x86_64: Consolidate tsc calibration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / tsc_64.c
blob59baecd135ab9e1f7170bf3cd6f674735e4c9031
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/interrupt.h>
4 #include <linux/init.h>
5 #include <linux/clocksource.h>
6 #include <linux/time.h>
7 #include <linux/acpi.h>
8 #include <linux/cpufreq.h>
9 #include <linux/acpi_pmtmr.h>
11 #include <asm/hpet.h>
12 #include <asm/timex.h>
14 static int notsc __initdata = 0;
16 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
17 EXPORT_SYMBOL(cpu_khz);
18 unsigned int tsc_khz;
19 EXPORT_SYMBOL(tsc_khz);
21 static unsigned int cyc2ns_scale __read_mostly;
23 void set_cyc2ns_scale(unsigned long khz)
25 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;
28 static unsigned long long cycles_2_ns(unsigned long long cyc)
30 return (cyc * cyc2ns_scale) >> NS_SCALE;
33 unsigned long long sched_clock(void)
35 unsigned long a = 0;
37 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
38 * which means it is not completely exact and may not be monotonous
39 * between CPUs. But the errors should be too small to matter for
40 * scheduling purposes.
43 rdtscll(a);
44 return cycles_2_ns(a);
47 static int tsc_unstable;
49 inline int check_tsc_unstable(void)
51 return tsc_unstable;
53 #ifdef CONFIG_CPU_FREQ
55 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
56 * changes.
58 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
59 * not that important because current Opteron setups do not support
60 * scaling on SMP anyroads.
62 * Should fix up last_tsc too. Currently gettimeofday in the
63 * first tick after the change will be slightly wrong.
66 static unsigned int ref_freq;
67 static unsigned long loops_per_jiffy_ref;
68 static unsigned long tsc_khz_ref;
70 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
71 void *data)
73 struct cpufreq_freqs *freq = data;
74 unsigned long *lpj, dummy;
76 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
77 return 0;
79 lpj = &dummy;
80 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
81 #ifdef CONFIG_SMP
82 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
83 #else
84 lpj = &boot_cpu_data.loops_per_jiffy;
85 #endif
87 if (!ref_freq) {
88 ref_freq = freq->old;
89 loops_per_jiffy_ref = *lpj;
90 tsc_khz_ref = tsc_khz;
92 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
93 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
94 (val == CPUFREQ_RESUMECHANGE)) {
95 *lpj =
96 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
98 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
99 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
100 mark_tsc_unstable("cpufreq changes");
103 set_cyc2ns_scale(tsc_khz_ref);
105 return 0;
108 static struct notifier_block time_cpufreq_notifier_block = {
109 .notifier_call = time_cpufreq_notifier
112 static int __init cpufreq_tsc(void)
114 cpufreq_register_notifier(&time_cpufreq_notifier_block,
115 CPUFREQ_TRANSITION_NOTIFIER);
116 return 0;
119 core_initcall(cpufreq_tsc);
121 #endif
123 #define MAX_RETRIES 5
124 #define SMI_TRESHOLD 50000
127 * Read TSC and the reference counters. Take care of SMI disturbance
129 static unsigned long __init tsc_read_refs(unsigned long *pm,
130 unsigned long *hpet)
132 unsigned long t1, t2;
133 int i;
135 for (i = 0; i < MAX_RETRIES; i++) {
136 t1 = get_cycles_sync();
137 if (hpet)
138 *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
139 else
140 *pm = acpi_pm_read_early();
141 t2 = get_cycles_sync();
142 if ((t2 - t1) < SMI_TRESHOLD)
143 return t2;
145 return ULONG_MAX;
149 * tsc_calibrate - calibrate the tsc on boot
151 void __init tsc_calibrate(void)
153 unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
154 int hpet = is_hpet_enabled();
156 local_irq_save(flags);
158 tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
160 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
162 outb(0xb0, 0x43);
163 outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
164 outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
165 tr1 = get_cycles_sync();
166 while ((inb(0x61) & 0x20) == 0);
167 tr2 = get_cycles_sync();
169 tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
171 local_irq_restore(flags);
174 * Preset the result with the raw and inaccurate PIT
175 * calibration value
177 tsc_khz = (tr2 - tr1) / 50;
179 /* hpet or pmtimer available ? */
180 if (!hpet && !pm1 && !pm2) {
181 printk(KERN_INFO "TSC calibrated against PIT\n");
182 return;
185 /* Check, whether the sampling was disturbed by an SMI */
186 if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
187 printk(KERN_WARNING "TSC calibration disturbed by SMI, "
188 "using PIT calibration result\n");
189 return;
192 tsc2 = (tsc2 - tsc1) * 1000000L;
194 if (hpet) {
195 printk(KERN_INFO "TSC calibrated against HPET\n");
196 if (hpet2 < hpet1)
197 hpet2 += 0x100000000;
198 hpet2 -= hpet1;
199 tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
200 } else {
201 printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
202 if (pm2 < pm1)
203 pm2 += ACPI_PM_OVRRUN;
204 pm2 -= pm1;
205 tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
208 tsc_khz = tsc2 / tsc1;
212 * Make an educated guess if the TSC is trustworthy and synchronized
213 * over all CPUs.
215 __cpuinit int unsynchronized_tsc(void)
217 if (tsc_unstable)
218 return 1;
220 #ifdef CONFIG_SMP
221 if (apic_is_clustered_box())
222 return 1;
223 #endif
224 /* Most intel systems have synchronized TSCs except for
225 multi node systems */
226 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
227 #ifdef CONFIG_ACPI
228 /* But TSC doesn't tick in C3 so don't use it there */
229 if (acpi_gbl_FADT.header.length > 0 &&
230 acpi_gbl_FADT.C3latency < 1000)
231 return 1;
232 #endif
233 return 0;
236 /* Assume multi socket systems are not synchronized */
237 return num_present_cpus() > 1;
240 int __init notsc_setup(char *s)
242 notsc = 1;
243 return 1;
246 __setup("notsc", notsc_setup);
249 /* clock source code: */
250 static cycle_t read_tsc(void)
252 cycle_t ret = (cycle_t)get_cycles_sync();
253 return ret;
256 static cycle_t __vsyscall_fn vread_tsc(void)
258 cycle_t ret = (cycle_t)get_cycles_sync();
259 return ret;
262 static struct clocksource clocksource_tsc = {
263 .name = "tsc",
264 .rating = 300,
265 .read = read_tsc,
266 .mask = CLOCKSOURCE_MASK(64),
267 .shift = 22,
268 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
269 CLOCK_SOURCE_MUST_VERIFY,
270 .vread = vread_tsc,
273 void mark_tsc_unstable(char *reason)
275 if (!tsc_unstable) {
276 tsc_unstable = 1;
277 printk("Marking TSC unstable due to %s\n", reason);
278 /* Change only the rating, when not registered */
279 if (clocksource_tsc.mult)
280 clocksource_change_rating(&clocksource_tsc, 0);
281 else
282 clocksource_tsc.rating = 0;
285 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
287 void __init init_tsc_clocksource(void)
289 if (!notsc) {
290 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
291 clocksource_tsc.shift);
292 if (check_tsc_unstable())
293 clocksource_tsc.rating = 0;
295 clocksource_register(&clocksource_tsc);