == SS_DISABLE) {
2391 ss_size = 0;
2392 ss_sp = NULL;
2393 } else {
2394 error = -ENOMEM;
2395 if (ss_size < MINSIGSTKSZ)
2396 goto out;
2399 current->sas_ss_sp = (unsigned long) ss_sp;
2400 current->sas_ss_size = ss_size;
2403 if (uoss) {
2404 error = -EFAULT;
2405 if (copy_to_user(uoss, &oss, sizeof(oss)))
2406 goto out;
2409 error = 0;
2410 out:
2411 return error;
2414 #ifdef __ARCH_WANT_SYS_SIGPENDING
2416 asmlinkage long
2417 sys_sigpending(old_sigset_t __user *set)
2419 return do_sigpending(set, sizeof(*set));
2422 #endif
2424 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2425 /* Some platforms have their own version with special arguments others
2426 support only sys_rt_sigprocmask. */
2428 asmlinkage long
2429 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2431 int error;
2432 old_sigset_t old_set, new_set;
2434 if (set) {
2435 error = -EFAULT;
2436 if (copy_from_user(&new_set, set, sizeof(*set)))
2437 goto out;
2438 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2440 spin_lock_irq(&current->sighand->siglock);
2441 old_set = current->blocked.sig[0];
2443 error = 0;
2444 switch (how) {
2445 default:
2446 error = -EINVAL;
2447 break;
2448 case SIG_BLOCK:
2449 sigaddsetmask(&current->blocked, new_set);
2450 break;
2451 case SIG_UNBLOCK:
2452 sigdelsetmask(&current->blocked, new_set);
2453 break;
2454 case SIG_SETMASK:
2455 current->blocked.sig[0] = new_set;
2456 break;
2459 recalc_sigpending();
2460 spin_unlock_irq(&current->sighand->siglock);
2461 if (error)
2462 goto out;
2463 if (oset)
2464 goto set_old;
2465 } else if (oset) {
2466 old_set = current->blocked.sig[0];
2467 set_old:
2468 error = -EFAULT;
2469 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2470 goto out;
2472 error = 0;
2473 out:
2474 return error;
2476 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2478 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2479 asmlinkage long
2480 sys_rt_sigaction(int sig,
2481 const struct sigaction __user *act,
2482 struct sigaction __user *oact,
2483 size_t sigsetsize)
2485 struct k_sigaction new_sa, old_sa;
2486 int ret = -EINVAL;
2488 /* XXX: Don't preclude handling different sized sigset_t's. */
2489 if (sigsetsize != sizeof(sigset_t))
2490 goto out;
2492 if (act) {
2493 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2494 return -EFAULT;
2497 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2499 if (!ret && oact) {
2500 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2501 return -EFAULT;
2503 out:
2504 return ret;
2506 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2508 #ifdef __ARCH_WANT_SYS_SGETMASK
2511 * For backwards compatibility. Functionality superseded by sigprocmask.
2513 asmlinkage long
2514 sys_sgetmask(void)
2516 /* SMP safe */
2517 return current->blocked.sig[0];
2520 asmlinkage long
2521 sys_ssetmask(int newmask)
2523 int old;
2525 spin_lock_irq(&current->sighand->siglock);
2526 old = current->blocked.sig[0];
2528 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2529 sigmask(SIGSTOP)));
2530 recalc_sigpending();
2531 spin_unlock_irq(&current->sighand->siglock);
2533 return old;
2535 #endif /* __ARCH_WANT_SGETMASK */
2537 #ifdef __ARCH_WANT_SYS_SIGNAL
2539 * For backwards compatibility. Functionality superseded by sigaction.
2541 asmlinkage unsigned long
2542 sys_signal(int sig, __sighandler_t handler)
2544 struct k_sigaction new_sa, old_sa;
2545 int ret;
2547 new_sa.sa.sa_handler = handler;
2548 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2549 sigemptyset(&new_sa.sa.sa_mask);
2551 ret = do_sigaction(sig, &new_sa, &old_sa);
2553 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2555 #endif /* __ARCH_WANT_SYS_SIGNAL */
2557 #ifdef __ARCH_WANT_SYS_PAUSE
2559 asmlinkage long
2560 sys_pause(void)
2562 current->state = TASK_INTERRUPTIBLE;
2563 schedule();
2564 return -ERESTARTNOHAND;
2567 #endif
2569 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2570 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2572 sigset_t newset;
2574 /* XXX: Don't preclude handling different sized sigset_t's. */
2575 if (sigsetsize != sizeof(sigset_t))
2576 return -EINVAL;
2578 if (copy_from_user(&newset, unewset, sizeof(newset)))
2579 return -EFAULT;
2580 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2582 spin_lock_irq(&current->sighand->siglock);
2583 current->saved_sigmask = current->blocked;
2584 current->blocked = newset;
2585 recalc_sigpending();
2586 spin_unlock_irq(&current->sighand->siglock);
2588 current->state = TASK_INTERRUPTIBLE;
2589 schedule();
2590 set_thread_flag(TIF_RESTORE_SIGMASK);
2591 return -ERESTARTNOHAND;
2593 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2595 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2597 return NULL;
2600 void __init signals_init(void)
2602 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);