[PATCH] Add HOWTO do kernel development document to the Documentation directory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blobaca8d10704f675cbdf35267d49bb984669c49f44
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
12 * enough at me, Linus for the original (flawed) idea, Matthew
13 * Kirkwood for proof-of-concept implementation.
15 * "The futexes are also cursed."
16 * "But they come in a choice of three flavours!"
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include <linux/slab.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/file.h>
36 #include <linux/jhash.h>
37 #include <linux/init.h>
38 #include <linux/futex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <asm/futex.h>
45 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
48 * Futexes are matched on equal values of this key.
49 * The key type depends on whether it's a shared or private mapping.
50 * Don't rearrange members without looking at hash_futex().
52 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
53 * We set bit 0 to indicate if it's an inode-based key.
55 union futex_key {
56 struct {
57 unsigned long pgoff;
58 struct inode *inode;
59 int offset;
60 } shared;
61 struct {
62 unsigned long uaddr;
63 struct mm_struct *mm;
64 int offset;
65 } private;
66 struct {
67 unsigned long word;
68 void *ptr;
69 int offset;
70 } both;
74 * We use this hashed waitqueue instead of a normal wait_queue_t, so
75 * we can wake only the relevant ones (hashed queues may be shared).
77 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
78 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
79 * The order of wakup is always to make the first condition true, then
80 * wake up q->waiters, then make the second condition true.
82 struct futex_q {
83 struct list_head list;
84 wait_queue_head_t waiters;
86 /* Which hash list lock to use. */
87 spinlock_t *lock_ptr;
89 /* Key which the futex is hashed on. */
90 union futex_key key;
92 /* For fd, sigio sent using these. */
93 int fd;
94 struct file *filp;
98 * Split the global futex_lock into every hash list lock.
100 struct futex_hash_bucket {
101 spinlock_t lock;
102 struct list_head chain;
105 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
107 /* Futex-fs vfsmount entry: */
108 static struct vfsmount *futex_mnt;
111 * We hash on the keys returned from get_futex_key (see below).
113 static struct futex_hash_bucket *hash_futex(union futex_key *key)
115 u32 hash = jhash2((u32*)&key->both.word,
116 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
117 key->both.offset);
118 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
122 * Return 1 if two futex_keys are equal, 0 otherwise.
124 static inline int match_futex(union futex_key *key1, union futex_key *key2)
126 return (key1->both.word == key2->both.word
127 && key1->both.ptr == key2->both.ptr
128 && key1->both.offset == key2->both.offset);
132 * Get parameters which are the keys for a futex.
134 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
135 * offset_within_page). For private mappings, it's (uaddr, current->mm).
136 * We can usually work out the index without swapping in the page.
138 * Returns: 0, or negative error code.
139 * The key words are stored in *key on success.
141 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
143 static int get_futex_key(unsigned long uaddr, union futex_key *key)
145 struct mm_struct *mm = current->mm;
146 struct vm_area_struct *vma;
147 struct page *page;
148 int err;
151 * The futex address must be "naturally" aligned.
153 key->both.offset = uaddr % PAGE_SIZE;
154 if (unlikely((key->both.offset % sizeof(u32)) != 0))
155 return -EINVAL;
156 uaddr -= key->both.offset;
159 * The futex is hashed differently depending on whether
160 * it's in a shared or private mapping. So check vma first.
162 vma = find_extend_vma(mm, uaddr);
163 if (unlikely(!vma))
164 return -EFAULT;
167 * Permissions.
169 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
170 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
173 * Private mappings are handled in a simple way.
175 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
176 * it's a read-only handle, it's expected that futexes attach to
177 * the object not the particular process. Therefore we use
178 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
179 * mappings of _writable_ handles.
181 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
182 key->private.mm = mm;
183 key->private.uaddr = uaddr;
184 return 0;
188 * Linear file mappings are also simple.
190 key->shared.inode = vma->vm_file->f_dentry->d_inode;
191 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
192 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
193 key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
194 + vma->vm_pgoff);
195 return 0;
199 * We could walk the page table to read the non-linear
200 * pte, and get the page index without fetching the page
201 * from swap. But that's a lot of code to duplicate here
202 * for a rare case, so we simply fetch the page.
206 * Do a quick atomic lookup first - this is the fastpath.
208 page = follow_page(mm, uaddr, FOLL_TOUCH|FOLL_GET);
209 if (likely(page != NULL)) {
210 key->shared.pgoff =
211 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
212 put_page(page);
213 return 0;
217 * Do it the general way.
219 err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
220 if (err >= 0) {
221 key->shared.pgoff =
222 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
223 put_page(page);
224 return 0;
226 return err;
230 * Take a reference to the resource addressed by a key.
231 * Can be called while holding spinlocks.
233 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
234 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
236 static inline void get_key_refs(union futex_key *key)
238 if (key->both.ptr != 0) {
239 if (key->both.offset & 1)
240 atomic_inc(&key->shared.inode->i_count);
241 else
242 atomic_inc(&key->private.mm->mm_count);
247 * Drop a reference to the resource addressed by a key.
248 * The hash bucket spinlock must not be held.
250 static void drop_key_refs(union futex_key *key)
252 if (key->both.ptr != 0) {
253 if (key->both.offset & 1)
254 iput(key->shared.inode);
255 else
256 mmdrop(key->private.mm);
260 static inline int get_futex_value_locked(int *dest, int __user *from)
262 int ret;
264 inc_preempt_count();
265 ret = __copy_from_user_inatomic(dest, from, sizeof(int));
266 dec_preempt_count();
268 return ret ? -EFAULT : 0;
272 * The hash bucket lock must be held when this is called.
273 * Afterwards, the futex_q must not be accessed.
275 static void wake_futex(struct futex_q *q)
277 list_del_init(&q->list);
278 if (q->filp)
279 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
281 * The lock in wake_up_all() is a crucial memory barrier after the
282 * list_del_init() and also before assigning to q->lock_ptr.
284 wake_up_all(&q->waiters);
286 * The waiting task can free the futex_q as soon as this is written,
287 * without taking any locks. This must come last.
289 q->lock_ptr = NULL;
293 * Wake up all waiters hashed on the physical page that is mapped
294 * to this virtual address:
296 static int futex_wake(unsigned long uaddr, int nr_wake)
298 union futex_key key;
299 struct futex_hash_bucket *bh;
300 struct list_head *head;
301 struct futex_q *this, *next;
302 int ret;
304 down_read(&current->mm->mmap_sem);
306 ret = get_futex_key(uaddr, &key);
307 if (unlikely(ret != 0))
308 goto out;
310 bh = hash_futex(&key);
311 spin_lock(&bh->lock);
312 head = &bh->chain;
314 list_for_each_entry_safe(this, next, head, list) {
315 if (match_futex (&this->key, &key)) {
316 wake_futex(this);
317 if (++ret >= nr_wake)
318 break;
322 spin_unlock(&bh->lock);
323 out:
324 up_read(&current->mm->mmap_sem);
325 return ret;
329 * Wake up all waiters hashed on the physical page that is mapped
330 * to this virtual address:
332 static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
334 union futex_key key1, key2;
335 struct futex_hash_bucket *bh1, *bh2;
336 struct list_head *head;
337 struct futex_q *this, *next;
338 int ret, op_ret, attempt = 0;
340 retryfull:
341 down_read(&current->mm->mmap_sem);
343 ret = get_futex_key(uaddr1, &key1);
344 if (unlikely(ret != 0))
345 goto out;
346 ret = get_futex_key(uaddr2, &key2);
347 if (unlikely(ret != 0))
348 goto out;
350 bh1 = hash_futex(&key1);
351 bh2 = hash_futex(&key2);
353 retry:
354 if (bh1 < bh2)
355 spin_lock(&bh1->lock);
356 spin_lock(&bh2->lock);
357 if (bh1 > bh2)
358 spin_lock(&bh1->lock);
360 op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
361 if (unlikely(op_ret < 0)) {
362 int dummy;
364 spin_unlock(&bh1->lock);
365 if (bh1 != bh2)
366 spin_unlock(&bh2->lock);
368 if (unlikely(op_ret != -EFAULT)) {
369 ret = op_ret;
370 goto out;
373 /* futex_atomic_op_inuser needs to both read and write
374 * *(int __user *)uaddr2, but we can't modify it
375 * non-atomically. Therefore, if get_user below is not
376 * enough, we need to handle the fault ourselves, while
377 * still holding the mmap_sem. */
378 if (attempt++) {
379 struct vm_area_struct * vma;
380 struct mm_struct *mm = current->mm;
382 ret = -EFAULT;
383 if (attempt >= 2 ||
384 !(vma = find_vma(mm, uaddr2)) ||
385 vma->vm_start > uaddr2 ||
386 !(vma->vm_flags & VM_WRITE))
387 goto out;
389 switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
390 case VM_FAULT_MINOR:
391 current->min_flt++;
392 break;
393 case VM_FAULT_MAJOR:
394 current->maj_flt++;
395 break;
396 default:
397 goto out;
399 goto retry;
402 /* If we would have faulted, release mmap_sem,
403 * fault it in and start all over again. */
404 up_read(&current->mm->mmap_sem);
406 ret = get_user(dummy, (int __user *)uaddr2);
407 if (ret)
408 return ret;
410 goto retryfull;
413 head = &bh1->chain;
415 list_for_each_entry_safe(this, next, head, list) {
416 if (match_futex (&this->key, &key1)) {
417 wake_futex(this);
418 if (++ret >= nr_wake)
419 break;
423 if (op_ret > 0) {
424 head = &bh2->chain;
426 op_ret = 0;
427 list_for_each_entry_safe(this, next, head, list) {
428 if (match_futex (&this->key, &key2)) {
429 wake_futex(this);
430 if (++op_ret >= nr_wake2)
431 break;
434 ret += op_ret;
437 spin_unlock(&bh1->lock);
438 if (bh1 != bh2)
439 spin_unlock(&bh2->lock);
440 out:
441 up_read(&current->mm->mmap_sem);
442 return ret;
446 * Requeue all waiters hashed on one physical page to another
447 * physical page.
449 static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
450 int nr_wake, int nr_requeue, int *valp)
452 union futex_key key1, key2;
453 struct futex_hash_bucket *bh1, *bh2;
454 struct list_head *head1;
455 struct futex_q *this, *next;
456 int ret, drop_count = 0;
458 retry:
459 down_read(&current->mm->mmap_sem);
461 ret = get_futex_key(uaddr1, &key1);
462 if (unlikely(ret != 0))
463 goto out;
464 ret = get_futex_key(uaddr2, &key2);
465 if (unlikely(ret != 0))
466 goto out;
468 bh1 = hash_futex(&key1);
469 bh2 = hash_futex(&key2);
471 if (bh1 < bh2)
472 spin_lock(&bh1->lock);
473 spin_lock(&bh2->lock);
474 if (bh1 > bh2)
475 spin_lock(&bh1->lock);
477 if (likely(valp != NULL)) {
478 int curval;
480 ret = get_futex_value_locked(&curval, (int __user *)uaddr1);
482 if (unlikely(ret)) {
483 spin_unlock(&bh1->lock);
484 if (bh1 != bh2)
485 spin_unlock(&bh2->lock);
487 /* If we would have faulted, release mmap_sem, fault
488 * it in and start all over again.
490 up_read(&current->mm->mmap_sem);
492 ret = get_user(curval, (int __user *)uaddr1);
494 if (!ret)
495 goto retry;
497 return ret;
499 if (curval != *valp) {
500 ret = -EAGAIN;
501 goto out_unlock;
505 head1 = &bh1->chain;
506 list_for_each_entry_safe(this, next, head1, list) {
507 if (!match_futex (&this->key, &key1))
508 continue;
509 if (++ret <= nr_wake) {
510 wake_futex(this);
511 } else {
512 list_move_tail(&this->list, &bh2->chain);
513 this->lock_ptr = &bh2->lock;
514 this->key = key2;
515 get_key_refs(&key2);
516 drop_count++;
518 if (ret - nr_wake >= nr_requeue)
519 break;
520 /* Make sure to stop if key1 == key2 */
521 if (head1 == &bh2->chain && head1 != &next->list)
522 head1 = &this->list;
526 out_unlock:
527 spin_unlock(&bh1->lock);
528 if (bh1 != bh2)
529 spin_unlock(&bh2->lock);
531 /* drop_key_refs() must be called outside the spinlocks. */
532 while (--drop_count >= 0)
533 drop_key_refs(&key1);
535 out:
536 up_read(&current->mm->mmap_sem);
537 return ret;
540 /* The key must be already stored in q->key. */
541 static inline struct futex_hash_bucket *
542 queue_lock(struct futex_q *q, int fd, struct file *filp)
544 struct futex_hash_bucket *bh;
546 q->fd = fd;
547 q->filp = filp;
549 init_waitqueue_head(&q->waiters);
551 get_key_refs(&q->key);
552 bh = hash_futex(&q->key);
553 q->lock_ptr = &bh->lock;
555 spin_lock(&bh->lock);
556 return bh;
559 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
561 list_add_tail(&q->list, &bh->chain);
562 spin_unlock(&bh->lock);
565 static inline void
566 queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
568 spin_unlock(&bh->lock);
569 drop_key_refs(&q->key);
573 * queue_me and unqueue_me must be called as a pair, each
574 * exactly once. They are called with the hashed spinlock held.
577 /* The key must be already stored in q->key. */
578 static void queue_me(struct futex_q *q, int fd, struct file *filp)
580 struct futex_hash_bucket *bh;
581 bh = queue_lock(q, fd, filp);
582 __queue_me(q, bh);
585 /* Return 1 if we were still queued (ie. 0 means we were woken) */
586 static int unqueue_me(struct futex_q *q)
588 int ret = 0;
589 spinlock_t *lock_ptr;
591 /* In the common case we don't take the spinlock, which is nice. */
592 retry:
593 lock_ptr = q->lock_ptr;
594 if (lock_ptr != 0) {
595 spin_lock(lock_ptr);
597 * q->lock_ptr can change between reading it and
598 * spin_lock(), causing us to take the wrong lock. This
599 * corrects the race condition.
601 * Reasoning goes like this: if we have the wrong lock,
602 * q->lock_ptr must have changed (maybe several times)
603 * between reading it and the spin_lock(). It can
604 * change again after the spin_lock() but only if it was
605 * already changed before the spin_lock(). It cannot,
606 * however, change back to the original value. Therefore
607 * we can detect whether we acquired the correct lock.
609 if (unlikely(lock_ptr != q->lock_ptr)) {
610 spin_unlock(lock_ptr);
611 goto retry;
613 WARN_ON(list_empty(&q->list));
614 list_del(&q->list);
615 spin_unlock(lock_ptr);
616 ret = 1;
619 drop_key_refs(&q->key);
620 return ret;
623 static int futex_wait(unsigned long uaddr, int val, unsigned long time)
625 DECLARE_WAITQUEUE(wait, current);
626 int ret, curval;
627 struct futex_q q;
628 struct futex_hash_bucket *bh;
630 retry:
631 down_read(&current->mm->mmap_sem);
633 ret = get_futex_key(uaddr, &q.key);
634 if (unlikely(ret != 0))
635 goto out_release_sem;
637 bh = queue_lock(&q, -1, NULL);
640 * Access the page AFTER the futex is queued.
641 * Order is important:
643 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
644 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
646 * The basic logical guarantee of a futex is that it blocks ONLY
647 * if cond(var) is known to be true at the time of blocking, for
648 * any cond. If we queued after testing *uaddr, that would open
649 * a race condition where we could block indefinitely with
650 * cond(var) false, which would violate the guarantee.
652 * A consequence is that futex_wait() can return zero and absorb
653 * a wakeup when *uaddr != val on entry to the syscall. This is
654 * rare, but normal.
656 * We hold the mmap semaphore, so the mapping cannot have changed
657 * since we looked it up in get_futex_key.
660 ret = get_futex_value_locked(&curval, (int __user *)uaddr);
662 if (unlikely(ret)) {
663 queue_unlock(&q, bh);
665 /* If we would have faulted, release mmap_sem, fault it in and
666 * start all over again.
668 up_read(&current->mm->mmap_sem);
670 ret = get_user(curval, (int __user *)uaddr);
672 if (!ret)
673 goto retry;
674 return ret;
676 if (curval != val) {
677 ret = -EWOULDBLOCK;
678 queue_unlock(&q, bh);
679 goto out_release_sem;
682 /* Only actually queue if *uaddr contained val. */
683 __queue_me(&q, bh);
686 * Now the futex is queued and we have checked the data, we
687 * don't want to hold mmap_sem while we sleep.
689 up_read(&current->mm->mmap_sem);
692 * There might have been scheduling since the queue_me(), as we
693 * cannot hold a spinlock across the get_user() in case it
694 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
695 * queueing ourselves into the futex hash. This code thus has to
696 * rely on the futex_wake() code removing us from hash when it
697 * wakes us up.
700 /* add_wait_queue is the barrier after __set_current_state. */
701 __set_current_state(TASK_INTERRUPTIBLE);
702 add_wait_queue(&q.waiters, &wait);
704 * !list_empty() is safe here without any lock.
705 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
707 if (likely(!list_empty(&q.list)))
708 time = schedule_timeout(time);
709 __set_current_state(TASK_RUNNING);
712 * NOTE: we don't remove ourselves from the waitqueue because
713 * we are the only user of it.
716 /* If we were woken (and unqueued), we succeeded, whatever. */
717 if (!unqueue_me(&q))
718 return 0;
719 if (time == 0)
720 return -ETIMEDOUT;
721 /* We expect signal_pending(current), but another thread may
722 * have handled it for us already. */
723 return -EINTR;
725 out_release_sem:
726 up_read(&current->mm->mmap_sem);
727 return ret;
730 static int futex_close(struct inode *inode, struct file *filp)
732 struct futex_q *q = filp->private_data;
734 unqueue_me(q);
735 kfree(q);
736 return 0;
739 /* This is one-shot: once it's gone off you need a new fd */
740 static unsigned int futex_poll(struct file *filp,
741 struct poll_table_struct *wait)
743 struct futex_q *q = filp->private_data;
744 int ret = 0;
746 poll_wait(filp, &q->waiters, wait);
749 * list_empty() is safe here without any lock.
750 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
752 if (list_empty(&q->list))
753 ret = POLLIN | POLLRDNORM;
755 return ret;
758 static struct file_operations futex_fops = {
759 .release = futex_close,
760 .poll = futex_poll,
764 * Signal allows caller to avoid the race which would occur if they
765 * set the sigio stuff up afterwards.
767 static int futex_fd(unsigned long uaddr, int signal)
769 struct futex_q *q;
770 struct file *filp;
771 int ret, err;
773 ret = -EINVAL;
774 if (!valid_signal(signal))
775 goto out;
777 ret = get_unused_fd();
778 if (ret < 0)
779 goto out;
780 filp = get_empty_filp();
781 if (!filp) {
782 put_unused_fd(ret);
783 ret = -ENFILE;
784 goto out;
786 filp->f_op = &futex_fops;
787 filp->f_vfsmnt = mntget(futex_mnt);
788 filp->f_dentry = dget(futex_mnt->mnt_root);
789 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
791 if (signal) {
792 err = f_setown(filp, current->pid, 1);
793 if (err < 0) {
794 goto error;
796 filp->f_owner.signum = signal;
799 q = kmalloc(sizeof(*q), GFP_KERNEL);
800 if (!q) {
801 err = -ENOMEM;
802 goto error;
805 down_read(&current->mm->mmap_sem);
806 err = get_futex_key(uaddr, &q->key);
808 if (unlikely(err != 0)) {
809 up_read(&current->mm->mmap_sem);
810 kfree(q);
811 goto error;
815 * queue_me() must be called before releasing mmap_sem, because
816 * key->shared.inode needs to be referenced while holding it.
818 filp->private_data = q;
820 queue_me(q, ret, filp);
821 up_read(&current->mm->mmap_sem);
823 /* Now we map fd to filp, so userspace can access it */
824 fd_install(ret, filp);
825 out:
826 return ret;
827 error:
828 put_unused_fd(ret);
829 put_filp(filp);
830 ret = err;
831 goto out;
834 long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
835 unsigned long uaddr2, int val2, int val3)
837 int ret;
839 switch (op) {
840 case FUTEX_WAIT:
841 ret = futex_wait(uaddr, val, timeout);
842 break;
843 case FUTEX_WAKE:
844 ret = futex_wake(uaddr, val);
845 break;
846 case FUTEX_FD:
847 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
848 ret = futex_fd(uaddr, val);
849 break;
850 case FUTEX_REQUEUE:
851 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
852 break;
853 case FUTEX_CMP_REQUEUE:
854 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
855 break;
856 case FUTEX_WAKE_OP:
857 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
858 break;
859 default:
860 ret = -ENOSYS;
862 return ret;
866 asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
867 struct timespec __user *utime, u32 __user *uaddr2,
868 int val3)
870 struct timespec t;
871 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
872 int val2 = 0;
874 if ((op == FUTEX_WAIT) && utime) {
875 if (copy_from_user(&t, utime, sizeof(t)) != 0)
876 return -EFAULT;
877 timeout = timespec_to_jiffies(&t) + 1;
880 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
882 if (op >= FUTEX_REQUEUE)
883 val2 = (int) (unsigned long) utime;
885 return do_futex((unsigned long)uaddr, op, val, timeout,
886 (unsigned long)uaddr2, val2, val3);
889 static struct super_block *
890 futexfs_get_sb(struct file_system_type *fs_type,
891 int flags, const char *dev_name, void *data)
893 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
896 static struct file_system_type futex_fs_type = {
897 .name = "futexfs",
898 .get_sb = futexfs_get_sb,
899 .kill_sb = kill_anon_super,
902 static int __init init(void)
904 unsigned int i;
906 register_filesystem(&futex_fs_type);
907 futex_mnt = kern_mount(&futex_fs_type);
909 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
910 INIT_LIST_HEAD(&futex_queues[i].chain);
911 spin_lock_init(&futex_queues[i].lock);
913 return 0;
915 __initcall(init);