2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
32 #include <asm/irq_regs.h>
35 * Each CPU has a list of per CPU events:
37 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
39 int perf_max_events __read_mostly
= 1;
40 static int perf_reserved_percpu __read_mostly
;
41 static int perf_overcommit __read_mostly
= 1;
43 static atomic_t nr_events __read_mostly
;
44 static atomic_t nr_mmap_events __read_mostly
;
45 static atomic_t nr_comm_events __read_mostly
;
46 static atomic_t nr_task_events __read_mostly
;
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
55 int sysctl_perf_event_paranoid __read_mostly
= 1;
57 static inline bool perf_paranoid_tracepoint_raw(void)
59 return sysctl_perf_event_paranoid
> -1;
62 static inline bool perf_paranoid_cpu(void)
64 return sysctl_perf_event_paranoid
> 0;
67 static inline bool perf_paranoid_kernel(void)
69 return sysctl_perf_event_paranoid
> 1;
72 /* Minimum for 128 pages + 1 for the user control page */
73 int sysctl_perf_event_mlock __read_mostly
= 516; /* 'free' kb per user */
76 * max perf event sample rate
78 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
80 static atomic64_t perf_event_id
;
83 * Lock for (sysadmin-configurable) event reservations:
85 static DEFINE_SPINLOCK(perf_resource_lock
);
88 * Architecture provided APIs - weak aliases:
90 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
95 void __weak
hw_perf_disable(void) { barrier(); }
96 void __weak
hw_perf_enable(void) { barrier(); }
98 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
99 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
102 hw_perf_group_sched_in(struct perf_event
*group_leader
,
103 struct perf_cpu_context
*cpuctx
,
104 struct perf_event_context
*ctx
, int cpu
)
109 void __weak
perf_event_print_debug(void) { }
111 static DEFINE_PER_CPU(int, perf_disable_count
);
113 void __perf_disable(void)
115 __get_cpu_var(perf_disable_count
)++;
118 bool __perf_enable(void)
120 return !--__get_cpu_var(perf_disable_count
);
123 void perf_disable(void)
129 void perf_enable(void)
135 static void get_ctx(struct perf_event_context
*ctx
)
137 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
140 static void free_ctx(struct rcu_head
*head
)
142 struct perf_event_context
*ctx
;
144 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
148 static void put_ctx(struct perf_event_context
*ctx
)
150 if (atomic_dec_and_test(&ctx
->refcount
)) {
152 put_ctx(ctx
->parent_ctx
);
154 put_task_struct(ctx
->task
);
155 call_rcu(&ctx
->rcu_head
, free_ctx
);
159 static void unclone_ctx(struct perf_event_context
*ctx
)
161 if (ctx
->parent_ctx
) {
162 put_ctx(ctx
->parent_ctx
);
163 ctx
->parent_ctx
= NULL
;
168 * If we inherit events we want to return the parent event id
171 static u64
primary_event_id(struct perf_event
*event
)
176 id
= event
->parent
->id
;
182 * Get the perf_event_context for a task and lock it.
183 * This has to cope with with the fact that until it is locked,
184 * the context could get moved to another task.
186 static struct perf_event_context
*
187 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
189 struct perf_event_context
*ctx
;
193 ctx
= rcu_dereference(task
->perf_event_ctxp
);
196 * If this context is a clone of another, it might
197 * get swapped for another underneath us by
198 * perf_event_task_sched_out, though the
199 * rcu_read_lock() protects us from any context
200 * getting freed. Lock the context and check if it
201 * got swapped before we could get the lock, and retry
202 * if so. If we locked the right context, then it
203 * can't get swapped on us any more.
205 spin_lock_irqsave(&ctx
->lock
, *flags
);
206 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
207 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
211 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
212 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
221 * Get the context for a task and increment its pin_count so it
222 * can't get swapped to another task. This also increments its
223 * reference count so that the context can't get freed.
225 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
227 struct perf_event_context
*ctx
;
230 ctx
= perf_lock_task_context(task
, &flags
);
233 spin_unlock_irqrestore(&ctx
->lock
, flags
);
238 static void perf_unpin_context(struct perf_event_context
*ctx
)
242 spin_lock_irqsave(&ctx
->lock
, flags
);
244 spin_unlock_irqrestore(&ctx
->lock
, flags
);
249 * Add a event from the lists for its context.
250 * Must be called with ctx->mutex and ctx->lock held.
253 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
255 struct perf_event
*group_leader
= event
->group_leader
;
258 * Depending on whether it is a standalone or sibling event,
259 * add it straight to the context's event list, or to the group
260 * leader's sibling list:
262 if (group_leader
== event
)
263 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
265 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
266 group_leader
->nr_siblings
++;
269 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
271 if (event
->attr
.inherit_stat
)
276 * Remove a event from the lists for its context.
277 * Must be called with ctx->mutex and ctx->lock held.
280 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
282 struct perf_event
*sibling
, *tmp
;
284 if (list_empty(&event
->group_entry
))
287 if (event
->attr
.inherit_stat
)
290 list_del_init(&event
->group_entry
);
291 list_del_rcu(&event
->event_entry
);
293 if (event
->group_leader
!= event
)
294 event
->group_leader
->nr_siblings
--;
297 * If this was a group event with sibling events then
298 * upgrade the siblings to singleton events by adding them
299 * to the context list directly:
301 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
303 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
304 sibling
->group_leader
= sibling
;
309 event_sched_out(struct perf_event
*event
,
310 struct perf_cpu_context
*cpuctx
,
311 struct perf_event_context
*ctx
)
313 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
316 event
->state
= PERF_EVENT_STATE_INACTIVE
;
317 if (event
->pending_disable
) {
318 event
->pending_disable
= 0;
319 event
->state
= PERF_EVENT_STATE_OFF
;
321 event
->tstamp_stopped
= ctx
->time
;
322 event
->pmu
->disable(event
);
325 if (!is_software_event(event
))
326 cpuctx
->active_oncpu
--;
328 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
329 cpuctx
->exclusive
= 0;
333 group_sched_out(struct perf_event
*group_event
,
334 struct perf_cpu_context
*cpuctx
,
335 struct perf_event_context
*ctx
)
337 struct perf_event
*event
;
339 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
342 event_sched_out(group_event
, cpuctx
, ctx
);
345 * Schedule out siblings (if any):
347 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
348 event_sched_out(event
, cpuctx
, ctx
);
350 if (group_event
->attr
.exclusive
)
351 cpuctx
->exclusive
= 0;
355 * Cross CPU call to remove a performance event
357 * We disable the event on the hardware level first. After that we
358 * remove it from the context list.
360 static void __perf_event_remove_from_context(void *info
)
362 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
363 struct perf_event
*event
= info
;
364 struct perf_event_context
*ctx
= event
->ctx
;
367 * If this is a task context, we need to check whether it is
368 * the current task context of this cpu. If not it has been
369 * scheduled out before the smp call arrived.
371 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
374 spin_lock(&ctx
->lock
);
376 * Protect the list operation against NMI by disabling the
377 * events on a global level.
381 event_sched_out(event
, cpuctx
, ctx
);
383 list_del_event(event
, ctx
);
387 * Allow more per task events with respect to the
390 cpuctx
->max_pertask
=
391 min(perf_max_events
- ctx
->nr_events
,
392 perf_max_events
- perf_reserved_percpu
);
396 spin_unlock(&ctx
->lock
);
401 * Remove the event from a task's (or a CPU's) list of events.
403 * Must be called with ctx->mutex held.
405 * CPU events are removed with a smp call. For task events we only
406 * call when the task is on a CPU.
408 * If event->ctx is a cloned context, callers must make sure that
409 * every task struct that event->ctx->task could possibly point to
410 * remains valid. This is OK when called from perf_release since
411 * that only calls us on the top-level context, which can't be a clone.
412 * When called from perf_event_exit_task, it's OK because the
413 * context has been detached from its task.
415 static void perf_event_remove_from_context(struct perf_event
*event
)
417 struct perf_event_context
*ctx
= event
->ctx
;
418 struct task_struct
*task
= ctx
->task
;
422 * Per cpu events are removed via an smp call and
423 * the removal is always sucessful.
425 smp_call_function_single(event
->cpu
,
426 __perf_event_remove_from_context
,
432 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
435 spin_lock_irq(&ctx
->lock
);
437 * If the context is active we need to retry the smp call.
439 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
440 spin_unlock_irq(&ctx
->lock
);
445 * The lock prevents that this context is scheduled in so we
446 * can remove the event safely, if the call above did not
449 if (!list_empty(&event
->group_entry
)) {
450 list_del_event(event
, ctx
);
452 spin_unlock_irq(&ctx
->lock
);
455 static inline u64
perf_clock(void)
457 return cpu_clock(smp_processor_id());
461 * Update the record of the current time in a context.
463 static void update_context_time(struct perf_event_context
*ctx
)
465 u64 now
= perf_clock();
467 ctx
->time
+= now
- ctx
->timestamp
;
468 ctx
->timestamp
= now
;
472 * Update the total_time_enabled and total_time_running fields for a event.
474 static void update_event_times(struct perf_event
*event
)
476 struct perf_event_context
*ctx
= event
->ctx
;
479 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
480 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
483 event
->total_time_enabled
= ctx
->time
- event
->tstamp_enabled
;
485 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
486 run_end
= event
->tstamp_stopped
;
490 event
->total_time_running
= run_end
- event
->tstamp_running
;
494 * Update total_time_enabled and total_time_running for all events in a group.
496 static void update_group_times(struct perf_event
*leader
)
498 struct perf_event
*event
;
500 update_event_times(leader
);
501 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
502 update_event_times(event
);
506 * Cross CPU call to disable a performance event
508 static void __perf_event_disable(void *info
)
510 struct perf_event
*event
= info
;
511 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
512 struct perf_event_context
*ctx
= event
->ctx
;
515 * If this is a per-task event, need to check whether this
516 * event's task is the current task on this cpu.
518 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
521 spin_lock(&ctx
->lock
);
524 * If the event is on, turn it off.
525 * If it is in error state, leave it in error state.
527 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
528 update_context_time(ctx
);
529 update_group_times(event
);
530 if (event
== event
->group_leader
)
531 group_sched_out(event
, cpuctx
, ctx
);
533 event_sched_out(event
, cpuctx
, ctx
);
534 event
->state
= PERF_EVENT_STATE_OFF
;
537 spin_unlock(&ctx
->lock
);
543 * If event->ctx is a cloned context, callers must make sure that
544 * every task struct that event->ctx->task could possibly point to
545 * remains valid. This condition is satisifed when called through
546 * perf_event_for_each_child or perf_event_for_each because they
547 * hold the top-level event's child_mutex, so any descendant that
548 * goes to exit will block in sync_child_event.
549 * When called from perf_pending_event it's OK because event->ctx
550 * is the current context on this CPU and preemption is disabled,
551 * hence we can't get into perf_event_task_sched_out for this context.
553 static void perf_event_disable(struct perf_event
*event
)
555 struct perf_event_context
*ctx
= event
->ctx
;
556 struct task_struct
*task
= ctx
->task
;
560 * Disable the event on the cpu that it's on
562 smp_call_function_single(event
->cpu
, __perf_event_disable
,
568 task_oncpu_function_call(task
, __perf_event_disable
, event
);
570 spin_lock_irq(&ctx
->lock
);
572 * If the event is still active, we need to retry the cross-call.
574 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
575 spin_unlock_irq(&ctx
->lock
);
580 * Since we have the lock this context can't be scheduled
581 * in, so we can change the state safely.
583 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
584 update_group_times(event
);
585 event
->state
= PERF_EVENT_STATE_OFF
;
588 spin_unlock_irq(&ctx
->lock
);
592 event_sched_in(struct perf_event
*event
,
593 struct perf_cpu_context
*cpuctx
,
594 struct perf_event_context
*ctx
,
597 if (event
->state
<= PERF_EVENT_STATE_OFF
)
600 event
->state
= PERF_EVENT_STATE_ACTIVE
;
601 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
603 * The new state must be visible before we turn it on in the hardware:
607 if (event
->pmu
->enable(event
)) {
608 event
->state
= PERF_EVENT_STATE_INACTIVE
;
613 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
615 if (!is_software_event(event
))
616 cpuctx
->active_oncpu
++;
619 if (event
->attr
.exclusive
)
620 cpuctx
->exclusive
= 1;
626 group_sched_in(struct perf_event
*group_event
,
627 struct perf_cpu_context
*cpuctx
,
628 struct perf_event_context
*ctx
,
631 struct perf_event
*event
, *partial_group
;
634 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
637 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
639 return ret
< 0 ? ret
: 0;
641 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
645 * Schedule in siblings as one group (if any):
647 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
648 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
649 partial_group
= event
;
658 * Groups can be scheduled in as one unit only, so undo any
659 * partial group before returning:
661 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
662 if (event
== partial_group
)
664 event_sched_out(event
, cpuctx
, ctx
);
666 event_sched_out(group_event
, cpuctx
, ctx
);
672 * Return 1 for a group consisting entirely of software events,
673 * 0 if the group contains any hardware events.
675 static int is_software_only_group(struct perf_event
*leader
)
677 struct perf_event
*event
;
679 if (!is_software_event(leader
))
682 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
683 if (!is_software_event(event
))
690 * Work out whether we can put this event group on the CPU now.
692 static int group_can_go_on(struct perf_event
*event
,
693 struct perf_cpu_context
*cpuctx
,
697 * Groups consisting entirely of software events can always go on.
699 if (is_software_only_group(event
))
702 * If an exclusive group is already on, no other hardware
705 if (cpuctx
->exclusive
)
708 * If this group is exclusive and there are already
709 * events on the CPU, it can't go on.
711 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
714 * Otherwise, try to add it if all previous groups were able
720 static void add_event_to_ctx(struct perf_event
*event
,
721 struct perf_event_context
*ctx
)
723 list_add_event(event
, ctx
);
724 event
->tstamp_enabled
= ctx
->time
;
725 event
->tstamp_running
= ctx
->time
;
726 event
->tstamp_stopped
= ctx
->time
;
730 * Cross CPU call to install and enable a performance event
732 * Must be called with ctx->mutex held
734 static void __perf_install_in_context(void *info
)
736 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
737 struct perf_event
*event
= info
;
738 struct perf_event_context
*ctx
= event
->ctx
;
739 struct perf_event
*leader
= event
->group_leader
;
740 int cpu
= smp_processor_id();
744 * If this is a task context, we need to check whether it is
745 * the current task context of this cpu. If not it has been
746 * scheduled out before the smp call arrived.
747 * Or possibly this is the right context but it isn't
748 * on this cpu because it had no events.
750 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
751 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
753 cpuctx
->task_ctx
= ctx
;
756 spin_lock(&ctx
->lock
);
758 update_context_time(ctx
);
761 * Protect the list operation against NMI by disabling the
762 * events on a global level. NOP for non NMI based events.
766 add_event_to_ctx(event
, ctx
);
769 * Don't put the event on if it is disabled or if
770 * it is in a group and the group isn't on.
772 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
773 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
777 * An exclusive event can't go on if there are already active
778 * hardware events, and no hardware event can go on if there
779 * is already an exclusive event on.
781 if (!group_can_go_on(event
, cpuctx
, 1))
784 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
788 * This event couldn't go on. If it is in a group
789 * then we have to pull the whole group off.
790 * If the event group is pinned then put it in error state.
793 group_sched_out(leader
, cpuctx
, ctx
);
794 if (leader
->attr
.pinned
) {
795 update_group_times(leader
);
796 leader
->state
= PERF_EVENT_STATE_ERROR
;
800 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
801 cpuctx
->max_pertask
--;
806 spin_unlock(&ctx
->lock
);
810 * Attach a performance event to a context
812 * First we add the event to the list with the hardware enable bit
813 * in event->hw_config cleared.
815 * If the event is attached to a task which is on a CPU we use a smp
816 * call to enable it in the task context. The task might have been
817 * scheduled away, but we check this in the smp call again.
819 * Must be called with ctx->mutex held.
822 perf_install_in_context(struct perf_event_context
*ctx
,
823 struct perf_event
*event
,
826 struct task_struct
*task
= ctx
->task
;
830 * Per cpu events are installed via an smp call and
831 * the install is always sucessful.
833 smp_call_function_single(cpu
, __perf_install_in_context
,
839 task_oncpu_function_call(task
, __perf_install_in_context
,
842 spin_lock_irq(&ctx
->lock
);
844 * we need to retry the smp call.
846 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
847 spin_unlock_irq(&ctx
->lock
);
852 * The lock prevents that this context is scheduled in so we
853 * can add the event safely, if it the call above did not
856 if (list_empty(&event
->group_entry
))
857 add_event_to_ctx(event
, ctx
);
858 spin_unlock_irq(&ctx
->lock
);
862 * Put a event into inactive state and update time fields.
863 * Enabling the leader of a group effectively enables all
864 * the group members that aren't explicitly disabled, so we
865 * have to update their ->tstamp_enabled also.
866 * Note: this works for group members as well as group leaders
867 * since the non-leader members' sibling_lists will be empty.
869 static void __perf_event_mark_enabled(struct perf_event
*event
,
870 struct perf_event_context
*ctx
)
872 struct perf_event
*sub
;
874 event
->state
= PERF_EVENT_STATE_INACTIVE
;
875 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
876 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
877 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
878 sub
->tstamp_enabled
=
879 ctx
->time
- sub
->total_time_enabled
;
883 * Cross CPU call to enable a performance event
885 static void __perf_event_enable(void *info
)
887 struct perf_event
*event
= info
;
888 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
889 struct perf_event_context
*ctx
= event
->ctx
;
890 struct perf_event
*leader
= event
->group_leader
;
894 * If this is a per-task event, need to check whether this
895 * event's task is the current task on this cpu.
897 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
898 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
900 cpuctx
->task_ctx
= ctx
;
903 spin_lock(&ctx
->lock
);
905 update_context_time(ctx
);
907 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
909 __perf_event_mark_enabled(event
, ctx
);
912 * If the event is in a group and isn't the group leader,
913 * then don't put it on unless the group is on.
915 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
918 if (!group_can_go_on(event
, cpuctx
, 1)) {
923 err
= group_sched_in(event
, cpuctx
, ctx
,
926 err
= event_sched_in(event
, cpuctx
, ctx
,
933 * If this event can't go on and it's part of a
934 * group, then the whole group has to come off.
937 group_sched_out(leader
, cpuctx
, ctx
);
938 if (leader
->attr
.pinned
) {
939 update_group_times(leader
);
940 leader
->state
= PERF_EVENT_STATE_ERROR
;
945 spin_unlock(&ctx
->lock
);
951 * If event->ctx is a cloned context, callers must make sure that
952 * every task struct that event->ctx->task could possibly point to
953 * remains valid. This condition is satisfied when called through
954 * perf_event_for_each_child or perf_event_for_each as described
955 * for perf_event_disable.
957 static void perf_event_enable(struct perf_event
*event
)
959 struct perf_event_context
*ctx
= event
->ctx
;
960 struct task_struct
*task
= ctx
->task
;
964 * Enable the event on the cpu that it's on
966 smp_call_function_single(event
->cpu
, __perf_event_enable
,
971 spin_lock_irq(&ctx
->lock
);
972 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
976 * If the event is in error state, clear that first.
977 * That way, if we see the event in error state below, we
978 * know that it has gone back into error state, as distinct
979 * from the task having been scheduled away before the
980 * cross-call arrived.
982 if (event
->state
== PERF_EVENT_STATE_ERROR
)
983 event
->state
= PERF_EVENT_STATE_OFF
;
986 spin_unlock_irq(&ctx
->lock
);
987 task_oncpu_function_call(task
, __perf_event_enable
, event
);
989 spin_lock_irq(&ctx
->lock
);
992 * If the context is active and the event is still off,
993 * we need to retry the cross-call.
995 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
999 * Since we have the lock this context can't be scheduled
1000 * in, so we can change the state safely.
1002 if (event
->state
== PERF_EVENT_STATE_OFF
)
1003 __perf_event_mark_enabled(event
, ctx
);
1006 spin_unlock_irq(&ctx
->lock
);
1009 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1012 * not supported on inherited events
1014 if (event
->attr
.inherit
)
1017 atomic_add(refresh
, &event
->event_limit
);
1018 perf_event_enable(event
);
1023 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1024 struct perf_cpu_context
*cpuctx
)
1026 struct perf_event
*event
;
1028 spin_lock(&ctx
->lock
);
1030 if (likely(!ctx
->nr_events
))
1032 update_context_time(ctx
);
1036 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1037 group_sched_out(event
, cpuctx
, ctx
);
1041 spin_unlock(&ctx
->lock
);
1045 * Test whether two contexts are equivalent, i.e. whether they
1046 * have both been cloned from the same version of the same context
1047 * and they both have the same number of enabled events.
1048 * If the number of enabled events is the same, then the set
1049 * of enabled events should be the same, because these are both
1050 * inherited contexts, therefore we can't access individual events
1051 * in them directly with an fd; we can only enable/disable all
1052 * events via prctl, or enable/disable all events in a family
1053 * via ioctl, which will have the same effect on both contexts.
1055 static int context_equiv(struct perf_event_context
*ctx1
,
1056 struct perf_event_context
*ctx2
)
1058 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1059 && ctx1
->parent_gen
== ctx2
->parent_gen
1060 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1063 static void __perf_event_read(void *event
);
1065 static void __perf_event_sync_stat(struct perf_event
*event
,
1066 struct perf_event
*next_event
)
1070 if (!event
->attr
.inherit_stat
)
1074 * Update the event value, we cannot use perf_event_read()
1075 * because we're in the middle of a context switch and have IRQs
1076 * disabled, which upsets smp_call_function_single(), however
1077 * we know the event must be on the current CPU, therefore we
1078 * don't need to use it.
1080 switch (event
->state
) {
1081 case PERF_EVENT_STATE_ACTIVE
:
1082 __perf_event_read(event
);
1085 case PERF_EVENT_STATE_INACTIVE
:
1086 update_event_times(event
);
1094 * In order to keep per-task stats reliable we need to flip the event
1095 * values when we flip the contexts.
1097 value
= atomic64_read(&next_event
->count
);
1098 value
= atomic64_xchg(&event
->count
, value
);
1099 atomic64_set(&next_event
->count
, value
);
1101 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1102 swap(event
->total_time_running
, next_event
->total_time_running
);
1105 * Since we swizzled the values, update the user visible data too.
1107 perf_event_update_userpage(event
);
1108 perf_event_update_userpage(next_event
);
1111 #define list_next_entry(pos, member) \
1112 list_entry(pos->member.next, typeof(*pos), member)
1114 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1115 struct perf_event_context
*next_ctx
)
1117 struct perf_event
*event
, *next_event
;
1122 event
= list_first_entry(&ctx
->event_list
,
1123 struct perf_event
, event_entry
);
1125 next_event
= list_first_entry(&next_ctx
->event_list
,
1126 struct perf_event
, event_entry
);
1128 while (&event
->event_entry
!= &ctx
->event_list
&&
1129 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1131 __perf_event_sync_stat(event
, next_event
);
1133 event
= list_next_entry(event
, event_entry
);
1134 next_event
= list_next_entry(next_event
, event_entry
);
1139 * Called from scheduler to remove the events of the current task,
1140 * with interrupts disabled.
1142 * We stop each event and update the event value in event->count.
1144 * This does not protect us against NMI, but disable()
1145 * sets the disabled bit in the control field of event _before_
1146 * accessing the event control register. If a NMI hits, then it will
1147 * not restart the event.
1149 void perf_event_task_sched_out(struct task_struct
*task
,
1150 struct task_struct
*next
, int cpu
)
1152 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1153 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1154 struct perf_event_context
*next_ctx
;
1155 struct perf_event_context
*parent
;
1156 struct pt_regs
*regs
;
1159 regs
= task_pt_regs(task
);
1160 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1162 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1165 update_context_time(ctx
);
1168 parent
= rcu_dereference(ctx
->parent_ctx
);
1169 next_ctx
= next
->perf_event_ctxp
;
1170 if (parent
&& next_ctx
&&
1171 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1173 * Looks like the two contexts are clones, so we might be
1174 * able to optimize the context switch. We lock both
1175 * contexts and check that they are clones under the
1176 * lock (including re-checking that neither has been
1177 * uncloned in the meantime). It doesn't matter which
1178 * order we take the locks because no other cpu could
1179 * be trying to lock both of these tasks.
1181 spin_lock(&ctx
->lock
);
1182 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1183 if (context_equiv(ctx
, next_ctx
)) {
1185 * XXX do we need a memory barrier of sorts
1186 * wrt to rcu_dereference() of perf_event_ctxp
1188 task
->perf_event_ctxp
= next_ctx
;
1189 next
->perf_event_ctxp
= ctx
;
1191 next_ctx
->task
= task
;
1194 perf_event_sync_stat(ctx
, next_ctx
);
1196 spin_unlock(&next_ctx
->lock
);
1197 spin_unlock(&ctx
->lock
);
1202 __perf_event_sched_out(ctx
, cpuctx
);
1203 cpuctx
->task_ctx
= NULL
;
1208 * Called with IRQs disabled
1210 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1212 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1214 if (!cpuctx
->task_ctx
)
1217 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1220 __perf_event_sched_out(ctx
, cpuctx
);
1221 cpuctx
->task_ctx
= NULL
;
1225 * Called with IRQs disabled
1227 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1229 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1233 __perf_event_sched_in(struct perf_event_context
*ctx
,
1234 struct perf_cpu_context
*cpuctx
, int cpu
)
1236 struct perf_event
*event
;
1239 spin_lock(&ctx
->lock
);
1241 if (likely(!ctx
->nr_events
))
1244 ctx
->timestamp
= perf_clock();
1249 * First go through the list and put on any pinned groups
1250 * in order to give them the best chance of going on.
1252 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1253 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1254 !event
->attr
.pinned
)
1256 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1259 if (group_can_go_on(event
, cpuctx
, 1))
1260 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1263 * If this pinned group hasn't been scheduled,
1264 * put it in error state.
1266 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1267 update_group_times(event
);
1268 event
->state
= PERF_EVENT_STATE_ERROR
;
1272 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1274 * Ignore events in OFF or ERROR state, and
1275 * ignore pinned events since we did them already.
1277 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1282 * Listen to the 'cpu' scheduling filter constraint
1285 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1288 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1289 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1294 spin_unlock(&ctx
->lock
);
1298 * Called from scheduler to add the events of the current task
1299 * with interrupts disabled.
1301 * We restore the event value and then enable it.
1303 * This does not protect us against NMI, but enable()
1304 * sets the enabled bit in the control field of event _before_
1305 * accessing the event control register. If a NMI hits, then it will
1306 * keep the event running.
1308 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1310 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1311 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1315 if (cpuctx
->task_ctx
== ctx
)
1317 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1318 cpuctx
->task_ctx
= ctx
;
1321 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1323 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1325 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1328 #define MAX_INTERRUPTS (~0ULL)
1330 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1332 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1334 struct hw_perf_event
*hwc
= &event
->hw
;
1335 u64 period
, sample_period
;
1338 events
*= hwc
->sample_period
;
1339 period
= div64_u64(events
, event
->attr
.sample_freq
);
1341 delta
= (s64
)(period
- hwc
->sample_period
);
1342 delta
= (delta
+ 7) / 8; /* low pass filter */
1344 sample_period
= hwc
->sample_period
+ delta
;
1349 hwc
->sample_period
= sample_period
;
1352 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1354 struct perf_event
*event
;
1355 struct hw_perf_event
*hwc
;
1356 u64 interrupts
, freq
;
1358 spin_lock(&ctx
->lock
);
1359 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1360 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1363 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1368 interrupts
= hwc
->interrupts
;
1369 hwc
->interrupts
= 0;
1372 * unthrottle events on the tick
1374 if (interrupts
== MAX_INTERRUPTS
) {
1375 perf_log_throttle(event
, 1);
1376 event
->pmu
->unthrottle(event
);
1377 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1380 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1384 * if the specified freq < HZ then we need to skip ticks
1386 if (event
->attr
.sample_freq
< HZ
) {
1387 freq
= event
->attr
.sample_freq
;
1389 hwc
->freq_count
+= freq
;
1390 hwc
->freq_interrupts
+= interrupts
;
1392 if (hwc
->freq_count
< HZ
)
1395 interrupts
= hwc
->freq_interrupts
;
1396 hwc
->freq_interrupts
= 0;
1397 hwc
->freq_count
-= HZ
;
1401 perf_adjust_period(event
, freq
* interrupts
);
1404 * In order to avoid being stalled by an (accidental) huge
1405 * sample period, force reset the sample period if we didn't
1406 * get any events in this freq period.
1410 event
->pmu
->disable(event
);
1411 atomic64_set(&hwc
->period_left
, 0);
1412 event
->pmu
->enable(event
);
1416 spin_unlock(&ctx
->lock
);
1420 * Round-robin a context's events:
1422 static void rotate_ctx(struct perf_event_context
*ctx
)
1424 struct perf_event
*event
;
1426 if (!ctx
->nr_events
)
1429 spin_lock(&ctx
->lock
);
1431 * Rotate the first entry last (works just fine for group events too):
1434 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1435 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1440 spin_unlock(&ctx
->lock
);
1443 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1445 struct perf_cpu_context
*cpuctx
;
1446 struct perf_event_context
*ctx
;
1448 if (!atomic_read(&nr_events
))
1451 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1452 ctx
= curr
->perf_event_ctxp
;
1454 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1456 perf_ctx_adjust_freq(ctx
);
1458 perf_event_cpu_sched_out(cpuctx
);
1460 __perf_event_task_sched_out(ctx
);
1462 rotate_ctx(&cpuctx
->ctx
);
1466 perf_event_cpu_sched_in(cpuctx
, cpu
);
1468 perf_event_task_sched_in(curr
, cpu
);
1472 * Enable all of a task's events that have been marked enable-on-exec.
1473 * This expects task == current.
1475 static void perf_event_enable_on_exec(struct task_struct
*task
)
1477 struct perf_event_context
*ctx
;
1478 struct perf_event
*event
;
1479 unsigned long flags
;
1482 local_irq_save(flags
);
1483 ctx
= task
->perf_event_ctxp
;
1484 if (!ctx
|| !ctx
->nr_events
)
1487 __perf_event_task_sched_out(ctx
);
1489 spin_lock(&ctx
->lock
);
1491 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1492 if (!event
->attr
.enable_on_exec
)
1494 event
->attr
.enable_on_exec
= 0;
1495 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1497 __perf_event_mark_enabled(event
, ctx
);
1502 * Unclone this context if we enabled any event.
1507 spin_unlock(&ctx
->lock
);
1509 perf_event_task_sched_in(task
, smp_processor_id());
1511 local_irq_restore(flags
);
1515 * Cross CPU call to read the hardware event
1517 static void __perf_event_read(void *info
)
1519 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1520 struct perf_event
*event
= info
;
1521 struct perf_event_context
*ctx
= event
->ctx
;
1522 unsigned long flags
;
1525 * If this is a task context, we need to check whether it is
1526 * the current task context of this cpu. If not it has been
1527 * scheduled out before the smp call arrived. In that case
1528 * event->count would have been updated to a recent sample
1529 * when the event was scheduled out.
1531 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1534 local_irq_save(flags
);
1536 update_context_time(ctx
);
1537 event
->pmu
->read(event
);
1538 update_event_times(event
);
1539 local_irq_restore(flags
);
1542 static u64
perf_event_read(struct perf_event
*event
)
1545 * If event is enabled and currently active on a CPU, update the
1546 * value in the event structure:
1548 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1549 smp_call_function_single(event
->oncpu
,
1550 __perf_event_read
, event
, 1);
1551 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1552 update_event_times(event
);
1555 return atomic64_read(&event
->count
);
1559 * Initialize the perf_event context in a task_struct:
1562 __perf_event_init_context(struct perf_event_context
*ctx
,
1563 struct task_struct
*task
)
1565 memset(ctx
, 0, sizeof(*ctx
));
1566 spin_lock_init(&ctx
->lock
);
1567 mutex_init(&ctx
->mutex
);
1568 INIT_LIST_HEAD(&ctx
->group_list
);
1569 INIT_LIST_HEAD(&ctx
->event_list
);
1570 atomic_set(&ctx
->refcount
, 1);
1574 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1576 struct perf_event_context
*ctx
;
1577 struct perf_cpu_context
*cpuctx
;
1578 struct task_struct
*task
;
1579 unsigned long flags
;
1583 * If cpu is not a wildcard then this is a percpu event:
1586 /* Must be root to operate on a CPU event: */
1587 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1588 return ERR_PTR(-EACCES
);
1590 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1591 return ERR_PTR(-EINVAL
);
1594 * We could be clever and allow to attach a event to an
1595 * offline CPU and activate it when the CPU comes up, but
1598 if (!cpu_isset(cpu
, cpu_online_map
))
1599 return ERR_PTR(-ENODEV
);
1601 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1612 task
= find_task_by_vpid(pid
);
1614 get_task_struct(task
);
1618 return ERR_PTR(-ESRCH
);
1621 * Can't attach events to a dying task.
1624 if (task
->flags
& PF_EXITING
)
1627 /* Reuse ptrace permission checks for now. */
1629 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1633 ctx
= perf_lock_task_context(task
, &flags
);
1636 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1640 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1644 __perf_event_init_context(ctx
, task
);
1646 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1648 * We raced with some other task; use
1649 * the context they set.
1654 get_task_struct(task
);
1657 put_task_struct(task
);
1661 put_task_struct(task
);
1662 return ERR_PTR(err
);
1665 static void free_event_rcu(struct rcu_head
*head
)
1667 struct perf_event
*event
;
1669 event
= container_of(head
, struct perf_event
, rcu_head
);
1671 put_pid_ns(event
->ns
);
1675 static void perf_pending_sync(struct perf_event
*event
);
1677 static void free_event(struct perf_event
*event
)
1679 perf_pending_sync(event
);
1681 if (!event
->parent
) {
1682 atomic_dec(&nr_events
);
1683 if (event
->attr
.mmap
)
1684 atomic_dec(&nr_mmap_events
);
1685 if (event
->attr
.comm
)
1686 atomic_dec(&nr_comm_events
);
1687 if (event
->attr
.task
)
1688 atomic_dec(&nr_task_events
);
1691 if (event
->output
) {
1692 fput(event
->output
->filp
);
1693 event
->output
= NULL
;
1697 event
->destroy(event
);
1699 put_ctx(event
->ctx
);
1700 call_rcu(&event
->rcu_head
, free_event_rcu
);
1704 * Called when the last reference to the file is gone.
1706 static int perf_release(struct inode
*inode
, struct file
*file
)
1708 struct perf_event
*event
= file
->private_data
;
1709 struct perf_event_context
*ctx
= event
->ctx
;
1711 file
->private_data
= NULL
;
1713 WARN_ON_ONCE(ctx
->parent_ctx
);
1714 mutex_lock(&ctx
->mutex
);
1715 perf_event_remove_from_context(event
);
1716 mutex_unlock(&ctx
->mutex
);
1718 mutex_lock(&event
->owner
->perf_event_mutex
);
1719 list_del_init(&event
->owner_entry
);
1720 mutex_unlock(&event
->owner
->perf_event_mutex
);
1721 put_task_struct(event
->owner
);
1728 static int perf_event_read_size(struct perf_event
*event
)
1730 int entry
= sizeof(u64
); /* value */
1734 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1735 size
+= sizeof(u64
);
1737 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1738 size
+= sizeof(u64
);
1740 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1741 entry
+= sizeof(u64
);
1743 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1744 nr
+= event
->group_leader
->nr_siblings
;
1745 size
+= sizeof(u64
);
1753 static u64
perf_event_read_value(struct perf_event
*event
)
1755 struct perf_event
*child
;
1758 total
+= perf_event_read(event
);
1759 list_for_each_entry(child
, &event
->child_list
, child_list
)
1760 total
+= perf_event_read(child
);
1765 static int perf_event_read_entry(struct perf_event
*event
,
1766 u64 read_format
, char __user
*buf
)
1768 int n
= 0, count
= 0;
1771 values
[n
++] = perf_event_read_value(event
);
1772 if (read_format
& PERF_FORMAT_ID
)
1773 values
[n
++] = primary_event_id(event
);
1775 count
= n
* sizeof(u64
);
1777 if (copy_to_user(buf
, values
, count
))
1783 static int perf_event_read_group(struct perf_event
*event
,
1784 u64 read_format
, char __user
*buf
)
1786 struct perf_event
*leader
= event
->group_leader
, *sub
;
1787 int n
= 0, size
= 0, err
= -EFAULT
;
1790 values
[n
++] = 1 + leader
->nr_siblings
;
1791 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1792 values
[n
++] = leader
->total_time_enabled
+
1793 atomic64_read(&leader
->child_total_time_enabled
);
1795 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1796 values
[n
++] = leader
->total_time_running
+
1797 atomic64_read(&leader
->child_total_time_running
);
1800 size
= n
* sizeof(u64
);
1802 if (copy_to_user(buf
, values
, size
))
1805 err
= perf_event_read_entry(leader
, read_format
, buf
+ size
);
1811 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1812 err
= perf_event_read_entry(sub
, read_format
,
1823 static int perf_event_read_one(struct perf_event
*event
,
1824 u64 read_format
, char __user
*buf
)
1829 values
[n
++] = perf_event_read_value(event
);
1830 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1831 values
[n
++] = event
->total_time_enabled
+
1832 atomic64_read(&event
->child_total_time_enabled
);
1834 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1835 values
[n
++] = event
->total_time_running
+
1836 atomic64_read(&event
->child_total_time_running
);
1838 if (read_format
& PERF_FORMAT_ID
)
1839 values
[n
++] = primary_event_id(event
);
1841 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1844 return n
* sizeof(u64
);
1848 * Read the performance event - simple non blocking version for now
1851 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1853 u64 read_format
= event
->attr
.read_format
;
1857 * Return end-of-file for a read on a event that is in
1858 * error state (i.e. because it was pinned but it couldn't be
1859 * scheduled on to the CPU at some point).
1861 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1864 if (count
< perf_event_read_size(event
))
1867 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1868 mutex_lock(&event
->child_mutex
);
1869 if (read_format
& PERF_FORMAT_GROUP
)
1870 ret
= perf_event_read_group(event
, read_format
, buf
);
1872 ret
= perf_event_read_one(event
, read_format
, buf
);
1873 mutex_unlock(&event
->child_mutex
);
1879 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1881 struct perf_event
*event
= file
->private_data
;
1883 return perf_read_hw(event
, buf
, count
);
1886 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1888 struct perf_event
*event
= file
->private_data
;
1889 struct perf_mmap_data
*data
;
1890 unsigned int events
= POLL_HUP
;
1893 data
= rcu_dereference(event
->data
);
1895 events
= atomic_xchg(&data
->poll
, 0);
1898 poll_wait(file
, &event
->waitq
, wait
);
1903 static void perf_event_reset(struct perf_event
*event
)
1905 (void)perf_event_read(event
);
1906 atomic64_set(&event
->count
, 0);
1907 perf_event_update_userpage(event
);
1911 * Holding the top-level event's child_mutex means that any
1912 * descendant process that has inherited this event will block
1913 * in sync_child_event if it goes to exit, thus satisfying the
1914 * task existence requirements of perf_event_enable/disable.
1916 static void perf_event_for_each_child(struct perf_event
*event
,
1917 void (*func
)(struct perf_event
*))
1919 struct perf_event
*child
;
1921 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1922 mutex_lock(&event
->child_mutex
);
1924 list_for_each_entry(child
, &event
->child_list
, child_list
)
1926 mutex_unlock(&event
->child_mutex
);
1929 static void perf_event_for_each(struct perf_event
*event
,
1930 void (*func
)(struct perf_event
*))
1932 struct perf_event_context
*ctx
= event
->ctx
;
1933 struct perf_event
*sibling
;
1935 WARN_ON_ONCE(ctx
->parent_ctx
);
1936 mutex_lock(&ctx
->mutex
);
1937 event
= event
->group_leader
;
1939 perf_event_for_each_child(event
, func
);
1941 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1942 perf_event_for_each_child(event
, func
);
1943 mutex_unlock(&ctx
->mutex
);
1946 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1948 struct perf_event_context
*ctx
= event
->ctx
;
1953 if (!event
->attr
.sample_period
)
1956 size
= copy_from_user(&value
, arg
, sizeof(value
));
1957 if (size
!= sizeof(value
))
1963 spin_lock_irq(&ctx
->lock
);
1964 if (event
->attr
.freq
) {
1965 if (value
> sysctl_perf_event_sample_rate
) {
1970 event
->attr
.sample_freq
= value
;
1972 event
->attr
.sample_period
= value
;
1973 event
->hw
.sample_period
= value
;
1976 spin_unlock_irq(&ctx
->lock
);
1981 int perf_event_set_output(struct perf_event
*event
, int output_fd
);
1983 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1985 struct perf_event
*event
= file
->private_data
;
1986 void (*func
)(struct perf_event
*);
1990 case PERF_EVENT_IOC_ENABLE
:
1991 func
= perf_event_enable
;
1993 case PERF_EVENT_IOC_DISABLE
:
1994 func
= perf_event_disable
;
1996 case PERF_EVENT_IOC_RESET
:
1997 func
= perf_event_reset
;
2000 case PERF_EVENT_IOC_REFRESH
:
2001 return perf_event_refresh(event
, arg
);
2003 case PERF_EVENT_IOC_PERIOD
:
2004 return perf_event_period(event
, (u64 __user
*)arg
);
2006 case PERF_EVENT_IOC_SET_OUTPUT
:
2007 return perf_event_set_output(event
, arg
);
2013 if (flags
& PERF_IOC_FLAG_GROUP
)
2014 perf_event_for_each(event
, func
);
2016 perf_event_for_each_child(event
, func
);
2021 int perf_event_task_enable(void)
2023 struct perf_event
*event
;
2025 mutex_lock(¤t
->perf_event_mutex
);
2026 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2027 perf_event_for_each_child(event
, perf_event_enable
);
2028 mutex_unlock(¤t
->perf_event_mutex
);
2033 int perf_event_task_disable(void)
2035 struct perf_event
*event
;
2037 mutex_lock(¤t
->perf_event_mutex
);
2038 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2039 perf_event_for_each_child(event
, perf_event_disable
);
2040 mutex_unlock(¤t
->perf_event_mutex
);
2045 #ifndef PERF_EVENT_INDEX_OFFSET
2046 # define PERF_EVENT_INDEX_OFFSET 0
2049 static int perf_event_index(struct perf_event
*event
)
2051 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2054 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2058 * Callers need to ensure there can be no nesting of this function, otherwise
2059 * the seqlock logic goes bad. We can not serialize this because the arch
2060 * code calls this from NMI context.
2062 void perf_event_update_userpage(struct perf_event
*event
)
2064 struct perf_event_mmap_page
*userpg
;
2065 struct perf_mmap_data
*data
;
2068 data
= rcu_dereference(event
->data
);
2072 userpg
= data
->user_page
;
2075 * Disable preemption so as to not let the corresponding user-space
2076 * spin too long if we get preempted.
2081 userpg
->index
= perf_event_index(event
);
2082 userpg
->offset
= atomic64_read(&event
->count
);
2083 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2084 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2086 userpg
->time_enabled
= event
->total_time_enabled
+
2087 atomic64_read(&event
->child_total_time_enabled
);
2089 userpg
->time_running
= event
->total_time_running
+
2090 atomic64_read(&event
->child_total_time_running
);
2099 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2101 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2104 #ifndef CONFIG_PERF_USE_VMALLOC
2107 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2110 static struct page
*
2111 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2113 if (pgoff
> data
->nr_pages
)
2117 return virt_to_page(data
->user_page
);
2119 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2122 static struct perf_mmap_data
*
2123 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2125 struct perf_mmap_data
*data
;
2129 WARN_ON(atomic_read(&event
->mmap_count
));
2131 size
= sizeof(struct perf_mmap_data
);
2132 size
+= nr_pages
* sizeof(void *);
2134 data
= kzalloc(size
, GFP_KERNEL
);
2138 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2139 if (!data
->user_page
)
2140 goto fail_user_page
;
2142 for (i
= 0; i
< nr_pages
; i
++) {
2143 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2144 if (!data
->data_pages
[i
])
2145 goto fail_data_pages
;
2148 data
->data_order
= 0;
2149 data
->nr_pages
= nr_pages
;
2154 for (i
--; i
>= 0; i
--)
2155 free_page((unsigned long)data
->data_pages
[i
]);
2157 free_page((unsigned long)data
->user_page
);
2166 static void perf_mmap_free_page(unsigned long addr
)
2168 struct page
*page
= virt_to_page((void *)addr
);
2170 page
->mapping
= NULL
;
2174 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2178 perf_mmap_free_page((unsigned long)data
->user_page
);
2179 for (i
= 0; i
< data
->nr_pages
; i
++)
2180 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2187 * Back perf_mmap() with vmalloc memory.
2189 * Required for architectures that have d-cache aliasing issues.
2192 static struct page
*
2193 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2195 if (pgoff
> (1UL << data
->data_order
))
2198 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2201 static void perf_mmap_unmark_page(void *addr
)
2203 struct page
*page
= vmalloc_to_page(addr
);
2205 page
->mapping
= NULL
;
2208 static void perf_mmap_data_free_work(struct work_struct
*work
)
2210 struct perf_mmap_data
*data
;
2214 data
= container_of(work
, struct perf_mmap_data
, work
);
2215 nr
= 1 << data
->data_order
;
2217 base
= data
->user_page
;
2218 for (i
= 0; i
< nr
+ 1; i
++)
2219 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2225 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2227 schedule_work(&data
->work
);
2230 static struct perf_mmap_data
*
2231 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2233 struct perf_mmap_data
*data
;
2237 WARN_ON(atomic_read(&event
->mmap_count
));
2239 size
= sizeof(struct perf_mmap_data
);
2240 size
+= sizeof(void *);
2242 data
= kzalloc(size
, GFP_KERNEL
);
2246 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2248 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2252 data
->user_page
= all_buf
;
2253 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2254 data
->data_order
= ilog2(nr_pages
);
2268 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2270 struct perf_event
*event
= vma
->vm_file
->private_data
;
2271 struct perf_mmap_data
*data
;
2272 int ret
= VM_FAULT_SIGBUS
;
2274 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2275 if (vmf
->pgoff
== 0)
2281 data
= rcu_dereference(event
->data
);
2285 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2288 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2292 get_page(vmf
->page
);
2293 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2294 vmf
->page
->index
= vmf
->pgoff
;
2304 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2306 long max_size
= perf_data_size(data
);
2308 atomic_set(&data
->lock
, -1);
2310 if (event
->attr
.watermark
) {
2311 data
->watermark
= min_t(long, max_size
,
2312 event
->attr
.wakeup_watermark
);
2315 if (!data
->watermark
)
2316 data
->watermark
= max_t(long, PAGE_SIZE
, max_size
/ 2);
2319 rcu_assign_pointer(event
->data
, data
);
2322 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2324 struct perf_mmap_data
*data
;
2326 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2327 perf_mmap_data_free(data
);
2330 static void perf_mmap_data_release(struct perf_event
*event
)
2332 struct perf_mmap_data
*data
= event
->data
;
2334 WARN_ON(atomic_read(&event
->mmap_count
));
2336 rcu_assign_pointer(event
->data
, NULL
);
2337 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2340 static void perf_mmap_open(struct vm_area_struct
*vma
)
2342 struct perf_event
*event
= vma
->vm_file
->private_data
;
2344 atomic_inc(&event
->mmap_count
);
2347 static void perf_mmap_close(struct vm_area_struct
*vma
)
2349 struct perf_event
*event
= vma
->vm_file
->private_data
;
2351 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2352 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2353 unsigned long size
= perf_data_size(event
->data
);
2354 struct user_struct
*user
= current_user();
2356 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2357 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2358 perf_mmap_data_release(event
);
2359 mutex_unlock(&event
->mmap_mutex
);
2363 static const struct vm_operations_struct perf_mmap_vmops
= {
2364 .open
= perf_mmap_open
,
2365 .close
= perf_mmap_close
,
2366 .fault
= perf_mmap_fault
,
2367 .page_mkwrite
= perf_mmap_fault
,
2370 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2372 struct perf_event
*event
= file
->private_data
;
2373 unsigned long user_locked
, user_lock_limit
;
2374 struct user_struct
*user
= current_user();
2375 unsigned long locked
, lock_limit
;
2376 struct perf_mmap_data
*data
;
2377 unsigned long vma_size
;
2378 unsigned long nr_pages
;
2379 long user_extra
, extra
;
2382 if (!(vma
->vm_flags
& VM_SHARED
))
2385 vma_size
= vma
->vm_end
- vma
->vm_start
;
2386 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2389 * If we have data pages ensure they're a power-of-two number, so we
2390 * can do bitmasks instead of modulo.
2392 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2395 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2398 if (vma
->vm_pgoff
!= 0)
2401 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2402 mutex_lock(&event
->mmap_mutex
);
2403 if (event
->output
) {
2408 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2409 if (nr_pages
!= event
->data
->nr_pages
)
2414 user_extra
= nr_pages
+ 1;
2415 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2418 * Increase the limit linearly with more CPUs:
2420 user_lock_limit
*= num_online_cpus();
2422 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2425 if (user_locked
> user_lock_limit
)
2426 extra
= user_locked
- user_lock_limit
;
2428 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2429 lock_limit
>>= PAGE_SHIFT
;
2430 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2432 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2433 !capable(CAP_IPC_LOCK
)) {
2438 WARN_ON(event
->data
);
2440 data
= perf_mmap_data_alloc(event
, nr_pages
);
2446 perf_mmap_data_init(event
, data
);
2448 atomic_set(&event
->mmap_count
, 1);
2449 atomic_long_add(user_extra
, &user
->locked_vm
);
2450 vma
->vm_mm
->locked_vm
+= extra
;
2451 event
->data
->nr_locked
= extra
;
2452 if (vma
->vm_flags
& VM_WRITE
)
2453 event
->data
->writable
= 1;
2456 mutex_unlock(&event
->mmap_mutex
);
2458 vma
->vm_flags
|= VM_RESERVED
;
2459 vma
->vm_ops
= &perf_mmap_vmops
;
2464 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2466 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2467 struct perf_event
*event
= filp
->private_data
;
2470 mutex_lock(&inode
->i_mutex
);
2471 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2472 mutex_unlock(&inode
->i_mutex
);
2480 static const struct file_operations perf_fops
= {
2481 .release
= perf_release
,
2484 .unlocked_ioctl
= perf_ioctl
,
2485 .compat_ioctl
= perf_ioctl
,
2487 .fasync
= perf_fasync
,
2493 * If there's data, ensure we set the poll() state and publish everything
2494 * to user-space before waking everybody up.
2497 void perf_event_wakeup(struct perf_event
*event
)
2499 wake_up_all(&event
->waitq
);
2501 if (event
->pending_kill
) {
2502 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2503 event
->pending_kill
= 0;
2510 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2512 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2513 * single linked list and use cmpxchg() to add entries lockless.
2516 static void perf_pending_event(struct perf_pending_entry
*entry
)
2518 struct perf_event
*event
= container_of(entry
,
2519 struct perf_event
, pending
);
2521 if (event
->pending_disable
) {
2522 event
->pending_disable
= 0;
2523 __perf_event_disable(event
);
2526 if (event
->pending_wakeup
) {
2527 event
->pending_wakeup
= 0;
2528 perf_event_wakeup(event
);
2532 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2534 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2538 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2539 void (*func
)(struct perf_pending_entry
*))
2541 struct perf_pending_entry
**head
;
2543 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2548 head
= &get_cpu_var(perf_pending_head
);
2551 entry
->next
= *head
;
2552 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2554 set_perf_event_pending();
2556 put_cpu_var(perf_pending_head
);
2559 static int __perf_pending_run(void)
2561 struct perf_pending_entry
*list
;
2564 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2565 while (list
!= PENDING_TAIL
) {
2566 void (*func
)(struct perf_pending_entry
*);
2567 struct perf_pending_entry
*entry
= list
;
2574 * Ensure we observe the unqueue before we issue the wakeup,
2575 * so that we won't be waiting forever.
2576 * -- see perf_not_pending().
2587 static inline int perf_not_pending(struct perf_event
*event
)
2590 * If we flush on whatever cpu we run, there is a chance we don't
2594 __perf_pending_run();
2598 * Ensure we see the proper queue state before going to sleep
2599 * so that we do not miss the wakeup. -- see perf_pending_handle()
2602 return event
->pending
.next
== NULL
;
2605 static void perf_pending_sync(struct perf_event
*event
)
2607 wait_event(event
->waitq
, perf_not_pending(event
));
2610 void perf_event_do_pending(void)
2612 __perf_pending_run();
2616 * Callchain support -- arch specific
2619 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2627 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2628 unsigned long offset
, unsigned long head
)
2632 if (!data
->writable
)
2635 mask
= perf_data_size(data
) - 1;
2637 offset
= (offset
- tail
) & mask
;
2638 head
= (head
- tail
) & mask
;
2640 if ((int)(head
- offset
) < 0)
2646 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2648 atomic_set(&handle
->data
->poll
, POLL_IN
);
2651 handle
->event
->pending_wakeup
= 1;
2652 perf_pending_queue(&handle
->event
->pending
,
2653 perf_pending_event
);
2655 perf_event_wakeup(handle
->event
);
2659 * Curious locking construct.
2661 * We need to ensure a later event_id doesn't publish a head when a former
2662 * event_id isn't done writing. However since we need to deal with NMIs we
2663 * cannot fully serialize things.
2665 * What we do is serialize between CPUs so we only have to deal with NMI
2666 * nesting on a single CPU.
2668 * We only publish the head (and generate a wakeup) when the outer-most
2669 * event_id completes.
2671 static void perf_output_lock(struct perf_output_handle
*handle
)
2673 struct perf_mmap_data
*data
= handle
->data
;
2678 local_irq_save(handle
->flags
);
2679 cpu
= smp_processor_id();
2681 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2684 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2690 static void perf_output_unlock(struct perf_output_handle
*handle
)
2692 struct perf_mmap_data
*data
= handle
->data
;
2696 data
->done_head
= data
->head
;
2698 if (!handle
->locked
)
2703 * The xchg implies a full barrier that ensures all writes are done
2704 * before we publish the new head, matched by a rmb() in userspace when
2705 * reading this position.
2707 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2708 data
->user_page
->data_head
= head
;
2711 * NMI can happen here, which means we can miss a done_head update.
2714 cpu
= atomic_xchg(&data
->lock
, -1);
2715 WARN_ON_ONCE(cpu
!= smp_processor_id());
2718 * Therefore we have to validate we did not indeed do so.
2720 if (unlikely(atomic_long_read(&data
->done_head
))) {
2722 * Since we had it locked, we can lock it again.
2724 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2730 if (atomic_xchg(&data
->wakeup
, 0))
2731 perf_output_wakeup(handle
);
2733 local_irq_restore(handle
->flags
);
2736 void perf_output_copy(struct perf_output_handle
*handle
,
2737 const void *buf
, unsigned int len
)
2739 unsigned int pages_mask
;
2740 unsigned long offset
;
2744 offset
= handle
->offset
;
2745 pages_mask
= handle
->data
->nr_pages
- 1;
2746 pages
= handle
->data
->data_pages
;
2749 unsigned long page_offset
;
2750 unsigned long page_size
;
2753 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2754 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2755 page_offset
= offset
& (page_size
- 1);
2756 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2758 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2765 handle
->offset
= offset
;
2768 * Check we didn't copy past our reservation window, taking the
2769 * possible unsigned int wrap into account.
2771 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2774 int perf_output_begin(struct perf_output_handle
*handle
,
2775 struct perf_event
*event
, unsigned int size
,
2776 int nmi
, int sample
)
2778 struct perf_event
*output_event
;
2779 struct perf_mmap_data
*data
;
2780 unsigned long tail
, offset
, head
;
2783 struct perf_event_header header
;
2790 * For inherited events we send all the output towards the parent.
2793 event
= event
->parent
;
2795 output_event
= rcu_dereference(event
->output
);
2797 event
= output_event
;
2799 data
= rcu_dereference(event
->data
);
2803 handle
->data
= data
;
2804 handle
->event
= event
;
2806 handle
->sample
= sample
;
2808 if (!data
->nr_pages
)
2811 have_lost
= atomic_read(&data
->lost
);
2813 size
+= sizeof(lost_event
);
2815 perf_output_lock(handle
);
2819 * Userspace could choose to issue a mb() before updating the
2820 * tail pointer. So that all reads will be completed before the
2823 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2825 offset
= head
= atomic_long_read(&data
->head
);
2827 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2829 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2831 handle
->offset
= offset
;
2832 handle
->head
= head
;
2834 if (head
- tail
> data
->watermark
)
2835 atomic_set(&data
->wakeup
, 1);
2838 lost_event
.header
.type
= PERF_RECORD_LOST
;
2839 lost_event
.header
.misc
= 0;
2840 lost_event
.header
.size
= sizeof(lost_event
);
2841 lost_event
.id
= event
->id
;
2842 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2844 perf_output_put(handle
, lost_event
);
2850 atomic_inc(&data
->lost
);
2851 perf_output_unlock(handle
);
2858 void perf_output_end(struct perf_output_handle
*handle
)
2860 struct perf_event
*event
= handle
->event
;
2861 struct perf_mmap_data
*data
= handle
->data
;
2863 int wakeup_events
= event
->attr
.wakeup_events
;
2865 if (handle
->sample
&& wakeup_events
) {
2866 int events
= atomic_inc_return(&data
->events
);
2867 if (events
>= wakeup_events
) {
2868 atomic_sub(wakeup_events
, &data
->events
);
2869 atomic_set(&data
->wakeup
, 1);
2873 perf_output_unlock(handle
);
2877 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2880 * only top level events have the pid namespace they were created in
2883 event
= event
->parent
;
2885 return task_tgid_nr_ns(p
, event
->ns
);
2888 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2891 * only top level events have the pid namespace they were created in
2894 event
= event
->parent
;
2896 return task_pid_nr_ns(p
, event
->ns
);
2899 static void perf_output_read_one(struct perf_output_handle
*handle
,
2900 struct perf_event
*event
)
2902 u64 read_format
= event
->attr
.read_format
;
2906 values
[n
++] = atomic64_read(&event
->count
);
2907 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2908 values
[n
++] = event
->total_time_enabled
+
2909 atomic64_read(&event
->child_total_time_enabled
);
2911 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2912 values
[n
++] = event
->total_time_running
+
2913 atomic64_read(&event
->child_total_time_running
);
2915 if (read_format
& PERF_FORMAT_ID
)
2916 values
[n
++] = primary_event_id(event
);
2918 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2922 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2924 static void perf_output_read_group(struct perf_output_handle
*handle
,
2925 struct perf_event
*event
)
2927 struct perf_event
*leader
= event
->group_leader
, *sub
;
2928 u64 read_format
= event
->attr
.read_format
;
2932 values
[n
++] = 1 + leader
->nr_siblings
;
2934 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2935 values
[n
++] = leader
->total_time_enabled
;
2937 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2938 values
[n
++] = leader
->total_time_running
;
2940 if (leader
!= event
)
2941 leader
->pmu
->read(leader
);
2943 values
[n
++] = atomic64_read(&leader
->count
);
2944 if (read_format
& PERF_FORMAT_ID
)
2945 values
[n
++] = primary_event_id(leader
);
2947 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2949 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2953 sub
->pmu
->read(sub
);
2955 values
[n
++] = atomic64_read(&sub
->count
);
2956 if (read_format
& PERF_FORMAT_ID
)
2957 values
[n
++] = primary_event_id(sub
);
2959 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2963 static void perf_output_read(struct perf_output_handle
*handle
,
2964 struct perf_event
*event
)
2966 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2967 perf_output_read_group(handle
, event
);
2969 perf_output_read_one(handle
, event
);
2972 void perf_output_sample(struct perf_output_handle
*handle
,
2973 struct perf_event_header
*header
,
2974 struct perf_sample_data
*data
,
2975 struct perf_event
*event
)
2977 u64 sample_type
= data
->type
;
2979 perf_output_put(handle
, *header
);
2981 if (sample_type
& PERF_SAMPLE_IP
)
2982 perf_output_put(handle
, data
->ip
);
2984 if (sample_type
& PERF_SAMPLE_TID
)
2985 perf_output_put(handle
, data
->tid_entry
);
2987 if (sample_type
& PERF_SAMPLE_TIME
)
2988 perf_output_put(handle
, data
->time
);
2990 if (sample_type
& PERF_SAMPLE_ADDR
)
2991 perf_output_put(handle
, data
->addr
);
2993 if (sample_type
& PERF_SAMPLE_ID
)
2994 perf_output_put(handle
, data
->id
);
2996 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2997 perf_output_put(handle
, data
->stream_id
);
2999 if (sample_type
& PERF_SAMPLE_CPU
)
3000 perf_output_put(handle
, data
->cpu_entry
);
3002 if (sample_type
& PERF_SAMPLE_PERIOD
)
3003 perf_output_put(handle
, data
->period
);
3005 if (sample_type
& PERF_SAMPLE_READ
)
3006 perf_output_read(handle
, event
);
3008 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3009 if (data
->callchain
) {
3012 if (data
->callchain
)
3013 size
+= data
->callchain
->nr
;
3015 size
*= sizeof(u64
);
3017 perf_output_copy(handle
, data
->callchain
, size
);
3020 perf_output_put(handle
, nr
);
3024 if (sample_type
& PERF_SAMPLE_RAW
) {
3026 perf_output_put(handle
, data
->raw
->size
);
3027 perf_output_copy(handle
, data
->raw
->data
,
3034 .size
= sizeof(u32
),
3037 perf_output_put(handle
, raw
);
3042 void perf_prepare_sample(struct perf_event_header
*header
,
3043 struct perf_sample_data
*data
,
3044 struct perf_event
*event
,
3045 struct pt_regs
*regs
)
3047 u64 sample_type
= event
->attr
.sample_type
;
3049 data
->type
= sample_type
;
3051 header
->type
= PERF_RECORD_SAMPLE
;
3052 header
->size
= sizeof(*header
);
3055 header
->misc
|= perf_misc_flags(regs
);
3057 if (sample_type
& PERF_SAMPLE_IP
) {
3058 data
->ip
= perf_instruction_pointer(regs
);
3060 header
->size
+= sizeof(data
->ip
);
3063 if (sample_type
& PERF_SAMPLE_TID
) {
3064 /* namespace issues */
3065 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3066 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3068 header
->size
+= sizeof(data
->tid_entry
);
3071 if (sample_type
& PERF_SAMPLE_TIME
) {
3072 data
->time
= perf_clock();
3074 header
->size
+= sizeof(data
->time
);
3077 if (sample_type
& PERF_SAMPLE_ADDR
)
3078 header
->size
+= sizeof(data
->addr
);
3080 if (sample_type
& PERF_SAMPLE_ID
) {
3081 data
->id
= primary_event_id(event
);
3083 header
->size
+= sizeof(data
->id
);
3086 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3087 data
->stream_id
= event
->id
;
3089 header
->size
+= sizeof(data
->stream_id
);
3092 if (sample_type
& PERF_SAMPLE_CPU
) {
3093 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3094 data
->cpu_entry
.reserved
= 0;
3096 header
->size
+= sizeof(data
->cpu_entry
);
3099 if (sample_type
& PERF_SAMPLE_PERIOD
)
3100 header
->size
+= sizeof(data
->period
);
3102 if (sample_type
& PERF_SAMPLE_READ
)
3103 header
->size
+= perf_event_read_size(event
);
3105 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3108 data
->callchain
= perf_callchain(regs
);
3110 if (data
->callchain
)
3111 size
+= data
->callchain
->nr
;
3113 header
->size
+= size
* sizeof(u64
);
3116 if (sample_type
& PERF_SAMPLE_RAW
) {
3117 int size
= sizeof(u32
);
3120 size
+= data
->raw
->size
;
3122 size
+= sizeof(u32
);
3124 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3125 header
->size
+= size
;
3129 static void perf_event_output(struct perf_event
*event
, int nmi
,
3130 struct perf_sample_data
*data
,
3131 struct pt_regs
*regs
)
3133 struct perf_output_handle handle
;
3134 struct perf_event_header header
;
3136 perf_prepare_sample(&header
, data
, event
, regs
);
3138 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3141 perf_output_sample(&handle
, &header
, data
, event
);
3143 perf_output_end(&handle
);
3150 struct perf_read_event
{
3151 struct perf_event_header header
;
3158 perf_event_read_event(struct perf_event
*event
,
3159 struct task_struct
*task
)
3161 struct perf_output_handle handle
;
3162 struct perf_read_event read_event
= {
3164 .type
= PERF_RECORD_READ
,
3166 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3168 .pid
= perf_event_pid(event
, task
),
3169 .tid
= perf_event_tid(event
, task
),
3173 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3177 perf_output_put(&handle
, read_event
);
3178 perf_output_read(&handle
, event
);
3180 perf_output_end(&handle
);
3184 * task tracking -- fork/exit
3186 * enabled by: attr.comm | attr.mmap | attr.task
3189 struct perf_task_event
{
3190 struct task_struct
*task
;
3191 struct perf_event_context
*task_ctx
;
3194 struct perf_event_header header
;
3204 static void perf_event_task_output(struct perf_event
*event
,
3205 struct perf_task_event
*task_event
)
3207 struct perf_output_handle handle
;
3209 struct task_struct
*task
= task_event
->task
;
3212 size
= task_event
->event_id
.header
.size
;
3213 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3218 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3219 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3221 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3222 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3224 task_event
->event_id
.time
= perf_clock();
3226 perf_output_put(&handle
, task_event
->event_id
);
3228 perf_output_end(&handle
);
3231 static int perf_event_task_match(struct perf_event
*event
)
3233 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3236 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3239 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3245 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3246 struct perf_task_event
*task_event
)
3248 struct perf_event
*event
;
3250 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3254 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3255 if (perf_event_task_match(event
))
3256 perf_event_task_output(event
, task_event
);
3261 static void perf_event_task_event(struct perf_task_event
*task_event
)
3263 struct perf_cpu_context
*cpuctx
;
3264 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3266 cpuctx
= &get_cpu_var(perf_cpu_context
);
3267 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3271 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3273 perf_event_task_ctx(ctx
, task_event
);
3274 put_cpu_var(perf_cpu_context
);
3278 static void perf_event_task(struct task_struct
*task
,
3279 struct perf_event_context
*task_ctx
,
3282 struct perf_task_event task_event
;
3284 if (!atomic_read(&nr_comm_events
) &&
3285 !atomic_read(&nr_mmap_events
) &&
3286 !atomic_read(&nr_task_events
))
3289 task_event
= (struct perf_task_event
){
3291 .task_ctx
= task_ctx
,
3294 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3296 .size
= sizeof(task_event
.event_id
),
3305 perf_event_task_event(&task_event
);
3308 void perf_event_fork(struct task_struct
*task
)
3310 perf_event_task(task
, NULL
, 1);
3317 struct perf_comm_event
{
3318 struct task_struct
*task
;
3323 struct perf_event_header header
;
3330 static void perf_event_comm_output(struct perf_event
*event
,
3331 struct perf_comm_event
*comm_event
)
3333 struct perf_output_handle handle
;
3334 int size
= comm_event
->event_id
.header
.size
;
3335 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3340 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3341 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3343 perf_output_put(&handle
, comm_event
->event_id
);
3344 perf_output_copy(&handle
, comm_event
->comm
,
3345 comm_event
->comm_size
);
3346 perf_output_end(&handle
);
3349 static int perf_event_comm_match(struct perf_event
*event
)
3351 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3354 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3357 if (event
->attr
.comm
)
3363 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3364 struct perf_comm_event
*comm_event
)
3366 struct perf_event
*event
;
3368 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3372 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3373 if (perf_event_comm_match(event
))
3374 perf_event_comm_output(event
, comm_event
);
3379 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3381 struct perf_cpu_context
*cpuctx
;
3382 struct perf_event_context
*ctx
;
3384 char comm
[TASK_COMM_LEN
];
3386 memset(comm
, 0, sizeof(comm
));
3387 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3388 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3390 comm_event
->comm
= comm
;
3391 comm_event
->comm_size
= size
;
3393 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3395 cpuctx
= &get_cpu_var(perf_cpu_context
);
3396 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3400 * doesn't really matter which of the child contexts the
3401 * events ends up in.
3403 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3405 perf_event_comm_ctx(ctx
, comm_event
);
3406 put_cpu_var(perf_cpu_context
);
3410 void perf_event_comm(struct task_struct
*task
)
3412 struct perf_comm_event comm_event
;
3414 if (task
->perf_event_ctxp
)
3415 perf_event_enable_on_exec(task
);
3417 if (!atomic_read(&nr_comm_events
))
3420 comm_event
= (struct perf_comm_event
){
3426 .type
= PERF_RECORD_COMM
,
3435 perf_event_comm_event(&comm_event
);
3442 struct perf_mmap_event
{
3443 struct vm_area_struct
*vma
;
3445 const char *file_name
;
3449 struct perf_event_header header
;
3459 static void perf_event_mmap_output(struct perf_event
*event
,
3460 struct perf_mmap_event
*mmap_event
)
3462 struct perf_output_handle handle
;
3463 int size
= mmap_event
->event_id
.header
.size
;
3464 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3469 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3470 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3472 perf_output_put(&handle
, mmap_event
->event_id
);
3473 perf_output_copy(&handle
, mmap_event
->file_name
,
3474 mmap_event
->file_size
);
3475 perf_output_end(&handle
);
3478 static int perf_event_mmap_match(struct perf_event
*event
,
3479 struct perf_mmap_event
*mmap_event
)
3481 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3484 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3487 if (event
->attr
.mmap
)
3493 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3494 struct perf_mmap_event
*mmap_event
)
3496 struct perf_event
*event
;
3498 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3502 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3503 if (perf_event_mmap_match(event
, mmap_event
))
3504 perf_event_mmap_output(event
, mmap_event
);
3509 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3511 struct perf_cpu_context
*cpuctx
;
3512 struct perf_event_context
*ctx
;
3513 struct vm_area_struct
*vma
= mmap_event
->vma
;
3514 struct file
*file
= vma
->vm_file
;
3520 memset(tmp
, 0, sizeof(tmp
));
3524 * d_path works from the end of the buffer backwards, so we
3525 * need to add enough zero bytes after the string to handle
3526 * the 64bit alignment we do later.
3528 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3530 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3533 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3535 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3539 if (arch_vma_name(mmap_event
->vma
)) {
3540 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3546 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3550 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3555 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3557 mmap_event
->file_name
= name
;
3558 mmap_event
->file_size
= size
;
3560 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3562 cpuctx
= &get_cpu_var(perf_cpu_context
);
3563 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3567 * doesn't really matter which of the child contexts the
3568 * events ends up in.
3570 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3572 perf_event_mmap_ctx(ctx
, mmap_event
);
3573 put_cpu_var(perf_cpu_context
);
3579 void __perf_event_mmap(struct vm_area_struct
*vma
)
3581 struct perf_mmap_event mmap_event
;
3583 if (!atomic_read(&nr_mmap_events
))
3586 mmap_event
= (struct perf_mmap_event
){
3592 .type
= PERF_RECORD_MMAP
,
3598 .start
= vma
->vm_start
,
3599 .len
= vma
->vm_end
- vma
->vm_start
,
3600 .pgoff
= vma
->vm_pgoff
,
3604 perf_event_mmap_event(&mmap_event
);
3608 * IRQ throttle logging
3611 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3613 struct perf_output_handle handle
;
3617 struct perf_event_header header
;
3621 } throttle_event
= {
3623 .type
= PERF_RECORD_THROTTLE
,
3625 .size
= sizeof(throttle_event
),
3627 .time
= perf_clock(),
3628 .id
= primary_event_id(event
),
3629 .stream_id
= event
->id
,
3633 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3635 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3639 perf_output_put(&handle
, throttle_event
);
3640 perf_output_end(&handle
);
3644 * Generic event overflow handling, sampling.
3647 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3648 int throttle
, struct perf_sample_data
*data
,
3649 struct pt_regs
*regs
)
3651 int events
= atomic_read(&event
->event_limit
);
3652 struct hw_perf_event
*hwc
= &event
->hw
;
3655 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3660 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3662 if (HZ
* hwc
->interrupts
>
3663 (u64
)sysctl_perf_event_sample_rate
) {
3664 hwc
->interrupts
= MAX_INTERRUPTS
;
3665 perf_log_throttle(event
, 0);
3670 * Keep re-disabling events even though on the previous
3671 * pass we disabled it - just in case we raced with a
3672 * sched-in and the event got enabled again:
3678 if (event
->attr
.freq
) {
3679 u64 now
= perf_clock();
3680 s64 delta
= now
- hwc
->freq_stamp
;
3682 hwc
->freq_stamp
= now
;
3684 if (delta
> 0 && delta
< TICK_NSEC
)
3685 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3689 * XXX event_limit might not quite work as expected on inherited
3693 event
->pending_kill
= POLL_IN
;
3694 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3696 event
->pending_kill
= POLL_HUP
;
3697 event
->pending_disable
= 1;
3698 perf_pending_queue(&event
->pending
, perf_pending_event
);
3701 perf_event_output(event
, nmi
, data
, regs
);
3705 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3706 struct perf_sample_data
*data
,
3707 struct pt_regs
*regs
)
3709 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3713 * Generic software event infrastructure
3717 * We directly increment event->count and keep a second value in
3718 * event->hw.period_left to count intervals. This period event
3719 * is kept in the range [-sample_period, 0] so that we can use the
3723 static u64
perf_swevent_set_period(struct perf_event
*event
)
3725 struct hw_perf_event
*hwc
= &event
->hw
;
3726 u64 period
= hwc
->last_period
;
3730 hwc
->last_period
= hwc
->sample_period
;
3733 old
= val
= atomic64_read(&hwc
->period_left
);
3737 nr
= div64_u64(period
+ val
, period
);
3738 offset
= nr
* period
;
3740 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3746 static void perf_swevent_overflow(struct perf_event
*event
,
3747 int nmi
, struct perf_sample_data
*data
,
3748 struct pt_regs
*regs
)
3750 struct hw_perf_event
*hwc
= &event
->hw
;
3754 data
->period
= event
->hw
.last_period
;
3755 overflow
= perf_swevent_set_period(event
);
3757 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3760 for (; overflow
; overflow
--) {
3761 if (__perf_event_overflow(event
, nmi
, throttle
,
3764 * We inhibit the overflow from happening when
3765 * hwc->interrupts == MAX_INTERRUPTS.
3773 static void perf_swevent_unthrottle(struct perf_event
*event
)
3776 * Nothing to do, we already reset hwc->interrupts.
3780 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3781 int nmi
, struct perf_sample_data
*data
,
3782 struct pt_regs
*regs
)
3784 struct hw_perf_event
*hwc
= &event
->hw
;
3786 atomic64_add(nr
, &event
->count
);
3788 if (!hwc
->sample_period
)
3794 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3795 perf_swevent_overflow(event
, nmi
, data
, regs
);
3798 static int perf_swevent_is_counting(struct perf_event
*event
)
3801 * The event is active, we're good!
3803 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3807 * The event is off/error, not counting.
3809 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3813 * The event is inactive, if the context is active
3814 * we're part of a group that didn't make it on the 'pmu',
3817 if (event
->ctx
->is_active
)
3821 * We're inactive and the context is too, this means the
3822 * task is scheduled out, we're counting events that happen
3823 * to us, like migration events.
3828 static int perf_swevent_match(struct perf_event
*event
,
3829 enum perf_type_id type
,
3830 u32 event_id
, struct pt_regs
*regs
)
3832 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3835 if (!perf_swevent_is_counting(event
))
3838 if (event
->attr
.type
!= type
)
3840 if (event
->attr
.config
!= event_id
)
3844 if (event
->attr
.exclude_user
&& user_mode(regs
))
3847 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3854 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3855 enum perf_type_id type
,
3856 u32 event_id
, u64 nr
, int nmi
,
3857 struct perf_sample_data
*data
,
3858 struct pt_regs
*regs
)
3860 struct perf_event
*event
;
3862 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3866 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3867 if (perf_swevent_match(event
, type
, event_id
, regs
))
3868 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3873 static int *perf_swevent_recursion_context(struct perf_cpu_context
*cpuctx
)
3876 return &cpuctx
->recursion
[3];
3879 return &cpuctx
->recursion
[2];
3882 return &cpuctx
->recursion
[1];
3884 return &cpuctx
->recursion
[0];
3887 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3889 struct perf_sample_data
*data
,
3890 struct pt_regs
*regs
)
3892 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3893 int *recursion
= perf_swevent_recursion_context(cpuctx
);
3894 struct perf_event_context
*ctx
;
3902 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3903 nr
, nmi
, data
, regs
);
3906 * doesn't really matter which of the child contexts the
3907 * events ends up in.
3909 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3911 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3918 put_cpu_var(perf_cpu_context
);
3921 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3922 struct pt_regs
*regs
, u64 addr
)
3924 struct perf_sample_data data
= {
3928 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
,
3932 static void perf_swevent_read(struct perf_event
*event
)
3936 static int perf_swevent_enable(struct perf_event
*event
)
3938 struct hw_perf_event
*hwc
= &event
->hw
;
3940 if (hwc
->sample_period
) {
3941 hwc
->last_period
= hwc
->sample_period
;
3942 perf_swevent_set_period(event
);
3947 static void perf_swevent_disable(struct perf_event
*event
)
3951 static const struct pmu perf_ops_generic
= {
3952 .enable
= perf_swevent_enable
,
3953 .disable
= perf_swevent_disable
,
3954 .read
= perf_swevent_read
,
3955 .unthrottle
= perf_swevent_unthrottle
,
3959 * hrtimer based swevent callback
3962 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
3964 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3965 struct perf_sample_data data
;
3966 struct pt_regs
*regs
;
3967 struct perf_event
*event
;
3970 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
3971 event
->pmu
->read(event
);
3974 data
.period
= event
->hw
.last_period
;
3975 regs
= get_irq_regs();
3977 * In case we exclude kernel IPs or are somehow not in interrupt
3978 * context, provide the next best thing, the user IP.
3980 if ((event
->attr
.exclude_kernel
|| !regs
) &&
3981 !event
->attr
.exclude_user
)
3982 regs
= task_pt_regs(current
);
3985 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
3986 if (perf_event_overflow(event
, 0, &data
, regs
))
3987 ret
= HRTIMER_NORESTART
;
3990 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
3991 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3996 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
3998 struct hw_perf_event
*hwc
= &event
->hw
;
4000 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4001 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4002 if (hwc
->sample_period
) {
4005 if (hwc
->remaining
) {
4006 if (hwc
->remaining
< 0)
4009 period
= hwc
->remaining
;
4012 period
= max_t(u64
, 10000, hwc
->sample_period
);
4014 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4015 ns_to_ktime(period
), 0,
4016 HRTIMER_MODE_REL
, 0);
4020 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4022 struct hw_perf_event
*hwc
= &event
->hw
;
4024 if (hwc
->sample_period
) {
4025 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4026 hwc
->remaining
= ktime_to_ns(remaining
);
4028 hrtimer_cancel(&hwc
->hrtimer
);
4033 * Software event: cpu wall time clock
4036 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4038 int cpu
= raw_smp_processor_id();
4042 now
= cpu_clock(cpu
);
4043 prev
= atomic64_read(&event
->hw
.prev_count
);
4044 atomic64_set(&event
->hw
.prev_count
, now
);
4045 atomic64_add(now
- prev
, &event
->count
);
4048 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4050 struct hw_perf_event
*hwc
= &event
->hw
;
4051 int cpu
= raw_smp_processor_id();
4053 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4054 perf_swevent_start_hrtimer(event
);
4059 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4061 perf_swevent_cancel_hrtimer(event
);
4062 cpu_clock_perf_event_update(event
);
4065 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4067 cpu_clock_perf_event_update(event
);
4070 static const struct pmu perf_ops_cpu_clock
= {
4071 .enable
= cpu_clock_perf_event_enable
,
4072 .disable
= cpu_clock_perf_event_disable
,
4073 .read
= cpu_clock_perf_event_read
,
4077 * Software event: task time clock
4080 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4085 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4087 atomic64_add(delta
, &event
->count
);
4090 static int task_clock_perf_event_enable(struct perf_event
*event
)
4092 struct hw_perf_event
*hwc
= &event
->hw
;
4095 now
= event
->ctx
->time
;
4097 atomic64_set(&hwc
->prev_count
, now
);
4099 perf_swevent_start_hrtimer(event
);
4104 static void task_clock_perf_event_disable(struct perf_event
*event
)
4106 perf_swevent_cancel_hrtimer(event
);
4107 task_clock_perf_event_update(event
, event
->ctx
->time
);
4111 static void task_clock_perf_event_read(struct perf_event
*event
)
4116 update_context_time(event
->ctx
);
4117 time
= event
->ctx
->time
;
4119 u64 now
= perf_clock();
4120 u64 delta
= now
- event
->ctx
->timestamp
;
4121 time
= event
->ctx
->time
+ delta
;
4124 task_clock_perf_event_update(event
, time
);
4127 static const struct pmu perf_ops_task_clock
= {
4128 .enable
= task_clock_perf_event_enable
,
4129 .disable
= task_clock_perf_event_disable
,
4130 .read
= task_clock_perf_event_read
,
4133 #ifdef CONFIG_EVENT_PROFILE
4134 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4137 struct perf_raw_record raw
= {
4142 struct perf_sample_data data
= {
4147 struct pt_regs
*regs
= get_irq_regs();
4150 regs
= task_pt_regs(current
);
4152 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4155 EXPORT_SYMBOL_GPL(perf_tp_event
);
4157 extern int ftrace_profile_enable(int);
4158 extern void ftrace_profile_disable(int);
4160 static void tp_perf_event_destroy(struct perf_event
*event
)
4162 ftrace_profile_disable(event
->attr
.config
);
4165 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4168 * Raw tracepoint data is a severe data leak, only allow root to
4171 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4172 perf_paranoid_tracepoint_raw() &&
4173 !capable(CAP_SYS_ADMIN
))
4174 return ERR_PTR(-EPERM
);
4176 if (ftrace_profile_enable(event
->attr
.config
))
4179 event
->destroy
= tp_perf_event_destroy
;
4181 return &perf_ops_generic
;
4184 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4190 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4192 static void sw_perf_event_destroy(struct perf_event
*event
)
4194 u64 event_id
= event
->attr
.config
;
4196 WARN_ON(event
->parent
);
4198 atomic_dec(&perf_swevent_enabled
[event_id
]);
4201 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4203 const struct pmu
*pmu
= NULL
;
4204 u64 event_id
= event
->attr
.config
;
4207 * Software events (currently) can't in general distinguish
4208 * between user, kernel and hypervisor events.
4209 * However, context switches and cpu migrations are considered
4210 * to be kernel events, and page faults are never hypervisor
4214 case PERF_COUNT_SW_CPU_CLOCK
:
4215 pmu
= &perf_ops_cpu_clock
;
4218 case PERF_COUNT_SW_TASK_CLOCK
:
4220 * If the user instantiates this as a per-cpu event,
4221 * use the cpu_clock event instead.
4223 if (event
->ctx
->task
)
4224 pmu
= &perf_ops_task_clock
;
4226 pmu
= &perf_ops_cpu_clock
;
4229 case PERF_COUNT_SW_PAGE_FAULTS
:
4230 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4231 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4232 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4233 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4234 if (!event
->parent
) {
4235 atomic_inc(&perf_swevent_enabled
[event_id
]);
4236 event
->destroy
= sw_perf_event_destroy
;
4238 pmu
= &perf_ops_generic
;
4246 * Allocate and initialize a event structure
4248 static struct perf_event
*
4249 perf_event_alloc(struct perf_event_attr
*attr
,
4251 struct perf_event_context
*ctx
,
4252 struct perf_event
*group_leader
,
4253 struct perf_event
*parent_event
,
4256 const struct pmu
*pmu
;
4257 struct perf_event
*event
;
4258 struct hw_perf_event
*hwc
;
4261 event
= kzalloc(sizeof(*event
), gfpflags
);
4263 return ERR_PTR(-ENOMEM
);
4266 * Single events are their own group leaders, with an
4267 * empty sibling list:
4270 group_leader
= event
;
4272 mutex_init(&event
->child_mutex
);
4273 INIT_LIST_HEAD(&event
->child_list
);
4275 INIT_LIST_HEAD(&event
->group_entry
);
4276 INIT_LIST_HEAD(&event
->event_entry
);
4277 INIT_LIST_HEAD(&event
->sibling_list
);
4278 init_waitqueue_head(&event
->waitq
);
4280 mutex_init(&event
->mmap_mutex
);
4283 event
->attr
= *attr
;
4284 event
->group_leader
= group_leader
;
4289 event
->parent
= parent_event
;
4291 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4292 event
->id
= atomic64_inc_return(&perf_event_id
);
4294 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4297 event
->state
= PERF_EVENT_STATE_OFF
;
4302 hwc
->sample_period
= attr
->sample_period
;
4303 if (attr
->freq
&& attr
->sample_freq
)
4304 hwc
->sample_period
= 1;
4305 hwc
->last_period
= hwc
->sample_period
;
4307 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4310 * we currently do not support PERF_FORMAT_GROUP on inherited events
4312 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4315 switch (attr
->type
) {
4317 case PERF_TYPE_HARDWARE
:
4318 case PERF_TYPE_HW_CACHE
:
4319 pmu
= hw_perf_event_init(event
);
4322 case PERF_TYPE_SOFTWARE
:
4323 pmu
= sw_perf_event_init(event
);
4326 case PERF_TYPE_TRACEPOINT
:
4327 pmu
= tp_perf_event_init(event
);
4337 else if (IS_ERR(pmu
))
4342 put_pid_ns(event
->ns
);
4344 return ERR_PTR(err
);
4349 if (!event
->parent
) {
4350 atomic_inc(&nr_events
);
4351 if (event
->attr
.mmap
)
4352 atomic_inc(&nr_mmap_events
);
4353 if (event
->attr
.comm
)
4354 atomic_inc(&nr_comm_events
);
4355 if (event
->attr
.task
)
4356 atomic_inc(&nr_task_events
);
4362 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4363 struct perf_event_attr
*attr
)
4368 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4372 * zero the full structure, so that a short copy will be nice.
4374 memset(attr
, 0, sizeof(*attr
));
4376 ret
= get_user(size
, &uattr
->size
);
4380 if (size
> PAGE_SIZE
) /* silly large */
4383 if (!size
) /* abi compat */
4384 size
= PERF_ATTR_SIZE_VER0
;
4386 if (size
< PERF_ATTR_SIZE_VER0
)
4390 * If we're handed a bigger struct than we know of,
4391 * ensure all the unknown bits are 0 - i.e. new
4392 * user-space does not rely on any kernel feature
4393 * extensions we dont know about yet.
4395 if (size
> sizeof(*attr
)) {
4396 unsigned char __user
*addr
;
4397 unsigned char __user
*end
;
4400 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4401 end
= (void __user
*)uattr
+ size
;
4403 for (; addr
< end
; addr
++) {
4404 ret
= get_user(val
, addr
);
4410 size
= sizeof(*attr
);
4413 ret
= copy_from_user(attr
, uattr
, size
);
4418 * If the type exists, the corresponding creation will verify
4421 if (attr
->type
>= PERF_TYPE_MAX
)
4424 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4427 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4430 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4437 put_user(sizeof(*attr
), &uattr
->size
);
4442 int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4444 struct perf_event
*output_event
= NULL
;
4445 struct file
*output_file
= NULL
;
4446 struct perf_event
*old_output
;
4447 int fput_needed
= 0;
4453 output_file
= fget_light(output_fd
, &fput_needed
);
4457 if (output_file
->f_op
!= &perf_fops
)
4460 output_event
= output_file
->private_data
;
4462 /* Don't chain output fds */
4463 if (output_event
->output
)
4466 /* Don't set an output fd when we already have an output channel */
4470 atomic_long_inc(&output_file
->f_count
);
4473 mutex_lock(&event
->mmap_mutex
);
4474 old_output
= event
->output
;
4475 rcu_assign_pointer(event
->output
, output_event
);
4476 mutex_unlock(&event
->mmap_mutex
);
4480 * we need to make sure no existing perf_output_*()
4481 * is still referencing this event.
4484 fput(old_output
->filp
);
4489 fput_light(output_file
, fput_needed
);
4494 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4496 * @attr_uptr: event_id type attributes for monitoring/sampling
4499 * @group_fd: group leader event fd
4501 SYSCALL_DEFINE5(perf_event_open
,
4502 struct perf_event_attr __user
*, attr_uptr
,
4503 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4505 struct perf_event
*event
, *group_leader
;
4506 struct perf_event_attr attr
;
4507 struct perf_event_context
*ctx
;
4508 struct file
*event_file
= NULL
;
4509 struct file
*group_file
= NULL
;
4511 int fput_needed
= 0;
4514 /* for future expandability... */
4515 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4518 err
= perf_copy_attr(attr_uptr
, &attr
);
4522 if (!attr
.exclude_kernel
) {
4523 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4528 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4532 event_fd
= get_unused_fd_flags(O_RDWR
);
4537 * Get the target context (task or percpu):
4539 ctx
= find_get_context(pid
, cpu
);
4546 * Look up the group leader (we will attach this event to it):
4548 group_leader
= NULL
;
4549 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4551 group_file
= fget_light(group_fd
, &fput_needed
);
4553 goto err_put_context
;
4554 if (group_file
->f_op
!= &perf_fops
)
4555 goto err_put_context
;
4557 group_leader
= group_file
->private_data
;
4559 * Do not allow a recursive hierarchy (this new sibling
4560 * becoming part of another group-sibling):
4562 if (group_leader
->group_leader
!= group_leader
)
4563 goto err_put_context
;
4565 * Do not allow to attach to a group in a different
4566 * task or CPU context:
4568 if (group_leader
->ctx
!= ctx
)
4569 goto err_put_context
;
4571 * Only a group leader can be exclusive or pinned
4573 if (attr
.exclusive
|| attr
.pinned
)
4574 goto err_put_context
;
4577 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4579 err
= PTR_ERR(event
);
4581 goto err_put_context
;
4583 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
4584 if (IS_ERR(event_file
)) {
4585 err
= PTR_ERR(event_file
);
4586 goto err_free_put_context
;
4589 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4590 err
= perf_event_set_output(event
, group_fd
);
4592 goto err_fput_free_put_context
;
4595 event
->filp
= event_file
;
4596 WARN_ON_ONCE(ctx
->parent_ctx
);
4597 mutex_lock(&ctx
->mutex
);
4598 perf_install_in_context(ctx
, event
, cpu
);
4600 mutex_unlock(&ctx
->mutex
);
4602 event
->owner
= current
;
4603 get_task_struct(current
);
4604 mutex_lock(¤t
->perf_event_mutex
);
4605 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4606 mutex_unlock(¤t
->perf_event_mutex
);
4608 fput_light(group_file
, fput_needed
);
4609 fd_install(event_fd
, event_file
);
4612 err_fput_free_put_context
:
4614 err_free_put_context
:
4617 fput_light(group_file
, fput_needed
);
4620 put_unused_fd(event_fd
);
4625 * inherit a event from parent task to child task:
4627 static struct perf_event
*
4628 inherit_event(struct perf_event
*parent_event
,
4629 struct task_struct
*parent
,
4630 struct perf_event_context
*parent_ctx
,
4631 struct task_struct
*child
,
4632 struct perf_event
*group_leader
,
4633 struct perf_event_context
*child_ctx
)
4635 struct perf_event
*child_event
;
4638 * Instead of creating recursive hierarchies of events,
4639 * we link inherited events back to the original parent,
4640 * which has a filp for sure, which we use as the reference
4643 if (parent_event
->parent
)
4644 parent_event
= parent_event
->parent
;
4646 child_event
= perf_event_alloc(&parent_event
->attr
,
4647 parent_event
->cpu
, child_ctx
,
4648 group_leader
, parent_event
,
4650 if (IS_ERR(child_event
))
4655 * Make the child state follow the state of the parent event,
4656 * not its attr.disabled bit. We hold the parent's mutex,
4657 * so we won't race with perf_event_{en, dis}able_family.
4659 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4660 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4662 child_event
->state
= PERF_EVENT_STATE_OFF
;
4664 if (parent_event
->attr
.freq
)
4665 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4668 * Link it up in the child's context:
4670 add_event_to_ctx(child_event
, child_ctx
);
4673 * Get a reference to the parent filp - we will fput it
4674 * when the child event exits. This is safe to do because
4675 * we are in the parent and we know that the filp still
4676 * exists and has a nonzero count:
4678 atomic_long_inc(&parent_event
->filp
->f_count
);
4681 * Link this into the parent event's child list
4683 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4684 mutex_lock(&parent_event
->child_mutex
);
4685 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4686 mutex_unlock(&parent_event
->child_mutex
);
4691 static int inherit_group(struct perf_event
*parent_event
,
4692 struct task_struct
*parent
,
4693 struct perf_event_context
*parent_ctx
,
4694 struct task_struct
*child
,
4695 struct perf_event_context
*child_ctx
)
4697 struct perf_event
*leader
;
4698 struct perf_event
*sub
;
4699 struct perf_event
*child_ctr
;
4701 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4702 child
, NULL
, child_ctx
);
4704 return PTR_ERR(leader
);
4705 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4706 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4707 child
, leader
, child_ctx
);
4708 if (IS_ERR(child_ctr
))
4709 return PTR_ERR(child_ctr
);
4714 static void sync_child_event(struct perf_event
*child_event
,
4715 struct task_struct
*child
)
4717 struct perf_event
*parent_event
= child_event
->parent
;
4720 if (child_event
->attr
.inherit_stat
)
4721 perf_event_read_event(child_event
, child
);
4723 child_val
= atomic64_read(&child_event
->count
);
4726 * Add back the child's count to the parent's count:
4728 atomic64_add(child_val
, &parent_event
->count
);
4729 atomic64_add(child_event
->total_time_enabled
,
4730 &parent_event
->child_total_time_enabled
);
4731 atomic64_add(child_event
->total_time_running
,
4732 &parent_event
->child_total_time_running
);
4735 * Remove this event from the parent's list
4737 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4738 mutex_lock(&parent_event
->child_mutex
);
4739 list_del_init(&child_event
->child_list
);
4740 mutex_unlock(&parent_event
->child_mutex
);
4743 * Release the parent event, if this was the last
4746 fput(parent_event
->filp
);
4750 __perf_event_exit_task(struct perf_event
*child_event
,
4751 struct perf_event_context
*child_ctx
,
4752 struct task_struct
*child
)
4754 struct perf_event
*parent_event
;
4756 update_event_times(child_event
);
4757 perf_event_remove_from_context(child_event
);
4759 parent_event
= child_event
->parent
;
4761 * It can happen that parent exits first, and has events
4762 * that are still around due to the child reference. These
4763 * events need to be zapped - but otherwise linger.
4766 sync_child_event(child_event
, child
);
4767 free_event(child_event
);
4772 * When a child task exits, feed back event values to parent events.
4774 void perf_event_exit_task(struct task_struct
*child
)
4776 struct perf_event
*child_event
, *tmp
;
4777 struct perf_event_context
*child_ctx
;
4778 unsigned long flags
;
4780 if (likely(!child
->perf_event_ctxp
)) {
4781 perf_event_task(child
, NULL
, 0);
4785 local_irq_save(flags
);
4787 * We can't reschedule here because interrupts are disabled,
4788 * and either child is current or it is a task that can't be
4789 * scheduled, so we are now safe from rescheduling changing
4792 child_ctx
= child
->perf_event_ctxp
;
4793 __perf_event_task_sched_out(child_ctx
);
4796 * Take the context lock here so that if find_get_context is
4797 * reading child->perf_event_ctxp, we wait until it has
4798 * incremented the context's refcount before we do put_ctx below.
4800 spin_lock(&child_ctx
->lock
);
4801 child
->perf_event_ctxp
= NULL
;
4803 * If this context is a clone; unclone it so it can't get
4804 * swapped to another process while we're removing all
4805 * the events from it.
4807 unclone_ctx(child_ctx
);
4808 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4811 * Report the task dead after unscheduling the events so that we
4812 * won't get any samples after PERF_RECORD_EXIT. We can however still
4813 * get a few PERF_RECORD_READ events.
4815 perf_event_task(child
, child_ctx
, 0);
4818 * We can recurse on the same lock type through:
4820 * __perf_event_exit_task()
4821 * sync_child_event()
4822 * fput(parent_event->filp)
4824 * mutex_lock(&ctx->mutex)
4826 * But since its the parent context it won't be the same instance.
4828 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4831 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
4833 __perf_event_exit_task(child_event
, child_ctx
, child
);
4836 * If the last event was a group event, it will have appended all
4837 * its siblings to the list, but we obtained 'tmp' before that which
4838 * will still point to the list head terminating the iteration.
4840 if (!list_empty(&child_ctx
->group_list
))
4843 mutex_unlock(&child_ctx
->mutex
);
4849 * free an unexposed, unused context as created by inheritance by
4850 * init_task below, used by fork() in case of fail.
4852 void perf_event_free_task(struct task_struct
*task
)
4854 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
4855 struct perf_event
*event
, *tmp
;
4860 mutex_lock(&ctx
->mutex
);
4862 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
4863 struct perf_event
*parent
= event
->parent
;
4865 if (WARN_ON_ONCE(!parent
))
4868 mutex_lock(&parent
->child_mutex
);
4869 list_del_init(&event
->child_list
);
4870 mutex_unlock(&parent
->child_mutex
);
4874 list_del_event(event
, ctx
);
4878 if (!list_empty(&ctx
->group_list
))
4881 mutex_unlock(&ctx
->mutex
);
4887 * Initialize the perf_event context in task_struct
4889 int perf_event_init_task(struct task_struct
*child
)
4891 struct perf_event_context
*child_ctx
, *parent_ctx
;
4892 struct perf_event_context
*cloned_ctx
;
4893 struct perf_event
*event
;
4894 struct task_struct
*parent
= current
;
4895 int inherited_all
= 1;
4898 child
->perf_event_ctxp
= NULL
;
4900 mutex_init(&child
->perf_event_mutex
);
4901 INIT_LIST_HEAD(&child
->perf_event_list
);
4903 if (likely(!parent
->perf_event_ctxp
))
4907 * This is executed from the parent task context, so inherit
4908 * events that have been marked for cloning.
4909 * First allocate and initialize a context for the child.
4912 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4916 __perf_event_init_context(child_ctx
, child
);
4917 child
->perf_event_ctxp
= child_ctx
;
4918 get_task_struct(child
);
4921 * If the parent's context is a clone, pin it so it won't get
4924 parent_ctx
= perf_pin_task_context(parent
);
4927 * No need to check if parent_ctx != NULL here; since we saw
4928 * it non-NULL earlier, the only reason for it to become NULL
4929 * is if we exit, and since we're currently in the middle of
4930 * a fork we can't be exiting at the same time.
4934 * Lock the parent list. No need to lock the child - not PID
4935 * hashed yet and not running, so nobody can access it.
4937 mutex_lock(&parent_ctx
->mutex
);
4940 * We dont have to disable NMIs - we are only looking at
4941 * the list, not manipulating it:
4943 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
4945 if (!event
->attr
.inherit
) {
4950 ret
= inherit_group(event
, parent
, parent_ctx
,
4958 if (inherited_all
) {
4960 * Mark the child context as a clone of the parent
4961 * context, or of whatever the parent is a clone of.
4962 * Note that if the parent is a clone, it could get
4963 * uncloned at any point, but that doesn't matter
4964 * because the list of events and the generation
4965 * count can't have changed since we took the mutex.
4967 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4969 child_ctx
->parent_ctx
= cloned_ctx
;
4970 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4972 child_ctx
->parent_ctx
= parent_ctx
;
4973 child_ctx
->parent_gen
= parent_ctx
->generation
;
4975 get_ctx(child_ctx
->parent_ctx
);
4978 mutex_unlock(&parent_ctx
->mutex
);
4980 perf_unpin_context(parent_ctx
);
4985 static void __init
perf_event_init_all_cpus(void)
4988 struct perf_cpu_context
*cpuctx
;
4990 for_each_possible_cpu(cpu
) {
4991 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4992 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
4996 static void __cpuinit
perf_event_init_cpu(int cpu
)
4998 struct perf_cpu_context
*cpuctx
;
5000 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5002 spin_lock(&perf_resource_lock
);
5003 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5004 spin_unlock(&perf_resource_lock
);
5006 hw_perf_event_setup(cpu
);
5009 #ifdef CONFIG_HOTPLUG_CPU
5010 static void __perf_event_exit_cpu(void *info
)
5012 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5013 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5014 struct perf_event
*event
, *tmp
;
5016 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5017 __perf_event_remove_from_context(event
);
5019 static void perf_event_exit_cpu(int cpu
)
5021 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5022 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5024 mutex_lock(&ctx
->mutex
);
5025 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5026 mutex_unlock(&ctx
->mutex
);
5029 static inline void perf_event_exit_cpu(int cpu
) { }
5032 static int __cpuinit
5033 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5035 unsigned int cpu
= (long)hcpu
;
5039 case CPU_UP_PREPARE
:
5040 case CPU_UP_PREPARE_FROZEN
:
5041 perf_event_init_cpu(cpu
);
5045 case CPU_ONLINE_FROZEN
:
5046 hw_perf_event_setup_online(cpu
);
5049 case CPU_DOWN_PREPARE
:
5050 case CPU_DOWN_PREPARE_FROZEN
:
5051 perf_event_exit_cpu(cpu
);
5062 * This has to have a higher priority than migration_notifier in sched.c.
5064 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5065 .notifier_call
= perf_cpu_notify
,
5069 void __init
perf_event_init(void)
5071 perf_event_init_all_cpus();
5072 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5073 (void *)(long)smp_processor_id());
5074 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5075 (void *)(long)smp_processor_id());
5076 register_cpu_notifier(&perf_cpu_nb
);
5079 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5081 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5085 perf_set_reserve_percpu(struct sysdev_class
*class,
5089 struct perf_cpu_context
*cpuctx
;
5093 err
= strict_strtoul(buf
, 10, &val
);
5096 if (val
> perf_max_events
)
5099 spin_lock(&perf_resource_lock
);
5100 perf_reserved_percpu
= val
;
5101 for_each_online_cpu(cpu
) {
5102 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5103 spin_lock_irq(&cpuctx
->ctx
.lock
);
5104 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5105 perf_max_events
- perf_reserved_percpu
);
5106 cpuctx
->max_pertask
= mpt
;
5107 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5109 spin_unlock(&perf_resource_lock
);
5114 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5116 return sprintf(buf
, "%d\n", perf_overcommit
);
5120 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5125 err
= strict_strtoul(buf
, 10, &val
);
5131 spin_lock(&perf_resource_lock
);
5132 perf_overcommit
= val
;
5133 spin_unlock(&perf_resource_lock
);
5138 static SYSDEV_CLASS_ATTR(
5141 perf_show_reserve_percpu
,
5142 perf_set_reserve_percpu
5145 static SYSDEV_CLASS_ATTR(
5148 perf_show_overcommit
,
5152 static struct attribute
*perfclass_attrs
[] = {
5153 &attr_reserve_percpu
.attr
,
5154 &attr_overcommit
.attr
,
5158 static struct attribute_group perfclass_attr_group
= {
5159 .attrs
= perfclass_attrs
,
5160 .name
= "perf_events",
5163 static int __init
perf_event_sysfs_init(void)
5165 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5166 &perfclass_attr_group
);
5168 device_initcall(perf_event_sysfs_init
);