4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 if (PageSwapBacked(page
))
127 __dec_zone_page_state(page
, NR_SHMEM
);
128 BUG_ON(page_mapped(page
));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
138 dec_zone_page_state(page
, NR_FILE_DIRTY
);
139 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 void remove_from_page_cache(struct page
*page
)
145 struct address_space
*mapping
= page
->mapping
;
147 BUG_ON(!PageLocked(page
));
149 spin_lock_irq(&mapping
->tree_lock
);
150 __remove_from_page_cache(page
);
151 spin_unlock_irq(&mapping
->tree_lock
);
152 mem_cgroup_uncharge_cache_page(page
);
155 static int sync_page(void *word
)
157 struct address_space
*mapping
;
160 page
= container_of((unsigned long *)word
, struct page
, flags
);
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
178 * ignore it for all cases but swap, where only page_private(page) is
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
184 mapping
= page_mapping(page
);
185 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
186 mapping
->a_ops
->sync_page(page
);
191 static int sync_page_killable(void *word
)
194 return fatal_signal_pending(current
) ? -EINTR
: 0;
198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199 * @mapping: address space structure to write
200 * @start: offset in bytes where the range starts
201 * @end: offset in bytes where the range ends (inclusive)
202 * @sync_mode: enable synchronous operation
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208 * opposed to a regular memory cleansing writeback. The difference between
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
212 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
213 loff_t end
, int sync_mode
)
216 struct writeback_control wbc
= {
217 .sync_mode
= sync_mode
,
218 .nr_to_write
= LONG_MAX
,
219 .range_start
= start
,
223 if (!mapping_cap_writeback_dirty(mapping
))
226 ret
= do_writepages(mapping
, &wbc
);
230 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
233 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
236 int filemap_fdatawrite(struct address_space
*mapping
)
238 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
240 EXPORT_SYMBOL(filemap_fdatawrite
);
242 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
245 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
247 EXPORT_SYMBOL(filemap_fdatawrite_range
);
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
256 int filemap_flush(struct address_space
*mapping
)
258 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
260 EXPORT_SYMBOL(filemap_flush
);
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping: address space structure to wait for
265 * @start_byte: offset in bytes where the range starts
266 * @end_byte: offset in bytes where the range ends (inclusive)
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
271 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
274 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
275 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
280 if (end_byte
< start_byte
)
283 pagevec_init(&pvec
, 0);
284 while ((index
<= end
) &&
285 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
286 PAGECACHE_TAG_WRITEBACK
,
287 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
290 for (i
= 0; i
< nr_pages
; i
++) {
291 struct page
*page
= pvec
.pages
[i
];
293 /* until radix tree lookup accepts end_index */
294 if (page
->index
> end
)
297 wait_on_page_writeback(page
);
301 pagevec_release(&pvec
);
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
308 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
313 EXPORT_SYMBOL(filemap_fdatawait_range
);
316 * filemap_fdatawait - wait for all under-writeback pages to complete
317 * @mapping: address space structure to wait for
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
322 int filemap_fdatawait(struct address_space
*mapping
)
324 loff_t i_size
= i_size_read(mapping
->host
);
329 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
331 EXPORT_SYMBOL(filemap_fdatawait
);
333 int filemap_write_and_wait(struct address_space
*mapping
)
337 if (mapping
->nrpages
) {
338 err
= filemap_fdatawrite(mapping
);
340 * Even if the above returned error, the pages may be
341 * written partially (e.g. -ENOSPC), so we wait for it.
342 * But the -EIO is special case, it may indicate the worst
343 * thing (e.g. bug) happened, so we avoid waiting for it.
346 int err2
= filemap_fdatawait(mapping
);
353 EXPORT_SYMBOL(filemap_write_and_wait
);
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping: the address_space for the pages
358 * @lstart: offset in bytes where the range starts
359 * @lend: offset in bytes where the range ends (inclusive)
361 * Write out and wait upon file offsets lstart->lend, inclusive.
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
366 int filemap_write_and_wait_range(struct address_space
*mapping
,
367 loff_t lstart
, loff_t lend
)
371 if (mapping
->nrpages
) {
372 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
374 /* See comment of filemap_write_and_wait() */
376 int err2
= filemap_fdatawait_range(mapping
,
384 EXPORT_SYMBOL(filemap_write_and_wait_range
);
387 * add_to_page_cache_locked - add a locked page to the pagecache
389 * @mapping: the page's address_space
390 * @offset: page index
391 * @gfp_mask: page allocation mode
393 * This function is used to add a page to the pagecache. It must be locked.
394 * This function does not add the page to the LRU. The caller must do that.
396 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
397 pgoff_t offset
, gfp_t gfp_mask
)
401 VM_BUG_ON(!PageLocked(page
));
403 error
= mem_cgroup_cache_charge(page
, current
->mm
,
404 gfp_mask
& GFP_RECLAIM_MASK
);
408 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
410 page_cache_get(page
);
411 page
->mapping
= mapping
;
412 page
->index
= offset
;
414 spin_lock_irq(&mapping
->tree_lock
);
415 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
416 if (likely(!error
)) {
418 __inc_zone_page_state(page
, NR_FILE_PAGES
);
419 if (PageSwapBacked(page
))
420 __inc_zone_page_state(page
, NR_SHMEM
);
421 spin_unlock_irq(&mapping
->tree_lock
);
423 page
->mapping
= NULL
;
424 spin_unlock_irq(&mapping
->tree_lock
);
425 mem_cgroup_uncharge_cache_page(page
);
426 page_cache_release(page
);
428 radix_tree_preload_end();
430 mem_cgroup_uncharge_cache_page(page
);
434 EXPORT_SYMBOL(add_to_page_cache_locked
);
436 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
437 pgoff_t offset
, gfp_t gfp_mask
)
442 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 * need to go on the anon lru below, and mem_cgroup_cache_charge
445 * (called in add_to_page_cache) needs to know where they're going too.
447 if (mapping_cap_swap_backed(mapping
))
448 SetPageSwapBacked(page
);
450 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
452 if (page_is_file_cache(page
))
453 lru_cache_add_file(page
);
455 lru_cache_add_anon(page
);
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
462 struct page
*__page_cache_alloc(gfp_t gfp
)
467 if (cpuset_do_page_mem_spread()) {
469 n
= cpuset_mem_spread_node();
470 page
= alloc_pages_exact_node(n
, gfp
, 0);
474 return alloc_pages(gfp
, 0);
476 EXPORT_SYMBOL(__page_cache_alloc
);
479 static int __sleep_on_page_lock(void *word
)
486 * In order to wait for pages to become available there must be
487 * waitqueues associated with pages. By using a hash table of
488 * waitqueues where the bucket discipline is to maintain all
489 * waiters on the same queue and wake all when any of the pages
490 * become available, and for the woken contexts to check to be
491 * sure the appropriate page became available, this saves space
492 * at a cost of "thundering herd" phenomena during rare hash
495 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
497 const struct zone
*zone
= page_zone(page
);
499 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
502 static inline void wake_up_page(struct page
*page
, int bit
)
504 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
507 void wait_on_page_bit(struct page
*page
, int bit_nr
)
509 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
511 if (test_bit(bit_nr
, &page
->flags
))
512 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
513 TASK_UNINTERRUPTIBLE
);
515 EXPORT_SYMBOL(wait_on_page_bit
);
518 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
519 * @page: Page defining the wait queue of interest
520 * @waiter: Waiter to add to the queue
522 * Add an arbitrary @waiter to the wait queue for the nominated @page.
524 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
526 wait_queue_head_t
*q
= page_waitqueue(page
);
529 spin_lock_irqsave(&q
->lock
, flags
);
530 __add_wait_queue(q
, waiter
);
531 spin_unlock_irqrestore(&q
->lock
, flags
);
533 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
536 * unlock_page - unlock a locked page
539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541 * mechananism between PageLocked pages and PageWriteback pages is shared.
542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544 * The mb is necessary to enforce ordering between the clear_bit and the read
545 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547 void unlock_page(struct page
*page
)
549 VM_BUG_ON(!PageLocked(page
));
550 clear_bit_unlock(PG_locked
, &page
->flags
);
551 smp_mb__after_clear_bit();
552 wake_up_page(page
, PG_locked
);
554 EXPORT_SYMBOL(unlock_page
);
557 * end_page_writeback - end writeback against a page
560 void end_page_writeback(struct page
*page
)
562 if (TestClearPageReclaim(page
))
563 rotate_reclaimable_page(page
);
565 if (!test_clear_page_writeback(page
))
568 smp_mb__after_clear_bit();
569 wake_up_page(page
, PG_writeback
);
571 EXPORT_SYMBOL(end_page_writeback
);
574 * __lock_page - get a lock on the page, assuming we need to sleep to get it
575 * @page: the page to lock
577 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
578 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
579 * chances are that on the second loop, the block layer's plug list is empty,
580 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582 void __lock_page(struct page
*page
)
584 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
586 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
587 TASK_UNINTERRUPTIBLE
);
589 EXPORT_SYMBOL(__lock_page
);
591 int __lock_page_killable(struct page
*page
)
593 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
595 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
596 sync_page_killable
, TASK_KILLABLE
);
598 EXPORT_SYMBOL_GPL(__lock_page_killable
);
601 * __lock_page_nosync - get a lock on the page, without calling sync_page()
602 * @page: the page to lock
604 * Variant of lock_page that does not require the caller to hold a reference
605 * on the page's mapping.
607 void __lock_page_nosync(struct page
*page
)
609 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
610 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
611 TASK_UNINTERRUPTIBLE
);
615 * find_get_page - find and get a page reference
616 * @mapping: the address_space to search
617 * @offset: the page index
619 * Is there a pagecache struct page at the given (mapping, offset) tuple?
620 * If yes, increment its refcount and return it; if no, return NULL.
622 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
630 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
632 page
= radix_tree_deref_slot(pagep
);
633 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
636 if (!page_cache_get_speculative(page
))
640 * Has the page moved?
641 * This is part of the lockless pagecache protocol. See
642 * include/linux/pagemap.h for details.
644 if (unlikely(page
!= *pagep
)) {
645 page_cache_release(page
);
653 EXPORT_SYMBOL(find_get_page
);
656 * find_lock_page - locate, pin and lock a pagecache page
657 * @mapping: the address_space to search
658 * @offset: the page index
660 * Locates the desired pagecache page, locks it, increments its reference
661 * count and returns its address.
663 * Returns zero if the page was not present. find_lock_page() may sleep.
665 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
670 page
= find_get_page(mapping
, offset
);
673 /* Has the page been truncated? */
674 if (unlikely(page
->mapping
!= mapping
)) {
676 page_cache_release(page
);
679 VM_BUG_ON(page
->index
!= offset
);
683 EXPORT_SYMBOL(find_lock_page
);
686 * find_or_create_page - locate or add a pagecache page
687 * @mapping: the page's address_space
688 * @index: the page's index into the mapping
689 * @gfp_mask: page allocation mode
691 * Locates a page in the pagecache. If the page is not present, a new page
692 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
693 * LRU list. The returned page is locked and has its reference count
696 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
699 * find_or_create_page() returns the desired page's address, or zero on
702 struct page
*find_or_create_page(struct address_space
*mapping
,
703 pgoff_t index
, gfp_t gfp_mask
)
708 page
= find_lock_page(mapping
, index
);
710 page
= __page_cache_alloc(gfp_mask
);
714 * We want a regular kernel memory (not highmem or DMA etc)
715 * allocation for the radix tree nodes, but we need to honour
716 * the context-specific requirements the caller has asked for.
717 * GFP_RECLAIM_MASK collects those requirements.
719 err
= add_to_page_cache_lru(page
, mapping
, index
,
720 (gfp_mask
& GFP_RECLAIM_MASK
));
722 page_cache_release(page
);
730 EXPORT_SYMBOL(find_or_create_page
);
733 * find_get_pages - gang pagecache lookup
734 * @mapping: The address_space to search
735 * @start: The starting page index
736 * @nr_pages: The maximum number of pages
737 * @pages: Where the resulting pages are placed
739 * find_get_pages() will search for and return a group of up to
740 * @nr_pages pages in the mapping. The pages are placed at @pages.
741 * find_get_pages() takes a reference against the returned pages.
743 * The search returns a group of mapping-contiguous pages with ascending
744 * indexes. There may be holes in the indices due to not-present pages.
746 * find_get_pages() returns the number of pages which were found.
748 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
749 unsigned int nr_pages
, struct page
**pages
)
753 unsigned int nr_found
;
757 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
758 (void ***)pages
, start
, nr_pages
);
760 for (i
= 0; i
< nr_found
; i
++) {
763 page
= radix_tree_deref_slot((void **)pages
[i
]);
767 * this can only trigger if nr_found == 1, making livelock
770 if (unlikely(page
== RADIX_TREE_RETRY
))
773 if (!page_cache_get_speculative(page
))
776 /* Has the page moved? */
777 if (unlikely(page
!= *((void **)pages
[i
]))) {
778 page_cache_release(page
);
790 * find_get_pages_contig - gang contiguous pagecache lookup
791 * @mapping: The address_space to search
792 * @index: The starting page index
793 * @nr_pages: The maximum number of pages
794 * @pages: Where the resulting pages are placed
796 * find_get_pages_contig() works exactly like find_get_pages(), except
797 * that the returned number of pages are guaranteed to be contiguous.
799 * find_get_pages_contig() returns the number of pages which were found.
801 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
802 unsigned int nr_pages
, struct page
**pages
)
806 unsigned int nr_found
;
810 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
811 (void ***)pages
, index
, nr_pages
);
813 for (i
= 0; i
< nr_found
; i
++) {
816 page
= radix_tree_deref_slot((void **)pages
[i
]);
820 * this can only trigger if nr_found == 1, making livelock
823 if (unlikely(page
== RADIX_TREE_RETRY
))
826 if (page
->mapping
== NULL
|| page
->index
!= index
)
829 if (!page_cache_get_speculative(page
))
832 /* Has the page moved? */
833 if (unlikely(page
!= *((void **)pages
[i
]))) {
834 page_cache_release(page
);
845 EXPORT_SYMBOL(find_get_pages_contig
);
848 * find_get_pages_tag - find and return pages that match @tag
849 * @mapping: the address_space to search
850 * @index: the starting page index
851 * @tag: the tag index
852 * @nr_pages: the maximum number of pages
853 * @pages: where the resulting pages are placed
855 * Like find_get_pages, except we only return pages which are tagged with
856 * @tag. We update @index to index the next page for the traversal.
858 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
859 int tag
, unsigned int nr_pages
, struct page
**pages
)
863 unsigned int nr_found
;
867 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
868 (void ***)pages
, *index
, nr_pages
, tag
);
870 for (i
= 0; i
< nr_found
; i
++) {
873 page
= radix_tree_deref_slot((void **)pages
[i
]);
877 * this can only trigger if nr_found == 1, making livelock
880 if (unlikely(page
== RADIX_TREE_RETRY
))
883 if (!page_cache_get_speculative(page
))
886 /* Has the page moved? */
887 if (unlikely(page
!= *((void **)pages
[i
]))) {
888 page_cache_release(page
);
898 *index
= pages
[ret
- 1]->index
+ 1;
902 EXPORT_SYMBOL(find_get_pages_tag
);
905 * grab_cache_page_nowait - returns locked page at given index in given cache
906 * @mapping: target address_space
907 * @index: the page index
909 * Same as grab_cache_page(), but do not wait if the page is unavailable.
910 * This is intended for speculative data generators, where the data can
911 * be regenerated if the page couldn't be grabbed. This routine should
912 * be safe to call while holding the lock for another page.
914 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
915 * and deadlock against the caller's locked page.
918 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
920 struct page
*page
= find_get_page(mapping
, index
);
923 if (trylock_page(page
))
925 page_cache_release(page
);
928 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
929 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
930 page_cache_release(page
);
935 EXPORT_SYMBOL(grab_cache_page_nowait
);
938 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
939 * a _large_ part of the i/o request. Imagine the worst scenario:
941 * ---R__________________________________________B__________
942 * ^ reading here ^ bad block(assume 4k)
944 * read(R) => miss => readahead(R...B) => media error => frustrating retries
945 * => failing the whole request => read(R) => read(R+1) =>
946 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
947 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
948 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
950 * It is going insane. Fix it by quickly scaling down the readahead size.
952 static void shrink_readahead_size_eio(struct file
*filp
,
953 struct file_ra_state
*ra
)
959 * do_generic_file_read - generic file read routine
960 * @filp: the file to read
961 * @ppos: current file position
962 * @desc: read_descriptor
963 * @actor: read method
965 * This is a generic file read routine, and uses the
966 * mapping->a_ops->readpage() function for the actual low-level stuff.
968 * This is really ugly. But the goto's actually try to clarify some
969 * of the logic when it comes to error handling etc.
971 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
972 read_descriptor_t
*desc
, read_actor_t actor
)
974 struct address_space
*mapping
= filp
->f_mapping
;
975 struct inode
*inode
= mapping
->host
;
976 struct file_ra_state
*ra
= &filp
->f_ra
;
980 unsigned long offset
; /* offset into pagecache page */
981 unsigned int prev_offset
;
984 index
= *ppos
>> PAGE_CACHE_SHIFT
;
985 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
986 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
987 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
988 offset
= *ppos
& ~PAGE_CACHE_MASK
;
994 unsigned long nr
, ret
;
998 page
= find_get_page(mapping
, index
);
1000 page_cache_sync_readahead(mapping
,
1002 index
, last_index
- index
);
1003 page
= find_get_page(mapping
, index
);
1004 if (unlikely(page
== NULL
))
1005 goto no_cached_page
;
1007 if (PageReadahead(page
)) {
1008 page_cache_async_readahead(mapping
,
1010 index
, last_index
- index
);
1012 if (!PageUptodate(page
)) {
1013 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1014 !mapping
->a_ops
->is_partially_uptodate
)
1015 goto page_not_up_to_date
;
1016 if (!trylock_page(page
))
1017 goto page_not_up_to_date
;
1018 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1020 goto page_not_up_to_date_locked
;
1025 * i_size must be checked after we know the page is Uptodate.
1027 * Checking i_size after the check allows us to calculate
1028 * the correct value for "nr", which means the zero-filled
1029 * part of the page is not copied back to userspace (unless
1030 * another truncate extends the file - this is desired though).
1033 isize
= i_size_read(inode
);
1034 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1035 if (unlikely(!isize
|| index
> end_index
)) {
1036 page_cache_release(page
);
1040 /* nr is the maximum number of bytes to copy from this page */
1041 nr
= PAGE_CACHE_SIZE
;
1042 if (index
== end_index
) {
1043 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1045 page_cache_release(page
);
1051 /* If users can be writing to this page using arbitrary
1052 * virtual addresses, take care about potential aliasing
1053 * before reading the page on the kernel side.
1055 if (mapping_writably_mapped(mapping
))
1056 flush_dcache_page(page
);
1059 * When a sequential read accesses a page several times,
1060 * only mark it as accessed the first time.
1062 if (prev_index
!= index
|| offset
!= prev_offset
)
1063 mark_page_accessed(page
);
1067 * Ok, we have the page, and it's up-to-date, so
1068 * now we can copy it to user space...
1070 * The actor routine returns how many bytes were actually used..
1071 * NOTE! This may not be the same as how much of a user buffer
1072 * we filled up (we may be padding etc), so we can only update
1073 * "pos" here (the actor routine has to update the user buffer
1074 * pointers and the remaining count).
1076 ret
= actor(desc
, page
, offset
, nr
);
1078 index
+= offset
>> PAGE_CACHE_SHIFT
;
1079 offset
&= ~PAGE_CACHE_MASK
;
1080 prev_offset
= offset
;
1082 page_cache_release(page
);
1083 if (ret
== nr
&& desc
->count
)
1087 page_not_up_to_date
:
1088 /* Get exclusive access to the page ... */
1089 error
= lock_page_killable(page
);
1090 if (unlikely(error
))
1091 goto readpage_error
;
1093 page_not_up_to_date_locked
:
1094 /* Did it get truncated before we got the lock? */
1095 if (!page
->mapping
) {
1097 page_cache_release(page
);
1101 /* Did somebody else fill it already? */
1102 if (PageUptodate(page
)) {
1109 * A previous I/O error may have been due to temporary
1110 * failures, eg. multipath errors.
1111 * PG_error will be set again if readpage fails.
1113 ClearPageError(page
);
1114 /* Start the actual read. The read will unlock the page. */
1115 error
= mapping
->a_ops
->readpage(filp
, page
);
1117 if (unlikely(error
)) {
1118 if (error
== AOP_TRUNCATED_PAGE
) {
1119 page_cache_release(page
);
1122 goto readpage_error
;
1125 if (!PageUptodate(page
)) {
1126 error
= lock_page_killable(page
);
1127 if (unlikely(error
))
1128 goto readpage_error
;
1129 if (!PageUptodate(page
)) {
1130 if (page
->mapping
== NULL
) {
1132 * invalidate_mapping_pages got it
1135 page_cache_release(page
);
1139 shrink_readahead_size_eio(filp
, ra
);
1141 goto readpage_error
;
1149 /* UHHUH! A synchronous read error occurred. Report it */
1150 desc
->error
= error
;
1151 page_cache_release(page
);
1156 * Ok, it wasn't cached, so we need to create a new
1159 page
= page_cache_alloc_cold(mapping
);
1161 desc
->error
= -ENOMEM
;
1164 error
= add_to_page_cache_lru(page
, mapping
,
1167 page_cache_release(page
);
1168 if (error
== -EEXIST
)
1170 desc
->error
= error
;
1177 ra
->prev_pos
= prev_index
;
1178 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1179 ra
->prev_pos
|= prev_offset
;
1181 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1182 file_accessed(filp
);
1185 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1186 unsigned long offset
, unsigned long size
)
1189 unsigned long left
, count
= desc
->count
;
1195 * Faults on the destination of a read are common, so do it before
1198 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1199 kaddr
= kmap_atomic(page
, KM_USER0
);
1200 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1201 kaddr
+ offset
, size
);
1202 kunmap_atomic(kaddr
, KM_USER0
);
1207 /* Do it the slow way */
1209 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1214 desc
->error
= -EFAULT
;
1217 desc
->count
= count
- size
;
1218 desc
->written
+= size
;
1219 desc
->arg
.buf
+= size
;
1224 * Performs necessary checks before doing a write
1225 * @iov: io vector request
1226 * @nr_segs: number of segments in the iovec
1227 * @count: number of bytes to write
1228 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1230 * Adjust number of segments and amount of bytes to write (nr_segs should be
1231 * properly initialized first). Returns appropriate error code that caller
1232 * should return or zero in case that write should be allowed.
1234 int generic_segment_checks(const struct iovec
*iov
,
1235 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1239 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1240 const struct iovec
*iv
= &iov
[seg
];
1243 * If any segment has a negative length, or the cumulative
1244 * length ever wraps negative then return -EINVAL.
1247 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1249 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1254 cnt
-= iv
->iov_len
; /* This segment is no good */
1260 EXPORT_SYMBOL(generic_segment_checks
);
1263 * generic_file_aio_read - generic filesystem read routine
1264 * @iocb: kernel I/O control block
1265 * @iov: io vector request
1266 * @nr_segs: number of segments in the iovec
1267 * @pos: current file position
1269 * This is the "read()" routine for all filesystems
1270 * that can use the page cache directly.
1273 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1274 unsigned long nr_segs
, loff_t pos
)
1276 struct file
*filp
= iocb
->ki_filp
;
1278 unsigned long seg
= 0;
1280 loff_t
*ppos
= &iocb
->ki_pos
;
1283 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1287 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1288 if (filp
->f_flags
& O_DIRECT
) {
1290 struct address_space
*mapping
;
1291 struct inode
*inode
;
1293 mapping
= filp
->f_mapping
;
1294 inode
= mapping
->host
;
1296 goto out
; /* skip atime */
1297 size
= i_size_read(inode
);
1299 retval
= filemap_write_and_wait_range(mapping
, pos
,
1300 pos
+ iov_length(iov
, nr_segs
) - 1);
1302 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1306 *ppos
= pos
+ retval
;
1311 * Btrfs can have a short DIO read if we encounter
1312 * compressed extents, so if there was an error, or if
1313 * we've already read everything we wanted to, or if
1314 * there was a short read because we hit EOF, go ahead
1315 * and return. Otherwise fallthrough to buffered io for
1316 * the rest of the read.
1318 if (retval
< 0 || !count
|| *ppos
>= size
) {
1319 file_accessed(filp
);
1326 for (seg
= 0; seg
< nr_segs
; seg
++) {
1327 read_descriptor_t desc
;
1331 * If we did a short DIO read we need to skip the section of the
1332 * iov that we've already read data into.
1335 if (count
> iov
[seg
].iov_len
) {
1336 count
-= iov
[seg
].iov_len
;
1344 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1345 desc
.count
= iov
[seg
].iov_len
- offset
;
1346 if (desc
.count
== 0)
1349 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1350 retval
+= desc
.written
;
1352 retval
= retval
?: desc
.error
;
1361 EXPORT_SYMBOL(generic_file_aio_read
);
1364 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1365 pgoff_t index
, unsigned long nr
)
1367 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1370 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1374 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1382 if (file
->f_mode
& FMODE_READ
) {
1383 struct address_space
*mapping
= file
->f_mapping
;
1384 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1385 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1386 unsigned long len
= end
- start
+ 1;
1387 ret
= do_readahead(mapping
, file
, start
, len
);
1393 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1394 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1396 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1398 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1403 * page_cache_read - adds requested page to the page cache if not already there
1404 * @file: file to read
1405 * @offset: page index
1407 * This adds the requested page to the page cache if it isn't already there,
1408 * and schedules an I/O to read in its contents from disk.
1410 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1412 struct address_space
*mapping
= file
->f_mapping
;
1417 page
= page_cache_alloc_cold(mapping
);
1421 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1423 ret
= mapping
->a_ops
->readpage(file
, page
);
1424 else if (ret
== -EEXIST
)
1425 ret
= 0; /* losing race to add is OK */
1427 page_cache_release(page
);
1429 } while (ret
== AOP_TRUNCATED_PAGE
);
1434 #define MMAP_LOTSAMISS (100)
1437 * Synchronous readahead happens when we don't even find
1438 * a page in the page cache at all.
1440 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1441 struct file_ra_state
*ra
,
1445 unsigned long ra_pages
;
1446 struct address_space
*mapping
= file
->f_mapping
;
1448 /* If we don't want any read-ahead, don't bother */
1449 if (VM_RandomReadHint(vma
))
1452 if (VM_SequentialReadHint(vma
) ||
1453 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1454 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1459 if (ra
->mmap_miss
< INT_MAX
)
1463 * Do we miss much more than hit in this file? If so,
1464 * stop bothering with read-ahead. It will only hurt.
1466 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1472 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1474 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1475 ra
->size
= ra_pages
;
1477 ra_submit(ra
, mapping
, file
);
1482 * Asynchronous readahead happens when we find the page and PG_readahead,
1483 * so we want to possibly extend the readahead further..
1485 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1486 struct file_ra_state
*ra
,
1491 struct address_space
*mapping
= file
->f_mapping
;
1493 /* If we don't want any read-ahead, don't bother */
1494 if (VM_RandomReadHint(vma
))
1496 if (ra
->mmap_miss
> 0)
1498 if (PageReadahead(page
))
1499 page_cache_async_readahead(mapping
, ra
, file
,
1500 page
, offset
, ra
->ra_pages
);
1504 * filemap_fault - read in file data for page fault handling
1505 * @vma: vma in which the fault was taken
1506 * @vmf: struct vm_fault containing details of the fault
1508 * filemap_fault() is invoked via the vma operations vector for a
1509 * mapped memory region to read in file data during a page fault.
1511 * The goto's are kind of ugly, but this streamlines the normal case of having
1512 * it in the page cache, and handles the special cases reasonably without
1513 * having a lot of duplicated code.
1515 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1518 struct file
*file
= vma
->vm_file
;
1519 struct address_space
*mapping
= file
->f_mapping
;
1520 struct file_ra_state
*ra
= &file
->f_ra
;
1521 struct inode
*inode
= mapping
->host
;
1522 pgoff_t offset
= vmf
->pgoff
;
1527 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1529 return VM_FAULT_SIGBUS
;
1532 * Do we have something in the page cache already?
1534 page
= find_get_page(mapping
, offset
);
1537 * We found the page, so try async readahead before
1538 * waiting for the lock.
1540 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1543 /* Did it get truncated? */
1544 if (unlikely(page
->mapping
!= mapping
)) {
1547 goto no_cached_page
;
1550 /* No page in the page cache at all */
1551 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1552 count_vm_event(PGMAJFAULT
);
1553 ret
= VM_FAULT_MAJOR
;
1555 page
= find_lock_page(mapping
, offset
);
1557 goto no_cached_page
;
1561 * We have a locked page in the page cache, now we need to check
1562 * that it's up-to-date. If not, it is going to be due to an error.
1564 if (unlikely(!PageUptodate(page
)))
1565 goto page_not_uptodate
;
1568 * Found the page and have a reference on it.
1569 * We must recheck i_size under page lock.
1571 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1572 if (unlikely(offset
>= size
)) {
1574 page_cache_release(page
);
1575 return VM_FAULT_SIGBUS
;
1578 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1580 return ret
| VM_FAULT_LOCKED
;
1584 * We're only likely to ever get here if MADV_RANDOM is in
1587 error
= page_cache_read(file
, offset
);
1590 * The page we want has now been added to the page cache.
1591 * In the unlikely event that someone removed it in the
1592 * meantime, we'll just come back here and read it again.
1598 * An error return from page_cache_read can result if the
1599 * system is low on memory, or a problem occurs while trying
1602 if (error
== -ENOMEM
)
1603 return VM_FAULT_OOM
;
1604 return VM_FAULT_SIGBUS
;
1608 * Umm, take care of errors if the page isn't up-to-date.
1609 * Try to re-read it _once_. We do this synchronously,
1610 * because there really aren't any performance issues here
1611 * and we need to check for errors.
1613 ClearPageError(page
);
1614 error
= mapping
->a_ops
->readpage(file
, page
);
1616 wait_on_page_locked(page
);
1617 if (!PageUptodate(page
))
1620 page_cache_release(page
);
1622 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1625 /* Things didn't work out. Return zero to tell the mm layer so. */
1626 shrink_readahead_size_eio(file
, ra
);
1627 return VM_FAULT_SIGBUS
;
1629 EXPORT_SYMBOL(filemap_fault
);
1631 const struct vm_operations_struct generic_file_vm_ops
= {
1632 .fault
= filemap_fault
,
1635 /* This is used for a general mmap of a disk file */
1637 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1639 struct address_space
*mapping
= file
->f_mapping
;
1641 if (!mapping
->a_ops
->readpage
)
1643 file_accessed(file
);
1644 vma
->vm_ops
= &generic_file_vm_ops
;
1645 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1650 * This is for filesystems which do not implement ->writepage.
1652 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1654 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1656 return generic_file_mmap(file
, vma
);
1659 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1663 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1667 #endif /* CONFIG_MMU */
1669 EXPORT_SYMBOL(generic_file_mmap
);
1670 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1672 static struct page
*__read_cache_page(struct address_space
*mapping
,
1674 int (*filler
)(void *,struct page
*),
1681 page
= find_get_page(mapping
, index
);
1683 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1685 return ERR_PTR(-ENOMEM
);
1686 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1687 if (unlikely(err
)) {
1688 page_cache_release(page
);
1691 /* Presumably ENOMEM for radix tree node */
1692 return ERR_PTR(err
);
1694 err
= filler(data
, page
);
1696 page_cache_release(page
);
1697 page
= ERR_PTR(err
);
1703 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1705 int (*filler
)(void *,struct page
*),
1714 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1717 if (PageUptodate(page
))
1721 if (!page
->mapping
) {
1723 page_cache_release(page
);
1726 if (PageUptodate(page
)) {
1730 err
= filler(data
, page
);
1732 page_cache_release(page
);
1733 return ERR_PTR(err
);
1736 mark_page_accessed(page
);
1741 * read_cache_page_async - read into page cache, fill it if needed
1742 * @mapping: the page's address_space
1743 * @index: the page index
1744 * @filler: function to perform the read
1745 * @data: destination for read data
1747 * Same as read_cache_page, but don't wait for page to become unlocked
1748 * after submitting it to the filler.
1750 * Read into the page cache. If a page already exists, and PageUptodate() is
1751 * not set, try to fill the page but don't wait for it to become unlocked.
1753 * If the page does not get brought uptodate, return -EIO.
1755 struct page
*read_cache_page_async(struct address_space
*mapping
,
1757 int (*filler
)(void *,struct page
*),
1760 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1762 EXPORT_SYMBOL(read_cache_page_async
);
1764 static struct page
*wait_on_page_read(struct page
*page
)
1766 if (!IS_ERR(page
)) {
1767 wait_on_page_locked(page
);
1768 if (!PageUptodate(page
)) {
1769 page_cache_release(page
);
1770 page
= ERR_PTR(-EIO
);
1777 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1778 * @mapping: the page's address_space
1779 * @index: the page index
1780 * @gfp: the page allocator flags to use if allocating
1782 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1783 * any new page allocations done using the specified allocation flags. Note
1784 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1785 * expect to do this atomically or anything like that - but you can pass in
1786 * other page requirements.
1788 * If the page does not get brought uptodate, return -EIO.
1790 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1794 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1796 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1798 EXPORT_SYMBOL(read_cache_page_gfp
);
1801 * read_cache_page - read into page cache, fill it if needed
1802 * @mapping: the page's address_space
1803 * @index: the page index
1804 * @filler: function to perform the read
1805 * @data: destination for read data
1807 * Read into the page cache. If a page already exists, and PageUptodate() is
1808 * not set, try to fill the page then wait for it to become unlocked.
1810 * If the page does not get brought uptodate, return -EIO.
1812 struct page
*read_cache_page(struct address_space
*mapping
,
1814 int (*filler
)(void *,struct page
*),
1817 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1819 EXPORT_SYMBOL(read_cache_page
);
1822 * The logic we want is
1824 * if suid or (sgid and xgrp)
1827 int should_remove_suid(struct dentry
*dentry
)
1829 mode_t mode
= dentry
->d_inode
->i_mode
;
1832 /* suid always must be killed */
1833 if (unlikely(mode
& S_ISUID
))
1834 kill
= ATTR_KILL_SUID
;
1837 * sgid without any exec bits is just a mandatory locking mark; leave
1838 * it alone. If some exec bits are set, it's a real sgid; kill it.
1840 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1841 kill
|= ATTR_KILL_SGID
;
1843 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1848 EXPORT_SYMBOL(should_remove_suid
);
1850 static int __remove_suid(struct dentry
*dentry
, int kill
)
1852 struct iattr newattrs
;
1854 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1855 return notify_change(dentry
, &newattrs
);
1858 int file_remove_suid(struct file
*file
)
1860 struct dentry
*dentry
= file
->f_path
.dentry
;
1861 int killsuid
= should_remove_suid(dentry
);
1862 int killpriv
= security_inode_need_killpriv(dentry
);
1868 error
= security_inode_killpriv(dentry
);
1869 if (!error
&& killsuid
)
1870 error
= __remove_suid(dentry
, killsuid
);
1874 EXPORT_SYMBOL(file_remove_suid
);
1876 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1877 const struct iovec
*iov
, size_t base
, size_t bytes
)
1879 size_t copied
= 0, left
= 0;
1882 char __user
*buf
= iov
->iov_base
+ base
;
1883 int copy
= min(bytes
, iov
->iov_len
- base
);
1886 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1895 return copied
- left
;
1899 * Copy as much as we can into the page and return the number of bytes which
1900 * were successfully copied. If a fault is encountered then return the number of
1901 * bytes which were copied.
1903 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1904 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1909 BUG_ON(!in_atomic());
1910 kaddr
= kmap_atomic(page
, KM_USER0
);
1911 if (likely(i
->nr_segs
== 1)) {
1913 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1914 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1915 copied
= bytes
- left
;
1917 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1918 i
->iov
, i
->iov_offset
, bytes
);
1920 kunmap_atomic(kaddr
, KM_USER0
);
1924 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1927 * This has the same sideeffects and return value as
1928 * iov_iter_copy_from_user_atomic().
1929 * The difference is that it attempts to resolve faults.
1930 * Page must not be locked.
1932 size_t iov_iter_copy_from_user(struct page
*page
,
1933 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1939 if (likely(i
->nr_segs
== 1)) {
1941 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1942 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1943 copied
= bytes
- left
;
1945 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1946 i
->iov
, i
->iov_offset
, bytes
);
1951 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1953 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1955 BUG_ON(i
->count
< bytes
);
1957 if (likely(i
->nr_segs
== 1)) {
1958 i
->iov_offset
+= bytes
;
1961 const struct iovec
*iov
= i
->iov
;
1962 size_t base
= i
->iov_offset
;
1965 * The !iov->iov_len check ensures we skip over unlikely
1966 * zero-length segments (without overruning the iovec).
1968 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1971 copy
= min(bytes
, iov
->iov_len
- base
);
1972 BUG_ON(!i
->count
|| i
->count
< copy
);
1976 if (iov
->iov_len
== base
) {
1982 i
->iov_offset
= base
;
1985 EXPORT_SYMBOL(iov_iter_advance
);
1988 * Fault in the first iovec of the given iov_iter, to a maximum length
1989 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1990 * accessed (ie. because it is an invalid address).
1992 * writev-intensive code may want this to prefault several iovecs -- that
1993 * would be possible (callers must not rely on the fact that _only_ the
1994 * first iovec will be faulted with the current implementation).
1996 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1998 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1999 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2000 return fault_in_pages_readable(buf
, bytes
);
2002 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2005 * Return the count of just the current iov_iter segment.
2007 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2009 const struct iovec
*iov
= i
->iov
;
2010 if (i
->nr_segs
== 1)
2013 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2015 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2018 * Performs necessary checks before doing a write
2020 * Can adjust writing position or amount of bytes to write.
2021 * Returns appropriate error code that caller should return or
2022 * zero in case that write should be allowed.
2024 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2026 struct inode
*inode
= file
->f_mapping
->host
;
2027 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2029 if (unlikely(*pos
< 0))
2033 /* FIXME: this is for backwards compatibility with 2.4 */
2034 if (file
->f_flags
& O_APPEND
)
2035 *pos
= i_size_read(inode
);
2037 if (limit
!= RLIM_INFINITY
) {
2038 if (*pos
>= limit
) {
2039 send_sig(SIGXFSZ
, current
, 0);
2042 if (*count
> limit
- (typeof(limit
))*pos
) {
2043 *count
= limit
- (typeof(limit
))*pos
;
2051 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2052 !(file
->f_flags
& O_LARGEFILE
))) {
2053 if (*pos
>= MAX_NON_LFS
) {
2056 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2057 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2062 * Are we about to exceed the fs block limit ?
2064 * If we have written data it becomes a short write. If we have
2065 * exceeded without writing data we send a signal and return EFBIG.
2066 * Linus frestrict idea will clean these up nicely..
2068 if (likely(!isblk
)) {
2069 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2070 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2073 /* zero-length writes at ->s_maxbytes are OK */
2076 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2077 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2081 if (bdev_read_only(I_BDEV(inode
)))
2083 isize
= i_size_read(inode
);
2084 if (*pos
>= isize
) {
2085 if (*count
|| *pos
> isize
)
2089 if (*pos
+ *count
> isize
)
2090 *count
= isize
- *pos
;
2097 EXPORT_SYMBOL(generic_write_checks
);
2099 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2100 loff_t pos
, unsigned len
, unsigned flags
,
2101 struct page
**pagep
, void **fsdata
)
2103 const struct address_space_operations
*aops
= mapping
->a_ops
;
2105 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2108 EXPORT_SYMBOL(pagecache_write_begin
);
2110 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2111 loff_t pos
, unsigned len
, unsigned copied
,
2112 struct page
*page
, void *fsdata
)
2114 const struct address_space_operations
*aops
= mapping
->a_ops
;
2116 mark_page_accessed(page
);
2117 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2119 EXPORT_SYMBOL(pagecache_write_end
);
2122 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2123 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2124 size_t count
, size_t ocount
)
2126 struct file
*file
= iocb
->ki_filp
;
2127 struct address_space
*mapping
= file
->f_mapping
;
2128 struct inode
*inode
= mapping
->host
;
2133 if (count
!= ocount
)
2134 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2136 write_len
= iov_length(iov
, *nr_segs
);
2137 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2139 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2144 * After a write we want buffered reads to be sure to go to disk to get
2145 * the new data. We invalidate clean cached page from the region we're
2146 * about to write. We do this *before* the write so that we can return
2147 * without clobbering -EIOCBQUEUED from ->direct_IO().
2149 if (mapping
->nrpages
) {
2150 written
= invalidate_inode_pages2_range(mapping
,
2151 pos
>> PAGE_CACHE_SHIFT
, end
);
2153 * If a page can not be invalidated, return 0 to fall back
2154 * to buffered write.
2157 if (written
== -EBUSY
)
2163 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2166 * Finally, try again to invalidate clean pages which might have been
2167 * cached by non-direct readahead, or faulted in by get_user_pages()
2168 * if the source of the write was an mmap'ed region of the file
2169 * we're writing. Either one is a pretty crazy thing to do,
2170 * so we don't support it 100%. If this invalidation
2171 * fails, tough, the write still worked...
2173 if (mapping
->nrpages
) {
2174 invalidate_inode_pages2_range(mapping
,
2175 pos
>> PAGE_CACHE_SHIFT
, end
);
2179 loff_t end
= pos
+ written
;
2180 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2181 i_size_write(inode
, end
);
2182 mark_inode_dirty(inode
);
2189 EXPORT_SYMBOL(generic_file_direct_write
);
2192 * Find or create a page at the given pagecache position. Return the locked
2193 * page. This function is specifically for buffered writes.
2195 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2196 pgoff_t index
, unsigned flags
)
2200 gfp_t gfp_notmask
= 0;
2201 if (flags
& AOP_FLAG_NOFS
)
2202 gfp_notmask
= __GFP_FS
;
2204 page
= find_lock_page(mapping
, index
);
2208 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2211 status
= add_to_page_cache_lru(page
, mapping
, index
,
2212 GFP_KERNEL
& ~gfp_notmask
);
2213 if (unlikely(status
)) {
2214 page_cache_release(page
);
2215 if (status
== -EEXIST
)
2221 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2223 static ssize_t
generic_perform_write(struct file
*file
,
2224 struct iov_iter
*i
, loff_t pos
)
2226 struct address_space
*mapping
= file
->f_mapping
;
2227 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2229 ssize_t written
= 0;
2230 unsigned int flags
= 0;
2233 * Copies from kernel address space cannot fail (NFSD is a big user).
2235 if (segment_eq(get_fs(), KERNEL_DS
))
2236 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2240 pgoff_t index
; /* Pagecache index for current page */
2241 unsigned long offset
; /* Offset into pagecache page */
2242 unsigned long bytes
; /* Bytes to write to page */
2243 size_t copied
; /* Bytes copied from user */
2246 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2247 index
= pos
>> PAGE_CACHE_SHIFT
;
2248 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2254 * Bring in the user page that we will copy from _first_.
2255 * Otherwise there's a nasty deadlock on copying from the
2256 * same page as we're writing to, without it being marked
2259 * Not only is this an optimisation, but it is also required
2260 * to check that the address is actually valid, when atomic
2261 * usercopies are used, below.
2263 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2268 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2270 if (unlikely(status
))
2273 if (mapping_writably_mapped(mapping
))
2274 flush_dcache_page(page
);
2276 pagefault_disable();
2277 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2279 flush_dcache_page(page
);
2281 mark_page_accessed(page
);
2282 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2284 if (unlikely(status
< 0))
2290 iov_iter_advance(i
, copied
);
2291 if (unlikely(copied
== 0)) {
2293 * If we were unable to copy any data at all, we must
2294 * fall back to a single segment length write.
2296 * If we didn't fallback here, we could livelock
2297 * because not all segments in the iov can be copied at
2298 * once without a pagefault.
2300 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2301 iov_iter_single_seg_count(i
));
2307 balance_dirty_pages_ratelimited(mapping
);
2309 } while (iov_iter_count(i
));
2311 return written
? written
: status
;
2315 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2316 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2317 size_t count
, ssize_t written
)
2319 struct file
*file
= iocb
->ki_filp
;
2323 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2324 status
= generic_perform_write(file
, &i
, pos
);
2326 if (likely(status
>= 0)) {
2328 *ppos
= pos
+ status
;
2331 return written
? written
: status
;
2333 EXPORT_SYMBOL(generic_file_buffered_write
);
2336 * __generic_file_aio_write - write data to a file
2337 * @iocb: IO state structure (file, offset, etc.)
2338 * @iov: vector with data to write
2339 * @nr_segs: number of segments in the vector
2340 * @ppos: position where to write
2342 * This function does all the work needed for actually writing data to a
2343 * file. It does all basic checks, removes SUID from the file, updates
2344 * modification times and calls proper subroutines depending on whether we
2345 * do direct IO or a standard buffered write.
2347 * It expects i_mutex to be grabbed unless we work on a block device or similar
2348 * object which does not need locking at all.
2350 * This function does *not* take care of syncing data in case of O_SYNC write.
2351 * A caller has to handle it. This is mainly due to the fact that we want to
2352 * avoid syncing under i_mutex.
2354 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2355 unsigned long nr_segs
, loff_t
*ppos
)
2357 struct file
*file
= iocb
->ki_filp
;
2358 struct address_space
* mapping
= file
->f_mapping
;
2359 size_t ocount
; /* original count */
2360 size_t count
; /* after file limit checks */
2361 struct inode
*inode
= mapping
->host
;
2367 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2374 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2376 /* We can write back this queue in page reclaim */
2377 current
->backing_dev_info
= mapping
->backing_dev_info
;
2380 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2387 err
= file_remove_suid(file
);
2391 file_update_time(file
);
2393 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2394 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2396 ssize_t written_buffered
;
2398 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2399 ppos
, count
, ocount
);
2400 if (written
< 0 || written
== count
)
2403 * direct-io write to a hole: fall through to buffered I/O
2404 * for completing the rest of the request.
2408 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2409 nr_segs
, pos
, ppos
, count
,
2412 * If generic_file_buffered_write() retuned a synchronous error
2413 * then we want to return the number of bytes which were
2414 * direct-written, or the error code if that was zero. Note
2415 * that this differs from normal direct-io semantics, which
2416 * will return -EFOO even if some bytes were written.
2418 if (written_buffered
< 0) {
2419 err
= written_buffered
;
2424 * We need to ensure that the page cache pages are written to
2425 * disk and invalidated to preserve the expected O_DIRECT
2428 endbyte
= pos
+ written_buffered
- written
- 1;
2429 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2431 written
= written_buffered
;
2432 invalidate_mapping_pages(mapping
,
2433 pos
>> PAGE_CACHE_SHIFT
,
2434 endbyte
>> PAGE_CACHE_SHIFT
);
2437 * We don't know how much we wrote, so just return
2438 * the number of bytes which were direct-written
2442 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2443 pos
, ppos
, count
, written
);
2446 current
->backing_dev_info
= NULL
;
2447 return written
? written
: err
;
2449 EXPORT_SYMBOL(__generic_file_aio_write
);
2452 * generic_file_aio_write - write data to a file
2453 * @iocb: IO state structure
2454 * @iov: vector with data to write
2455 * @nr_segs: number of segments in the vector
2456 * @pos: position in file where to write
2458 * This is a wrapper around __generic_file_aio_write() to be used by most
2459 * filesystems. It takes care of syncing the file in case of O_SYNC file
2460 * and acquires i_mutex as needed.
2462 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2463 unsigned long nr_segs
, loff_t pos
)
2465 struct file
*file
= iocb
->ki_filp
;
2466 struct inode
*inode
= file
->f_mapping
->host
;
2469 BUG_ON(iocb
->ki_pos
!= pos
);
2471 mutex_lock(&inode
->i_mutex
);
2472 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2473 mutex_unlock(&inode
->i_mutex
);
2475 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2478 err
= generic_write_sync(file
, pos
, ret
);
2479 if (err
< 0 && ret
> 0)
2484 EXPORT_SYMBOL(generic_file_aio_write
);
2487 * try_to_release_page() - release old fs-specific metadata on a page
2489 * @page: the page which the kernel is trying to free
2490 * @gfp_mask: memory allocation flags (and I/O mode)
2492 * The address_space is to try to release any data against the page
2493 * (presumably at page->private). If the release was successful, return `1'.
2494 * Otherwise return zero.
2496 * This may also be called if PG_fscache is set on a page, indicating that the
2497 * page is known to the local caching routines.
2499 * The @gfp_mask argument specifies whether I/O may be performed to release
2500 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2503 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2505 struct address_space
* const mapping
= page
->mapping
;
2507 BUG_ON(!PageLocked(page
));
2508 if (PageWriteback(page
))
2511 if (mapping
&& mapping
->a_ops
->releasepage
)
2512 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2513 return try_to_free_buffers(page
);
2516 EXPORT_SYMBOL(try_to_release_page
);