Revert "ACPI: ibm-acpi: make non-generic bay support optional"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / avr32 / kernel / setup.c
bloba34211601008420f456e185b825c9ed426eb51c7
1 /*
2 * Copyright (C) 2004-2006 Atmel Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/init.h>
11 #include <linux/sched.h>
12 #include <linux/console.h>
13 #include <linux/ioport.h>
14 #include <linux/bootmem.h>
15 #include <linux/fs.h>
16 #include <linux/module.h>
17 #include <linux/root_dev.h>
18 #include <linux/cpu.h>
20 #include <asm/sections.h>
21 #include <asm/processor.h>
22 #include <asm/pgtable.h>
23 #include <asm/setup.h>
24 #include <asm/sysreg.h>
26 #include <asm/arch/board.h>
27 #include <asm/arch/init.h>
29 extern int root_mountflags;
32 * Bootloader-provided information about physical memory
34 struct tag_mem_range *mem_phys;
35 struct tag_mem_range *mem_reserved;
36 struct tag_mem_range *mem_ramdisk;
39 * Initialize loops_per_jiffy as 5000000 (500MIPS).
40 * Better make it too large than too small...
42 struct avr32_cpuinfo boot_cpu_data = {
43 .loops_per_jiffy = 5000000
45 EXPORT_SYMBOL(boot_cpu_data);
47 static char command_line[COMMAND_LINE_SIZE];
50 * Should be more than enough, but if you have a _really_ complex
51 * setup, you might need to increase the size of this...
53 static struct tag_mem_range __initdata mem_range_cache[32];
54 static unsigned mem_range_next_free;
57 * Standard memory resources
59 static struct resource mem_res[] = {
61 .name = "Kernel code",
62 .start = 0,
63 .end = 0,
64 .flags = IORESOURCE_MEM
67 .name = "Kernel data",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_MEM,
74 #define kernel_code mem_res[0]
75 #define kernel_data mem_res[1]
78 * Early framebuffer allocation. Works as follows:
79 * - If fbmem_size is zero, nothing will be allocated or reserved.
80 * - If fbmem_start is zero when setup_bootmem() is called,
81 * fbmem_size bytes will be allocated from the bootmem allocator.
82 * - If fbmem_start is nonzero, an area of size fbmem_size will be
83 * reserved at the physical address fbmem_start if necessary. If
84 * the area isn't in a memory region known to the kernel, it will
85 * be left alone.
87 * Board-specific code may use these variables to set up platform data
88 * for the framebuffer driver if fbmem_size is nonzero.
90 static unsigned long __initdata fbmem_start;
91 static unsigned long __initdata fbmem_size;
94 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
95 * use as framebuffer.
97 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
98 * starting at yyy to be reserved for use as framebuffer.
100 * The kernel won't verify that the memory region starting at yyy
101 * actually contains usable RAM.
103 static int __init early_parse_fbmem(char *p)
105 fbmem_size = memparse(p, &p);
106 if (*p == '@')
107 fbmem_start = memparse(p, &p);
108 return 0;
110 early_param("fbmem", early_parse_fbmem);
112 static inline void __init resource_init(void)
114 struct tag_mem_range *region;
116 kernel_code.start = __pa(init_mm.start_code);
117 kernel_code.end = __pa(init_mm.end_code - 1);
118 kernel_data.start = __pa(init_mm.end_code);
119 kernel_data.end = __pa(init_mm.brk - 1);
121 for (region = mem_phys; region; region = region->next) {
122 struct resource *res;
123 unsigned long phys_start, phys_end;
125 if (region->size == 0)
126 continue;
128 phys_start = region->addr;
129 phys_end = phys_start + region->size - 1;
131 res = alloc_bootmem_low(sizeof(*res));
132 res->name = "System RAM";
133 res->start = phys_start;
134 res->end = phys_end;
135 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
137 request_resource (&iomem_resource, res);
139 if (kernel_code.start >= res->start &&
140 kernel_code.end <= res->end)
141 request_resource (res, &kernel_code);
142 if (kernel_data.start >= res->start &&
143 kernel_data.end <= res->end)
144 request_resource (res, &kernel_data);
148 static int __init parse_tag_core(struct tag *tag)
150 if (tag->hdr.size > 2) {
151 if ((tag->u.core.flags & 1) == 0)
152 root_mountflags &= ~MS_RDONLY;
153 ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
155 return 0;
157 __tagtable(ATAG_CORE, parse_tag_core);
159 static int __init parse_tag_mem_range(struct tag *tag,
160 struct tag_mem_range **root)
162 struct tag_mem_range *cur, **pprev;
163 struct tag_mem_range *new;
166 * Ignore zero-sized entries. If we're running standalone, the
167 * SDRAM code may emit such entries if something goes
168 * wrong...
170 if (tag->u.mem_range.size == 0)
171 return 0;
174 * Copy the data so the bootmem init code doesn't need to care
175 * about it.
177 if (mem_range_next_free >=
178 (sizeof(mem_range_cache) / sizeof(mem_range_cache[0])))
179 panic("Physical memory map too complex!\n");
181 new = &mem_range_cache[mem_range_next_free++];
182 *new = tag->u.mem_range;
184 pprev = root;
185 cur = *root;
186 while (cur) {
187 pprev = &cur->next;
188 cur = cur->next;
191 *pprev = new;
192 new->next = NULL;
194 return 0;
197 static int __init parse_tag_mem(struct tag *tag)
199 return parse_tag_mem_range(tag, &mem_phys);
201 __tagtable(ATAG_MEM, parse_tag_mem);
203 static int __init parse_tag_cmdline(struct tag *tag)
205 strlcpy(saved_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
206 return 0;
208 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
210 static int __init parse_tag_rdimg(struct tag *tag)
212 return parse_tag_mem_range(tag, &mem_ramdisk);
214 __tagtable(ATAG_RDIMG, parse_tag_rdimg);
216 static int __init parse_tag_clock(struct tag *tag)
219 * We'll figure out the clocks by peeking at the system
220 * manager regs directly.
222 return 0;
224 __tagtable(ATAG_CLOCK, parse_tag_clock);
226 static int __init parse_tag_rsvd_mem(struct tag *tag)
228 return parse_tag_mem_range(tag, &mem_reserved);
230 __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
233 * Scan the tag table for this tag, and call its parse function. The
234 * tag table is built by the linker from all the __tagtable
235 * declarations.
237 static int __init parse_tag(struct tag *tag)
239 extern struct tagtable __tagtable_begin, __tagtable_end;
240 struct tagtable *t;
242 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
243 if (tag->hdr.tag == t->tag) {
244 t->parse(tag);
245 break;
248 return t < &__tagtable_end;
252 * Parse all tags in the list we got from the boot loader
254 static void __init parse_tags(struct tag *t)
256 for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
257 if (!parse_tag(t))
258 printk(KERN_WARNING
259 "Ignoring unrecognised tag 0x%08x\n",
260 t->hdr.tag);
263 void __init setup_arch (char **cmdline_p)
265 struct clk *cpu_clk;
267 parse_tags(bootloader_tags);
269 setup_processor();
270 setup_platform();
271 setup_board();
273 cpu_clk = clk_get(NULL, "cpu");
274 if (IS_ERR(cpu_clk)) {
275 printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
276 } else {
277 unsigned long cpu_hz = clk_get_rate(cpu_clk);
280 * Well, duh, but it's probably a good idea to
281 * increment the use count.
283 clk_enable(cpu_clk);
285 boot_cpu_data.clk = cpu_clk;
286 boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
287 printk("CPU: Running at %lu.%03lu MHz\n",
288 ((cpu_hz + 500) / 1000) / 1000,
289 ((cpu_hz + 500) / 1000) % 1000);
292 init_mm.start_code = (unsigned long) &_text;
293 init_mm.end_code = (unsigned long) &_etext;
294 init_mm.end_data = (unsigned long) &_edata;
295 init_mm.brk = (unsigned long) &_end;
297 strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
298 *cmdline_p = command_line;
299 parse_early_param();
301 setup_bootmem();
303 board_setup_fbmem(fbmem_start, fbmem_size);
305 #ifdef CONFIG_VT
306 conswitchp = &dummy_con;
307 #endif
309 paging_init();
311 resource_init();