isci: uplevel phy infrastructure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / isci / host.c
blobe1930da08d4e1d8fd24b25c816838f2e277ad9dc
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/device.h>
56 #include <scsi/sas.h>
57 #include "host.h"
58 #include "isci.h"
59 #include "port.h"
60 #include "host.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scic_sds_port_configuration_agent.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70 #include "scu_unsolicited_frame.h"
71 #include "timers.h"
73 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
75 /**
76 * smu_dcc_get_max_ports() -
78 * This macro returns the maximum number of logical ports supported by the
79 * hardware. The caller passes in the value read from the device context
80 * capacity register and this macro will mash and shift the value appropriately.
82 #define smu_dcc_get_max_ports(dcc_value) \
84 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
85 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
88 /**
89 * smu_dcc_get_max_task_context() -
91 * This macro returns the maximum number of task contexts supported by the
92 * hardware. The caller passes in the value read from the device context
93 * capacity register and this macro will mash and shift the value appropriately.
95 #define smu_dcc_get_max_task_context(dcc_value) \
97 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
98 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
102 * smu_dcc_get_max_remote_node_context() -
104 * This macro returns the maximum number of remote node contexts supported by
105 * the hardware. The caller passes in the value read from the device context
106 * capacity register and this macro will mash and shift the value appropriately.
108 #define smu_dcc_get_max_remote_node_context(dcc_value) \
110 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
111 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
115 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
116 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
121 * The number of milliseconds to wait for a phy to start.
123 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
128 * The number of milliseconds to wait while a given phy is consuming power
129 * before allowing another set of phys to consume power. Ultimately, this will
130 * be specified by OEM parameter.
132 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
135 * NORMALIZE_PUT_POINTER() -
137 * This macro will normalize the completion queue put pointer so its value can
138 * be used as an array inde
140 #define NORMALIZE_PUT_POINTER(x) \
141 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
145 * NORMALIZE_EVENT_POINTER() -
147 * This macro will normalize the completion queue event entry so its value can
148 * be used as an index.
150 #define NORMALIZE_EVENT_POINTER(x) \
152 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
153 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
157 * INCREMENT_COMPLETION_QUEUE_GET() -
159 * This macro will increment the controllers completion queue index value and
160 * possibly toggle the cycle bit if the completion queue index wraps back to 0.
162 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
163 INCREMENT_QUEUE_GET(\
164 (index), \
165 (cycle), \
166 (controller)->completion_queue_entries, \
167 SMU_CQGR_CYCLE_BIT \
171 * INCREMENT_EVENT_QUEUE_GET() -
173 * This macro will increment the controllers event queue index value and
174 * possibly toggle the event cycle bit if the event queue index wraps back to 0.
176 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
177 INCREMENT_QUEUE_GET(\
178 (index), \
179 (cycle), \
180 (controller)->completion_event_entries, \
181 SMU_CQGR_EVENT_CYCLE_BIT \
186 * NORMALIZE_GET_POINTER() -
188 * This macro will normalize the completion queue get pointer so its value can
189 * be used as an index into an array
191 #define NORMALIZE_GET_POINTER(x) \
192 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
195 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
197 * This macro will normalize the completion queue cycle pointer so it matches
198 * the completion queue cycle bit
200 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
201 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
204 * COMPLETION_QUEUE_CYCLE_BIT() -
206 * This macro will return the cycle bit of the completion queue entry
208 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
210 static bool scic_sds_controller_completion_queue_has_entries(
211 struct scic_sds_controller *scic)
213 u32 get_value = scic->completion_queue_get;
214 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
216 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
217 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
218 return true;
220 return false;
223 static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
225 if (scic_sds_controller_completion_queue_has_entries(scic)) {
226 return true;
227 } else {
229 * we have a spurious interrupt it could be that we have already
230 * emptied the completion queue from a previous interrupt */
231 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
234 * There is a race in the hardware that could cause us not to be notified
235 * of an interrupt completion if we do not take this step. We will mask
236 * then unmask the interrupts so if there is another interrupt pending
237 * the clearing of the interrupt source we get the next interrupt message. */
238 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
239 writel(0, &scic->smu_registers->interrupt_mask);
242 return false;
245 irqreturn_t isci_msix_isr(int vec, void *data)
247 struct isci_host *ihost = data;
249 if (scic_sds_controller_isr(&ihost->sci))
250 tasklet_schedule(&ihost->completion_tasklet);
252 return IRQ_HANDLED;
255 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
257 u32 interrupt_status;
259 interrupt_status =
260 readl(&scic->smu_registers->interrupt_status);
261 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
263 if (interrupt_status != 0) {
265 * There is an error interrupt pending so let it through and handle
266 * in the callback */
267 return true;
271 * There is a race in the hardware that could cause us not to be notified
272 * of an interrupt completion if we do not take this step. We will mask
273 * then unmask the error interrupts so if there was another interrupt
274 * pending we will be notified.
275 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
276 writel(0xff, &scic->smu_registers->interrupt_mask);
277 writel(0, &scic->smu_registers->interrupt_mask);
279 return false;
282 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
283 u32 completion_entry)
285 u32 index;
286 struct scic_sds_request *io_request;
288 index = SCU_GET_COMPLETION_INDEX(completion_entry);
289 io_request = scic->io_request_table[index];
291 /* Make sure that we really want to process this IO request */
292 if (
293 (io_request != NULL)
294 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
295 && (
296 scic_sds_io_tag_get_sequence(io_request->io_tag)
297 == scic->io_request_sequence[index]
300 /* Yep this is a valid io request pass it along to the io request handler */
301 scic_sds_io_request_tc_completion(io_request, completion_entry);
305 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
306 u32 completion_entry)
308 u32 index;
309 struct scic_sds_request *io_request;
310 struct scic_sds_remote_device *device;
312 index = SCU_GET_COMPLETION_INDEX(completion_entry);
314 switch (scu_get_command_request_type(completion_entry)) {
315 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
316 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
317 io_request = scic->io_request_table[index];
318 dev_warn(scic_to_dev(scic),
319 "%s: SCIC SDS Completion type SDMA %x for io request "
320 "%p\n",
321 __func__,
322 completion_entry,
323 io_request);
324 /* @todo For a post TC operation we need to fail the IO
325 * request
327 break;
329 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
330 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
331 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
332 device = scic->device_table[index];
333 dev_warn(scic_to_dev(scic),
334 "%s: SCIC SDS Completion type SDMA %x for remote "
335 "device %p\n",
336 __func__,
337 completion_entry,
338 device);
339 /* @todo For a port RNC operation we need to fail the
340 * device
342 break;
344 default:
345 dev_warn(scic_to_dev(scic),
346 "%s: SCIC SDS Completion unknown SDMA completion "
347 "type %x\n",
348 __func__,
349 completion_entry);
350 break;
355 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
356 u32 completion_entry)
358 u32 index;
359 u32 frame_index;
361 struct isci_host *ihost = scic_to_ihost(scic);
362 struct scu_unsolicited_frame_header *frame_header;
363 struct scic_sds_phy *phy;
364 struct scic_sds_remote_device *device;
366 enum sci_status result = SCI_FAILURE;
368 frame_index = SCU_GET_FRAME_INDEX(completion_entry);
370 frame_header = scic->uf_control.buffers.array[frame_index].header;
371 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
373 if (SCU_GET_FRAME_ERROR(completion_entry)) {
375 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
376 * / this cause a problem? We expect the phy initialization will
377 * / fail if there is an error in the frame. */
378 scic_sds_controller_release_frame(scic, frame_index);
379 return;
382 if (frame_header->is_address_frame) {
383 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
384 phy = &ihost->phys[index].sci;
385 result = scic_sds_phy_frame_handler(phy, frame_index);
386 } else {
388 index = SCU_GET_COMPLETION_INDEX(completion_entry);
390 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
392 * This is a signature fis or a frame from a direct attached SATA
393 * device that has not yet been created. In either case forwared
394 * the frame to the PE and let it take care of the frame data. */
395 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
396 phy = &ihost->phys[index].sci;
397 result = scic_sds_phy_frame_handler(phy, frame_index);
398 } else {
399 if (index < scic->remote_node_entries)
400 device = scic->device_table[index];
401 else
402 device = NULL;
404 if (device != NULL)
405 result = scic_sds_remote_device_frame_handler(device, frame_index);
406 else
407 scic_sds_controller_release_frame(scic, frame_index);
411 if (result != SCI_SUCCESS) {
413 * / @todo Is there any reason to report some additional error message
414 * / when we get this failure notifiction? */
418 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
419 u32 completion_entry)
421 struct isci_host *ihost = scic_to_ihost(scic);
422 struct scic_sds_request *io_request;
423 struct scic_sds_remote_device *device;
424 struct scic_sds_phy *phy;
425 u32 index;
427 index = SCU_GET_COMPLETION_INDEX(completion_entry);
429 switch (scu_get_event_type(completion_entry)) {
430 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
431 /* / @todo The driver did something wrong and we need to fix the condtion. */
432 dev_err(scic_to_dev(scic),
433 "%s: SCIC Controller 0x%p received SMU command error "
434 "0x%x\n",
435 __func__,
436 scic,
437 completion_entry);
438 break;
440 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
441 case SCU_EVENT_TYPE_SMU_ERROR:
442 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
444 * / @todo This is a hardware failure and its likely that we want to
445 * / reset the controller. */
446 dev_err(scic_to_dev(scic),
447 "%s: SCIC Controller 0x%p received fatal controller "
448 "event 0x%x\n",
449 __func__,
450 scic,
451 completion_entry);
452 break;
454 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
455 io_request = scic->io_request_table[index];
456 scic_sds_io_request_event_handler(io_request, completion_entry);
457 break;
459 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
460 switch (scu_get_event_specifier(completion_entry)) {
461 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
462 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
463 io_request = scic->io_request_table[index];
464 if (io_request != NULL)
465 scic_sds_io_request_event_handler(io_request, completion_entry);
466 else
467 dev_warn(scic_to_dev(scic),
468 "%s: SCIC Controller 0x%p received "
469 "event 0x%x for io request object "
470 "that doesnt exist.\n",
471 __func__,
472 scic,
473 completion_entry);
475 break;
477 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
478 device = scic->device_table[index];
479 if (device != NULL)
480 scic_sds_remote_device_event_handler(device, completion_entry);
481 else
482 dev_warn(scic_to_dev(scic),
483 "%s: SCIC Controller 0x%p received "
484 "event 0x%x for remote device object "
485 "that doesnt exist.\n",
486 __func__,
487 scic,
488 completion_entry);
490 break;
492 break;
494 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
496 * direct the broadcast change event to the phy first and then let
497 * the phy redirect the broadcast change to the port object */
498 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
500 * direct error counter event to the phy object since that is where
501 * we get the event notification. This is a type 4 event. */
502 case SCU_EVENT_TYPE_OSSP_EVENT:
503 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
504 phy = &ihost->phys[index].sci;
505 scic_sds_phy_event_handler(phy, completion_entry);
506 break;
508 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
509 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
510 case SCU_EVENT_TYPE_RNC_OPS_MISC:
511 if (index < scic->remote_node_entries) {
512 device = scic->device_table[index];
514 if (device != NULL)
515 scic_sds_remote_device_event_handler(device, completion_entry);
516 } else
517 dev_err(scic_to_dev(scic),
518 "%s: SCIC Controller 0x%p received event 0x%x "
519 "for remote device object 0x%0x that doesnt "
520 "exist.\n",
521 __func__,
522 scic,
523 completion_entry,
524 index);
526 break;
528 default:
529 dev_warn(scic_to_dev(scic),
530 "%s: SCIC Controller received unknown event code %x\n",
531 __func__,
532 completion_entry);
533 break;
539 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
541 u32 completion_count = 0;
542 u32 completion_entry;
543 u32 get_index;
544 u32 get_cycle;
545 u32 event_index;
546 u32 event_cycle;
548 dev_dbg(scic_to_dev(scic),
549 "%s: completion queue begining get:0x%08x\n",
550 __func__,
551 scic->completion_queue_get);
553 /* Get the component parts of the completion queue */
554 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
555 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
557 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
558 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
560 while (
561 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
562 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
564 completion_count++;
566 completion_entry = scic->completion_queue[get_index];
567 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
569 dev_dbg(scic_to_dev(scic),
570 "%s: completion queue entry:0x%08x\n",
571 __func__,
572 completion_entry);
574 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
575 case SCU_COMPLETION_TYPE_TASK:
576 scic_sds_controller_task_completion(scic, completion_entry);
577 break;
579 case SCU_COMPLETION_TYPE_SDMA:
580 scic_sds_controller_sdma_completion(scic, completion_entry);
581 break;
583 case SCU_COMPLETION_TYPE_UFI:
584 scic_sds_controller_unsolicited_frame(scic, completion_entry);
585 break;
587 case SCU_COMPLETION_TYPE_EVENT:
588 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
589 scic_sds_controller_event_completion(scic, completion_entry);
590 break;
592 case SCU_COMPLETION_TYPE_NOTIFY:
594 * Presently we do the same thing with a notify event that we do with the
595 * other event codes. */
596 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
597 scic_sds_controller_event_completion(scic, completion_entry);
598 break;
600 default:
601 dev_warn(scic_to_dev(scic),
602 "%s: SCIC Controller received unknown "
603 "completion type %x\n",
604 __func__,
605 completion_entry);
606 break;
610 /* Update the get register if we completed one or more entries */
611 if (completion_count > 0) {
612 scic->completion_queue_get =
613 SMU_CQGR_GEN_BIT(ENABLE) |
614 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
615 event_cycle |
616 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
617 get_cycle |
618 SMU_CQGR_GEN_VAL(POINTER, get_index);
620 writel(scic->completion_queue_get,
621 &scic->smu_registers->completion_queue_get);
625 dev_dbg(scic_to_dev(scic),
626 "%s: completion queue ending get:0x%08x\n",
627 __func__,
628 scic->completion_queue_get);
632 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
634 u32 interrupt_status;
636 interrupt_status =
637 readl(&scic->smu_registers->interrupt_status);
639 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
640 scic_sds_controller_completion_queue_has_entries(scic)) {
642 scic_sds_controller_process_completions(scic);
643 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
644 } else {
645 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
646 interrupt_status);
648 sci_base_state_machine_change_state(&scic->state_machine,
649 SCI_BASE_CONTROLLER_STATE_FAILED);
651 return;
654 /* If we dont process any completions I am not sure that we want to do this.
655 * We are in the middle of a hardware fault and should probably be reset.
657 writel(0, &scic->smu_registers->interrupt_mask);
660 irqreturn_t isci_intx_isr(int vec, void *data)
662 irqreturn_t ret = IRQ_NONE;
663 struct isci_host *ihost = data;
664 struct scic_sds_controller *scic = &ihost->sci;
666 if (scic_sds_controller_isr(scic)) {
667 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
668 tasklet_schedule(&ihost->completion_tasklet);
669 ret = IRQ_HANDLED;
670 } else if (scic_sds_controller_error_isr(scic)) {
671 spin_lock(&ihost->scic_lock);
672 scic_sds_controller_error_handler(scic);
673 spin_unlock(&ihost->scic_lock);
674 ret = IRQ_HANDLED;
677 return ret;
680 irqreturn_t isci_error_isr(int vec, void *data)
682 struct isci_host *ihost = data;
684 if (scic_sds_controller_error_isr(&ihost->sci))
685 scic_sds_controller_error_handler(&ihost->sci);
687 return IRQ_HANDLED;
691 * isci_host_start_complete() - This function is called by the core library,
692 * through the ISCI Module, to indicate controller start status.
693 * @isci_host: This parameter specifies the ISCI host object
694 * @completion_status: This parameter specifies the completion status from the
695 * core library.
698 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
700 if (completion_status != SCI_SUCCESS)
701 dev_info(&ihost->pdev->dev,
702 "controller start timed out, continuing...\n");
703 isci_host_change_state(ihost, isci_ready);
704 clear_bit(IHOST_START_PENDING, &ihost->flags);
705 wake_up(&ihost->eventq);
708 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
710 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
712 if (test_bit(IHOST_START_PENDING, &ihost->flags))
713 return 0;
715 /* todo: use sas_flush_discovery once it is upstream */
716 scsi_flush_work(shost);
718 scsi_flush_work(shost);
720 dev_dbg(&ihost->pdev->dev,
721 "%s: ihost->status = %d, time = %ld\n",
722 __func__, isci_host_get_state(ihost), time);
724 return 1;
729 * scic_controller_get_suggested_start_timeout() - This method returns the
730 * suggested scic_controller_start() timeout amount. The user is free to
731 * use any timeout value, but this method provides the suggested minimum
732 * start timeout value. The returned value is based upon empirical
733 * information determined as a result of interoperability testing.
734 * @controller: the handle to the controller object for which to return the
735 * suggested start timeout.
737 * This method returns the number of milliseconds for the suggested start
738 * operation timeout.
740 static u32 scic_controller_get_suggested_start_timeout(
741 struct scic_sds_controller *sc)
743 /* Validate the user supplied parameters. */
744 if (sc == NULL)
745 return 0;
748 * The suggested minimum timeout value for a controller start operation:
750 * Signature FIS Timeout
751 * + Phy Start Timeout
752 * + Number of Phy Spin Up Intervals
753 * ---------------------------------
754 * Number of milliseconds for the controller start operation.
756 * NOTE: The number of phy spin up intervals will be equivalent
757 * to the number of phys divided by the number phys allowed
758 * per interval - 1 (once OEM parameters are supported).
759 * Currently we assume only 1 phy per interval. */
761 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
762 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
763 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
766 static void scic_controller_enable_interrupts(
767 struct scic_sds_controller *scic)
769 BUG_ON(scic->smu_registers == NULL);
770 writel(0, &scic->smu_registers->interrupt_mask);
773 void scic_controller_disable_interrupts(
774 struct scic_sds_controller *scic)
776 BUG_ON(scic->smu_registers == NULL);
777 writel(0xffffffff, &scic->smu_registers->interrupt_mask);
780 static void scic_sds_controller_enable_port_task_scheduler(
781 struct scic_sds_controller *scic)
783 u32 port_task_scheduler_value;
785 port_task_scheduler_value =
786 readl(&scic->scu_registers->peg0.ptsg.control);
787 port_task_scheduler_value |=
788 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
789 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
790 writel(port_task_scheduler_value,
791 &scic->scu_registers->peg0.ptsg.control);
794 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
796 u32 task_assignment;
799 * Assign all the TCs to function 0
800 * TODO: Do we actually need to read this register to write it back?
803 task_assignment =
804 readl(&scic->smu_registers->task_context_assignment[0]);
806 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
807 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
808 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
810 writel(task_assignment,
811 &scic->smu_registers->task_context_assignment[0]);
815 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
817 u32 index;
818 u32 completion_queue_control_value;
819 u32 completion_queue_get_value;
820 u32 completion_queue_put_value;
822 scic->completion_queue_get = 0;
824 completion_queue_control_value = (
825 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
826 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
829 writel(completion_queue_control_value,
830 &scic->smu_registers->completion_queue_control);
833 /* Set the completion queue get pointer and enable the queue */
834 completion_queue_get_value = (
835 (SMU_CQGR_GEN_VAL(POINTER, 0))
836 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
837 | (SMU_CQGR_GEN_BIT(ENABLE))
838 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
841 writel(completion_queue_get_value,
842 &scic->smu_registers->completion_queue_get);
844 /* Set the completion queue put pointer */
845 completion_queue_put_value = (
846 (SMU_CQPR_GEN_VAL(POINTER, 0))
847 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
850 writel(completion_queue_put_value,
851 &scic->smu_registers->completion_queue_put);
853 /* Initialize the cycle bit of the completion queue entries */
854 for (index = 0; index < scic->completion_queue_entries; index++) {
856 * If get.cycle_bit != completion_queue.cycle_bit
857 * its not a valid completion queue entry
858 * so at system start all entries are invalid */
859 scic->completion_queue[index] = 0x80000000;
863 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
865 u32 frame_queue_control_value;
866 u32 frame_queue_get_value;
867 u32 frame_queue_put_value;
869 /* Write the queue size */
870 frame_queue_control_value =
871 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
872 scic->uf_control.address_table.count);
874 writel(frame_queue_control_value,
875 &scic->scu_registers->sdma.unsolicited_frame_queue_control);
877 /* Setup the get pointer for the unsolicited frame queue */
878 frame_queue_get_value = (
879 SCU_UFQGP_GEN_VAL(POINTER, 0)
880 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
883 writel(frame_queue_get_value,
884 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
885 /* Setup the put pointer for the unsolicited frame queue */
886 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
887 writel(frame_queue_put_value,
888 &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
892 * This method will attempt to transition into the ready state for the
893 * controller and indicate that the controller start operation has completed
894 * if all criteria are met.
895 * @scic: This parameter indicates the controller object for which
896 * to transition to ready.
897 * @status: This parameter indicates the status value to be pass into the call
898 * to scic_cb_controller_start_complete().
900 * none.
902 static void scic_sds_controller_transition_to_ready(
903 struct scic_sds_controller *scic,
904 enum sci_status status)
906 struct isci_host *ihost = scic_to_ihost(scic);
908 if (scic->state_machine.current_state_id ==
909 SCI_BASE_CONTROLLER_STATE_STARTING) {
911 * We move into the ready state, because some of the phys/ports
912 * may be up and operational.
914 sci_base_state_machine_change_state(&scic->state_machine,
915 SCI_BASE_CONTROLLER_STATE_READY);
917 isci_host_start_complete(ihost, status);
921 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
923 isci_timer_stop(scic->phy_startup_timer);
925 scic->phy_startup_timer_pending = false;
928 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
930 isci_timer_start(scic->phy_startup_timer,
931 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
933 scic->phy_startup_timer_pending = true;
937 * scic_sds_controller_start_next_phy - start phy
938 * @scic: controller
940 * If all the phys have been started, then attempt to transition the
941 * controller to the READY state and inform the user
942 * (scic_cb_controller_start_complete()).
944 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
946 struct isci_host *ihost = scic_to_ihost(scic);
947 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
948 struct scic_sds_phy *sci_phy;
949 enum sci_status status;
951 status = SCI_SUCCESS;
953 if (scic->phy_startup_timer_pending)
954 return status;
956 if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
957 bool is_controller_start_complete = true;
958 u32 state;
959 u8 index;
961 for (index = 0; index < SCI_MAX_PHYS; index++) {
962 sci_phy = &ihost->phys[index].sci;
963 state = sci_phy->state_machine.current_state_id;
965 if (!scic_sds_phy_get_port(sci_phy))
966 continue;
968 /* The controller start operation is complete iff:
969 * - all links have been given an opportunity to start
970 * - have no indication of a connected device
971 * - have an indication of a connected device and it has
972 * finished the link training process.
974 if ((sci_phy->is_in_link_training == false &&
975 state == SCI_BASE_PHY_STATE_INITIAL) ||
976 (sci_phy->is_in_link_training == false &&
977 state == SCI_BASE_PHY_STATE_STOPPED) ||
978 (sci_phy->is_in_link_training == true &&
979 state == SCI_BASE_PHY_STATE_STARTING)) {
980 is_controller_start_complete = false;
981 break;
986 * The controller has successfully finished the start process.
987 * Inform the SCI Core user and transition to the READY state. */
988 if (is_controller_start_complete == true) {
989 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
990 scic_sds_controller_phy_timer_stop(scic);
992 } else {
993 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
995 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
996 if (scic_sds_phy_get_port(sci_phy) == NULL) {
997 scic->next_phy_to_start++;
999 /* Caution recursion ahead be forwarned
1001 * The PHY was never added to a PORT in MPC mode
1002 * so start the next phy in sequence This phy
1003 * will never go link up and will not draw power
1004 * the OEM parameters either configured the phy
1005 * incorrectly for the PORT or it was never
1006 * assigned to a PORT
1008 return scic_sds_controller_start_next_phy(scic);
1012 status = scic_sds_phy_start(sci_phy);
1014 if (status == SCI_SUCCESS) {
1015 scic_sds_controller_phy_timer_start(scic);
1016 } else {
1017 dev_warn(scic_to_dev(scic),
1018 "%s: Controller stop operation failed "
1019 "to stop phy %d because of status "
1020 "%d.\n",
1021 __func__,
1022 ihost->phys[scic->next_phy_to_start].sci.phy_index,
1023 status);
1026 scic->next_phy_to_start++;
1029 return status;
1032 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1034 struct scic_sds_controller *scic = _scic;
1035 enum sci_status status;
1037 scic->phy_startup_timer_pending = false;
1038 status = SCI_FAILURE;
1039 while (status != SCI_SUCCESS)
1040 status = scic_sds_controller_start_next_phy(scic);
1043 static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1044 u32 timeout)
1046 struct isci_host *ihost = scic_to_ihost(scic);
1047 enum sci_status result;
1048 u16 index;
1050 if (scic->state_machine.current_state_id !=
1051 SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1052 dev_warn(scic_to_dev(scic),
1053 "SCIC Controller start operation requested in "
1054 "invalid state\n");
1055 return SCI_FAILURE_INVALID_STATE;
1058 /* Build the TCi free pool */
1059 sci_pool_initialize(scic->tci_pool);
1060 for (index = 0; index < scic->task_context_entries; index++)
1061 sci_pool_put(scic->tci_pool, index);
1063 /* Build the RNi free pool */
1064 scic_sds_remote_node_table_initialize(
1065 &scic->available_remote_nodes,
1066 scic->remote_node_entries);
1069 * Before anything else lets make sure we will not be
1070 * interrupted by the hardware.
1072 scic_controller_disable_interrupts(scic);
1074 /* Enable the port task scheduler */
1075 scic_sds_controller_enable_port_task_scheduler(scic);
1077 /* Assign all the task entries to scic physical function */
1078 scic_sds_controller_assign_task_entries(scic);
1080 /* Now initialize the completion queue */
1081 scic_sds_controller_initialize_completion_queue(scic);
1083 /* Initialize the unsolicited frame queue for use */
1084 scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1086 /* Start all of the ports on this controller */
1087 for (index = 0; index < scic->logical_port_entries; index++) {
1088 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1090 result = sci_port->state_handlers->start_handler(sci_port);
1091 if (result)
1092 return result;
1095 scic_sds_controller_start_next_phy(scic);
1097 isci_timer_start(scic->timeout_timer, timeout);
1099 sci_base_state_machine_change_state(&scic->state_machine,
1100 SCI_BASE_CONTROLLER_STATE_STARTING);
1102 return SCI_SUCCESS;
1105 void isci_host_scan_start(struct Scsi_Host *shost)
1107 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1108 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
1110 set_bit(IHOST_START_PENDING, &ihost->flags);
1112 spin_lock_irq(&ihost->scic_lock);
1113 scic_controller_start(&ihost->sci, tmo);
1114 scic_controller_enable_interrupts(&ihost->sci);
1115 spin_unlock_irq(&ihost->scic_lock);
1118 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1120 isci_host_change_state(ihost, isci_stopped);
1121 scic_controller_disable_interrupts(&ihost->sci);
1122 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1123 wake_up(&ihost->eventq);
1126 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1128 /* Empty out the completion queue */
1129 if (scic_sds_controller_completion_queue_has_entries(scic))
1130 scic_sds_controller_process_completions(scic);
1132 /* Clear the interrupt and enable all interrupts again */
1133 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1134 /* Could we write the value of SMU_ISR_COMPLETION? */
1135 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1136 writel(0, &scic->smu_registers->interrupt_mask);
1140 * isci_host_completion_routine() - This function is the delayed service
1141 * routine that calls the sci core library's completion handler. It's
1142 * scheduled as a tasklet from the interrupt service routine when interrupts
1143 * in use, or set as the timeout function in polled mode.
1144 * @data: This parameter specifies the ISCI host object
1147 static void isci_host_completion_routine(unsigned long data)
1149 struct isci_host *isci_host = (struct isci_host *)data;
1150 struct list_head completed_request_list;
1151 struct list_head errored_request_list;
1152 struct list_head *current_position;
1153 struct list_head *next_position;
1154 struct isci_request *request;
1155 struct isci_request *next_request;
1156 struct sas_task *task;
1158 INIT_LIST_HEAD(&completed_request_list);
1159 INIT_LIST_HEAD(&errored_request_list);
1161 spin_lock_irq(&isci_host->scic_lock);
1163 scic_sds_controller_completion_handler(&isci_host->sci);
1165 /* Take the lists of completed I/Os from the host. */
1167 list_splice_init(&isci_host->requests_to_complete,
1168 &completed_request_list);
1170 /* Take the list of errored I/Os from the host. */
1171 list_splice_init(&isci_host->requests_to_errorback,
1172 &errored_request_list);
1174 spin_unlock_irq(&isci_host->scic_lock);
1176 /* Process any completions in the lists. */
1177 list_for_each_safe(current_position, next_position,
1178 &completed_request_list) {
1180 request = list_entry(current_position, struct isci_request,
1181 completed_node);
1182 task = isci_request_access_task(request);
1184 /* Normal notification (task_done) */
1185 dev_dbg(&isci_host->pdev->dev,
1186 "%s: Normal - request/task = %p/%p\n",
1187 __func__,
1188 request,
1189 task);
1191 /* Return the task to libsas */
1192 if (task != NULL) {
1194 task->lldd_task = NULL;
1195 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1197 /* If the task is already in the abort path,
1198 * the task_done callback cannot be called.
1200 task->task_done(task);
1203 /* Free the request object. */
1204 isci_request_free(isci_host, request);
1206 list_for_each_entry_safe(request, next_request, &errored_request_list,
1207 completed_node) {
1209 task = isci_request_access_task(request);
1211 /* Use sas_task_abort */
1212 dev_warn(&isci_host->pdev->dev,
1213 "%s: Error - request/task = %p/%p\n",
1214 __func__,
1215 request,
1216 task);
1218 if (task != NULL) {
1220 /* Put the task into the abort path if it's not there
1221 * already.
1223 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1224 sas_task_abort(task);
1226 } else {
1227 /* This is a case where the request has completed with a
1228 * status such that it needed further target servicing,
1229 * but the sas_task reference has already been removed
1230 * from the request. Since it was errored, it was not
1231 * being aborted, so there is nothing to do except free
1232 * it.
1235 spin_lock_irq(&isci_host->scic_lock);
1236 /* Remove the request from the remote device's list
1237 * of pending requests.
1239 list_del_init(&request->dev_node);
1240 spin_unlock_irq(&isci_host->scic_lock);
1242 /* Free the request object. */
1243 isci_request_free(isci_host, request);
1250 * scic_controller_stop() - This method will stop an individual controller
1251 * object.This method will invoke the associated user callback upon
1252 * completion. The completion callback is called when the following
1253 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1254 * controller has been quiesced. This method will ensure that all IO
1255 * requests are quiesced, phys are stopped, and all additional operation by
1256 * the hardware is halted.
1257 * @controller: the handle to the controller object to stop.
1258 * @timeout: This parameter specifies the number of milliseconds in which the
1259 * stop operation should complete.
1261 * The controller must be in the STARTED or STOPPED state. Indicate if the
1262 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1263 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1264 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1265 * controller is not either in the STARTED or STOPPED states.
1267 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1268 u32 timeout)
1270 if (scic->state_machine.current_state_id !=
1271 SCI_BASE_CONTROLLER_STATE_READY) {
1272 dev_warn(scic_to_dev(scic),
1273 "SCIC Controller stop operation requested in "
1274 "invalid state\n");
1275 return SCI_FAILURE_INVALID_STATE;
1278 isci_timer_start(scic->timeout_timer, timeout);
1279 sci_base_state_machine_change_state(&scic->state_machine,
1280 SCI_BASE_CONTROLLER_STATE_STOPPING);
1281 return SCI_SUCCESS;
1285 * scic_controller_reset() - This method will reset the supplied core
1286 * controller regardless of the state of said controller. This operation is
1287 * considered destructive. In other words, all current operations are wiped
1288 * out. No IO completions for outstanding devices occur. Outstanding IO
1289 * requests are not aborted or completed at the actual remote device.
1290 * @controller: the handle to the controller object to reset.
1292 * Indicate if the controller reset method succeeded or failed in some way.
1293 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1294 * the controller reset operation is unable to complete.
1296 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1298 switch (scic->state_machine.current_state_id) {
1299 case SCI_BASE_CONTROLLER_STATE_RESET:
1300 case SCI_BASE_CONTROLLER_STATE_READY:
1301 case SCI_BASE_CONTROLLER_STATE_STOPPED:
1302 case SCI_BASE_CONTROLLER_STATE_FAILED:
1304 * The reset operation is not a graceful cleanup, just
1305 * perform the state transition.
1307 sci_base_state_machine_change_state(&scic->state_machine,
1308 SCI_BASE_CONTROLLER_STATE_RESETTING);
1309 return SCI_SUCCESS;
1310 default:
1311 dev_warn(scic_to_dev(scic),
1312 "SCIC Controller reset operation requested in "
1313 "invalid state\n");
1314 return SCI_FAILURE_INVALID_STATE;
1318 void isci_host_deinit(struct isci_host *ihost)
1320 int i;
1322 isci_host_change_state(ihost, isci_stopping);
1323 for (i = 0; i < SCI_MAX_PORTS; i++) {
1324 struct isci_port *iport = &ihost->ports[i];
1325 struct isci_remote_device *idev, *d;
1327 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1328 isci_remote_device_change_state(idev, isci_stopping);
1329 isci_remote_device_stop(ihost, idev);
1333 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1335 spin_lock_irq(&ihost->scic_lock);
1336 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
1337 spin_unlock_irq(&ihost->scic_lock);
1339 wait_for_stop(ihost);
1340 scic_controller_reset(&ihost->sci);
1341 isci_timer_list_destroy(ihost);
1344 static void __iomem *scu_base(struct isci_host *isci_host)
1346 struct pci_dev *pdev = isci_host->pdev;
1347 int id = isci_host->id;
1349 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1352 static void __iomem *smu_base(struct isci_host *isci_host)
1354 struct pci_dev *pdev = isci_host->pdev;
1355 int id = isci_host->id;
1357 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1360 static void isci_user_parameters_get(
1361 struct isci_host *isci_host,
1362 union scic_user_parameters *scic_user_params)
1364 struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1365 int i;
1367 for (i = 0; i < SCI_MAX_PHYS; i++) {
1368 struct sci_phy_user_params *u_phy = &u->phys[i];
1370 u_phy->max_speed_generation = phy_gen;
1372 /* we are not exporting these for now */
1373 u_phy->align_insertion_frequency = 0x7f;
1374 u_phy->in_connection_align_insertion_frequency = 0xff;
1375 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1378 u->stp_inactivity_timeout = stp_inactive_to;
1379 u->ssp_inactivity_timeout = ssp_inactive_to;
1380 u->stp_max_occupancy_timeout = stp_max_occ_to;
1381 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1382 u->no_outbound_task_timeout = no_outbound_task_to;
1383 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1386 static void scic_sds_controller_initial_state_enter(void *object)
1388 struct scic_sds_controller *scic = object;
1390 sci_base_state_machine_change_state(&scic->state_machine,
1391 SCI_BASE_CONTROLLER_STATE_RESET);
1394 static inline void scic_sds_controller_starting_state_exit(void *object)
1396 struct scic_sds_controller *scic = object;
1398 isci_timer_stop(scic->timeout_timer);
1401 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1402 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1403 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1404 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1405 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1406 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1409 * scic_controller_set_interrupt_coalescence() - This method allows the user to
1410 * configure the interrupt coalescence.
1411 * @controller: This parameter represents the handle to the controller object
1412 * for which its interrupt coalesce register is overridden.
1413 * @coalesce_number: Used to control the number of entries in the Completion
1414 * Queue before an interrupt is generated. If the number of entries exceed
1415 * this number, an interrupt will be generated. The valid range of the input
1416 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1417 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1418 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1419 * interrupt coalescing timeout.
1421 * Indicate if the user successfully set the interrupt coalesce parameters.
1422 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1423 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1425 static enum sci_status scic_controller_set_interrupt_coalescence(
1426 struct scic_sds_controller *scic_controller,
1427 u32 coalesce_number,
1428 u32 coalesce_timeout)
1430 u8 timeout_encode = 0;
1431 u32 min = 0;
1432 u32 max = 0;
1434 /* Check if the input parameters fall in the range. */
1435 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1436 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1439 * Defined encoding for interrupt coalescing timeout:
1440 * Value Min Max Units
1441 * ----- --- --- -----
1442 * 0 - - Disabled
1443 * 1 13.3 20.0 ns
1444 * 2 26.7 40.0
1445 * 3 53.3 80.0
1446 * 4 106.7 160.0
1447 * 5 213.3 320.0
1448 * 6 426.7 640.0
1449 * 7 853.3 1280.0
1450 * 8 1.7 2.6 us
1451 * 9 3.4 5.1
1452 * 10 6.8 10.2
1453 * 11 13.7 20.5
1454 * 12 27.3 41.0
1455 * 13 54.6 81.9
1456 * 14 109.2 163.8
1457 * 15 218.5 327.7
1458 * 16 436.9 655.4
1459 * 17 873.8 1310.7
1460 * 18 1.7 2.6 ms
1461 * 19 3.5 5.2
1462 * 20 7.0 10.5
1463 * 21 14.0 21.0
1464 * 22 28.0 41.9
1465 * 23 55.9 83.9
1466 * 24 111.8 167.8
1467 * 25 223.7 335.5
1468 * 26 447.4 671.1
1469 * 27 894.8 1342.2
1470 * 28 1.8 2.7 s
1471 * Others Undefined */
1474 * Use the table above to decide the encode of interrupt coalescing timeout
1475 * value for register writing. */
1476 if (coalesce_timeout == 0)
1477 timeout_encode = 0;
1478 else{
1479 /* make the timeout value in unit of (10 ns). */
1480 coalesce_timeout = coalesce_timeout * 100;
1481 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1482 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1484 /* get the encode of timeout for register writing. */
1485 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1486 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1487 timeout_encode++) {
1488 if (min <= coalesce_timeout && max > coalesce_timeout)
1489 break;
1490 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1491 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1492 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1493 break;
1494 else{
1495 timeout_encode++;
1496 break;
1498 } else {
1499 max = max * 2;
1500 min = min * 2;
1504 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1505 /* the value is out of range. */
1506 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1509 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1510 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1511 &scic_controller->smu_registers->interrupt_coalesce_control);
1514 scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1515 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1517 return SCI_SUCCESS;
1521 static void scic_sds_controller_ready_state_enter(void *object)
1523 struct scic_sds_controller *scic = object;
1525 /* set the default interrupt coalescence number and timeout value. */
1526 scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1529 static void scic_sds_controller_ready_state_exit(void *object)
1531 struct scic_sds_controller *scic = object;
1533 /* disable interrupt coalescence. */
1534 scic_controller_set_interrupt_coalescence(scic, 0, 0);
1537 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1539 u32 index;
1540 enum sci_status status;
1541 enum sci_status phy_status;
1542 struct isci_host *ihost = scic_to_ihost(scic);
1544 status = SCI_SUCCESS;
1546 for (index = 0; index < SCI_MAX_PHYS; index++) {
1547 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1549 if (phy_status != SCI_SUCCESS &&
1550 phy_status != SCI_FAILURE_INVALID_STATE) {
1551 status = SCI_FAILURE;
1553 dev_warn(scic_to_dev(scic),
1554 "%s: Controller stop operation failed to stop "
1555 "phy %d because of status %d.\n",
1556 __func__,
1557 ihost->phys[index].sci.phy_index, phy_status);
1561 return status;
1564 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1566 u32 index;
1567 enum sci_status port_status;
1568 enum sci_status status = SCI_SUCCESS;
1569 struct isci_host *ihost = scic_to_ihost(scic);
1571 for (index = 0; index < scic->logical_port_entries; index++) {
1572 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1573 scic_sds_port_handler_t stop;
1575 stop = sci_port->state_handlers->stop_handler;
1576 port_status = stop(sci_port);
1578 if ((port_status != SCI_SUCCESS) &&
1579 (port_status != SCI_FAILURE_INVALID_STATE)) {
1580 status = SCI_FAILURE;
1582 dev_warn(scic_to_dev(scic),
1583 "%s: Controller stop operation failed to "
1584 "stop port %d because of status %d.\n",
1585 __func__,
1586 sci_port->logical_port_index,
1587 port_status);
1591 return status;
1594 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1596 u32 index;
1597 enum sci_status status;
1598 enum sci_status device_status;
1600 status = SCI_SUCCESS;
1602 for (index = 0; index < scic->remote_node_entries; index++) {
1603 if (scic->device_table[index] != NULL) {
1604 /* / @todo What timeout value do we want to provide to this request? */
1605 device_status = scic_remote_device_stop(scic->device_table[index], 0);
1607 if ((device_status != SCI_SUCCESS) &&
1608 (device_status != SCI_FAILURE_INVALID_STATE)) {
1609 dev_warn(scic_to_dev(scic),
1610 "%s: Controller stop operation failed "
1611 "to stop device 0x%p because of "
1612 "status %d.\n",
1613 __func__,
1614 scic->device_table[index], device_status);
1619 return status;
1622 static void scic_sds_controller_stopping_state_enter(void *object)
1624 struct scic_sds_controller *scic = object;
1626 /* Stop all of the components for this controller */
1627 scic_sds_controller_stop_phys(scic);
1628 scic_sds_controller_stop_ports(scic);
1629 scic_sds_controller_stop_devices(scic);
1632 static void scic_sds_controller_stopping_state_exit(void *object)
1634 struct scic_sds_controller *scic = object;
1636 isci_timer_stop(scic->timeout_timer);
1641 * scic_sds_controller_reset_hardware() -
1643 * This method will reset the controller hardware.
1645 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1647 /* Disable interrupts so we dont take any spurious interrupts */
1648 scic_controller_disable_interrupts(scic);
1650 /* Reset the SCU */
1651 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1653 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1654 udelay(1000);
1656 /* The write to the CQGR clears the CQP */
1657 writel(0x00000000, &scic->smu_registers->completion_queue_get);
1659 /* The write to the UFQGP clears the UFQPR */
1660 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1663 static void scic_sds_controller_resetting_state_enter(void *object)
1665 struct scic_sds_controller *scic = object;
1667 scic_sds_controller_reset_hardware(scic);
1668 sci_base_state_machine_change_state(&scic->state_machine,
1669 SCI_BASE_CONTROLLER_STATE_RESET);
1672 static const struct sci_base_state scic_sds_controller_state_table[] = {
1673 [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1674 .enter_state = scic_sds_controller_initial_state_enter,
1676 [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1677 [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1678 [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1679 [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1680 .exit_state = scic_sds_controller_starting_state_exit,
1682 [SCI_BASE_CONTROLLER_STATE_READY] = {
1683 .enter_state = scic_sds_controller_ready_state_enter,
1684 .exit_state = scic_sds_controller_ready_state_exit,
1686 [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1687 .enter_state = scic_sds_controller_resetting_state_enter,
1689 [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1690 .enter_state = scic_sds_controller_stopping_state_enter,
1691 .exit_state = scic_sds_controller_stopping_state_exit,
1693 [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1694 [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1697 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1699 /* these defaults are overridden by the platform / firmware */
1700 struct isci_host *ihost = scic_to_ihost(scic);
1701 u16 index;
1703 /* Default to APC mode. */
1704 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1706 /* Default to APC mode. */
1707 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1709 /* Default to no SSC operation. */
1710 scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1712 /* Initialize all of the port parameter information to narrow ports. */
1713 for (index = 0; index < SCI_MAX_PORTS; index++) {
1714 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1717 /* Initialize all of the phy parameter information. */
1718 for (index = 0; index < SCI_MAX_PHYS; index++) {
1719 /* Default to 6G (i.e. Gen 3) for now. */
1720 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1722 /* the frequencies cannot be 0 */
1723 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1724 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1725 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1728 * Previous Vitesse based expanders had a arbitration issue that
1729 * is worked around by having the upper 32-bits of SAS address
1730 * with a value greater then the Vitesse company identifier.
1731 * Hence, usage of 0x5FCFFFFF. */
1732 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1733 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1736 scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1737 scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1738 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1739 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1740 scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1746 * scic_controller_construct() - This method will attempt to construct a
1747 * controller object utilizing the supplied parameter information.
1748 * @c: This parameter specifies the controller to be constructed.
1749 * @scu_base: mapped base address of the scu registers
1750 * @smu_base: mapped base address of the smu registers
1752 * Indicate if the controller was successfully constructed or if it failed in
1753 * some way. SCI_SUCCESS This value is returned if the controller was
1754 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1755 * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1756 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1757 * This value is returned if the controller does not support the supplied type.
1758 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1759 * controller does not support the supplied initialization data version.
1761 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1762 void __iomem *scu_base,
1763 void __iomem *smu_base)
1765 struct isci_host *ihost = scic_to_ihost(scic);
1766 u8 i;
1768 sci_base_state_machine_construct(&scic->state_machine,
1769 scic, scic_sds_controller_state_table,
1770 SCI_BASE_CONTROLLER_STATE_INITIAL);
1772 sci_base_state_machine_start(&scic->state_machine);
1774 scic->scu_registers = scu_base;
1775 scic->smu_registers = smu_base;
1777 scic_sds_port_configuration_agent_construct(&scic->port_agent);
1779 /* Construct the ports for this controller */
1780 for (i = 0; i < SCI_MAX_PORTS; i++)
1781 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1782 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1784 /* Construct the phys for this controller */
1785 for (i = 0; i < SCI_MAX_PHYS; i++) {
1786 /* Add all the PHYs to the dummy port */
1787 scic_sds_phy_construct(&ihost->phys[i].sci,
1788 &ihost->ports[SCI_MAX_PORTS].sci, i);
1791 scic->invalid_phy_mask = 0;
1793 /* Set the default maximum values */
1794 scic->completion_event_entries = SCU_EVENT_COUNT;
1795 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
1796 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
1797 scic->logical_port_entries = SCI_MAX_PORTS;
1798 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
1799 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
1800 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1802 /* Initialize the User and OEM parameters to default values. */
1803 scic_sds_controller_set_default_config_parameters(scic);
1805 return scic_controller_reset(scic);
1808 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1810 int i;
1812 for (i = 0; i < SCI_MAX_PORTS; i++)
1813 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1814 return -EINVAL;
1816 for (i = 0; i < SCI_MAX_PHYS; i++)
1817 if (oem->phys[i].sas_address.high == 0 &&
1818 oem->phys[i].sas_address.low == 0)
1819 return -EINVAL;
1821 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1822 for (i = 0; i < SCI_MAX_PHYS; i++)
1823 if (oem->ports[i].phy_mask != 0)
1824 return -EINVAL;
1825 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1826 u8 phy_mask = 0;
1828 for (i = 0; i < SCI_MAX_PHYS; i++)
1829 phy_mask |= oem->ports[i].phy_mask;
1831 if (phy_mask == 0)
1832 return -EINVAL;
1833 } else
1834 return -EINVAL;
1836 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1837 return -EINVAL;
1839 return 0;
1842 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1843 union scic_oem_parameters *scic_parms)
1845 u32 state = scic->state_machine.current_state_id;
1847 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1848 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1849 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1851 if (scic_oem_parameters_validate(&scic_parms->sds1))
1852 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1853 scic->oem_parameters.sds1 = scic_parms->sds1;
1855 return SCI_SUCCESS;
1858 return SCI_FAILURE_INVALID_STATE;
1861 void scic_oem_parameters_get(
1862 struct scic_sds_controller *scic,
1863 union scic_oem_parameters *scic_parms)
1865 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1868 static void scic_sds_controller_timeout_handler(void *_scic)
1870 struct scic_sds_controller *scic = _scic;
1871 struct isci_host *ihost = scic_to_ihost(scic);
1872 struct sci_base_state_machine *sm = &scic->state_machine;
1874 if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1875 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1876 else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1877 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1878 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1879 } else /* / @todo Now what do we want to do in this case? */
1880 dev_err(scic_to_dev(scic),
1881 "%s: Controller timer fired when controller was not "
1882 "in a state being timed.\n",
1883 __func__);
1886 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1888 struct isci_host *ihost = scic_to_ihost(scic);
1890 scic->phy_startup_timer = isci_timer_create(ihost,
1891 scic,
1892 scic_sds_controller_phy_startup_timeout_handler);
1894 if (scic->phy_startup_timer == NULL)
1895 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1896 else {
1897 scic->next_phy_to_start = 0;
1898 scic->phy_startup_timer_pending = false;
1901 return SCI_SUCCESS;
1904 static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
1906 isci_timer_start(scic->power_control.timer,
1907 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1909 scic->power_control.timer_started = true;
1912 static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
1914 if (scic->power_control.timer_started) {
1915 isci_timer_stop(scic->power_control.timer);
1916 scic->power_control.timer_started = false;
1920 static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
1922 scic_sds_controller_power_control_timer_stop(scic);
1923 scic_sds_controller_power_control_timer_start(scic);
1926 static void scic_sds_controller_power_control_timer_handler(
1927 void *controller)
1929 struct scic_sds_controller *scic;
1931 scic = (struct scic_sds_controller *)controller;
1933 scic->power_control.phys_granted_power = 0;
1935 if (scic->power_control.phys_waiting == 0) {
1936 scic->power_control.timer_started = false;
1937 } else {
1938 struct scic_sds_phy *sci_phy = NULL;
1939 u8 i;
1941 for (i = 0;
1942 (i < SCI_MAX_PHYS)
1943 && (scic->power_control.phys_waiting != 0);
1944 i++) {
1945 if (scic->power_control.requesters[i] != NULL) {
1946 if (scic->power_control.phys_granted_power <
1947 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1948 sci_phy = scic->power_control.requesters[i];
1949 scic->power_control.requesters[i] = NULL;
1950 scic->power_control.phys_waiting--;
1951 scic->power_control.phys_granted_power++;
1952 scic_sds_phy_consume_power_handler(sci_phy);
1953 } else {
1954 break;
1960 * It doesn't matter if the power list is empty, we need to start the
1961 * timer in case another phy becomes ready.
1963 scic_sds_controller_power_control_timer_start(scic);
1968 * This method inserts the phy in the stagger spinup control queue.
1969 * @scic:
1973 void scic_sds_controller_power_control_queue_insert(
1974 struct scic_sds_controller *scic,
1975 struct scic_sds_phy *sci_phy)
1977 BUG_ON(sci_phy == NULL);
1979 if (scic->power_control.phys_granted_power <
1980 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1981 scic->power_control.phys_granted_power++;
1982 scic_sds_phy_consume_power_handler(sci_phy);
1985 * stop and start the power_control timer. When the timer fires, the
1986 * no_of_phys_granted_power will be set to 0
1988 scic_sds_controller_power_control_timer_restart(scic);
1989 } else {
1990 /* Add the phy in the waiting list */
1991 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
1992 scic->power_control.phys_waiting++;
1997 * This method removes the phy from the stagger spinup control queue.
1998 * @scic:
2002 void scic_sds_controller_power_control_queue_remove(
2003 struct scic_sds_controller *scic,
2004 struct scic_sds_phy *sci_phy)
2006 BUG_ON(sci_phy == NULL);
2008 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2009 scic->power_control.phys_waiting--;
2012 scic->power_control.requesters[sci_phy->phy_index] = NULL;
2015 #define AFE_REGISTER_WRITE_DELAY 10
2017 /* Initialize the AFE for this phy index. We need to read the AFE setup from
2018 * the OEM parameters
2020 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2022 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2023 u32 afe_status;
2024 u32 phy_id;
2026 /* Clear DFX Status registers */
2027 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2028 udelay(AFE_REGISTER_WRITE_DELAY);
2030 if (is_b0()) {
2031 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2032 * Timer, PM Stagger Timer */
2033 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2034 udelay(AFE_REGISTER_WRITE_DELAY);
2037 /* Configure bias currents to normal */
2038 if (is_a0())
2039 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2040 else if (is_a2())
2041 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2042 else if (is_b0())
2043 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2045 udelay(AFE_REGISTER_WRITE_DELAY);
2047 /* Enable PLL */
2048 if (is_b0())
2049 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2050 else
2051 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2053 udelay(AFE_REGISTER_WRITE_DELAY);
2055 /* Wait for the PLL to lock */
2056 do {
2057 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2058 udelay(AFE_REGISTER_WRITE_DELAY);
2059 } while ((afe_status & 0x00001000) == 0);
2061 if (is_a0() || is_a2()) {
2062 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2063 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2064 udelay(AFE_REGISTER_WRITE_DELAY);
2067 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2068 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2070 if (is_b0()) {
2071 /* Configure transmitter SSC parameters */
2072 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2073 udelay(AFE_REGISTER_WRITE_DELAY);
2074 } else {
2076 * All defaults, except the Receive Word Alignament/Comma Detect
2077 * Enable....(0xe800) */
2078 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2079 udelay(AFE_REGISTER_WRITE_DELAY);
2081 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2082 udelay(AFE_REGISTER_WRITE_DELAY);
2086 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2087 * & increase TX int & ext bias 20%....(0xe85c) */
2088 if (is_a0())
2089 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2090 else if (is_a2())
2091 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2092 else {
2093 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2094 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2095 udelay(AFE_REGISTER_WRITE_DELAY);
2098 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2099 * & increase TX int & ext bias 20%....(0xe85c) */
2100 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2102 udelay(AFE_REGISTER_WRITE_DELAY);
2104 if (is_a0() || is_a2()) {
2105 /* Enable TX equalization (0xe824) */
2106 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2107 udelay(AFE_REGISTER_WRITE_DELAY);
2111 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2112 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2113 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2114 udelay(AFE_REGISTER_WRITE_DELAY);
2116 /* Leave DFE/FFE on */
2117 if (is_a0())
2118 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2119 else if (is_a2())
2120 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2121 else {
2122 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2123 udelay(AFE_REGISTER_WRITE_DELAY);
2124 /* Enable TX equalization (0xe824) */
2125 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2127 udelay(AFE_REGISTER_WRITE_DELAY);
2129 writel(oem_phy->afe_tx_amp_control0,
2130 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2131 udelay(AFE_REGISTER_WRITE_DELAY);
2133 writel(oem_phy->afe_tx_amp_control1,
2134 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2135 udelay(AFE_REGISTER_WRITE_DELAY);
2137 writel(oem_phy->afe_tx_amp_control2,
2138 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2139 udelay(AFE_REGISTER_WRITE_DELAY);
2141 writel(oem_phy->afe_tx_amp_control3,
2142 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2143 udelay(AFE_REGISTER_WRITE_DELAY);
2146 /* Transfer control to the PEs */
2147 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2148 udelay(AFE_REGISTER_WRITE_DELAY);
2151 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2152 enum sci_controller_mode operating_mode)
2154 enum sci_status status = SCI_SUCCESS;
2156 if ((scic->state_machine.current_state_id ==
2157 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2158 (scic->state_machine.current_state_id ==
2159 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2160 switch (operating_mode) {
2161 case SCI_MODE_SPEED:
2162 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
2163 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
2164 scic->uf_control.buffers.count =
2165 SCU_UNSOLICITED_FRAME_COUNT;
2166 scic->completion_event_entries = SCU_EVENT_COUNT;
2167 scic->completion_queue_entries =
2168 SCU_COMPLETION_QUEUE_COUNT;
2169 break;
2171 case SCI_MODE_SIZE:
2172 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
2173 scic->task_context_entries = SCI_MIN_IO_REQUESTS;
2174 scic->uf_control.buffers.count =
2175 SCU_MIN_UNSOLICITED_FRAMES;
2176 scic->completion_event_entries = SCU_MIN_EVENTS;
2177 scic->completion_queue_entries =
2178 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2179 break;
2181 default:
2182 status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2183 break;
2185 } else
2186 status = SCI_FAILURE_INVALID_STATE;
2188 return status;
2191 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2193 struct isci_host *ihost = scic_to_ihost(scic);
2194 scic->power_control.timer = isci_timer_create(ihost,
2195 scic,
2196 scic_sds_controller_power_control_timer_handler);
2198 memset(scic->power_control.requesters, 0,
2199 sizeof(scic->power_control.requesters));
2201 scic->power_control.phys_waiting = 0;
2202 scic->power_control.phys_granted_power = 0;
2205 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2207 struct sci_base_state_machine *sm = &scic->state_machine;
2208 enum sci_status result = SCI_SUCCESS;
2209 struct isci_host *ihost = scic_to_ihost(scic);
2210 u32 index, state;
2212 if (scic->state_machine.current_state_id !=
2213 SCI_BASE_CONTROLLER_STATE_RESET) {
2214 dev_warn(scic_to_dev(scic),
2215 "SCIC Controller initialize operation requested "
2216 "in invalid state\n");
2217 return SCI_FAILURE_INVALID_STATE;
2220 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2222 scic->timeout_timer = isci_timer_create(ihost, scic,
2223 scic_sds_controller_timeout_handler);
2225 scic_sds_controller_initialize_phy_startup(scic);
2227 scic_sds_controller_initialize_power_control(scic);
2230 * There is nothing to do here for B0 since we do not have to
2231 * program the AFE registers.
2232 * / @todo The AFE settings are supposed to be correct for the B0 but
2233 * / presently they seem to be wrong. */
2234 scic_sds_controller_afe_initialization(scic);
2236 if (result == SCI_SUCCESS) {
2237 u32 status;
2238 u32 terminate_loop;
2240 /* Take the hardware out of reset */
2241 writel(0, &scic->smu_registers->soft_reset_control);
2244 * / @todo Provide meaningfull error code for hardware failure
2245 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2246 result = SCI_FAILURE;
2247 terminate_loop = 100;
2249 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2250 /* Loop until the hardware reports success */
2251 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2252 status = readl(&scic->smu_registers->control_status);
2254 if ((status & SCU_RAM_INIT_COMPLETED) ==
2255 SCU_RAM_INIT_COMPLETED)
2256 result = SCI_SUCCESS;
2260 if (result == SCI_SUCCESS) {
2261 u32 max_supported_ports;
2262 u32 max_supported_devices;
2263 u32 max_supported_io_requests;
2264 u32 device_context_capacity;
2267 * Determine what are the actaul device capacities that the
2268 * hardware will support */
2269 device_context_capacity =
2270 readl(&scic->smu_registers->device_context_capacity);
2273 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2274 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2275 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2278 * Make all PEs that are unassigned match up with the
2279 * logical ports
2281 for (index = 0; index < max_supported_ports; index++) {
2282 struct scu_port_task_scheduler_group_registers __iomem
2283 *ptsg = &scic->scu_registers->peg0.ptsg;
2285 writel(index, &ptsg->protocol_engine[index]);
2288 /* Record the smaller of the two capacity values */
2289 scic->logical_port_entries =
2290 min(max_supported_ports, scic->logical_port_entries);
2292 scic->task_context_entries =
2293 min(max_supported_io_requests,
2294 scic->task_context_entries);
2296 scic->remote_node_entries =
2297 min(max_supported_devices, scic->remote_node_entries);
2300 * Now that we have the correct hardware reported minimum values
2301 * build the MDL for the controller. Default to a performance
2302 * configuration.
2304 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2307 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2308 if (result == SCI_SUCCESS) {
2309 u32 dma_configuration;
2311 /* Configure the payload DMA */
2312 dma_configuration =
2313 readl(&scic->scu_registers->sdma.pdma_configuration);
2314 dma_configuration |=
2315 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2316 writel(dma_configuration,
2317 &scic->scu_registers->sdma.pdma_configuration);
2319 /* Configure the control DMA */
2320 dma_configuration =
2321 readl(&scic->scu_registers->sdma.cdma_configuration);
2322 dma_configuration |=
2323 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2324 writel(dma_configuration,
2325 &scic->scu_registers->sdma.cdma_configuration);
2329 * Initialize the PHYs before the PORTs because the PHY registers
2330 * are accessed during the port initialization.
2332 if (result == SCI_SUCCESS) {
2333 /* Initialize the phys */
2334 for (index = 0;
2335 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2336 index++) {
2337 result = scic_sds_phy_initialize(
2338 &ihost->phys[index].sci,
2339 &scic->scu_registers->peg0.pe[index].tl,
2340 &scic->scu_registers->peg0.pe[index].ll);
2344 if (result == SCI_SUCCESS) {
2345 /* Initialize the logical ports */
2346 for (index = 0;
2347 (index < scic->logical_port_entries) &&
2348 (result == SCI_SUCCESS);
2349 index++) {
2350 result = scic_sds_port_initialize(
2351 &ihost->ports[index].sci,
2352 &scic->scu_registers->peg0.ptsg.port[index],
2353 &scic->scu_registers->peg0.ptsg.protocol_engine,
2354 &scic->scu_registers->peg0.viit[index]);
2358 if (result == SCI_SUCCESS)
2359 result = scic_sds_port_configuration_agent_initialize(
2360 scic,
2361 &scic->port_agent);
2363 /* Advance the controller state machine */
2364 if (result == SCI_SUCCESS)
2365 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2366 else
2367 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2368 sci_base_state_machine_change_state(sm, state);
2370 return result;
2373 static enum sci_status scic_user_parameters_set(
2374 struct scic_sds_controller *scic,
2375 union scic_user_parameters *scic_parms)
2377 u32 state = scic->state_machine.current_state_id;
2379 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2380 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2381 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2382 u16 index;
2385 * Validate the user parameters. If they are not legal, then
2386 * return a failure.
2388 for (index = 0; index < SCI_MAX_PHYS; index++) {
2389 struct sci_phy_user_params *user_phy;
2391 user_phy = &scic_parms->sds1.phys[index];
2393 if (!((user_phy->max_speed_generation <=
2394 SCIC_SDS_PARM_MAX_SPEED) &&
2395 (user_phy->max_speed_generation >
2396 SCIC_SDS_PARM_NO_SPEED)))
2397 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2399 if (user_phy->in_connection_align_insertion_frequency <
2401 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2403 if ((user_phy->in_connection_align_insertion_frequency <
2404 3) ||
2405 (user_phy->align_insertion_frequency == 0) ||
2406 (user_phy->
2407 notify_enable_spin_up_insertion_frequency ==
2409 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2412 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2413 (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2414 (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2415 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2416 (scic_parms->sds1.no_outbound_task_timeout == 0))
2417 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2419 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2421 return SCI_SUCCESS;
2424 return SCI_FAILURE_INVALID_STATE;
2427 static int scic_controller_mem_init(struct scic_sds_controller *scic)
2429 struct device *dev = scic_to_dev(scic);
2430 dma_addr_t dma_handle;
2431 enum sci_status result;
2433 scic->completion_queue = dmam_alloc_coherent(dev,
2434 scic->completion_queue_entries * sizeof(u32),
2435 &dma_handle, GFP_KERNEL);
2436 if (!scic->completion_queue)
2437 return -ENOMEM;
2439 writel(lower_32_bits(dma_handle),
2440 &scic->smu_registers->completion_queue_lower);
2441 writel(upper_32_bits(dma_handle),
2442 &scic->smu_registers->completion_queue_upper);
2444 scic->remote_node_context_table = dmam_alloc_coherent(dev,
2445 scic->remote_node_entries *
2446 sizeof(union scu_remote_node_context),
2447 &dma_handle, GFP_KERNEL);
2448 if (!scic->remote_node_context_table)
2449 return -ENOMEM;
2451 writel(lower_32_bits(dma_handle),
2452 &scic->smu_registers->remote_node_context_lower);
2453 writel(upper_32_bits(dma_handle),
2454 &scic->smu_registers->remote_node_context_upper);
2456 scic->task_context_table = dmam_alloc_coherent(dev,
2457 scic->task_context_entries *
2458 sizeof(struct scu_task_context),
2459 &dma_handle, GFP_KERNEL);
2460 if (!scic->task_context_table)
2461 return -ENOMEM;
2463 writel(lower_32_bits(dma_handle),
2464 &scic->smu_registers->host_task_table_lower);
2465 writel(upper_32_bits(dma_handle),
2466 &scic->smu_registers->host_task_table_upper);
2468 result = scic_sds_unsolicited_frame_control_construct(scic);
2469 if (result)
2470 return result;
2473 * Inform the silicon as to the location of the UF headers and
2474 * address table.
2476 writel(lower_32_bits(scic->uf_control.headers.physical_address),
2477 &scic->scu_registers->sdma.uf_header_base_address_lower);
2478 writel(upper_32_bits(scic->uf_control.headers.physical_address),
2479 &scic->scu_registers->sdma.uf_header_base_address_upper);
2481 writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2482 &scic->scu_registers->sdma.uf_address_table_lower);
2483 writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2484 &scic->scu_registers->sdma.uf_address_table_upper);
2486 return 0;
2489 int isci_host_init(struct isci_host *isci_host)
2491 int err = 0, i;
2492 enum sci_status status;
2493 union scic_oem_parameters oem;
2494 union scic_user_parameters scic_user_params;
2495 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
2497 isci_timer_list_construct(isci_host);
2499 spin_lock_init(&isci_host->state_lock);
2500 spin_lock_init(&isci_host->scic_lock);
2501 spin_lock_init(&isci_host->queue_lock);
2502 init_waitqueue_head(&isci_host->eventq);
2504 isci_host_change_state(isci_host, isci_starting);
2505 isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2507 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
2508 smu_base(isci_host));
2510 if (status != SCI_SUCCESS) {
2511 dev_err(&isci_host->pdev->dev,
2512 "%s: scic_controller_construct failed - status = %x\n",
2513 __func__,
2514 status);
2515 return -ENODEV;
2518 isci_host->sas_ha.dev = &isci_host->pdev->dev;
2519 isci_host->sas_ha.lldd_ha = isci_host;
2522 * grab initial values stored in the controller object for OEM and USER
2523 * parameters
2525 isci_user_parameters_get(isci_host, &scic_user_params);
2526 status = scic_user_parameters_set(&isci_host->sci,
2527 &scic_user_params);
2528 if (status != SCI_SUCCESS) {
2529 dev_warn(&isci_host->pdev->dev,
2530 "%s: scic_user_parameters_set failed\n",
2531 __func__);
2532 return -ENODEV;
2535 scic_oem_parameters_get(&isci_host->sci, &oem);
2537 /* grab any OEM parameters specified in orom */
2538 if (pci_info->orom) {
2539 status = isci_parse_oem_parameters(&oem,
2540 pci_info->orom,
2541 isci_host->id);
2542 if (status != SCI_SUCCESS) {
2543 dev_warn(&isci_host->pdev->dev,
2544 "parsing firmware oem parameters failed\n");
2545 return -EINVAL;
2549 status = scic_oem_parameters_set(&isci_host->sci, &oem);
2550 if (status != SCI_SUCCESS) {
2551 dev_warn(&isci_host->pdev->dev,
2552 "%s: scic_oem_parameters_set failed\n",
2553 __func__);
2554 return -ENODEV;
2557 tasklet_init(&isci_host->completion_tasklet,
2558 isci_host_completion_routine, (unsigned long)isci_host);
2560 INIT_LIST_HEAD(&isci_host->requests_to_complete);
2561 INIT_LIST_HEAD(&isci_host->requests_to_errorback);
2563 spin_lock_irq(&isci_host->scic_lock);
2564 status = scic_controller_initialize(&isci_host->sci);
2565 spin_unlock_irq(&isci_host->scic_lock);
2566 if (status != SCI_SUCCESS) {
2567 dev_warn(&isci_host->pdev->dev,
2568 "%s: scic_controller_initialize failed -"
2569 " status = 0x%x\n",
2570 __func__, status);
2571 return -ENODEV;
2574 err = scic_controller_mem_init(&isci_host->sci);
2575 if (err)
2576 return err;
2578 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
2579 sizeof(struct isci_request),
2580 SLAB_HWCACHE_ALIGN, 0);
2582 if (!isci_host->dma_pool)
2583 return -ENOMEM;
2585 for (i = 0; i < SCI_MAX_PORTS; i++)
2586 isci_port_init(&isci_host->ports[i], isci_host, i);
2588 for (i = 0; i < SCI_MAX_PHYS; i++)
2589 isci_phy_init(&isci_host->phys[i], isci_host, i);
2591 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2592 struct isci_remote_device *idev = &isci_host->devices[i];
2594 INIT_LIST_HEAD(&idev->reqs_in_process);
2595 INIT_LIST_HEAD(&idev->node);
2596 spin_lock_init(&idev->state_lock);
2599 return 0;
2602 void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2603 struct scic_sds_port *port, struct scic_sds_phy *phy)
2605 switch (scic->state_machine.current_state_id) {
2606 case SCI_BASE_CONTROLLER_STATE_STARTING:
2607 scic_sds_controller_phy_timer_stop(scic);
2608 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2609 port, phy);
2610 scic_sds_controller_start_next_phy(scic);
2611 break;
2612 case SCI_BASE_CONTROLLER_STATE_READY:
2613 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2614 port, phy);
2615 break;
2616 default:
2617 dev_dbg(scic_to_dev(scic),
2618 "%s: SCIC Controller linkup event from phy %d in "
2619 "unexpected state %d\n", __func__, phy->phy_index,
2620 scic->state_machine.current_state_id);
2624 void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2625 struct scic_sds_port *port, struct scic_sds_phy *phy)
2627 switch (scic->state_machine.current_state_id) {
2628 case SCI_BASE_CONTROLLER_STATE_STARTING:
2629 case SCI_BASE_CONTROLLER_STATE_READY:
2630 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2631 port, phy);
2632 break;
2633 default:
2634 dev_dbg(scic_to_dev(scic),
2635 "%s: SCIC Controller linkdown event from phy %d in "
2636 "unexpected state %d\n",
2637 __func__,
2638 phy->phy_index,
2639 scic->state_machine.current_state_id);
2644 * This is a helper method to determine if any remote devices on this
2645 * controller are still in the stopping state.
2648 static bool scic_sds_controller_has_remote_devices_stopping(
2649 struct scic_sds_controller *controller)
2651 u32 index;
2653 for (index = 0; index < controller->remote_node_entries; index++) {
2654 if ((controller->device_table[index] != NULL) &&
2655 (controller->device_table[index]->state_machine.current_state_id
2656 == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2657 return true;
2660 return false;
2664 * This method is called by the remote device to inform the controller
2665 * object that the remote device has stopped.
2667 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2668 struct scic_sds_remote_device *sci_dev)
2670 if (scic->state_machine.current_state_id !=
2671 SCI_BASE_CONTROLLER_STATE_STOPPING) {
2672 dev_dbg(scic_to_dev(scic),
2673 "SCIC Controller 0x%p remote device stopped event "
2674 "from device 0x%p in unexpected state %d\n",
2675 scic, sci_dev,
2676 scic->state_machine.current_state_id);
2677 return;
2680 if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2681 sci_base_state_machine_change_state(&scic->state_machine,
2682 SCI_BASE_CONTROLLER_STATE_STOPPED);
2687 * This method will write to the SCU PCP register the request value. The method
2688 * is used to suspend/resume ports, devices, and phys.
2689 * @scic:
2693 void scic_sds_controller_post_request(
2694 struct scic_sds_controller *scic,
2695 u32 request)
2697 dev_dbg(scic_to_dev(scic),
2698 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2699 __func__,
2700 scic,
2701 request);
2703 writel(request, &scic->smu_registers->post_context_port);
2707 * This method will copy the soft copy of the task context into the physical
2708 * memory accessible by the controller.
2709 * @scic: This parameter specifies the controller for which to copy
2710 * the task context.
2711 * @sci_req: This parameter specifies the request for which the task
2712 * context is being copied.
2714 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2715 * the physical memory version of the task context. Thus, all subsequent
2716 * updates to the task context are performed in the TC table (i.e. DMAable
2717 * memory). none
2719 void scic_sds_controller_copy_task_context(
2720 struct scic_sds_controller *scic,
2721 struct scic_sds_request *sci_req)
2723 struct scu_task_context *task_context_buffer;
2725 task_context_buffer = scic_sds_controller_get_task_context_buffer(
2726 scic, sci_req->io_tag);
2728 memcpy(task_context_buffer,
2729 sci_req->task_context_buffer,
2730 offsetof(struct scu_task_context, sgl_snapshot_ac));
2733 * Now that the soft copy of the TC has been copied into the TC
2734 * table accessible by the silicon. Thus, any further changes to
2735 * the TC (e.g. TC termination) occur in the appropriate location. */
2736 sci_req->task_context_buffer = task_context_buffer;
2740 * This method returns the task context buffer for the given io tag.
2741 * @scic:
2742 * @io_tag:
2744 * struct scu_task_context*
2746 struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2747 struct scic_sds_controller *scic,
2748 u16 io_tag
2750 u16 task_index = scic_sds_io_tag_get_index(io_tag);
2752 if (task_index < scic->task_context_entries) {
2753 return &scic->task_context_table[task_index];
2756 return NULL;
2759 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2760 u16 io_tag)
2762 u16 task_index;
2763 u16 task_sequence;
2765 task_index = scic_sds_io_tag_get_index(io_tag);
2767 if (task_index < scic->task_context_entries) {
2768 if (scic->io_request_table[task_index] != NULL) {
2769 task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2771 if (task_sequence == scic->io_request_sequence[task_index]) {
2772 return scic->io_request_table[task_index];
2777 return NULL;
2781 * This method allocates remote node index and the reserves the remote node
2782 * context space for use. This method can fail if there are no more remote
2783 * node index available.
2784 * @scic: This is the controller object which contains the set of
2785 * free remote node ids
2786 * @sci_dev: This is the device object which is requesting the a remote node
2787 * id
2788 * @node_id: This is the remote node id that is assinged to the device if one
2789 * is available
2791 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2792 * node index available.
2794 enum sci_status scic_sds_controller_allocate_remote_node_context(
2795 struct scic_sds_controller *scic,
2796 struct scic_sds_remote_device *sci_dev,
2797 u16 *node_id)
2799 u16 node_index;
2800 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2802 node_index = scic_sds_remote_node_table_allocate_remote_node(
2803 &scic->available_remote_nodes, remote_node_count
2806 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2807 scic->device_table[node_index] = sci_dev;
2809 *node_id = node_index;
2811 return SCI_SUCCESS;
2814 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2818 * This method frees the remote node index back to the available pool. Once
2819 * this is done the remote node context buffer is no longer valid and can
2820 * not be used.
2821 * @scic:
2822 * @sci_dev:
2823 * @node_id:
2826 void scic_sds_controller_free_remote_node_context(
2827 struct scic_sds_controller *scic,
2828 struct scic_sds_remote_device *sci_dev,
2829 u16 node_id)
2831 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2833 if (scic->device_table[node_id] == sci_dev) {
2834 scic->device_table[node_id] = NULL;
2836 scic_sds_remote_node_table_release_remote_node_index(
2837 &scic->available_remote_nodes, remote_node_count, node_id
2843 * This method returns the union scu_remote_node_context for the specified remote
2844 * node id.
2845 * @scic:
2846 * @node_id:
2848 * union scu_remote_node_context*
2850 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2851 struct scic_sds_controller *scic,
2852 u16 node_id
2854 if (
2855 (node_id < scic->remote_node_entries)
2856 && (scic->device_table[node_id] != NULL)
2858 return &scic->remote_node_context_table[node_id];
2861 return NULL;
2866 * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2867 * constructed.
2868 * @frame_header: This is the frame header returned by the hardware.
2869 * @frame_buffer: This is the frame buffer returned by the hardware.
2871 * This method will combind the frame header and frame buffer to create a SATA
2872 * D2H register FIS none
2874 void scic_sds_controller_copy_sata_response(
2875 void *response_buffer,
2876 void *frame_header,
2877 void *frame_buffer)
2879 memcpy(response_buffer, frame_header, sizeof(u32));
2881 memcpy(response_buffer + sizeof(u32),
2882 frame_buffer,
2883 sizeof(struct dev_to_host_fis) - sizeof(u32));
2887 * This method releases the frame once this is done the frame is available for
2888 * re-use by the hardware. The data contained in the frame header and frame
2889 * buffer is no longer valid. The UF queue get pointer is only updated if UF
2890 * control indicates this is appropriate.
2891 * @scic:
2892 * @frame_index:
2895 void scic_sds_controller_release_frame(
2896 struct scic_sds_controller *scic,
2897 u32 frame_index)
2899 if (scic_sds_unsolicited_frame_control_release_frame(
2900 &scic->uf_control, frame_index) == true)
2901 writel(scic->uf_control.get,
2902 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2906 * scic_controller_start_io() - This method is called by the SCI user to
2907 * send/start an IO request. If the method invocation is successful, then
2908 * the IO request has been queued to the hardware for processing.
2909 * @controller: the handle to the controller object for which to start an IO
2910 * request.
2911 * @remote_device: the handle to the remote device object for which to start an
2912 * IO request.
2913 * @io_request: the handle to the io request object to start.
2914 * @io_tag: This parameter specifies a previously allocated IO tag that the
2915 * user desires to be utilized for this request. This parameter is optional.
2916 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2917 * for this parameter.
2919 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
2920 * to ensure that each of the methods that may allocate or free available IO
2921 * tags are handled in a mutually exclusive manner. This method is one of said
2922 * methods requiring proper critical code section protection (e.g. semaphore,
2923 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
2924 * result, it is expected the user will have set the NCQ tag field in the host
2925 * to device register FIS prior to calling this method. There is also a
2926 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2927 * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2928 * more information on allocating a tag. Indicate if the controller
2929 * successfully started the IO request. SCI_SUCCESS if the IO request was
2930 * successfully started. Determine the failure situations and return values.
2932 enum sci_status scic_controller_start_io(
2933 struct scic_sds_controller *scic,
2934 struct scic_sds_remote_device *rdev,
2935 struct scic_sds_request *req,
2936 u16 io_tag)
2938 enum sci_status status;
2940 if (scic->state_machine.current_state_id !=
2941 SCI_BASE_CONTROLLER_STATE_READY) {
2942 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2943 return SCI_FAILURE_INVALID_STATE;
2946 status = scic_sds_remote_device_start_io(scic, rdev, req);
2947 if (status != SCI_SUCCESS)
2948 return status;
2950 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2951 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2952 return SCI_SUCCESS;
2956 * scic_controller_terminate_request() - This method is called by the SCI Core
2957 * user to terminate an ongoing (i.e. started) core IO request. This does
2958 * not abort the IO request at the target, but rather removes the IO request
2959 * from the host controller.
2960 * @controller: the handle to the controller object for which to terminate a
2961 * request.
2962 * @remote_device: the handle to the remote device object for which to
2963 * terminate a request.
2964 * @request: the handle to the io or task management request object to
2965 * terminate.
2967 * Indicate if the controller successfully began the terminate process for the
2968 * IO request. SCI_SUCCESS if the terminate process was successfully started
2969 * for the request. Determine the failure situations and return values.
2971 enum sci_status scic_controller_terminate_request(
2972 struct scic_sds_controller *scic,
2973 struct scic_sds_remote_device *rdev,
2974 struct scic_sds_request *req)
2976 enum sci_status status;
2978 if (scic->state_machine.current_state_id !=
2979 SCI_BASE_CONTROLLER_STATE_READY) {
2980 dev_warn(scic_to_dev(scic),
2981 "invalid state to terminate request\n");
2982 return SCI_FAILURE_INVALID_STATE;
2985 status = scic_sds_io_request_terminate(req);
2986 if (status != SCI_SUCCESS)
2987 return status;
2990 * Utilize the original post context command and or in the POST_TC_ABORT
2991 * request sub-type.
2993 scic_sds_controller_post_request(scic,
2994 scic_sds_request_get_post_context(req) |
2995 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2996 return SCI_SUCCESS;
3000 * scic_controller_complete_io() - This method will perform core specific
3001 * completion operations for an IO request. After this method is invoked,
3002 * the user should consider the IO request as invalid until it is properly
3003 * reused (i.e. re-constructed).
3004 * @controller: The handle to the controller object for which to complete the
3005 * IO request.
3006 * @remote_device: The handle to the remote device object for which to complete
3007 * the IO request.
3008 * @io_request: the handle to the io request object to complete.
3010 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3011 * to ensure that each of the methods that may allocate or free available IO
3012 * tags are handled in a mutually exclusive manner. This method is one of said
3013 * methods requiring proper critical code section protection (e.g. semaphore,
3014 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3015 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3016 * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3017 * method to free the tag (i.e. this method will not free the IO tag). Indicate
3018 * if the controller successfully completed the IO request. SCI_SUCCESS if the
3019 * completion process was successful.
3021 enum sci_status scic_controller_complete_io(
3022 struct scic_sds_controller *scic,
3023 struct scic_sds_remote_device *rdev,
3024 struct scic_sds_request *request)
3026 enum sci_status status;
3027 u16 index;
3029 switch (scic->state_machine.current_state_id) {
3030 case SCI_BASE_CONTROLLER_STATE_STOPPING:
3031 /* XXX: Implement this function */
3032 return SCI_FAILURE;
3033 case SCI_BASE_CONTROLLER_STATE_READY:
3034 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3035 if (status != SCI_SUCCESS)
3036 return status;
3038 index = scic_sds_io_tag_get_index(request->io_tag);
3039 scic->io_request_table[index] = NULL;
3040 return SCI_SUCCESS;
3041 default:
3042 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3043 return SCI_FAILURE_INVALID_STATE;
3048 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3050 struct scic_sds_controller *scic = sci_req->owning_controller;
3052 if (scic->state_machine.current_state_id !=
3053 SCI_BASE_CONTROLLER_STATE_READY) {
3054 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3055 return SCI_FAILURE_INVALID_STATE;
3058 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3059 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3060 return SCI_SUCCESS;
3064 * scic_controller_start_task() - This method is called by the SCIC user to
3065 * send/start a framework task management request.
3066 * @controller: the handle to the controller object for which to start the task
3067 * management request.
3068 * @remote_device: the handle to the remote device object for which to start
3069 * the task management request.
3070 * @task_request: the handle to the task request object to start.
3071 * @io_tag: This parameter specifies a previously allocated IO tag that the
3072 * user desires to be utilized for this request. Note this not the io_tag
3073 * of the request being managed. It is to be utilized for the task request
3074 * itself. This parameter is optional. The user is allowed to supply
3075 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3077 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3078 * to ensure that each of the methods that may allocate or free available IO
3079 * tags are handled in a mutually exclusive manner. This method is one of said
3080 * methods requiring proper critical code section protection (e.g. semaphore,
3081 * spin-lock, etc.). - The user must synchronize this task with completion
3082 * queue processing. If they are not synchronized then it is possible for the
3083 * io requests that are being managed by the task request can complete before
3084 * starting the task request. scic_controller_allocate_tag() for more
3085 * information on allocating a tag. Indicate if the controller successfully
3086 * started the IO request. SCI_TASK_SUCCESS if the task request was
3087 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3088 * returned if there is/are task(s) outstanding that require termination or
3089 * completion before this request can succeed.
3091 enum sci_task_status scic_controller_start_task(
3092 struct scic_sds_controller *scic,
3093 struct scic_sds_remote_device *rdev,
3094 struct scic_sds_request *req,
3095 u16 task_tag)
3097 enum sci_status status;
3099 if (scic->state_machine.current_state_id !=
3100 SCI_BASE_CONTROLLER_STATE_READY) {
3101 dev_warn(scic_to_dev(scic),
3102 "%s: SCIC Controller starting task from invalid "
3103 "state\n",
3104 __func__);
3105 return SCI_TASK_FAILURE_INVALID_STATE;
3108 status = scic_sds_remote_device_start_task(scic, rdev, req);
3109 switch (status) {
3110 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3111 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3114 * We will let framework know this task request started successfully,
3115 * although core is still woring on starting the request (to post tc when
3116 * RNC is resumed.)
3118 return SCI_SUCCESS;
3119 case SCI_SUCCESS:
3120 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3122 scic_sds_controller_post_request(scic,
3123 scic_sds_request_get_post_context(req));
3124 break;
3125 default:
3126 break;
3129 return status;
3133 * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3134 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3135 * is optional. The scic_controller_start_io() method will allocate an IO
3136 * tag if this method is not utilized and the tag is not supplied to the IO
3137 * construct routine. Direct allocation of IO tags may provide additional
3138 * performance improvements in environments capable of supporting this usage
3139 * model. Additionally, direct allocation of IO tags also provides
3140 * additional flexibility to the SCI Core user. Specifically, the user may
3141 * retain IO tags across the lives of multiple IO requests.
3142 * @controller: the handle to the controller object for which to allocate the
3143 * tag.
3145 * IO tags are a protected resource. It is incumbent upon the SCI Core user to
3146 * ensure that each of the methods that may allocate or free available IO tags
3147 * are handled in a mutually exclusive manner. This method is one of said
3148 * methods requiring proper critical code section protection (e.g. semaphore,
3149 * spin-lock, etc.). An unsigned integer representing an available IO tag.
3150 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3151 * currently available tags to be allocated. All return other values indicate a
3152 * legitimate tag.
3154 u16 scic_controller_allocate_io_tag(
3155 struct scic_sds_controller *scic)
3157 u16 task_context;
3158 u16 sequence_count;
3160 if (!sci_pool_empty(scic->tci_pool)) {
3161 sci_pool_get(scic->tci_pool, task_context);
3163 sequence_count = scic->io_request_sequence[task_context];
3165 return scic_sds_io_tag_construct(sequence_count, task_context);
3168 return SCI_CONTROLLER_INVALID_IO_TAG;
3172 * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3173 * of free IO tags. This method provides the SCI Core user more flexibility
3174 * with regards to IO tags. The user may desire to keep an IO tag after an
3175 * IO request has completed, because they plan on re-using the tag for a
3176 * subsequent IO request. This method is only legal if the tag was
3177 * allocated via scic_controller_allocate_io_tag().
3178 * @controller: This parameter specifies the handle to the controller object
3179 * for which to free/return the tag.
3180 * @io_tag: This parameter represents the tag to be freed to the pool of
3181 * available tags.
3183 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3184 * to ensure that each of the methods that may allocate or free available IO
3185 * tags are handled in a mutually exclusive manner. This method is one of said
3186 * methods requiring proper critical code section protection (e.g. semaphore,
3187 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3188 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3189 * the responsibility of the caller to invoke this method to free the tag. This
3190 * method returns an indication of whether the tag was successfully put back
3191 * (freed) to the pool of available tags. SCI_SUCCESS This return value
3192 * indicates the tag was successfully placed into the pool of available IO
3193 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3194 * is not a valid IO tag value.
3196 enum sci_status scic_controller_free_io_tag(
3197 struct scic_sds_controller *scic,
3198 u16 io_tag)
3200 u16 sequence;
3201 u16 index;
3203 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3205 sequence = scic_sds_io_tag_get_sequence(io_tag);
3206 index = scic_sds_io_tag_get_index(io_tag);
3208 if (!sci_pool_full(scic->tci_pool)) {
3209 if (sequence == scic->io_request_sequence[index]) {
3210 scic_sds_io_sequence_increment(
3211 scic->io_request_sequence[index]);
3213 sci_pool_put(scic->tci_pool, index);
3215 return SCI_SUCCESS;
3219 return SCI_FAILURE_INVALID_IO_TAG;