Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/fbdev-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob50a4aa0255a0703f83c8667028afe8545d78e09a
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags) (0)
42 #endif
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len) (addr)
46 #endif
48 static void unmap_region(struct mm_struct *mm,
49 struct vm_area_struct *vma, struct vm_area_struct *prev,
50 unsigned long start, unsigned long end);
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
56 #undef DEBUG_MM_RB
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
62 * map_type prot
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 pgprot_t protection_map[16] = {
74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 return __pgprot(pgprot_val(protection_map[vm_flags &
81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 EXPORT_SYMBOL(vm_get_page_prot);
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 unsigned long free, allowed;
111 vm_acct_memory(pages);
114 * Sometimes we want to use more memory than we have
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 unsigned long n;
122 free = global_page_state(NR_FILE_PAGES);
123 free += nr_swap_pages;
126 * Any slabs which are created with the
127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 * which are reclaimable, under pressure. The dentry
129 * cache and most inode caches should fall into this
131 free += global_page_state(NR_SLAB_RECLAIMABLE);
134 * Leave the last 3% for root
136 if (!cap_sys_admin)
137 free -= free / 32;
139 if (free > pages)
140 return 0;
143 * nr_free_pages() is very expensive on large systems,
144 * only call if we're about to fail.
146 n = nr_free_pages();
149 * Leave reserved pages. The pages are not for anonymous pages.
151 if (n <= totalreserve_pages)
152 goto error;
153 else
154 n -= totalreserve_pages;
157 * Leave the last 3% for root
159 if (!cap_sys_admin)
160 n -= n / 32;
161 free += n;
163 if (free > pages)
164 return 0;
166 goto error;
169 allowed = (totalram_pages - hugetlb_total_pages())
170 * sysctl_overcommit_ratio / 100;
172 * Leave the last 3% for root
174 if (!cap_sys_admin)
175 allowed -= allowed / 32;
176 allowed += total_swap_pages;
178 /* Don't let a single process grow too big:
179 leave 3% of the size of this process for other processes */
180 if (mm)
181 allowed -= mm->total_vm / 32;
183 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 return 0;
185 error:
186 vm_unacct_memory(pages);
188 return -ENOMEM;
192 * Requires inode->i_mapping->i_mmap_lock
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 struct file *file, struct address_space *mapping)
197 if (vma->vm_flags & VM_DENYWRITE)
198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 if (vma->vm_flags & VM_SHARED)
200 mapping->i_mmap_writable--;
202 flush_dcache_mmap_lock(mapping);
203 if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 list_del_init(&vma->shared.vm_set.list);
205 else
206 vma_prio_tree_remove(vma, &mapping->i_mmap);
207 flush_dcache_mmap_unlock(mapping);
211 * Unlink a file-based vm structure from its prio_tree, to hide
212 * vma from rmap and vmtruncate before freeing its page tables.
214 void unlink_file_vma(struct vm_area_struct *vma)
216 struct file *file = vma->vm_file;
218 if (file) {
219 struct address_space *mapping = file->f_mapping;
220 spin_lock(&mapping->i_mmap_lock);
221 __remove_shared_vm_struct(vma, file, mapping);
222 spin_unlock(&mapping->i_mmap_lock);
227 * Close a vm structure and free it, returning the next.
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 struct vm_area_struct *next = vma->vm_next;
233 might_sleep();
234 if (vma->vm_ops && vma->vm_ops->close)
235 vma->vm_ops->close(vma);
236 if (vma->vm_file) {
237 fput(vma->vm_file);
238 if (vma->vm_flags & VM_EXECUTABLE)
239 removed_exe_file_vma(vma->vm_mm);
241 mpol_put(vma_policy(vma));
242 kmem_cache_free(vm_area_cachep, vma);
243 return next;
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
253 down_write(&mm->mmap_sem);
255 #ifdef CONFIG_COMPAT_BRK
256 min_brk = mm->end_code;
257 #else
258 min_brk = mm->start_brk;
259 #endif
260 if (brk < min_brk)
261 goto out;
264 * Check against rlimit here. If this check is done later after the test
265 * of oldbrk with newbrk then it can escape the test and let the data
266 * segment grow beyond its set limit the in case where the limit is
267 * not page aligned -Ram Gupta
269 rlim = rlimit(RLIMIT_DATA);
270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 (mm->end_data - mm->start_data) > rlim)
272 goto out;
274 newbrk = PAGE_ALIGN(brk);
275 oldbrk = PAGE_ALIGN(mm->brk);
276 if (oldbrk == newbrk)
277 goto set_brk;
279 /* Always allow shrinking brk. */
280 if (brk <= mm->brk) {
281 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 goto set_brk;
283 goto out;
286 /* Check against existing mmap mappings. */
287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 goto out;
290 /* Ok, looks good - let it rip. */
291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 goto out;
293 set_brk:
294 mm->brk = brk;
295 out:
296 retval = mm->brk;
297 up_write(&mm->mmap_sem);
298 return retval;
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
304 int i = 0, j;
305 struct rb_node *nd, *pn = NULL;
306 unsigned long prev = 0, pend = 0;
308 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 struct vm_area_struct *vma;
310 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 if (vma->vm_start < prev)
312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 if (vma->vm_start < pend)
314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 if (vma->vm_start > vma->vm_end)
316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 i++;
318 pn = nd;
319 prev = vma->vm_start;
320 pend = vma->vm_end;
322 j = 0;
323 for (nd = pn; nd; nd = rb_prev(nd)) {
324 j++;
326 if (i != j)
327 printk("backwards %d, forwards %d\n", j, i), i = 0;
328 return i;
331 void validate_mm(struct mm_struct *mm)
333 int bug = 0;
334 int i = 0;
335 struct vm_area_struct *tmp = mm->mmap;
336 while (tmp) {
337 tmp = tmp->vm_next;
338 i++;
340 if (i != mm->map_count)
341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 i = browse_rb(&mm->mm_rb);
343 if (i != mm->map_count)
344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 BUG_ON(bug);
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 struct rb_node ** rb_parent)
356 struct vm_area_struct * vma;
357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359 __rb_link = &mm->mm_rb.rb_node;
360 rb_prev = __rb_parent = NULL;
361 vma = NULL;
363 while (*__rb_link) {
364 struct vm_area_struct *vma_tmp;
366 __rb_parent = *__rb_link;
367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369 if (vma_tmp->vm_end > addr) {
370 vma = vma_tmp;
371 if (vma_tmp->vm_start <= addr)
372 break;
373 __rb_link = &__rb_parent->rb_left;
374 } else {
375 rb_prev = __rb_parent;
376 __rb_link = &__rb_parent->rb_right;
380 *pprev = NULL;
381 if (rb_prev)
382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 *rb_link = __rb_link;
384 *rb_parent = __rb_parent;
385 return vma;
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 struct vm_area_struct *next;
394 vma->vm_prev = prev;
395 if (prev) {
396 next = prev->vm_next;
397 prev->vm_next = vma;
398 } else {
399 mm->mmap = vma;
400 if (rb_parent)
401 next = rb_entry(rb_parent,
402 struct vm_area_struct, vm_rb);
403 else
404 next = NULL;
406 vma->vm_next = next;
407 if (next)
408 next->vm_prev = vma;
411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
412 struct rb_node **rb_link, struct rb_node *rb_parent)
414 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
415 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
418 static void __vma_link_file(struct vm_area_struct *vma)
420 struct file *file;
422 file = vma->vm_file;
423 if (file) {
424 struct address_space *mapping = file->f_mapping;
426 if (vma->vm_flags & VM_DENYWRITE)
427 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
428 if (vma->vm_flags & VM_SHARED)
429 mapping->i_mmap_writable++;
431 flush_dcache_mmap_lock(mapping);
432 if (unlikely(vma->vm_flags & VM_NONLINEAR))
433 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
434 else
435 vma_prio_tree_insert(vma, &mapping->i_mmap);
436 flush_dcache_mmap_unlock(mapping);
440 static void
441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442 struct vm_area_struct *prev, struct rb_node **rb_link,
443 struct rb_node *rb_parent)
445 __vma_link_list(mm, vma, prev, rb_parent);
446 __vma_link_rb(mm, vma, rb_link, rb_parent);
449 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450 struct vm_area_struct *prev, struct rb_node **rb_link,
451 struct rb_node *rb_parent)
453 struct address_space *mapping = NULL;
455 if (vma->vm_file)
456 mapping = vma->vm_file->f_mapping;
458 if (mapping) {
459 spin_lock(&mapping->i_mmap_lock);
460 vma->vm_truncate_count = mapping->truncate_count;
463 __vma_link(mm, vma, prev, rb_link, rb_parent);
464 __vma_link_file(vma);
466 if (mapping)
467 spin_unlock(&mapping->i_mmap_lock);
469 mm->map_count++;
470 validate_mm(mm);
474 * Helper for vma_adjust in the split_vma insert case:
475 * insert vm structure into list and rbtree and anon_vma,
476 * but it has already been inserted into prio_tree earlier.
478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
480 struct vm_area_struct *__vma, *prev;
481 struct rb_node **rb_link, *rb_parent;
483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485 __vma_link(mm, vma, prev, rb_link, rb_parent);
486 mm->map_count++;
489 static inline void
490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491 struct vm_area_struct *prev)
493 struct vm_area_struct *next = vma->vm_next;
495 prev->vm_next = next;
496 if (next)
497 next->vm_prev = prev;
498 rb_erase(&vma->vm_rb, &mm->mm_rb);
499 if (mm->mmap_cache == vma)
500 mm->mmap_cache = prev;
504 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
505 * is already present in an i_mmap tree without adjusting the tree.
506 * The following helper function should be used when such adjustments
507 * are necessary. The "insert" vma (if any) is to be inserted
508 * before we drop the necessary locks.
510 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
513 struct mm_struct *mm = vma->vm_mm;
514 struct vm_area_struct *next = vma->vm_next;
515 struct vm_area_struct *importer = NULL;
516 struct address_space *mapping = NULL;
517 struct prio_tree_root *root = NULL;
518 struct anon_vma *anon_vma = NULL;
519 struct file *file = vma->vm_file;
520 long adjust_next = 0;
521 int remove_next = 0;
523 if (next && !insert) {
524 struct vm_area_struct *exporter = NULL;
526 if (end >= next->vm_end) {
528 * vma expands, overlapping all the next, and
529 * perhaps the one after too (mprotect case 6).
531 again: remove_next = 1 + (end > next->vm_end);
532 end = next->vm_end;
533 exporter = next;
534 importer = vma;
535 } else if (end > next->vm_start) {
537 * vma expands, overlapping part of the next:
538 * mprotect case 5 shifting the boundary up.
540 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
541 exporter = next;
542 importer = vma;
543 } else if (end < vma->vm_end) {
545 * vma shrinks, and !insert tells it's not
546 * split_vma inserting another: so it must be
547 * mprotect case 4 shifting the boundary down.
549 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
550 exporter = vma;
551 importer = next;
555 * Easily overlooked: when mprotect shifts the boundary,
556 * make sure the expanding vma has anon_vma set if the
557 * shrinking vma had, to cover any anon pages imported.
559 if (exporter && exporter->anon_vma && !importer->anon_vma) {
560 if (anon_vma_clone(importer, exporter))
561 return -ENOMEM;
562 importer->anon_vma = exporter->anon_vma;
566 if (file) {
567 mapping = file->f_mapping;
568 if (!(vma->vm_flags & VM_NONLINEAR))
569 root = &mapping->i_mmap;
570 spin_lock(&mapping->i_mmap_lock);
571 if (importer &&
572 vma->vm_truncate_count != next->vm_truncate_count) {
574 * unmap_mapping_range might be in progress:
575 * ensure that the expanding vma is rescanned.
577 importer->vm_truncate_count = 0;
579 if (insert) {
580 insert->vm_truncate_count = vma->vm_truncate_count;
582 * Put into prio_tree now, so instantiated pages
583 * are visible to arm/parisc __flush_dcache_page
584 * throughout; but we cannot insert into address
585 * space until vma start or end is updated.
587 __vma_link_file(insert);
592 * When changing only vma->vm_end, we don't really need anon_vma
593 * lock. This is a fairly rare case by itself, but the anon_vma
594 * lock may be shared between many sibling processes. Skipping
595 * the lock for brk adjustments makes a difference sometimes.
597 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
598 anon_vma = vma->anon_vma;
599 anon_vma_lock(anon_vma);
602 if (root) {
603 flush_dcache_mmap_lock(mapping);
604 vma_prio_tree_remove(vma, root);
605 if (adjust_next)
606 vma_prio_tree_remove(next, root);
609 vma->vm_start = start;
610 vma->vm_end = end;
611 vma->vm_pgoff = pgoff;
612 if (adjust_next) {
613 next->vm_start += adjust_next << PAGE_SHIFT;
614 next->vm_pgoff += adjust_next;
617 if (root) {
618 if (adjust_next)
619 vma_prio_tree_insert(next, root);
620 vma_prio_tree_insert(vma, root);
621 flush_dcache_mmap_unlock(mapping);
624 if (remove_next) {
626 * vma_merge has merged next into vma, and needs
627 * us to remove next before dropping the locks.
629 __vma_unlink(mm, next, vma);
630 if (file)
631 __remove_shared_vm_struct(next, file, mapping);
632 } else if (insert) {
634 * split_vma has split insert from vma, and needs
635 * us to insert it before dropping the locks
636 * (it may either follow vma or precede it).
638 __insert_vm_struct(mm, insert);
641 if (anon_vma)
642 anon_vma_unlock(anon_vma);
643 if (mapping)
644 spin_unlock(&mapping->i_mmap_lock);
646 if (remove_next) {
647 if (file) {
648 fput(file);
649 if (next->vm_flags & VM_EXECUTABLE)
650 removed_exe_file_vma(mm);
652 if (next->anon_vma)
653 anon_vma_merge(vma, next);
654 mm->map_count--;
655 mpol_put(vma_policy(next));
656 kmem_cache_free(vm_area_cachep, next);
658 * In mprotect's case 6 (see comments on vma_merge),
659 * we must remove another next too. It would clutter
660 * up the code too much to do both in one go.
662 if (remove_next == 2) {
663 next = vma->vm_next;
664 goto again;
668 validate_mm(mm);
670 return 0;
674 * If the vma has a ->close operation then the driver probably needs to release
675 * per-vma resources, so we don't attempt to merge those.
677 static inline int is_mergeable_vma(struct vm_area_struct *vma,
678 struct file *file, unsigned long vm_flags)
680 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
681 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
682 return 0;
683 if (vma->vm_file != file)
684 return 0;
685 if (vma->vm_ops && vma->vm_ops->close)
686 return 0;
687 return 1;
690 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
691 struct anon_vma *anon_vma2)
693 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
713 if (vma->vm_pgoff == vm_pgoff)
714 return 1;
716 return 0;
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
730 if (is_mergeable_vma(vma, file, vm_flags) &&
731 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
732 pgoff_t vm_pglen;
733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 return 1;
737 return 0;
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
756 * AAAA AAAA AAAA AAAA
757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
758 * cannot merge might become might become might become
759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
761 * mremap move: PPPPNNNNNNNN 8
762 * AAAA
763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
764 * might become case 1 below case 2 below case 3 below
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 struct vm_area_struct *prev, unsigned long addr,
771 unsigned long end, unsigned long vm_flags,
772 struct anon_vma *anon_vma, struct file *file,
773 pgoff_t pgoff, struct mempolicy *policy)
775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 struct vm_area_struct *area, *next;
777 int err;
780 * We later require that vma->vm_flags == vm_flags,
781 * so this tests vma->vm_flags & VM_SPECIAL, too.
783 if (vm_flags & VM_SPECIAL)
784 return NULL;
786 if (prev)
787 next = prev->vm_next;
788 else
789 next = mm->mmap;
790 area = next;
791 if (next && next->vm_end == end) /* cases 6, 7, 8 */
792 next = next->vm_next;
795 * Can it merge with the predecessor?
797 if (prev && prev->vm_end == addr &&
798 mpol_equal(vma_policy(prev), policy) &&
799 can_vma_merge_after(prev, vm_flags,
800 anon_vma, file, pgoff)) {
802 * OK, it can. Can we now merge in the successor as well?
804 if (next && end == next->vm_start &&
805 mpol_equal(policy, vma_policy(next)) &&
806 can_vma_merge_before(next, vm_flags,
807 anon_vma, file, pgoff+pglen) &&
808 is_mergeable_anon_vma(prev->anon_vma,
809 next->anon_vma)) {
810 /* cases 1, 6 */
811 err = vma_adjust(prev, prev->vm_start,
812 next->vm_end, prev->vm_pgoff, NULL);
813 } else /* cases 2, 5, 7 */
814 err = vma_adjust(prev, prev->vm_start,
815 end, prev->vm_pgoff, NULL);
816 if (err)
817 return NULL;
818 return prev;
822 * Can this new request be merged in front of next?
824 if (next && end == next->vm_start &&
825 mpol_equal(policy, vma_policy(next)) &&
826 can_vma_merge_before(next, vm_flags,
827 anon_vma, file, pgoff+pglen)) {
828 if (prev && addr < prev->vm_end) /* case 4 */
829 err = vma_adjust(prev, prev->vm_start,
830 addr, prev->vm_pgoff, NULL);
831 else /* cases 3, 8 */
832 err = vma_adjust(area, addr, next->vm_end,
833 next->vm_pgoff - pglen, NULL);
834 if (err)
835 return NULL;
836 return area;
839 return NULL;
843 * Rough compatbility check to quickly see if it's even worth looking
844 * at sharing an anon_vma.
846 * They need to have the same vm_file, and the flags can only differ
847 * in things that mprotect may change.
849 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
850 * we can merge the two vma's. For example, we refuse to merge a vma if
851 * there is a vm_ops->close() function, because that indicates that the
852 * driver is doing some kind of reference counting. But that doesn't
853 * really matter for the anon_vma sharing case.
855 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
857 return a->vm_end == b->vm_start &&
858 mpol_equal(vma_policy(a), vma_policy(b)) &&
859 a->vm_file == b->vm_file &&
860 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
861 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
865 * Do some basic sanity checking to see if we can re-use the anon_vma
866 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
867 * the same as 'old', the other will be the new one that is trying
868 * to share the anon_vma.
870 * NOTE! This runs with mm_sem held for reading, so it is possible that
871 * the anon_vma of 'old' is concurrently in the process of being set up
872 * by another page fault trying to merge _that_. But that's ok: if it
873 * is being set up, that automatically means that it will be a singleton
874 * acceptable for merging, so we can do all of this optimistically. But
875 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
877 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
878 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
879 * is to return an anon_vma that is "complex" due to having gone through
880 * a fork).
882 * We also make sure that the two vma's are compatible (adjacent,
883 * and with the same memory policies). That's all stable, even with just
884 * a read lock on the mm_sem.
886 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
888 if (anon_vma_compatible(a, b)) {
889 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
891 if (anon_vma && list_is_singular(&old->anon_vma_chain))
892 return anon_vma;
894 return NULL;
898 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
899 * neighbouring vmas for a suitable anon_vma, before it goes off
900 * to allocate a new anon_vma. It checks because a repetitive
901 * sequence of mprotects and faults may otherwise lead to distinct
902 * anon_vmas being allocated, preventing vma merge in subsequent
903 * mprotect.
905 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
907 struct anon_vma *anon_vma;
908 struct vm_area_struct *near;
910 near = vma->vm_next;
911 if (!near)
912 goto try_prev;
914 anon_vma = reusable_anon_vma(near, vma, near);
915 if (anon_vma)
916 return anon_vma;
917 try_prev:
919 * It is potentially slow to have to call find_vma_prev here.
920 * But it's only on the first write fault on the vma, not
921 * every time, and we could devise a way to avoid it later
922 * (e.g. stash info in next's anon_vma_node when assigning
923 * an anon_vma, or when trying vma_merge). Another time.
925 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
926 if (!near)
927 goto none;
929 anon_vma = reusable_anon_vma(near, near, vma);
930 if (anon_vma)
931 return anon_vma;
932 none:
934 * There's no absolute need to look only at touching neighbours:
935 * we could search further afield for "compatible" anon_vmas.
936 * But it would probably just be a waste of time searching,
937 * or lead to too many vmas hanging off the same anon_vma.
938 * We're trying to allow mprotect remerging later on,
939 * not trying to minimize memory used for anon_vmas.
941 return NULL;
944 #ifdef CONFIG_PROC_FS
945 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
946 struct file *file, long pages)
948 const unsigned long stack_flags
949 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
951 if (file) {
952 mm->shared_vm += pages;
953 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
954 mm->exec_vm += pages;
955 } else if (flags & stack_flags)
956 mm->stack_vm += pages;
957 if (flags & (VM_RESERVED|VM_IO))
958 mm->reserved_vm += pages;
960 #endif /* CONFIG_PROC_FS */
963 * The caller must hold down_write(&current->mm->mmap_sem).
966 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
967 unsigned long len, unsigned long prot,
968 unsigned long flags, unsigned long pgoff)
970 struct mm_struct * mm = current->mm;
971 struct inode *inode;
972 unsigned int vm_flags;
973 int error;
974 unsigned long reqprot = prot;
977 * Does the application expect PROT_READ to imply PROT_EXEC?
979 * (the exception is when the underlying filesystem is noexec
980 * mounted, in which case we dont add PROT_EXEC.)
982 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
983 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
984 prot |= PROT_EXEC;
986 if (!len)
987 return -EINVAL;
989 if (!(flags & MAP_FIXED))
990 addr = round_hint_to_min(addr);
992 /* Careful about overflows.. */
993 len = PAGE_ALIGN(len);
994 if (!len)
995 return -ENOMEM;
997 /* offset overflow? */
998 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
999 return -EOVERFLOW;
1001 /* Too many mappings? */
1002 if (mm->map_count > sysctl_max_map_count)
1003 return -ENOMEM;
1005 /* Obtain the address to map to. we verify (or select) it and ensure
1006 * that it represents a valid section of the address space.
1008 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1009 if (addr & ~PAGE_MASK)
1010 return addr;
1012 /* Do simple checking here so the lower-level routines won't have
1013 * to. we assume access permissions have been handled by the open
1014 * of the memory object, so we don't do any here.
1016 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1017 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1019 if (flags & MAP_LOCKED)
1020 if (!can_do_mlock())
1021 return -EPERM;
1023 /* mlock MCL_FUTURE? */
1024 if (vm_flags & VM_LOCKED) {
1025 unsigned long locked, lock_limit;
1026 locked = len >> PAGE_SHIFT;
1027 locked += mm->locked_vm;
1028 lock_limit = rlimit(RLIMIT_MEMLOCK);
1029 lock_limit >>= PAGE_SHIFT;
1030 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1031 return -EAGAIN;
1034 inode = file ? file->f_path.dentry->d_inode : NULL;
1036 if (file) {
1037 switch (flags & MAP_TYPE) {
1038 case MAP_SHARED:
1039 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1040 return -EACCES;
1043 * Make sure we don't allow writing to an append-only
1044 * file..
1046 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1047 return -EACCES;
1050 * Make sure there are no mandatory locks on the file.
1052 if (locks_verify_locked(inode))
1053 return -EAGAIN;
1055 vm_flags |= VM_SHARED | VM_MAYSHARE;
1056 if (!(file->f_mode & FMODE_WRITE))
1057 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1059 /* fall through */
1060 case MAP_PRIVATE:
1061 if (!(file->f_mode & FMODE_READ))
1062 return -EACCES;
1063 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1064 if (vm_flags & VM_EXEC)
1065 return -EPERM;
1066 vm_flags &= ~VM_MAYEXEC;
1069 if (!file->f_op || !file->f_op->mmap)
1070 return -ENODEV;
1071 break;
1073 default:
1074 return -EINVAL;
1076 } else {
1077 switch (flags & MAP_TYPE) {
1078 case MAP_SHARED:
1080 * Ignore pgoff.
1082 pgoff = 0;
1083 vm_flags |= VM_SHARED | VM_MAYSHARE;
1084 break;
1085 case MAP_PRIVATE:
1087 * Set pgoff according to addr for anon_vma.
1089 pgoff = addr >> PAGE_SHIFT;
1090 break;
1091 default:
1092 return -EINVAL;
1096 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1097 if (error)
1098 return error;
1100 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1102 EXPORT_SYMBOL(do_mmap_pgoff);
1104 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1105 unsigned long, prot, unsigned long, flags,
1106 unsigned long, fd, unsigned long, pgoff)
1108 struct file *file = NULL;
1109 unsigned long retval = -EBADF;
1111 if (!(flags & MAP_ANONYMOUS)) {
1112 audit_mmap_fd(fd, flags);
1113 if (unlikely(flags & MAP_HUGETLB))
1114 return -EINVAL;
1115 file = fget(fd);
1116 if (!file)
1117 goto out;
1118 } else if (flags & MAP_HUGETLB) {
1119 struct user_struct *user = NULL;
1121 * VM_NORESERVE is used because the reservations will be
1122 * taken when vm_ops->mmap() is called
1123 * A dummy user value is used because we are not locking
1124 * memory so no accounting is necessary
1126 len = ALIGN(len, huge_page_size(&default_hstate));
1127 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1128 &user, HUGETLB_ANONHUGE_INODE);
1129 if (IS_ERR(file))
1130 return PTR_ERR(file);
1133 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1135 down_write(&current->mm->mmap_sem);
1136 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1137 up_write(&current->mm->mmap_sem);
1139 if (file)
1140 fput(file);
1141 out:
1142 return retval;
1145 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1146 struct mmap_arg_struct {
1147 unsigned long addr;
1148 unsigned long len;
1149 unsigned long prot;
1150 unsigned long flags;
1151 unsigned long fd;
1152 unsigned long offset;
1155 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1157 struct mmap_arg_struct a;
1159 if (copy_from_user(&a, arg, sizeof(a)))
1160 return -EFAULT;
1161 if (a.offset & ~PAGE_MASK)
1162 return -EINVAL;
1164 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1165 a.offset >> PAGE_SHIFT);
1167 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1170 * Some shared mappigns will want the pages marked read-only
1171 * to track write events. If so, we'll downgrade vm_page_prot
1172 * to the private version (using protection_map[] without the
1173 * VM_SHARED bit).
1175 int vma_wants_writenotify(struct vm_area_struct *vma)
1177 unsigned int vm_flags = vma->vm_flags;
1179 /* If it was private or non-writable, the write bit is already clear */
1180 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1181 return 0;
1183 /* The backer wishes to know when pages are first written to? */
1184 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1185 return 1;
1187 /* The open routine did something to the protections already? */
1188 if (pgprot_val(vma->vm_page_prot) !=
1189 pgprot_val(vm_get_page_prot(vm_flags)))
1190 return 0;
1192 /* Specialty mapping? */
1193 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1194 return 0;
1196 /* Can the mapping track the dirty pages? */
1197 return vma->vm_file && vma->vm_file->f_mapping &&
1198 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1202 * We account for memory if it's a private writeable mapping,
1203 * not hugepages and VM_NORESERVE wasn't set.
1205 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1208 * hugetlb has its own accounting separate from the core VM
1209 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1211 if (file && is_file_hugepages(file))
1212 return 0;
1214 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1217 unsigned long mmap_region(struct file *file, unsigned long addr,
1218 unsigned long len, unsigned long flags,
1219 unsigned int vm_flags, unsigned long pgoff)
1221 struct mm_struct *mm = current->mm;
1222 struct vm_area_struct *vma, *prev;
1223 int correct_wcount = 0;
1224 int error;
1225 struct rb_node **rb_link, *rb_parent;
1226 unsigned long charged = 0;
1227 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1229 /* Clear old maps */
1230 error = -ENOMEM;
1231 munmap_back:
1232 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1233 if (vma && vma->vm_start < addr + len) {
1234 if (do_munmap(mm, addr, len))
1235 return -ENOMEM;
1236 goto munmap_back;
1239 /* Check against address space limit. */
1240 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1241 return -ENOMEM;
1244 * Set 'VM_NORESERVE' if we should not account for the
1245 * memory use of this mapping.
1247 if ((flags & MAP_NORESERVE)) {
1248 /* We honor MAP_NORESERVE if allowed to overcommit */
1249 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1250 vm_flags |= VM_NORESERVE;
1252 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1253 if (file && is_file_hugepages(file))
1254 vm_flags |= VM_NORESERVE;
1258 * Private writable mapping: check memory availability
1260 if (accountable_mapping(file, vm_flags)) {
1261 charged = len >> PAGE_SHIFT;
1262 if (security_vm_enough_memory(charged))
1263 return -ENOMEM;
1264 vm_flags |= VM_ACCOUNT;
1268 * Can we just expand an old mapping?
1270 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1271 if (vma)
1272 goto out;
1275 * Determine the object being mapped and call the appropriate
1276 * specific mapper. the address has already been validated, but
1277 * not unmapped, but the maps are removed from the list.
1279 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1280 if (!vma) {
1281 error = -ENOMEM;
1282 goto unacct_error;
1285 vma->vm_mm = mm;
1286 vma->vm_start = addr;
1287 vma->vm_end = addr + len;
1288 vma->vm_flags = vm_flags;
1289 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1290 vma->vm_pgoff = pgoff;
1291 INIT_LIST_HEAD(&vma->anon_vma_chain);
1293 if (file) {
1294 error = -EINVAL;
1295 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1296 goto free_vma;
1297 if (vm_flags & VM_DENYWRITE) {
1298 error = deny_write_access(file);
1299 if (error)
1300 goto free_vma;
1301 correct_wcount = 1;
1303 vma->vm_file = file;
1304 get_file(file);
1305 error = file->f_op->mmap(file, vma);
1306 if (error)
1307 goto unmap_and_free_vma;
1308 if (vm_flags & VM_EXECUTABLE)
1309 added_exe_file_vma(mm);
1311 /* Can addr have changed??
1313 * Answer: Yes, several device drivers can do it in their
1314 * f_op->mmap method. -DaveM
1316 addr = vma->vm_start;
1317 pgoff = vma->vm_pgoff;
1318 vm_flags = vma->vm_flags;
1319 } else if (vm_flags & VM_SHARED) {
1320 error = shmem_zero_setup(vma);
1321 if (error)
1322 goto free_vma;
1325 if (vma_wants_writenotify(vma)) {
1326 pgprot_t pprot = vma->vm_page_prot;
1328 /* Can vma->vm_page_prot have changed??
1330 * Answer: Yes, drivers may have changed it in their
1331 * f_op->mmap method.
1333 * Ensures that vmas marked as uncached stay that way.
1335 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1336 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1337 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1340 vma_link(mm, vma, prev, rb_link, rb_parent);
1341 file = vma->vm_file;
1343 /* Once vma denies write, undo our temporary denial count */
1344 if (correct_wcount)
1345 atomic_inc(&inode->i_writecount);
1346 out:
1347 perf_event_mmap(vma);
1349 mm->total_vm += len >> PAGE_SHIFT;
1350 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1351 if (vm_flags & VM_LOCKED) {
1352 if (!mlock_vma_pages_range(vma, addr, addr + len))
1353 mm->locked_vm += (len >> PAGE_SHIFT);
1354 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1355 make_pages_present(addr, addr + len);
1356 return addr;
1358 unmap_and_free_vma:
1359 if (correct_wcount)
1360 atomic_inc(&inode->i_writecount);
1361 vma->vm_file = NULL;
1362 fput(file);
1364 /* Undo any partial mapping done by a device driver. */
1365 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1366 charged = 0;
1367 free_vma:
1368 kmem_cache_free(vm_area_cachep, vma);
1369 unacct_error:
1370 if (charged)
1371 vm_unacct_memory(charged);
1372 return error;
1375 /* Get an address range which is currently unmapped.
1376 * For shmat() with addr=0.
1378 * Ugly calling convention alert:
1379 * Return value with the low bits set means error value,
1380 * ie
1381 * if (ret & ~PAGE_MASK)
1382 * error = ret;
1384 * This function "knows" that -ENOMEM has the bits set.
1386 #ifndef HAVE_ARCH_UNMAPPED_AREA
1387 unsigned long
1388 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1389 unsigned long len, unsigned long pgoff, unsigned long flags)
1391 struct mm_struct *mm = current->mm;
1392 struct vm_area_struct *vma;
1393 unsigned long start_addr;
1395 if (len > TASK_SIZE)
1396 return -ENOMEM;
1398 if (flags & MAP_FIXED)
1399 return addr;
1401 if (addr) {
1402 addr = PAGE_ALIGN(addr);
1403 vma = find_vma(mm, addr);
1404 if (TASK_SIZE - len >= addr &&
1405 (!vma || addr + len <= vma->vm_start))
1406 return addr;
1408 if (len > mm->cached_hole_size) {
1409 start_addr = addr = mm->free_area_cache;
1410 } else {
1411 start_addr = addr = TASK_UNMAPPED_BASE;
1412 mm->cached_hole_size = 0;
1415 full_search:
1416 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1417 /* At this point: (!vma || addr < vma->vm_end). */
1418 if (TASK_SIZE - len < addr) {
1420 * Start a new search - just in case we missed
1421 * some holes.
1423 if (start_addr != TASK_UNMAPPED_BASE) {
1424 addr = TASK_UNMAPPED_BASE;
1425 start_addr = addr;
1426 mm->cached_hole_size = 0;
1427 goto full_search;
1429 return -ENOMEM;
1431 if (!vma || addr + len <= vma->vm_start) {
1433 * Remember the place where we stopped the search:
1435 mm->free_area_cache = addr + len;
1436 return addr;
1438 if (addr + mm->cached_hole_size < vma->vm_start)
1439 mm->cached_hole_size = vma->vm_start - addr;
1440 addr = vma->vm_end;
1443 #endif
1445 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1448 * Is this a new hole at the lowest possible address?
1450 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1451 mm->free_area_cache = addr;
1452 mm->cached_hole_size = ~0UL;
1457 * This mmap-allocator allocates new areas top-down from below the
1458 * stack's low limit (the base):
1460 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1461 unsigned long
1462 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1463 const unsigned long len, const unsigned long pgoff,
1464 const unsigned long flags)
1466 struct vm_area_struct *vma;
1467 struct mm_struct *mm = current->mm;
1468 unsigned long addr = addr0;
1470 /* requested length too big for entire address space */
1471 if (len > TASK_SIZE)
1472 return -ENOMEM;
1474 if (flags & MAP_FIXED)
1475 return addr;
1477 /* requesting a specific address */
1478 if (addr) {
1479 addr = PAGE_ALIGN(addr);
1480 vma = find_vma(mm, addr);
1481 if (TASK_SIZE - len >= addr &&
1482 (!vma || addr + len <= vma->vm_start))
1483 return addr;
1486 /* check if free_area_cache is useful for us */
1487 if (len <= mm->cached_hole_size) {
1488 mm->cached_hole_size = 0;
1489 mm->free_area_cache = mm->mmap_base;
1492 /* either no address requested or can't fit in requested address hole */
1493 addr = mm->free_area_cache;
1495 /* make sure it can fit in the remaining address space */
1496 if (addr > len) {
1497 vma = find_vma(mm, addr-len);
1498 if (!vma || addr <= vma->vm_start)
1499 /* remember the address as a hint for next time */
1500 return (mm->free_area_cache = addr-len);
1503 if (mm->mmap_base < len)
1504 goto bottomup;
1506 addr = mm->mmap_base-len;
1508 do {
1510 * Lookup failure means no vma is above this address,
1511 * else if new region fits below vma->vm_start,
1512 * return with success:
1514 vma = find_vma(mm, addr);
1515 if (!vma || addr+len <= vma->vm_start)
1516 /* remember the address as a hint for next time */
1517 return (mm->free_area_cache = addr);
1519 /* remember the largest hole we saw so far */
1520 if (addr + mm->cached_hole_size < vma->vm_start)
1521 mm->cached_hole_size = vma->vm_start - addr;
1523 /* try just below the current vma->vm_start */
1524 addr = vma->vm_start-len;
1525 } while (len < vma->vm_start);
1527 bottomup:
1529 * A failed mmap() very likely causes application failure,
1530 * so fall back to the bottom-up function here. This scenario
1531 * can happen with large stack limits and large mmap()
1532 * allocations.
1534 mm->cached_hole_size = ~0UL;
1535 mm->free_area_cache = TASK_UNMAPPED_BASE;
1536 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1538 * Restore the topdown base:
1540 mm->free_area_cache = mm->mmap_base;
1541 mm->cached_hole_size = ~0UL;
1543 return addr;
1545 #endif
1547 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1550 * Is this a new hole at the highest possible address?
1552 if (addr > mm->free_area_cache)
1553 mm->free_area_cache = addr;
1555 /* dont allow allocations above current base */
1556 if (mm->free_area_cache > mm->mmap_base)
1557 mm->free_area_cache = mm->mmap_base;
1560 unsigned long
1561 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1562 unsigned long pgoff, unsigned long flags)
1564 unsigned long (*get_area)(struct file *, unsigned long,
1565 unsigned long, unsigned long, unsigned long);
1567 unsigned long error = arch_mmap_check(addr, len, flags);
1568 if (error)
1569 return error;
1571 /* Careful about overflows.. */
1572 if (len > TASK_SIZE)
1573 return -ENOMEM;
1575 get_area = current->mm->get_unmapped_area;
1576 if (file && file->f_op && file->f_op->get_unmapped_area)
1577 get_area = file->f_op->get_unmapped_area;
1578 addr = get_area(file, addr, len, pgoff, flags);
1579 if (IS_ERR_VALUE(addr))
1580 return addr;
1582 if (addr > TASK_SIZE - len)
1583 return -ENOMEM;
1584 if (addr & ~PAGE_MASK)
1585 return -EINVAL;
1587 return arch_rebalance_pgtables(addr, len);
1590 EXPORT_SYMBOL(get_unmapped_area);
1592 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1593 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1595 struct vm_area_struct *vma = NULL;
1597 if (mm) {
1598 /* Check the cache first. */
1599 /* (Cache hit rate is typically around 35%.) */
1600 vma = mm->mmap_cache;
1601 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1602 struct rb_node * rb_node;
1604 rb_node = mm->mm_rb.rb_node;
1605 vma = NULL;
1607 while (rb_node) {
1608 struct vm_area_struct * vma_tmp;
1610 vma_tmp = rb_entry(rb_node,
1611 struct vm_area_struct, vm_rb);
1613 if (vma_tmp->vm_end > addr) {
1614 vma = vma_tmp;
1615 if (vma_tmp->vm_start <= addr)
1616 break;
1617 rb_node = rb_node->rb_left;
1618 } else
1619 rb_node = rb_node->rb_right;
1621 if (vma)
1622 mm->mmap_cache = vma;
1625 return vma;
1628 EXPORT_SYMBOL(find_vma);
1630 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1631 struct vm_area_struct *
1632 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1633 struct vm_area_struct **pprev)
1635 struct vm_area_struct *vma = NULL, *prev = NULL;
1636 struct rb_node *rb_node;
1637 if (!mm)
1638 goto out;
1640 /* Guard against addr being lower than the first VMA */
1641 vma = mm->mmap;
1643 /* Go through the RB tree quickly. */
1644 rb_node = mm->mm_rb.rb_node;
1646 while (rb_node) {
1647 struct vm_area_struct *vma_tmp;
1648 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1650 if (addr < vma_tmp->vm_end) {
1651 rb_node = rb_node->rb_left;
1652 } else {
1653 prev = vma_tmp;
1654 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1655 break;
1656 rb_node = rb_node->rb_right;
1660 out:
1661 *pprev = prev;
1662 return prev ? prev->vm_next : vma;
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1670 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1672 struct mm_struct *mm = vma->vm_mm;
1673 struct rlimit *rlim = current->signal->rlim;
1674 unsigned long new_start;
1676 /* address space limit tests */
1677 if (!may_expand_vm(mm, grow))
1678 return -ENOMEM;
1680 /* Stack limit test */
1681 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682 return -ENOMEM;
1684 /* mlock limit tests */
1685 if (vma->vm_flags & VM_LOCKED) {
1686 unsigned long locked;
1687 unsigned long limit;
1688 locked = mm->locked_vm + grow;
1689 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690 limit >>= PAGE_SHIFT;
1691 if (locked > limit && !capable(CAP_IPC_LOCK))
1692 return -ENOMEM;
1695 /* Check to ensure the stack will not grow into a hugetlb-only region */
1696 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697 vma->vm_end - size;
1698 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699 return -EFAULT;
1702 * Overcommit.. This must be the final test, as it will
1703 * update security statistics.
1705 if (security_vm_enough_memory_mm(mm, grow))
1706 return -ENOMEM;
1708 /* Ok, everything looks good - let it rip */
1709 mm->total_vm += grow;
1710 if (vma->vm_flags & VM_LOCKED)
1711 mm->locked_vm += grow;
1712 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713 return 0;
1716 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719 * vma is the last one with address > vma->vm_end. Have to extend vma.
1721 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1723 int error;
1725 if (!(vma->vm_flags & VM_GROWSUP))
1726 return -EFAULT;
1729 * We must make sure the anon_vma is allocated
1730 * so that the anon_vma locking is not a noop.
1732 if (unlikely(anon_vma_prepare(vma)))
1733 return -ENOMEM;
1734 vma_lock_anon_vma(vma);
1737 * vma->vm_start/vm_end cannot change under us because the caller
1738 * is required to hold the mmap_sem in read mode. We need the
1739 * anon_vma lock to serialize against concurrent expand_stacks.
1740 * Also guard against wrapping around to address 0.
1742 if (address < PAGE_ALIGN(address+4))
1743 address = PAGE_ALIGN(address+4);
1744 else {
1745 vma_unlock_anon_vma(vma);
1746 return -ENOMEM;
1748 error = 0;
1750 /* Somebody else might have raced and expanded it already */
1751 if (address > vma->vm_end) {
1752 unsigned long size, grow;
1754 size = address - vma->vm_start;
1755 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1757 error = acct_stack_growth(vma, size, grow);
1758 if (!error) {
1759 vma->vm_end = address;
1760 perf_event_mmap(vma);
1763 vma_unlock_anon_vma(vma);
1764 return error;
1766 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1769 * vma is the first one with address < vma->vm_start. Have to extend vma.
1771 static int expand_downwards(struct vm_area_struct *vma,
1772 unsigned long address)
1774 int error;
1777 * We must make sure the anon_vma is allocated
1778 * so that the anon_vma locking is not a noop.
1780 if (unlikely(anon_vma_prepare(vma)))
1781 return -ENOMEM;
1783 address &= PAGE_MASK;
1784 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1785 if (error)
1786 return error;
1788 vma_lock_anon_vma(vma);
1791 * vma->vm_start/vm_end cannot change under us because the caller
1792 * is required to hold the mmap_sem in read mode. We need the
1793 * anon_vma lock to serialize against concurrent expand_stacks.
1796 /* Somebody else might have raced and expanded it already */
1797 if (address < vma->vm_start) {
1798 unsigned long size, grow;
1800 size = vma->vm_end - address;
1801 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1803 error = acct_stack_growth(vma, size, grow);
1804 if (!error) {
1805 vma->vm_start = address;
1806 vma->vm_pgoff -= grow;
1807 perf_event_mmap(vma);
1810 vma_unlock_anon_vma(vma);
1811 return error;
1814 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1816 return expand_downwards(vma, address);
1819 #ifdef CONFIG_STACK_GROWSUP
1820 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822 return expand_upwards(vma, address);
1825 struct vm_area_struct *
1826 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1828 struct vm_area_struct *vma, *prev;
1830 addr &= PAGE_MASK;
1831 vma = find_vma_prev(mm, addr, &prev);
1832 if (vma && (vma->vm_start <= addr))
1833 return vma;
1834 if (!prev || expand_stack(prev, addr))
1835 return NULL;
1836 if (prev->vm_flags & VM_LOCKED) {
1837 mlock_vma_pages_range(prev, addr, prev->vm_end);
1839 return prev;
1841 #else
1842 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1844 return expand_downwards(vma, address);
1847 struct vm_area_struct *
1848 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1850 struct vm_area_struct * vma;
1851 unsigned long start;
1853 addr &= PAGE_MASK;
1854 vma = find_vma(mm,addr);
1855 if (!vma)
1856 return NULL;
1857 if (vma->vm_start <= addr)
1858 return vma;
1859 if (!(vma->vm_flags & VM_GROWSDOWN))
1860 return NULL;
1861 start = vma->vm_start;
1862 if (expand_stack(vma, addr))
1863 return NULL;
1864 if (vma->vm_flags & VM_LOCKED) {
1865 mlock_vma_pages_range(vma, addr, start);
1867 return vma;
1869 #endif
1872 * Ok - we have the memory areas we should free on the vma list,
1873 * so release them, and do the vma updates.
1875 * Called with the mm semaphore held.
1877 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1879 /* Update high watermark before we lower total_vm */
1880 update_hiwater_vm(mm);
1881 do {
1882 long nrpages = vma_pages(vma);
1884 mm->total_vm -= nrpages;
1885 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1886 vma = remove_vma(vma);
1887 } while (vma);
1888 validate_mm(mm);
1892 * Get rid of page table information in the indicated region.
1894 * Called with the mm semaphore held.
1896 static void unmap_region(struct mm_struct *mm,
1897 struct vm_area_struct *vma, struct vm_area_struct *prev,
1898 unsigned long start, unsigned long end)
1900 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1901 struct mmu_gather *tlb;
1902 unsigned long nr_accounted = 0;
1904 lru_add_drain();
1905 tlb = tlb_gather_mmu(mm, 0);
1906 update_hiwater_rss(mm);
1907 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1908 vm_unacct_memory(nr_accounted);
1909 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1910 next? next->vm_start: 0);
1911 tlb_finish_mmu(tlb, start, end);
1915 * Create a list of vma's touched by the unmap, removing them from the mm's
1916 * vma list as we go..
1918 static void
1919 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1920 struct vm_area_struct *prev, unsigned long end)
1922 struct vm_area_struct **insertion_point;
1923 struct vm_area_struct *tail_vma = NULL;
1924 unsigned long addr;
1926 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1927 vma->vm_prev = NULL;
1928 do {
1929 rb_erase(&vma->vm_rb, &mm->mm_rb);
1930 mm->map_count--;
1931 tail_vma = vma;
1932 vma = vma->vm_next;
1933 } while (vma && vma->vm_start < end);
1934 *insertion_point = vma;
1935 if (vma)
1936 vma->vm_prev = prev;
1937 tail_vma->vm_next = NULL;
1938 if (mm->unmap_area == arch_unmap_area)
1939 addr = prev ? prev->vm_end : mm->mmap_base;
1940 else
1941 addr = vma ? vma->vm_start : mm->mmap_base;
1942 mm->unmap_area(mm, addr);
1943 mm->mmap_cache = NULL; /* Kill the cache. */
1947 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1948 * munmap path where it doesn't make sense to fail.
1950 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1951 unsigned long addr, int new_below)
1953 struct mempolicy *pol;
1954 struct vm_area_struct *new;
1955 int err = -ENOMEM;
1957 if (is_vm_hugetlb_page(vma) && (addr &
1958 ~(huge_page_mask(hstate_vma(vma)))))
1959 return -EINVAL;
1961 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1962 if (!new)
1963 goto out_err;
1965 /* most fields are the same, copy all, and then fixup */
1966 *new = *vma;
1968 INIT_LIST_HEAD(&new->anon_vma_chain);
1970 if (new_below)
1971 new->vm_end = addr;
1972 else {
1973 new->vm_start = addr;
1974 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1977 pol = mpol_dup(vma_policy(vma));
1978 if (IS_ERR(pol)) {
1979 err = PTR_ERR(pol);
1980 goto out_free_vma;
1982 vma_set_policy(new, pol);
1984 if (anon_vma_clone(new, vma))
1985 goto out_free_mpol;
1987 if (new->vm_file) {
1988 get_file(new->vm_file);
1989 if (vma->vm_flags & VM_EXECUTABLE)
1990 added_exe_file_vma(mm);
1993 if (new->vm_ops && new->vm_ops->open)
1994 new->vm_ops->open(new);
1996 if (new_below)
1997 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1998 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1999 else
2000 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2002 /* Success. */
2003 if (!err)
2004 return 0;
2006 /* Clean everything up if vma_adjust failed. */
2007 if (new->vm_ops && new->vm_ops->close)
2008 new->vm_ops->close(new);
2009 if (new->vm_file) {
2010 if (vma->vm_flags & VM_EXECUTABLE)
2011 removed_exe_file_vma(mm);
2012 fput(new->vm_file);
2014 unlink_anon_vmas(new);
2015 out_free_mpol:
2016 mpol_put(pol);
2017 out_free_vma:
2018 kmem_cache_free(vm_area_cachep, new);
2019 out_err:
2020 return err;
2024 * Split a vma into two pieces at address 'addr', a new vma is allocated
2025 * either for the first part or the tail.
2027 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2028 unsigned long addr, int new_below)
2030 if (mm->map_count >= sysctl_max_map_count)
2031 return -ENOMEM;
2033 return __split_vma(mm, vma, addr, new_below);
2036 /* Munmap is split into 2 main parts -- this part which finds
2037 * what needs doing, and the areas themselves, which do the
2038 * work. This now handles partial unmappings.
2039 * Jeremy Fitzhardinge <jeremy@goop.org>
2041 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2043 unsigned long end;
2044 struct vm_area_struct *vma, *prev, *last;
2046 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2047 return -EINVAL;
2049 if ((len = PAGE_ALIGN(len)) == 0)
2050 return -EINVAL;
2052 /* Find the first overlapping VMA */
2053 vma = find_vma_prev(mm, start, &prev);
2054 if (!vma)
2055 return 0;
2056 /* we have start < vma->vm_end */
2058 /* if it doesn't overlap, we have nothing.. */
2059 end = start + len;
2060 if (vma->vm_start >= end)
2061 return 0;
2064 * If we need to split any vma, do it now to save pain later.
2066 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2067 * unmapped vm_area_struct will remain in use: so lower split_vma
2068 * places tmp vma above, and higher split_vma places tmp vma below.
2070 if (start > vma->vm_start) {
2071 int error;
2074 * Make sure that map_count on return from munmap() will
2075 * not exceed its limit; but let map_count go just above
2076 * its limit temporarily, to help free resources as expected.
2078 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2079 return -ENOMEM;
2081 error = __split_vma(mm, vma, start, 0);
2082 if (error)
2083 return error;
2084 prev = vma;
2087 /* Does it split the last one? */
2088 last = find_vma(mm, end);
2089 if (last && end > last->vm_start) {
2090 int error = __split_vma(mm, last, end, 1);
2091 if (error)
2092 return error;
2094 vma = prev? prev->vm_next: mm->mmap;
2097 * unlock any mlock()ed ranges before detaching vmas
2099 if (mm->locked_vm) {
2100 struct vm_area_struct *tmp = vma;
2101 while (tmp && tmp->vm_start < end) {
2102 if (tmp->vm_flags & VM_LOCKED) {
2103 mm->locked_vm -= vma_pages(tmp);
2104 munlock_vma_pages_all(tmp);
2106 tmp = tmp->vm_next;
2111 * Remove the vma's, and unmap the actual pages
2113 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2114 unmap_region(mm, vma, prev, start, end);
2116 /* Fix up all other VM information */
2117 remove_vma_list(mm, vma);
2119 return 0;
2122 EXPORT_SYMBOL(do_munmap);
2124 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2126 int ret;
2127 struct mm_struct *mm = current->mm;
2129 profile_munmap(addr);
2131 down_write(&mm->mmap_sem);
2132 ret = do_munmap(mm, addr, len);
2133 up_write(&mm->mmap_sem);
2134 return ret;
2137 static inline void verify_mm_writelocked(struct mm_struct *mm)
2139 #ifdef CONFIG_DEBUG_VM
2140 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2141 WARN_ON(1);
2142 up_read(&mm->mmap_sem);
2144 #endif
2148 * this is really a simplified "do_mmap". it only handles
2149 * anonymous maps. eventually we may be able to do some
2150 * brk-specific accounting here.
2152 unsigned long do_brk(unsigned long addr, unsigned long len)
2154 struct mm_struct * mm = current->mm;
2155 struct vm_area_struct * vma, * prev;
2156 unsigned long flags;
2157 struct rb_node ** rb_link, * rb_parent;
2158 pgoff_t pgoff = addr >> PAGE_SHIFT;
2159 int error;
2161 len = PAGE_ALIGN(len);
2162 if (!len)
2163 return addr;
2165 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2166 if (error)
2167 return error;
2169 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2171 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2172 if (error & ~PAGE_MASK)
2173 return error;
2176 * mlock MCL_FUTURE?
2178 if (mm->def_flags & VM_LOCKED) {
2179 unsigned long locked, lock_limit;
2180 locked = len >> PAGE_SHIFT;
2181 locked += mm->locked_vm;
2182 lock_limit = rlimit(RLIMIT_MEMLOCK);
2183 lock_limit >>= PAGE_SHIFT;
2184 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2185 return -EAGAIN;
2189 * mm->mmap_sem is required to protect against another thread
2190 * changing the mappings in case we sleep.
2192 verify_mm_writelocked(mm);
2195 * Clear old maps. this also does some error checking for us
2197 munmap_back:
2198 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2199 if (vma && vma->vm_start < addr + len) {
2200 if (do_munmap(mm, addr, len))
2201 return -ENOMEM;
2202 goto munmap_back;
2205 /* Check against address space limits *after* clearing old maps... */
2206 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2207 return -ENOMEM;
2209 if (mm->map_count > sysctl_max_map_count)
2210 return -ENOMEM;
2212 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2213 return -ENOMEM;
2215 /* Can we just expand an old private anonymous mapping? */
2216 vma = vma_merge(mm, prev, addr, addr + len, flags,
2217 NULL, NULL, pgoff, NULL);
2218 if (vma)
2219 goto out;
2222 * create a vma struct for an anonymous mapping
2224 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2225 if (!vma) {
2226 vm_unacct_memory(len >> PAGE_SHIFT);
2227 return -ENOMEM;
2230 INIT_LIST_HEAD(&vma->anon_vma_chain);
2231 vma->vm_mm = mm;
2232 vma->vm_start = addr;
2233 vma->vm_end = addr + len;
2234 vma->vm_pgoff = pgoff;
2235 vma->vm_flags = flags;
2236 vma->vm_page_prot = vm_get_page_prot(flags);
2237 vma_link(mm, vma, prev, rb_link, rb_parent);
2238 out:
2239 perf_event_mmap(vma);
2240 mm->total_vm += len >> PAGE_SHIFT;
2241 if (flags & VM_LOCKED) {
2242 if (!mlock_vma_pages_range(vma, addr, addr + len))
2243 mm->locked_vm += (len >> PAGE_SHIFT);
2245 return addr;
2248 EXPORT_SYMBOL(do_brk);
2250 /* Release all mmaps. */
2251 void exit_mmap(struct mm_struct *mm)
2253 struct mmu_gather *tlb;
2254 struct vm_area_struct *vma;
2255 unsigned long nr_accounted = 0;
2256 unsigned long end;
2258 /* mm's last user has gone, and its about to be pulled down */
2259 mmu_notifier_release(mm);
2261 if (mm->locked_vm) {
2262 vma = mm->mmap;
2263 while (vma) {
2264 if (vma->vm_flags & VM_LOCKED)
2265 munlock_vma_pages_all(vma);
2266 vma = vma->vm_next;
2270 arch_exit_mmap(mm);
2272 vma = mm->mmap;
2273 if (!vma) /* Can happen if dup_mmap() received an OOM */
2274 return;
2276 lru_add_drain();
2277 flush_cache_mm(mm);
2278 tlb = tlb_gather_mmu(mm, 1);
2279 /* update_hiwater_rss(mm) here? but nobody should be looking */
2280 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2281 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2282 vm_unacct_memory(nr_accounted);
2284 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2285 tlb_finish_mmu(tlb, 0, end);
2288 * Walk the list again, actually closing and freeing it,
2289 * with preemption enabled, without holding any MM locks.
2291 while (vma)
2292 vma = remove_vma(vma);
2294 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2297 /* Insert vm structure into process list sorted by address
2298 * and into the inode's i_mmap tree. If vm_file is non-NULL
2299 * then i_mmap_lock is taken here.
2301 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2303 struct vm_area_struct * __vma, * prev;
2304 struct rb_node ** rb_link, * rb_parent;
2307 * The vm_pgoff of a purely anonymous vma should be irrelevant
2308 * until its first write fault, when page's anon_vma and index
2309 * are set. But now set the vm_pgoff it will almost certainly
2310 * end up with (unless mremap moves it elsewhere before that
2311 * first wfault), so /proc/pid/maps tells a consistent story.
2313 * By setting it to reflect the virtual start address of the
2314 * vma, merges and splits can happen in a seamless way, just
2315 * using the existing file pgoff checks and manipulations.
2316 * Similarly in do_mmap_pgoff and in do_brk.
2318 if (!vma->vm_file) {
2319 BUG_ON(vma->anon_vma);
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2322 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2323 if (__vma && __vma->vm_start < vma->vm_end)
2324 return -ENOMEM;
2325 if ((vma->vm_flags & VM_ACCOUNT) &&
2326 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2327 return -ENOMEM;
2328 vma_link(mm, vma, prev, rb_link, rb_parent);
2329 return 0;
2333 * Copy the vma structure to a new location in the same mm,
2334 * prior to moving page table entries, to effect an mremap move.
2336 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2337 unsigned long addr, unsigned long len, pgoff_t pgoff)
2339 struct vm_area_struct *vma = *vmap;
2340 unsigned long vma_start = vma->vm_start;
2341 struct mm_struct *mm = vma->vm_mm;
2342 struct vm_area_struct *new_vma, *prev;
2343 struct rb_node **rb_link, *rb_parent;
2344 struct mempolicy *pol;
2347 * If anonymous vma has not yet been faulted, update new pgoff
2348 * to match new location, to increase its chance of merging.
2350 if (!vma->vm_file && !vma->anon_vma)
2351 pgoff = addr >> PAGE_SHIFT;
2353 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2354 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2355 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2356 if (new_vma) {
2358 * Source vma may have been merged into new_vma
2360 if (vma_start >= new_vma->vm_start &&
2361 vma_start < new_vma->vm_end)
2362 *vmap = new_vma;
2363 } else {
2364 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2365 if (new_vma) {
2366 *new_vma = *vma;
2367 pol = mpol_dup(vma_policy(vma));
2368 if (IS_ERR(pol))
2369 goto out_free_vma;
2370 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2371 if (anon_vma_clone(new_vma, vma))
2372 goto out_free_mempol;
2373 vma_set_policy(new_vma, pol);
2374 new_vma->vm_start = addr;
2375 new_vma->vm_end = addr + len;
2376 new_vma->vm_pgoff = pgoff;
2377 if (new_vma->vm_file) {
2378 get_file(new_vma->vm_file);
2379 if (vma->vm_flags & VM_EXECUTABLE)
2380 added_exe_file_vma(mm);
2382 if (new_vma->vm_ops && new_vma->vm_ops->open)
2383 new_vma->vm_ops->open(new_vma);
2384 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2387 return new_vma;
2389 out_free_mempol:
2390 mpol_put(pol);
2391 out_free_vma:
2392 kmem_cache_free(vm_area_cachep, new_vma);
2393 return NULL;
2397 * Return true if the calling process may expand its vm space by the passed
2398 * number of pages
2400 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2402 unsigned long cur = mm->total_vm; /* pages */
2403 unsigned long lim;
2405 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2407 if (cur + npages > lim)
2408 return 0;
2409 return 1;
2413 static int special_mapping_fault(struct vm_area_struct *vma,
2414 struct vm_fault *vmf)
2416 pgoff_t pgoff;
2417 struct page **pages;
2420 * special mappings have no vm_file, and in that case, the mm
2421 * uses vm_pgoff internally. So we have to subtract it from here.
2422 * We are allowed to do this because we are the mm; do not copy
2423 * this code into drivers!
2425 pgoff = vmf->pgoff - vma->vm_pgoff;
2427 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2428 pgoff--;
2430 if (*pages) {
2431 struct page *page = *pages;
2432 get_page(page);
2433 vmf->page = page;
2434 return 0;
2437 return VM_FAULT_SIGBUS;
2441 * Having a close hook prevents vma merging regardless of flags.
2443 static void special_mapping_close(struct vm_area_struct *vma)
2447 static const struct vm_operations_struct special_mapping_vmops = {
2448 .close = special_mapping_close,
2449 .fault = special_mapping_fault,
2453 * Called with mm->mmap_sem held for writing.
2454 * Insert a new vma covering the given region, with the given flags.
2455 * Its pages are supplied by the given array of struct page *.
2456 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2457 * The region past the last page supplied will always produce SIGBUS.
2458 * The array pointer and the pages it points to are assumed to stay alive
2459 * for as long as this mapping might exist.
2461 int install_special_mapping(struct mm_struct *mm,
2462 unsigned long addr, unsigned long len,
2463 unsigned long vm_flags, struct page **pages)
2465 int ret;
2466 struct vm_area_struct *vma;
2468 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2469 if (unlikely(vma == NULL))
2470 return -ENOMEM;
2472 INIT_LIST_HEAD(&vma->anon_vma_chain);
2473 vma->vm_mm = mm;
2474 vma->vm_start = addr;
2475 vma->vm_end = addr + len;
2477 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2478 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2480 vma->vm_ops = &special_mapping_vmops;
2481 vma->vm_private_data = pages;
2483 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2484 if (ret)
2485 goto out;
2487 ret = insert_vm_struct(mm, vma);
2488 if (ret)
2489 goto out;
2491 mm->total_vm += len >> PAGE_SHIFT;
2493 perf_event_mmap(vma);
2495 return 0;
2497 out:
2498 kmem_cache_free(vm_area_cachep, vma);
2499 return ret;
2502 static DEFINE_MUTEX(mm_all_locks_mutex);
2504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2506 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2508 * The LSB of head.next can't change from under us
2509 * because we hold the mm_all_locks_mutex.
2511 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2513 * We can safely modify head.next after taking the
2514 * anon_vma->root->lock. If some other vma in this mm shares
2515 * the same anon_vma we won't take it again.
2517 * No need of atomic instructions here, head.next
2518 * can't change from under us thanks to the
2519 * anon_vma->root->lock.
2521 if (__test_and_set_bit(0, (unsigned long *)
2522 &anon_vma->root->head.next))
2523 BUG();
2527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2529 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2531 * AS_MM_ALL_LOCKS can't change from under us because
2532 * we hold the mm_all_locks_mutex.
2534 * Operations on ->flags have to be atomic because
2535 * even if AS_MM_ALL_LOCKS is stable thanks to the
2536 * mm_all_locks_mutex, there may be other cpus
2537 * changing other bitflags in parallel to us.
2539 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2540 BUG();
2541 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2546 * This operation locks against the VM for all pte/vma/mm related
2547 * operations that could ever happen on a certain mm. This includes
2548 * vmtruncate, try_to_unmap, and all page faults.
2550 * The caller must take the mmap_sem in write mode before calling
2551 * mm_take_all_locks(). The caller isn't allowed to release the
2552 * mmap_sem until mm_drop_all_locks() returns.
2554 * mmap_sem in write mode is required in order to block all operations
2555 * that could modify pagetables and free pages without need of
2556 * altering the vma layout (for example populate_range() with
2557 * nonlinear vmas). It's also needed in write mode to avoid new
2558 * anon_vmas to be associated with existing vmas.
2560 * A single task can't take more than one mm_take_all_locks() in a row
2561 * or it would deadlock.
2563 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2564 * mapping->flags avoid to take the same lock twice, if more than one
2565 * vma in this mm is backed by the same anon_vma or address_space.
2567 * We can take all the locks in random order because the VM code
2568 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2569 * takes more than one of them in a row. Secondly we're protected
2570 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2572 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2573 * that may have to take thousand of locks.
2575 * mm_take_all_locks() can fail if it's interrupted by signals.
2577 int mm_take_all_locks(struct mm_struct *mm)
2579 struct vm_area_struct *vma;
2580 struct anon_vma_chain *avc;
2581 int ret = -EINTR;
2583 BUG_ON(down_read_trylock(&mm->mmap_sem));
2585 mutex_lock(&mm_all_locks_mutex);
2587 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2588 if (signal_pending(current))
2589 goto out_unlock;
2590 if (vma->vm_file && vma->vm_file->f_mapping)
2591 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2594 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2595 if (signal_pending(current))
2596 goto out_unlock;
2597 if (vma->anon_vma)
2598 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2599 vm_lock_anon_vma(mm, avc->anon_vma);
2602 ret = 0;
2604 out_unlock:
2605 if (ret)
2606 mm_drop_all_locks(mm);
2608 return ret;
2611 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2613 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2615 * The LSB of head.next can't change to 0 from under
2616 * us because we hold the mm_all_locks_mutex.
2618 * We must however clear the bitflag before unlocking
2619 * the vma so the users using the anon_vma->head will
2620 * never see our bitflag.
2622 * No need of atomic instructions here, head.next
2623 * can't change from under us until we release the
2624 * anon_vma->root->lock.
2626 if (!__test_and_clear_bit(0, (unsigned long *)
2627 &anon_vma->root->head.next))
2628 BUG();
2629 anon_vma_unlock(anon_vma);
2633 static void vm_unlock_mapping(struct address_space *mapping)
2635 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2637 * AS_MM_ALL_LOCKS can't change to 0 from under us
2638 * because we hold the mm_all_locks_mutex.
2640 spin_unlock(&mapping->i_mmap_lock);
2641 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2642 &mapping->flags))
2643 BUG();
2648 * The mmap_sem cannot be released by the caller until
2649 * mm_drop_all_locks() returns.
2651 void mm_drop_all_locks(struct mm_struct *mm)
2653 struct vm_area_struct *vma;
2654 struct anon_vma_chain *avc;
2656 BUG_ON(down_read_trylock(&mm->mmap_sem));
2657 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2659 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2660 if (vma->anon_vma)
2661 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2662 vm_unlock_anon_vma(avc->anon_vma);
2663 if (vma->vm_file && vma->vm_file->f_mapping)
2664 vm_unlock_mapping(vma->vm_file->f_mapping);
2667 mutex_unlock(&mm_all_locks_mutex);
2671 * initialise the VMA slab
2673 void __init mmap_init(void)
2675 int ret;
2677 ret = percpu_counter_init(&vm_committed_as, 0);
2678 VM_BUG_ON(ret);