xHCI: Clear PLC for USB2 root hub ports
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / misc / carma / carma-fpga.c
blob3965821fef174c308ac73e37072d552287985d91
1 /*
2 * CARMA DATA-FPGA Access Driver
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
13 * FPGA Memory Dump Format
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
25 * Each correlation array consists of:
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
37 * Basic Description:
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
73 * Notes on the IRQ masking scheme:
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
91 #include <linux/of_platform.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/miscdevice.h>
94 #include <linux/interrupt.h>
95 #include <linux/dmaengine.h>
96 #include <linux/seq_file.h>
97 #include <linux/highmem.h>
98 #include <linux/debugfs.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/poll.h>
102 #include <linux/init.h>
103 #include <linux/slab.h>
104 #include <linux/kref.h>
105 #include <linux/io.h>
107 #include <media/videobuf-dma-sg.h>
109 /* system controller registers */
110 #define SYS_IRQ_SOURCE_CTL 0x24
111 #define SYS_IRQ_OUTPUT_EN 0x28
112 #define SYS_IRQ_OUTPUT_DATA 0x2C
113 #define SYS_IRQ_INPUT_DATA 0x30
114 #define SYS_FPGA_CONFIG_STATUS 0x44
116 /* GPIO IRQ line assignment */
117 #define IRQ_CORL_DONE 0x10
119 /* FPGA registers */
120 #define MMAP_REG_VERSION 0x00
121 #define MMAP_REG_CORL_CONF1 0x08
122 #define MMAP_REG_CORL_CONF2 0x0C
123 #define MMAP_REG_STATUS 0x48
125 #define SYS_FPGA_BLOCK 0xF0000000
127 #define DATA_FPGA_START 0x400000
128 #define DATA_FPGA_SIZE 0x80000
130 static const char drv_name[] = "carma-fpga";
132 #define NUM_FPGA 4
134 #define MIN_DATA_BUFS 8
135 #define MAX_DATA_BUFS 64
137 struct fpga_info {
138 unsigned int num_lag_ram;
139 unsigned int blk_size;
142 struct data_buf {
143 struct list_head entry;
144 struct videobuf_dmabuf vb;
145 size_t size;
148 struct fpga_device {
149 /* character device */
150 struct miscdevice miscdev;
151 struct device *dev;
152 struct mutex mutex;
154 /* reference count */
155 struct kref ref;
157 /* FPGA registers and information */
158 struct fpga_info info[NUM_FPGA];
159 void __iomem *regs;
160 int irq;
162 /* FPGA Physical Address/Size Information */
163 resource_size_t phys_addr;
164 size_t phys_size;
166 /* DMA structures */
167 struct sg_table corl_table;
168 unsigned int corl_nents;
169 struct dma_chan *chan;
171 /* Protection for all members below */
172 spinlock_t lock;
174 /* Device enable/disable flag */
175 bool enabled;
177 /* Correlation data buffers */
178 wait_queue_head_t wait;
179 struct list_head free;
180 struct list_head used;
181 struct data_buf *inflight;
183 /* Information about data buffers */
184 unsigned int num_dropped;
185 unsigned int num_buffers;
186 size_t bufsize;
187 struct dentry *dbg_entry;
190 struct fpga_reader {
191 struct fpga_device *priv;
192 struct data_buf *buf;
193 off_t buf_start;
196 static void fpga_device_release(struct kref *ref)
198 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
200 /* the last reader has exited, cleanup the last bits */
201 mutex_destroy(&priv->mutex);
202 kfree(priv);
206 * Data Buffer Allocation Helpers
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
216 static void data_free_buffer(struct data_buf *buf)
218 /* It is ok to free a NULL buffer */
219 if (!buf)
220 return;
222 /* free all memory */
223 videobuf_dma_free(&buf->vb);
224 kfree(buf);
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
234 * Returns NULL on failure
236 static struct data_buf *data_alloc_buffer(const size_t bytes)
238 unsigned int nr_pages;
239 struct data_buf *buf;
240 int ret;
242 /* calculate the number of pages necessary */
243 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
245 /* allocate the buffer structure */
246 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247 if (!buf)
248 goto out_return;
250 /* initialize internal fields */
251 INIT_LIST_HEAD(&buf->entry);
252 buf->size = bytes;
254 /* allocate the videobuf */
255 videobuf_dma_init(&buf->vb);
256 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257 if (ret)
258 goto out_free_buf;
260 return buf;
262 out_free_buf:
263 kfree(buf);
264 out_return:
265 return NULL;
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
275 * LOCKING: must hold dev->mutex
276 * CONTEXT: user
278 static void data_free_buffers(struct fpga_device *priv)
280 struct data_buf *buf, *tmp;
282 /* the device should be stopped, no DMA in progress */
283 BUG_ON(priv->inflight != NULL);
285 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286 list_del_init(&buf->entry);
287 videobuf_dma_unmap(priv->dev, &buf->vb);
288 data_free_buffer(buf);
291 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292 list_del_init(&buf->entry);
293 videobuf_dma_unmap(priv->dev, &buf->vb);
294 data_free_buffer(buf);
297 priv->num_buffers = 0;
298 priv->bufsize = 0;
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
305 * Allocate enough buffers for a whole second worth of data
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
310 * log.
312 * The device must not be modifying any lists when this is called.
314 * CONTEXT: user
315 * LOCKING: must hold dev->mutex
317 * Returns 0 on success, -ERRNO otherwise
319 static int data_alloc_buffers(struct fpga_device *priv)
321 struct data_buf *buf;
322 int i, ret;
324 for (i = 0; i < MAX_DATA_BUFS; i++) {
326 /* allocate a buffer */
327 buf = data_alloc_buffer(priv->bufsize);
328 if (!buf)
329 break;
331 /* map it for DMA */
332 ret = videobuf_dma_map(priv->dev, &buf->vb);
333 if (ret) {
334 data_free_buffer(buf);
335 break;
338 /* add it to the list of free buffers */
339 list_add_tail(&buf->entry, &priv->free);
340 priv->num_buffers++;
343 /* Make sure we allocated the minimum required number of buffers */
344 if (priv->num_buffers < MIN_DATA_BUFS) {
345 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346 data_free_buffers(priv);
347 return -ENOMEM;
350 /* Warn if we are running in a degraded state, but do not fail */
351 if (priv->num_buffers < MAX_DATA_BUFS) {
352 dev_warn(priv->dev,
353 "Unable to allocate %d buffers, using %d buffers instead\n",
354 MAX_DATA_BUFS, i);
357 return 0;
361 * DMA Operations Helpers
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
369 static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
371 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
380 static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381 unsigned int blknum)
383 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
386 #define REG_BLOCK_SIZE (32 * 4)
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
396 * Returns 0 on success, -ERRNO otherwise
398 static int data_setup_corl_table(struct fpga_device *priv)
400 struct sg_table *table = &priv->corl_table;
401 struct scatterlist *sg;
402 struct fpga_info *info;
403 int i, j, ret;
405 /* Calculate the number of entries needed */
406 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407 for (i = 0; i < NUM_FPGA; i++)
408 priv->corl_nents += priv->info[i].num_lag_ram;
410 /* Allocate the scatterlist table */
411 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412 if (ret) {
413 dev_err(priv->dev, "unable to allocate DMA table\n");
414 return ret;
417 /* Add the DATA FPGA registers to the scatterlist */
418 sg = table->sgl;
419 for (i = 0; i < NUM_FPGA; i++) {
420 sg_dma_address(sg) = fpga_start_addr(priv, i);
421 sg_dma_len(sg) = REG_BLOCK_SIZE;
422 sg = sg_next(sg);
425 /* Add the SYS-FPGA registers to the scatterlist */
426 sg_dma_address(sg) = SYS_FPGA_BLOCK;
427 sg_dma_len(sg) = REG_BLOCK_SIZE;
428 sg = sg_next(sg);
430 /* Add the FPGA correlation data blocks to the scatterlist */
431 for (i = 0; i < NUM_FPGA; i++) {
432 info = &priv->info[i];
433 for (j = 0; j < info->num_lag_ram; j++) {
434 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435 sg_dma_len(sg) = info->blk_size;
436 sg = sg_next(sg);
441 * All physical addresses and lengths are present in the structure
442 * now. It can be reused for every FPGA DATA interrupt
444 return 0;
448 * FPGA Register Access Helpers
451 static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452 unsigned int reg, u32 val)
454 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455 iowrite32be(val, priv->regs + fpga_start + reg);
458 static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459 unsigned int reg)
461 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462 return ioread32be(priv->regs + fpga_start + reg);
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
472 * CONTEXT: user
474 * Returns 0 on success, -ERRNO otherwise
476 static int data_calculate_bufsize(struct fpga_device *priv)
478 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479 u32 conf1, conf2, version;
480 u32 num_lag_ram, blk_size;
481 int i;
483 /* Each buffer starts with the 5 FPGA register areas */
484 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
486 /* Read and store the configuration data for each FPGA */
487 for (i = 0; i < NUM_FPGA; i++) {
488 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
492 /* minor version 2 and later */
493 if ((version & 0x000000FF) >= 2) {
494 num_corl = (conf1 & 0x000000F0) >> 4;
495 num_pack = (conf1 & 0x00000F00) >> 8;
496 num_lags = (conf1 & 0x00FFF000) >> 12;
497 num_meta = (conf1 & 0x7F000000) >> 24;
498 num_qcnt = (conf2 & 0x00000FFF) >> 0;
499 } else {
500 num_corl = (conf1 & 0x000000F0) >> 4;
501 num_pack = 1; /* implied */
502 num_lags = (conf1 & 0x000FFF00) >> 8;
503 num_meta = (conf1 & 0x7FF00000) >> 20;
504 num_qcnt = (conf2 & 0x00000FFF) >> 0;
507 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
510 priv->info[i].num_lag_ram = num_lag_ram;
511 priv->info[i].blk_size = blk_size;
512 priv->bufsize += num_lag_ram * blk_size;
514 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
522 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523 return 0;
527 * Interrupt Handling
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
534 * Hide interrupts by switching to GPIO interrupt source
536 * LOCKING: must hold dev->lock
538 static void data_disable_interrupts(struct fpga_device *priv)
540 /* hide the interrupt by switching the IRQ driver to GPIO */
541 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
551 * LOCKING: must hold dev->lock
553 static void data_enable_interrupts(struct fpga_device *priv)
555 /* clear the actual FPGA corl_done interrupt */
556 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
561 /* flush the writes */
562 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
564 /* switch back to the external interrupt source */
565 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
569 * data_dma_cb() - DMAEngine callback for DMA completion
570 * @data: the driver's private data structure
572 * Complete a DMA transfer from the DATA-FPGA's
574 * This is called via the DMA callback mechanism, and will handle moving the
575 * completed DMA transaction to the used list, and then wake any processes
576 * waiting for new data
578 * CONTEXT: any, softirq expected
580 static void data_dma_cb(void *data)
582 struct fpga_device *priv = data;
583 unsigned long flags;
585 spin_lock_irqsave(&priv->lock, flags);
587 /* If there is no inflight buffer, we've got a bug */
588 BUG_ON(priv->inflight == NULL);
590 /* Move the inflight buffer onto the used list */
591 list_move_tail(&priv->inflight->entry, &priv->used);
592 priv->inflight = NULL;
594 /* clear the FPGA status and re-enable interrupts */
595 data_enable_interrupts(priv);
597 spin_unlock_irqrestore(&priv->lock, flags);
600 * We've changed both the inflight and used lists, so we need
601 * to wake up any processes that are blocking for those events
603 wake_up(&priv->wait);
607 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
608 * @priv: the driver's private data structure
609 * @buf: the data buffer
611 * Prepare and submit the necessary DMA transactions to fill a correlation
612 * data buffer.
614 * LOCKING: must hold dev->lock
615 * CONTEXT: hardirq only
617 * Returns 0 on success, -ERRNO otherwise
619 static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
621 struct scatterlist *dst_sg, *src_sg;
622 unsigned int dst_nents, src_nents;
623 struct dma_chan *chan = priv->chan;
624 struct dma_async_tx_descriptor *tx;
625 dma_cookie_t cookie;
626 dma_addr_t dst, src;
628 dst_sg = buf->vb.sglist;
629 dst_nents = buf->vb.sglen;
631 src_sg = priv->corl_table.sgl;
632 src_nents = priv->corl_nents;
635 * All buffers passed to this function should be ready and mapped
636 * for DMA already. Therefore, we don't need to do anything except
637 * submit it to the Freescale DMA Engine for processing
640 /* setup the scatterlist to scatterlist transfer */
641 tx = chan->device->device_prep_dma_sg(chan,
642 dst_sg, dst_nents,
643 src_sg, src_nents,
645 if (!tx) {
646 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
647 return -ENOMEM;
650 /* submit the transaction to the DMA controller */
651 cookie = tx->tx_submit(tx);
652 if (dma_submit_error(cookie)) {
653 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
654 return -ENOMEM;
657 /* Prepare the re-read of the SYS-FPGA block */
658 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
659 src = SYS_FPGA_BLOCK;
660 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
661 REG_BLOCK_SIZE,
662 DMA_PREP_INTERRUPT);
663 if (!tx) {
664 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
665 return -ENOMEM;
668 /* Setup the callback */
669 tx->callback = data_dma_cb;
670 tx->callback_param = priv;
672 /* submit the transaction to the DMA controller */
673 cookie = tx->tx_submit(tx);
674 if (dma_submit_error(cookie)) {
675 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
676 return -ENOMEM;
679 return 0;
682 #define CORL_DONE 0x1
683 #define CORL_ERR 0x2
685 static irqreturn_t data_irq(int irq, void *dev_id)
687 struct fpga_device *priv = dev_id;
688 bool submitted = false;
689 struct data_buf *buf;
690 u32 status;
691 int i;
693 /* detect spurious interrupts via FPGA status */
694 for (i = 0; i < 4; i++) {
695 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
696 if (!(status & (CORL_DONE | CORL_ERR))) {
697 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
698 return IRQ_NONE;
702 /* detect spurious interrupts via raw IRQ pin readback */
703 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
704 if (status & IRQ_CORL_DONE) {
705 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
706 return IRQ_NONE;
709 spin_lock(&priv->lock);
711 /* hide the interrupt by switching the IRQ driver to GPIO */
712 data_disable_interrupts(priv);
714 /* If there are no free buffers, drop this data */
715 if (list_empty(&priv->free)) {
716 priv->num_dropped++;
717 goto out;
720 buf = list_first_entry(&priv->free, struct data_buf, entry);
721 list_del_init(&buf->entry);
722 BUG_ON(buf->size != priv->bufsize);
724 /* Submit a DMA transfer to get the correlation data */
725 if (data_submit_dma(priv, buf)) {
726 dev_err(priv->dev, "Unable to setup DMA transfer\n");
727 list_move_tail(&buf->entry, &priv->free);
728 goto out;
731 /* Save the buffer for the DMA callback */
732 priv->inflight = buf;
733 submitted = true;
735 /* Start the DMA Engine */
736 dma_async_memcpy_issue_pending(priv->chan);
738 out:
739 /* If no DMA was submitted, re-enable interrupts */
740 if (!submitted)
741 data_enable_interrupts(priv);
743 spin_unlock(&priv->lock);
744 return IRQ_HANDLED;
748 * Realtime Device Enable Helpers
752 * data_device_enable() - enable the device for buffered dumping
753 * @priv: the driver's private data structure
755 * Enable the device for buffered dumping. Allocates buffers and hooks up
756 * the interrupt handler. When this finishes, data will come pouring in.
758 * LOCKING: must hold dev->mutex
759 * CONTEXT: user context only
761 * Returns 0 on success, -ERRNO otherwise
763 static int data_device_enable(struct fpga_device *priv)
765 u32 val;
766 int ret;
768 /* multiple enables are safe: they do nothing */
769 if (priv->enabled)
770 return 0;
772 /* check that the FPGAs are programmed */
773 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
774 if (!(val & (1 << 18))) {
775 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
776 return -ENODATA;
779 /* read the FPGAs to calculate the buffer size */
780 ret = data_calculate_bufsize(priv);
781 if (ret) {
782 dev_err(priv->dev, "unable to calculate buffer size\n");
783 goto out_error;
786 /* allocate the correlation data buffers */
787 ret = data_alloc_buffers(priv);
788 if (ret) {
789 dev_err(priv->dev, "unable to allocate buffers\n");
790 goto out_error;
793 /* setup the source scatterlist for dumping correlation data */
794 ret = data_setup_corl_table(priv);
795 if (ret) {
796 dev_err(priv->dev, "unable to setup correlation DMA table\n");
797 goto out_error;
800 /* hookup the irq handler */
801 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
802 if (ret) {
803 dev_err(priv->dev, "unable to request IRQ handler\n");
804 goto out_error;
807 /* switch to the external FPGA IRQ line */
808 data_enable_interrupts(priv);
810 /* success, we're enabled */
811 priv->enabled = true;
812 return 0;
814 out_error:
815 sg_free_table(&priv->corl_table);
816 priv->corl_nents = 0;
818 data_free_buffers(priv);
819 return ret;
823 * data_device_disable() - disable the device for buffered dumping
824 * @priv: the driver's private data structure
826 * Disable the device for buffered dumping. Stops new DMA transactions from
827 * being generated, waits for all outstanding DMA to complete, and then frees
828 * all buffers.
830 * LOCKING: must hold dev->mutex
831 * CONTEXT: user only
833 * Returns 0 on success, -ERRNO otherwise
835 static int data_device_disable(struct fpga_device *priv)
837 int ret;
839 /* allow multiple disable */
840 if (!priv->enabled)
841 return 0;
843 /* switch to the internal GPIO IRQ line */
844 data_disable_interrupts(priv);
846 /* unhook the irq handler */
847 free_irq(priv->irq, priv);
850 * wait for all outstanding DMA to complete
852 * Device interrupts are disabled, therefore another buffer cannot
853 * be marked inflight.
855 ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
856 if (ret)
857 return ret;
859 /* free the correlation table */
860 sg_free_table(&priv->corl_table);
861 priv->corl_nents = 0;
864 * We are taking the spinlock not to protect priv->enabled, but instead
865 * to make sure that there are no readers in the process of altering
866 * the free or used lists while we are setting this flag.
868 spin_lock_irq(&priv->lock);
869 priv->enabled = false;
870 spin_unlock_irq(&priv->lock);
872 /* free all buffers: the free and used lists are not being changed */
873 data_free_buffers(priv);
874 return 0;
878 * DEBUGFS Interface
880 #ifdef CONFIG_DEBUG_FS
883 * Count the number of entries in the given list
885 static unsigned int list_num_entries(struct list_head *list)
887 struct list_head *entry;
888 unsigned int ret = 0;
890 list_for_each(entry, list)
891 ret++;
893 return ret;
896 static int data_debug_show(struct seq_file *f, void *offset)
898 struct fpga_device *priv = f->private;
899 int ret;
902 * Lock the mutex first, so that we get an accurate value for enable
903 * Lock the spinlock next, to get accurate list counts
905 ret = mutex_lock_interruptible(&priv->mutex);
906 if (ret)
907 return ret;
909 spin_lock_irq(&priv->lock);
911 seq_printf(f, "enabled: %d\n", priv->enabled);
912 seq_printf(f, "bufsize: %d\n", priv->bufsize);
913 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
914 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
915 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
916 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
917 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
919 spin_unlock_irq(&priv->lock);
920 mutex_unlock(&priv->mutex);
921 return 0;
924 static int data_debug_open(struct inode *inode, struct file *file)
926 return single_open(file, data_debug_show, inode->i_private);
929 static const struct file_operations data_debug_fops = {
930 .owner = THIS_MODULE,
931 .open = data_debug_open,
932 .read = seq_read,
933 .llseek = seq_lseek,
934 .release = single_release,
937 static int data_debugfs_init(struct fpga_device *priv)
939 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
940 &data_debug_fops);
941 if (IS_ERR(priv->dbg_entry))
942 return PTR_ERR(priv->dbg_entry);
944 return 0;
947 static void data_debugfs_exit(struct fpga_device *priv)
949 debugfs_remove(priv->dbg_entry);
952 #else
954 static inline int data_debugfs_init(struct fpga_device *priv)
956 return 0;
959 static inline void data_debugfs_exit(struct fpga_device *priv)
963 #endif /* CONFIG_DEBUG_FS */
966 * SYSFS Attributes
969 static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
970 char *buf)
972 struct fpga_device *priv = dev_get_drvdata(dev);
973 return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
976 static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
977 const char *buf, size_t count)
979 struct fpga_device *priv = dev_get_drvdata(dev);
980 unsigned long enable;
981 int ret;
983 ret = strict_strtoul(buf, 0, &enable);
984 if (ret) {
985 dev_err(priv->dev, "unable to parse enable input\n");
986 return -EINVAL;
989 ret = mutex_lock_interruptible(&priv->mutex);
990 if (ret)
991 return ret;
993 if (enable)
994 ret = data_device_enable(priv);
995 else
996 ret = data_device_disable(priv);
998 if (ret) {
999 dev_err(priv->dev, "device %s failed\n",
1000 enable ? "enable" : "disable");
1001 count = ret;
1002 goto out_unlock;
1005 out_unlock:
1006 mutex_unlock(&priv->mutex);
1007 return count;
1010 static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1012 static struct attribute *data_sysfs_attrs[] = {
1013 &dev_attr_enable.attr,
1014 NULL,
1017 static const struct attribute_group rt_sysfs_attr_group = {
1018 .attrs = data_sysfs_attrs,
1022 * FPGA Realtime Data Character Device
1025 static int data_open(struct inode *inode, struct file *filp)
1028 * The miscdevice layer puts our struct miscdevice into the
1029 * filp->private_data field. We use this to find our private
1030 * data and then overwrite it with our own private structure.
1032 struct fpga_device *priv = container_of(filp->private_data,
1033 struct fpga_device, miscdev);
1034 struct fpga_reader *reader;
1035 int ret;
1037 /* allocate private data */
1038 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1039 if (!reader)
1040 return -ENOMEM;
1042 reader->priv = priv;
1043 reader->buf = NULL;
1045 filp->private_data = reader;
1046 ret = nonseekable_open(inode, filp);
1047 if (ret) {
1048 dev_err(priv->dev, "nonseekable-open failed\n");
1049 kfree(reader);
1050 return ret;
1054 * success, increase the reference count of the private data structure
1055 * so that it doesn't disappear if the device is unbound
1057 kref_get(&priv->ref);
1058 return 0;
1061 static int data_release(struct inode *inode, struct file *filp)
1063 struct fpga_reader *reader = filp->private_data;
1064 struct fpga_device *priv = reader->priv;
1066 /* free the per-reader structure */
1067 data_free_buffer(reader->buf);
1068 kfree(reader);
1069 filp->private_data = NULL;
1071 /* decrement our reference count to the private data */
1072 kref_put(&priv->ref, fpga_device_release);
1073 return 0;
1076 static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1077 loff_t *f_pos)
1079 struct fpga_reader *reader = filp->private_data;
1080 struct fpga_device *priv = reader->priv;
1081 struct list_head *used = &priv->used;
1082 struct data_buf *dbuf;
1083 size_t avail;
1084 void *data;
1085 int ret;
1087 /* check if we already have a partial buffer */
1088 if (reader->buf) {
1089 dbuf = reader->buf;
1090 goto have_buffer;
1093 spin_lock_irq(&priv->lock);
1095 /* Block until there is at least one buffer on the used list */
1096 while (list_empty(used)) {
1097 spin_unlock_irq(&priv->lock);
1099 if (filp->f_flags & O_NONBLOCK)
1100 return -EAGAIN;
1102 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1103 if (ret)
1104 return ret;
1106 spin_lock_irq(&priv->lock);
1109 /* Grab the first buffer off of the used list */
1110 dbuf = list_first_entry(used, struct data_buf, entry);
1111 list_del_init(&dbuf->entry);
1113 spin_unlock_irq(&priv->lock);
1115 /* Buffers are always mapped: unmap it */
1116 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1118 /* save the buffer for later */
1119 reader->buf = dbuf;
1120 reader->buf_start = 0;
1122 have_buffer:
1123 /* Get the number of bytes available */
1124 avail = dbuf->size - reader->buf_start;
1125 data = dbuf->vb.vaddr + reader->buf_start;
1127 /* Get the number of bytes we can transfer */
1128 count = min(count, avail);
1130 /* Copy the data to the userspace buffer */
1131 if (copy_to_user(ubuf, data, count))
1132 return -EFAULT;
1134 /* Update the amount of available space */
1135 avail -= count;
1138 * If there is still some data available, save the buffer for the
1139 * next userspace call to read() and return
1141 if (avail > 0) {
1142 reader->buf_start += count;
1143 reader->buf = dbuf;
1144 return count;
1148 * Get the buffer ready to be reused for DMA
1150 * If it fails, we pretend that the read never happed and return
1151 * -EFAULT to userspace. The read will be retried.
1153 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1154 if (ret) {
1155 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1156 return -EFAULT;
1159 /* Lock against concurrent enable/disable */
1160 spin_lock_irq(&priv->lock);
1162 /* the reader is finished with this buffer */
1163 reader->buf = NULL;
1166 * One of two things has happened, the device is disabled, or the
1167 * device has been reconfigured underneath us. In either case, we
1168 * should just throw away the buffer.
1170 if (!priv->enabled || dbuf->size != priv->bufsize) {
1171 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1172 data_free_buffer(dbuf);
1173 goto out_unlock;
1176 /* The buffer is safe to reuse, so add it back to the free list */
1177 list_add_tail(&dbuf->entry, &priv->free);
1179 out_unlock:
1180 spin_unlock_irq(&priv->lock);
1181 return count;
1184 static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1186 struct fpga_reader *reader = filp->private_data;
1187 struct fpga_device *priv = reader->priv;
1188 unsigned int mask = 0;
1190 poll_wait(filp, &priv->wait, tbl);
1192 if (!list_empty(&priv->used))
1193 mask |= POLLIN | POLLRDNORM;
1195 return mask;
1198 static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1200 struct fpga_reader *reader = filp->private_data;
1201 struct fpga_device *priv = reader->priv;
1202 unsigned long offset, vsize, psize, addr;
1204 /* VMA properties */
1205 offset = vma->vm_pgoff << PAGE_SHIFT;
1206 vsize = vma->vm_end - vma->vm_start;
1207 psize = priv->phys_size - offset;
1208 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1210 /* Check against the FPGA region's physical memory size */
1211 if (vsize > psize) {
1212 dev_err(priv->dev, "requested mmap mapping too large\n");
1213 return -EINVAL;
1216 /* IO memory (stop cacheing) */
1217 vma->vm_flags |= VM_IO | VM_RESERVED;
1218 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1220 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1221 vma->vm_page_prot);
1224 static const struct file_operations data_fops = {
1225 .owner = THIS_MODULE,
1226 .open = data_open,
1227 .release = data_release,
1228 .read = data_read,
1229 .poll = data_poll,
1230 .mmap = data_mmap,
1231 .llseek = no_llseek,
1235 * OpenFirmware Device Subsystem
1238 static bool dma_filter(struct dma_chan *chan, void *data)
1241 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1243 * This probably won't survive an unload/load cycle of the Freescale
1244 * DMAEngine driver, but that won't be a problem
1246 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1247 return false;
1249 return true;
1252 static int data_of_probe(struct platform_device *op,
1253 const struct of_device_id *match)
1255 struct device_node *of_node = op->dev.of_node;
1256 struct device *this_device;
1257 struct fpga_device *priv;
1258 struct resource res;
1259 dma_cap_mask_t mask;
1260 int ret;
1262 /* Allocate private data */
1263 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1264 if (!priv) {
1265 dev_err(&op->dev, "Unable to allocate device private data\n");
1266 ret = -ENOMEM;
1267 goto out_return;
1270 dev_set_drvdata(&op->dev, priv);
1271 priv->dev = &op->dev;
1272 kref_init(&priv->ref);
1273 mutex_init(&priv->mutex);
1275 dev_set_drvdata(priv->dev, priv);
1276 spin_lock_init(&priv->lock);
1277 INIT_LIST_HEAD(&priv->free);
1278 INIT_LIST_HEAD(&priv->used);
1279 init_waitqueue_head(&priv->wait);
1281 /* Setup the misc device */
1282 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1283 priv->miscdev.name = drv_name;
1284 priv->miscdev.fops = &data_fops;
1286 /* Get the physical address of the FPGA registers */
1287 ret = of_address_to_resource(of_node, 0, &res);
1288 if (ret) {
1289 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1290 ret = -ENODEV;
1291 goto out_free_priv;
1294 priv->phys_addr = res.start;
1295 priv->phys_size = resource_size(&res);
1297 /* ioremap the registers for use */
1298 priv->regs = of_iomap(of_node, 0);
1299 if (!priv->regs) {
1300 dev_err(&op->dev, "Unable to ioremap registers\n");
1301 ret = -ENOMEM;
1302 goto out_free_priv;
1305 dma_cap_zero(mask);
1306 dma_cap_set(DMA_MEMCPY, mask);
1307 dma_cap_set(DMA_INTERRUPT, mask);
1308 dma_cap_set(DMA_SLAVE, mask);
1309 dma_cap_set(DMA_SG, mask);
1311 /* Request a DMA channel */
1312 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1313 if (!priv->chan) {
1314 dev_err(&op->dev, "Unable to request DMA channel\n");
1315 ret = -ENODEV;
1316 goto out_unmap_regs;
1319 /* Find the correct IRQ number */
1320 priv->irq = irq_of_parse_and_map(of_node, 0);
1321 if (priv->irq == NO_IRQ) {
1322 dev_err(&op->dev, "Unable to find IRQ line\n");
1323 ret = -ENODEV;
1324 goto out_release_dma;
1327 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1328 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1330 /* Register the miscdevice */
1331 ret = misc_register(&priv->miscdev);
1332 if (ret) {
1333 dev_err(&op->dev, "Unable to register miscdevice\n");
1334 goto out_irq_dispose_mapping;
1337 /* Create the debugfs files */
1338 ret = data_debugfs_init(priv);
1339 if (ret) {
1340 dev_err(&op->dev, "Unable to create debugfs files\n");
1341 goto out_misc_deregister;
1344 /* Create the sysfs files */
1345 this_device = priv->miscdev.this_device;
1346 dev_set_drvdata(this_device, priv);
1347 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1348 if (ret) {
1349 dev_err(&op->dev, "Unable to create sysfs files\n");
1350 goto out_data_debugfs_exit;
1353 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1354 return 0;
1356 out_data_debugfs_exit:
1357 data_debugfs_exit(priv);
1358 out_misc_deregister:
1359 misc_deregister(&priv->miscdev);
1360 out_irq_dispose_mapping:
1361 irq_dispose_mapping(priv->irq);
1362 out_release_dma:
1363 dma_release_channel(priv->chan);
1364 out_unmap_regs:
1365 iounmap(priv->regs);
1366 out_free_priv:
1367 kref_put(&priv->ref, fpga_device_release);
1368 out_return:
1369 return ret;
1372 static int data_of_remove(struct platform_device *op)
1374 struct fpga_device *priv = dev_get_drvdata(&op->dev);
1375 struct device *this_device = priv->miscdev.this_device;
1377 /* remove all sysfs files, now the device cannot be re-enabled */
1378 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1380 /* remove all debugfs files */
1381 data_debugfs_exit(priv);
1383 /* disable the device from generating data */
1384 data_device_disable(priv);
1386 /* remove the character device to stop new readers from appearing */
1387 misc_deregister(&priv->miscdev);
1389 /* cleanup everything not needed by readers */
1390 irq_dispose_mapping(priv->irq);
1391 dma_release_channel(priv->chan);
1392 iounmap(priv->regs);
1394 /* release our reference */
1395 kref_put(&priv->ref, fpga_device_release);
1396 return 0;
1399 static struct of_device_id data_of_match[] = {
1400 { .compatible = "carma,carma-fpga", },
1404 static struct of_platform_driver data_of_driver = {
1405 .probe = data_of_probe,
1406 .remove = data_of_remove,
1407 .driver = {
1408 .name = drv_name,
1409 .of_match_table = data_of_match,
1410 .owner = THIS_MODULE,
1415 * Module Init / Exit
1418 static int __init data_init(void)
1420 return of_register_platform_driver(&data_of_driver);
1423 static void __exit data_exit(void)
1425 of_unregister_platform_driver(&data_of_driver);
1428 MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1429 MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1430 MODULE_LICENSE("GPL");
1432 module_init(data_init);
1433 module_exit(data_exit);