xHCI: Clear PLC for USB2 root hub ports
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_trans_buf.c
blob137e2b9e2948ae29c41eb07867c5ea813f19bdea
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
40 * Check to see if a buffer matching the given parameters is already
41 * a part of the given transaction.
43 STATIC struct xfs_buf *
44 xfs_trans_buf_item_match(
45 struct xfs_trans *tp,
46 struct xfs_buftarg *target,
47 xfs_daddr_t blkno,
48 int len)
50 struct xfs_log_item_desc *lidp;
51 struct xfs_buf_log_item *blip;
53 len = BBTOB(len);
54 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 if (blip->bli_item.li_type == XFS_LI_BUF &&
57 blip->bli_buf->b_target == target &&
58 XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 XFS_BUF_COUNT(blip->bli_buf) == len)
60 return blip->bli_buf;
63 return NULL;
67 * Add the locked buffer to the transaction.
69 * The buffer must be locked, and it cannot be associated with any
70 * transaction.
72 * If the buffer does not yet have a buf log item associated with it,
73 * then allocate one for it. Then add the buf item to the transaction.
75 STATIC void
76 _xfs_trans_bjoin(
77 struct xfs_trans *tp,
78 struct xfs_buf *bp,
79 int reset_recur)
81 struct xfs_buf_log_item *bip;
83 ASSERT(bp->b_transp == NULL);
86 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
87 * it doesn't have one yet, then allocate one and initialize it.
88 * The checks to see if one is there are in xfs_buf_item_init().
90 xfs_buf_item_init(bp, tp->t_mountp);
91 bip = bp->b_fspriv;
92 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
93 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
94 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
95 if (reset_recur)
96 bip->bli_recur = 0;
99 * Take a reference for this transaction on the buf item.
101 atomic_inc(&bip->bli_refcount);
104 * Get a log_item_desc to point at the new item.
106 xfs_trans_add_item(tp, &bip->bli_item);
109 * Initialize b_fsprivate2 so we can find it with incore_match()
110 * in xfs_trans_get_buf() and friends above.
112 bp->b_transp = tp;
116 void
117 xfs_trans_bjoin(
118 struct xfs_trans *tp,
119 struct xfs_buf *bp)
121 _xfs_trans_bjoin(tp, bp, 0);
122 trace_xfs_trans_bjoin(bp->b_fspriv);
126 * Get and lock the buffer for the caller if it is not already
127 * locked within the given transaction. If it is already locked
128 * within the transaction, just increment its lock recursion count
129 * and return a pointer to it.
131 * If the transaction pointer is NULL, make this just a normal
132 * get_buf() call.
134 xfs_buf_t *
135 xfs_trans_get_buf(xfs_trans_t *tp,
136 xfs_buftarg_t *target_dev,
137 xfs_daddr_t blkno,
138 int len,
139 uint flags)
141 xfs_buf_t *bp;
142 xfs_buf_log_item_t *bip;
144 if (flags == 0)
145 flags = XBF_LOCK | XBF_MAPPED;
148 * Default to a normal get_buf() call if the tp is NULL.
150 if (tp == NULL)
151 return xfs_buf_get(target_dev, blkno, len,
152 flags | XBF_DONT_BLOCK);
155 * If we find the buffer in the cache with this transaction
156 * pointer in its b_fsprivate2 field, then we know we already
157 * have it locked. In this case we just increment the lock
158 * recursion count and return the buffer to the caller.
160 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
161 if (bp != NULL) {
162 ASSERT(xfs_buf_islocked(bp));
163 if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
164 XFS_BUF_SUPER_STALE(bp);
167 * If the buffer is stale then it was binval'ed
168 * since last read. This doesn't matter since the
169 * caller isn't allowed to use the data anyway.
171 else if (XFS_BUF_ISSTALE(bp))
172 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
174 ASSERT(bp->b_transp == tp);
175 bip = bp->b_fspriv;
176 ASSERT(bip != NULL);
177 ASSERT(atomic_read(&bip->bli_refcount) > 0);
178 bip->bli_recur++;
179 trace_xfs_trans_get_buf_recur(bip);
180 return (bp);
184 * We always specify the XBF_DONT_BLOCK flag within a transaction
185 * so that get_buf does not try to push out a delayed write buffer
186 * which might cause another transaction to take place (if the
187 * buffer was delayed alloc). Such recursive transactions can
188 * easily deadlock with our current transaction as well as cause
189 * us to run out of stack space.
191 bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
192 if (bp == NULL) {
193 return NULL;
196 ASSERT(!bp->b_error);
198 _xfs_trans_bjoin(tp, bp, 1);
199 trace_xfs_trans_get_buf(bp->b_fspriv);
200 return (bp);
204 * Get and lock the superblock buffer of this file system for the
205 * given transaction.
207 * We don't need to use incore_match() here, because the superblock
208 * buffer is a private buffer which we keep a pointer to in the
209 * mount structure.
211 xfs_buf_t *
212 xfs_trans_getsb(xfs_trans_t *tp,
213 struct xfs_mount *mp,
214 int flags)
216 xfs_buf_t *bp;
217 xfs_buf_log_item_t *bip;
220 * Default to just trying to lock the superblock buffer
221 * if tp is NULL.
223 if (tp == NULL) {
224 return (xfs_getsb(mp, flags));
228 * If the superblock buffer already has this transaction
229 * pointer in its b_fsprivate2 field, then we know we already
230 * have it locked. In this case we just increment the lock
231 * recursion count and return the buffer to the caller.
233 bp = mp->m_sb_bp;
234 if (bp->b_transp == tp) {
235 bip = bp->b_fspriv;
236 ASSERT(bip != NULL);
237 ASSERT(atomic_read(&bip->bli_refcount) > 0);
238 bip->bli_recur++;
239 trace_xfs_trans_getsb_recur(bip);
240 return (bp);
243 bp = xfs_getsb(mp, flags);
244 if (bp == NULL)
245 return NULL;
247 _xfs_trans_bjoin(tp, bp, 1);
248 trace_xfs_trans_getsb(bp->b_fspriv);
249 return (bp);
252 #ifdef DEBUG
253 xfs_buftarg_t *xfs_error_target;
254 int xfs_do_error;
255 int xfs_req_num;
256 int xfs_error_mod = 33;
257 #endif
260 * Get and lock the buffer for the caller if it is not already
261 * locked within the given transaction. If it has not yet been
262 * read in, read it from disk. If it is already locked
263 * within the transaction and already read in, just increment its
264 * lock recursion count and return a pointer to it.
266 * If the transaction pointer is NULL, make this just a normal
267 * read_buf() call.
270 xfs_trans_read_buf(
271 xfs_mount_t *mp,
272 xfs_trans_t *tp,
273 xfs_buftarg_t *target,
274 xfs_daddr_t blkno,
275 int len,
276 uint flags,
277 xfs_buf_t **bpp)
279 xfs_buf_t *bp;
280 xfs_buf_log_item_t *bip;
281 int error;
283 if (flags == 0)
284 flags = XBF_LOCK | XBF_MAPPED;
287 * Default to a normal get_buf() call if the tp is NULL.
289 if (tp == NULL) {
290 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
291 if (!bp)
292 return (flags & XBF_TRYLOCK) ?
293 EAGAIN : XFS_ERROR(ENOMEM);
295 if (bp->b_error) {
296 error = bp->b_error;
297 xfs_ioerror_alert("xfs_trans_read_buf", mp,
298 bp, blkno);
299 xfs_buf_relse(bp);
300 return error;
302 #ifdef DEBUG
303 if (xfs_do_error) {
304 if (xfs_error_target == target) {
305 if (((xfs_req_num++) % xfs_error_mod) == 0) {
306 xfs_buf_relse(bp);
307 xfs_debug(mp, "Returning error!");
308 return XFS_ERROR(EIO);
312 #endif
313 if (XFS_FORCED_SHUTDOWN(mp))
314 goto shutdown_abort;
315 *bpp = bp;
316 return 0;
320 * If we find the buffer in the cache with this transaction
321 * pointer in its b_fsprivate2 field, then we know we already
322 * have it locked. If it is already read in we just increment
323 * the lock recursion count and return the buffer to the caller.
324 * If the buffer is not yet read in, then we read it in, increment
325 * the lock recursion count, and return it to the caller.
327 bp = xfs_trans_buf_item_match(tp, target, blkno, len);
328 if (bp != NULL) {
329 ASSERT(xfs_buf_islocked(bp));
330 ASSERT(bp->b_transp == tp);
331 ASSERT(bp->b_fspriv != NULL);
332 ASSERT(!bp->b_error);
333 if (!(XFS_BUF_ISDONE(bp))) {
334 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
335 ASSERT(!XFS_BUF_ISASYNC(bp));
336 XFS_BUF_READ(bp);
337 xfsbdstrat(tp->t_mountp, bp);
338 error = xfs_buf_iowait(bp);
339 if (error) {
340 xfs_ioerror_alert("xfs_trans_read_buf", mp,
341 bp, blkno);
342 xfs_buf_relse(bp);
344 * We can gracefully recover from most read
345 * errors. Ones we can't are those that happen
346 * after the transaction's already dirty.
348 if (tp->t_flags & XFS_TRANS_DIRTY)
349 xfs_force_shutdown(tp->t_mountp,
350 SHUTDOWN_META_IO_ERROR);
351 return error;
355 * We never locked this buf ourselves, so we shouldn't
356 * brelse it either. Just get out.
358 if (XFS_FORCED_SHUTDOWN(mp)) {
359 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
360 *bpp = NULL;
361 return XFS_ERROR(EIO);
365 bip = bp->b_fspriv;
366 bip->bli_recur++;
368 ASSERT(atomic_read(&bip->bli_refcount) > 0);
369 trace_xfs_trans_read_buf_recur(bip);
370 *bpp = bp;
371 return 0;
375 * We always specify the XBF_DONT_BLOCK flag within a transaction
376 * so that get_buf does not try to push out a delayed write buffer
377 * which might cause another transaction to take place (if the
378 * buffer was delayed alloc). Such recursive transactions can
379 * easily deadlock with our current transaction as well as cause
380 * us to run out of stack space.
382 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
383 if (bp == NULL) {
384 *bpp = NULL;
385 return (flags & XBF_TRYLOCK) ?
386 0 : XFS_ERROR(ENOMEM);
388 if (bp->b_error) {
389 error = bp->b_error;
390 XFS_BUF_SUPER_STALE(bp);
391 xfs_ioerror_alert("xfs_trans_read_buf", mp,
392 bp, blkno);
393 if (tp->t_flags & XFS_TRANS_DIRTY)
394 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
395 xfs_buf_relse(bp);
396 return error;
398 #ifdef DEBUG
399 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
400 if (xfs_error_target == target) {
401 if (((xfs_req_num++) % xfs_error_mod) == 0) {
402 xfs_force_shutdown(tp->t_mountp,
403 SHUTDOWN_META_IO_ERROR);
404 xfs_buf_relse(bp);
405 xfs_debug(mp, "Returning trans error!");
406 return XFS_ERROR(EIO);
410 #endif
411 if (XFS_FORCED_SHUTDOWN(mp))
412 goto shutdown_abort;
414 _xfs_trans_bjoin(tp, bp, 1);
415 trace_xfs_trans_read_buf(bp->b_fspriv);
417 *bpp = bp;
418 return 0;
420 shutdown_abort:
422 * the theory here is that buffer is good but we're
423 * bailing out because the filesystem is being forcibly
424 * shut down. So we should leave the b_flags alone since
425 * the buffer's not staled and just get out.
427 #if defined(DEBUG)
428 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
429 xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
430 #endif
431 ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) !=
432 (XBF_STALE|XBF_DELWRI));
434 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
435 xfs_buf_relse(bp);
436 *bpp = NULL;
437 return XFS_ERROR(EIO);
442 * Release the buffer bp which was previously acquired with one of the
443 * xfs_trans_... buffer allocation routines if the buffer has not
444 * been modified within this transaction. If the buffer is modified
445 * within this transaction, do decrement the recursion count but do
446 * not release the buffer even if the count goes to 0. If the buffer is not
447 * modified within the transaction, decrement the recursion count and
448 * release the buffer if the recursion count goes to 0.
450 * If the buffer is to be released and it was not modified before
451 * this transaction began, then free the buf_log_item associated with it.
453 * If the transaction pointer is NULL, make this just a normal
454 * brelse() call.
456 void
457 xfs_trans_brelse(xfs_trans_t *tp,
458 xfs_buf_t *bp)
460 xfs_buf_log_item_t *bip;
463 * Default to a normal brelse() call if the tp is NULL.
465 if (tp == NULL) {
466 struct xfs_log_item *lip = bp->b_fspriv;
468 ASSERT(bp->b_transp == NULL);
471 * If there's a buf log item attached to the buffer,
472 * then let the AIL know that the buffer is being
473 * unlocked.
475 if (lip != NULL && lip->li_type == XFS_LI_BUF) {
476 bip = bp->b_fspriv;
477 xfs_trans_unlocked_item(bip->bli_item.li_ailp, lip);
479 xfs_buf_relse(bp);
480 return;
483 ASSERT(bp->b_transp == tp);
484 bip = bp->b_fspriv;
485 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
486 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
487 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
488 ASSERT(atomic_read(&bip->bli_refcount) > 0);
490 trace_xfs_trans_brelse(bip);
493 * If the release is just for a recursive lock,
494 * then decrement the count and return.
496 if (bip->bli_recur > 0) {
497 bip->bli_recur--;
498 return;
502 * If the buffer is dirty within this transaction, we can't
503 * release it until we commit.
505 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
506 return;
509 * If the buffer has been invalidated, then we can't release
510 * it until the transaction commits to disk unless it is re-dirtied
511 * as part of this transaction. This prevents us from pulling
512 * the item from the AIL before we should.
514 if (bip->bli_flags & XFS_BLI_STALE)
515 return;
517 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
520 * Free up the log item descriptor tracking the released item.
522 xfs_trans_del_item(&bip->bli_item);
525 * Clear the hold flag in the buf log item if it is set.
526 * We wouldn't want the next user of the buffer to
527 * get confused.
529 if (bip->bli_flags & XFS_BLI_HOLD) {
530 bip->bli_flags &= ~XFS_BLI_HOLD;
534 * Drop our reference to the buf log item.
536 atomic_dec(&bip->bli_refcount);
539 * If the buf item is not tracking data in the log, then
540 * we must free it before releasing the buffer back to the
541 * free pool. Before releasing the buffer to the free pool,
542 * clear the transaction pointer in b_fsprivate2 to dissolve
543 * its relation to this transaction.
545 if (!xfs_buf_item_dirty(bip)) {
546 /***
547 ASSERT(bp->b_pincount == 0);
548 ***/
549 ASSERT(atomic_read(&bip->bli_refcount) == 0);
550 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
551 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
552 xfs_buf_item_relse(bp);
553 bip = NULL;
555 bp->b_transp = NULL;
558 * If we've still got a buf log item on the buffer, then
559 * tell the AIL that the buffer is being unlocked.
561 if (bip != NULL) {
562 xfs_trans_unlocked_item(bip->bli_item.li_ailp,
563 (xfs_log_item_t*)bip);
566 xfs_buf_relse(bp);
567 return;
571 * Mark the buffer as not needing to be unlocked when the buf item's
572 * IOP_UNLOCK() routine is called. The buffer must already be locked
573 * and associated with the given transaction.
575 /* ARGSUSED */
576 void
577 xfs_trans_bhold(xfs_trans_t *tp,
578 xfs_buf_t *bp)
580 xfs_buf_log_item_t *bip = bp->b_fspriv;
582 ASSERT(bp->b_transp == tp);
583 ASSERT(bip != NULL);
584 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
585 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
586 ASSERT(atomic_read(&bip->bli_refcount) > 0);
588 bip->bli_flags |= XFS_BLI_HOLD;
589 trace_xfs_trans_bhold(bip);
593 * Cancel the previous buffer hold request made on this buffer
594 * for this transaction.
596 void
597 xfs_trans_bhold_release(xfs_trans_t *tp,
598 xfs_buf_t *bp)
600 xfs_buf_log_item_t *bip = bp->b_fspriv;
602 ASSERT(bp->b_transp == tp);
603 ASSERT(bip != NULL);
604 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
605 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
606 ASSERT(atomic_read(&bip->bli_refcount) > 0);
607 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
609 bip->bli_flags &= ~XFS_BLI_HOLD;
610 trace_xfs_trans_bhold_release(bip);
614 * This is called to mark bytes first through last inclusive of the given
615 * buffer as needing to be logged when the transaction is committed.
616 * The buffer must already be associated with the given transaction.
618 * First and last are numbers relative to the beginning of this buffer,
619 * so the first byte in the buffer is numbered 0 regardless of the
620 * value of b_blkno.
622 void
623 xfs_trans_log_buf(xfs_trans_t *tp,
624 xfs_buf_t *bp,
625 uint first,
626 uint last)
628 xfs_buf_log_item_t *bip = bp->b_fspriv;
630 ASSERT(bp->b_transp == tp);
631 ASSERT(bip != NULL);
632 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
633 ASSERT(bp->b_iodone == NULL ||
634 bp->b_iodone == xfs_buf_iodone_callbacks);
637 * Mark the buffer as needing to be written out eventually,
638 * and set its iodone function to remove the buffer's buf log
639 * item from the AIL and free it when the buffer is flushed
640 * to disk. See xfs_buf_attach_iodone() for more details
641 * on li_cb and xfs_buf_iodone_callbacks().
642 * If we end up aborting this transaction, we trap this buffer
643 * inside the b_bdstrat callback so that this won't get written to
644 * disk.
646 XFS_BUF_DELAYWRITE(bp);
647 XFS_BUF_DONE(bp);
649 ASSERT(atomic_read(&bip->bli_refcount) > 0);
650 bp->b_iodone = xfs_buf_iodone_callbacks;
651 bip->bli_item.li_cb = xfs_buf_iodone;
653 trace_xfs_trans_log_buf(bip);
656 * If we invalidated the buffer within this transaction, then
657 * cancel the invalidation now that we're dirtying the buffer
658 * again. There are no races with the code in xfs_buf_item_unpin(),
659 * because we have a reference to the buffer this entire time.
661 if (bip->bli_flags & XFS_BLI_STALE) {
662 bip->bli_flags &= ~XFS_BLI_STALE;
663 ASSERT(XFS_BUF_ISSTALE(bp));
664 XFS_BUF_UNSTALE(bp);
665 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
668 tp->t_flags |= XFS_TRANS_DIRTY;
669 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
670 bip->bli_flags |= XFS_BLI_LOGGED;
671 xfs_buf_item_log(bip, first, last);
676 * This called to invalidate a buffer that is being used within
677 * a transaction. Typically this is because the blocks in the
678 * buffer are being freed, so we need to prevent it from being
679 * written out when we're done. Allowing it to be written again
680 * might overwrite data in the free blocks if they are reallocated
681 * to a file.
683 * We prevent the buffer from being written out by clearing the
684 * B_DELWRI flag. We can't always
685 * get rid of the buf log item at this point, though, because
686 * the buffer may still be pinned by another transaction. If that
687 * is the case, then we'll wait until the buffer is committed to
688 * disk for the last time (we can tell by the ref count) and
689 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
690 * will keep the buffer locked so that the buffer and buf log item
691 * are not reused.
693 void
694 xfs_trans_binval(
695 xfs_trans_t *tp,
696 xfs_buf_t *bp)
698 xfs_buf_log_item_t *bip = bp->b_fspriv;
700 ASSERT(bp->b_transp == tp);
701 ASSERT(bip != NULL);
702 ASSERT(atomic_read(&bip->bli_refcount) > 0);
704 trace_xfs_trans_binval(bip);
706 if (bip->bli_flags & XFS_BLI_STALE) {
708 * If the buffer is already invalidated, then
709 * just return.
711 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
712 ASSERT(XFS_BUF_ISSTALE(bp));
713 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
714 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
715 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
716 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
717 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
718 return;
722 * Clear the dirty bit in the buffer and set the STALE flag
723 * in the buf log item. The STALE flag will be used in
724 * xfs_buf_item_unpin() to determine if it should clean up
725 * when the last reference to the buf item is given up.
726 * We set the XFS_BLF_CANCEL flag in the buf log format structure
727 * and log the buf item. This will be used at recovery time
728 * to determine that copies of the buffer in the log before
729 * this should not be replayed.
730 * We mark the item descriptor and the transaction dirty so
731 * that we'll hold the buffer until after the commit.
733 * Since we're invalidating the buffer, we also clear the state
734 * about which parts of the buffer have been logged. We also
735 * clear the flag indicating that this is an inode buffer since
736 * the data in the buffer will no longer be valid.
738 * We set the stale bit in the buffer as well since we're getting
739 * rid of it.
741 XFS_BUF_UNDELAYWRITE(bp);
742 XFS_BUF_STALE(bp);
743 bip->bli_flags |= XFS_BLI_STALE;
744 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
745 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
746 bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
747 memset((char *)(bip->bli_format.blf_data_map), 0,
748 (bip->bli_format.blf_map_size * sizeof(uint)));
749 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
750 tp->t_flags |= XFS_TRANS_DIRTY;
754 * This call is used to indicate that the buffer contains on-disk inodes which
755 * must be handled specially during recovery. They require special handling
756 * because only the di_next_unlinked from the inodes in the buffer should be
757 * recovered. The rest of the data in the buffer is logged via the inodes
758 * themselves.
760 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
761 * transferred to the buffer's log format structure so that we'll know what to
762 * do at recovery time.
764 void
765 xfs_trans_inode_buf(
766 xfs_trans_t *tp,
767 xfs_buf_t *bp)
769 xfs_buf_log_item_t *bip = bp->b_fspriv;
771 ASSERT(bp->b_transp == tp);
772 ASSERT(bip != NULL);
773 ASSERT(atomic_read(&bip->bli_refcount) > 0);
775 bip->bli_flags |= XFS_BLI_INODE_BUF;
779 * This call is used to indicate that the buffer is going to
780 * be staled and was an inode buffer. This means it gets
781 * special processing during unpin - where any inodes
782 * associated with the buffer should be removed from ail.
783 * There is also special processing during recovery,
784 * any replay of the inodes in the buffer needs to be
785 * prevented as the buffer may have been reused.
787 void
788 xfs_trans_stale_inode_buf(
789 xfs_trans_t *tp,
790 xfs_buf_t *bp)
792 xfs_buf_log_item_t *bip = bp->b_fspriv;
794 ASSERT(bp->b_transp == tp);
795 ASSERT(bip != NULL);
796 ASSERT(atomic_read(&bip->bli_refcount) > 0);
798 bip->bli_flags |= XFS_BLI_STALE_INODE;
799 bip->bli_item.li_cb = xfs_buf_iodone;
803 * Mark the buffer as being one which contains newly allocated
804 * inodes. We need to make sure that even if this buffer is
805 * relogged as an 'inode buf' we still recover all of the inode
806 * images in the face of a crash. This works in coordination with
807 * xfs_buf_item_committed() to ensure that the buffer remains in the
808 * AIL at its original location even after it has been relogged.
810 /* ARGSUSED */
811 void
812 xfs_trans_inode_alloc_buf(
813 xfs_trans_t *tp,
814 xfs_buf_t *bp)
816 xfs_buf_log_item_t *bip = bp->b_fspriv;
818 ASSERT(bp->b_transp == tp);
819 ASSERT(bip != NULL);
820 ASSERT(atomic_read(&bip->bli_refcount) > 0);
822 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
827 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
828 * dquots. However, unlike in inode buffer recovery, dquot buffers get
829 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
830 * The only thing that makes dquot buffers different from regular
831 * buffers is that we must not replay dquot bufs when recovering
832 * if a _corresponding_ quotaoff has happened. We also have to distinguish
833 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
834 * can be turned off independently.
836 /* ARGSUSED */
837 void
838 xfs_trans_dquot_buf(
839 xfs_trans_t *tp,
840 xfs_buf_t *bp,
841 uint type)
843 xfs_buf_log_item_t *bip = bp->b_fspriv;
845 ASSERT(bp->b_transp == tp);
846 ASSERT(bip != NULL);
847 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
848 type == XFS_BLF_PDQUOT_BUF ||
849 type == XFS_BLF_GDQUOT_BUF);
850 ASSERT(atomic_read(&bip->bli_refcount) > 0);
852 bip->bli_format.blf_flags |= type;