[ALSA] wavefront - Use platform_device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blobedafeace301f01879e04d31c9bf9e5c01a4484e9
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
34 DEFINE_SPINLOCK(swap_lock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
39 static const char Bad_file[] = "Bad swap file entry ";
40 static const char Unused_file[] = "Unused swap file entry ";
41 static const char Bad_offset[] = "Bad swap offset entry ";
42 static const char Unused_offset[] = "Unused swap offset entry ";
44 struct swap_list_t swap_list = {-1, -1};
46 struct swap_info_struct swap_info[MAX_SWAPFILES];
48 static DECLARE_MUTEX(swapon_sem);
51 * We need this because the bdev->unplug_fn can sleep and we cannot
52 * hold swap_lock while calling the unplug_fn. And swap_lock
53 * cannot be turned into a semaphore.
55 static DECLARE_RWSEM(swap_unplug_sem);
57 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 swp_entry_t entry;
61 down_read(&swap_unplug_sem);
62 entry.val = page_private(page);
63 if (PageSwapCache(page)) {
64 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
65 struct backing_dev_info *bdi;
68 * If the page is removed from swapcache from under us (with a
69 * racy try_to_unuse/swapoff) we need an additional reference
70 * count to avoid reading garbage from page_private(page) above.
71 * If the WARN_ON triggers during a swapoff it maybe the race
72 * condition and it's harmless. However if it triggers without
73 * swapoff it signals a problem.
75 WARN_ON(page_count(page) <= 1);
77 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
78 blk_run_backing_dev(bdi, page);
80 up_read(&swap_unplug_sem);
83 #define SWAPFILE_CLUSTER 256
84 #define LATENCY_LIMIT 256
86 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 unsigned long offset, last_in_cluster;
89 int latency_ration = LATENCY_LIMIT;
91 /*
92 * We try to cluster swap pages by allocating them sequentially
93 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
94 * way, however, we resort to first-free allocation, starting
95 * a new cluster. This prevents us from scattering swap pages
96 * all over the entire swap partition, so that we reduce
97 * overall disk seek times between swap pages. -- sct
98 * But we do now try to find an empty cluster. -Andrea
101 si->flags += SWP_SCANNING;
102 if (unlikely(!si->cluster_nr)) {
103 si->cluster_nr = SWAPFILE_CLUSTER - 1;
104 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
105 goto lowest;
106 spin_unlock(&swap_lock);
108 offset = si->lowest_bit;
109 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111 /* Locate the first empty (unaligned) cluster */
112 for (; last_in_cluster <= si->highest_bit; offset++) {
113 if (si->swap_map[offset])
114 last_in_cluster = offset + SWAPFILE_CLUSTER;
115 else if (offset == last_in_cluster) {
116 spin_lock(&swap_lock);
117 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
118 goto cluster;
120 if (unlikely(--latency_ration < 0)) {
121 cond_resched();
122 latency_ration = LATENCY_LIMIT;
125 spin_lock(&swap_lock);
126 goto lowest;
129 si->cluster_nr--;
130 cluster:
131 offset = si->cluster_next;
132 if (offset > si->highest_bit)
133 lowest: offset = si->lowest_bit;
134 checks: if (!(si->flags & SWP_WRITEOK))
135 goto no_page;
136 if (!si->highest_bit)
137 goto no_page;
138 if (!si->swap_map[offset]) {
139 if (offset == si->lowest_bit)
140 si->lowest_bit++;
141 if (offset == si->highest_bit)
142 si->highest_bit--;
143 si->inuse_pages++;
144 if (si->inuse_pages == si->pages) {
145 si->lowest_bit = si->max;
146 si->highest_bit = 0;
148 si->swap_map[offset] = 1;
149 si->cluster_next = offset + 1;
150 si->flags -= SWP_SCANNING;
151 return offset;
154 spin_unlock(&swap_lock);
155 while (++offset <= si->highest_bit) {
156 if (!si->swap_map[offset]) {
157 spin_lock(&swap_lock);
158 goto checks;
160 if (unlikely(--latency_ration < 0)) {
161 cond_resched();
162 latency_ration = LATENCY_LIMIT;
165 spin_lock(&swap_lock);
166 goto lowest;
168 no_page:
169 si->flags -= SWP_SCANNING;
170 return 0;
173 swp_entry_t get_swap_page(void)
175 struct swap_info_struct *si;
176 pgoff_t offset;
177 int type, next;
178 int wrapped = 0;
180 spin_lock(&swap_lock);
181 if (nr_swap_pages <= 0)
182 goto noswap;
183 nr_swap_pages--;
185 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
186 si = swap_info + type;
187 next = si->next;
188 if (next < 0 ||
189 (!wrapped && si->prio != swap_info[next].prio)) {
190 next = swap_list.head;
191 wrapped++;
194 if (!si->highest_bit)
195 continue;
196 if (!(si->flags & SWP_WRITEOK))
197 continue;
199 swap_list.next = next;
200 offset = scan_swap_map(si);
201 if (offset) {
202 spin_unlock(&swap_lock);
203 return swp_entry(type, offset);
205 next = swap_list.next;
208 nr_swap_pages++;
209 noswap:
210 spin_unlock(&swap_lock);
211 return (swp_entry_t) {0};
214 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
216 struct swap_info_struct * p;
217 unsigned long offset, type;
219 if (!entry.val)
220 goto out;
221 type = swp_type(entry);
222 if (type >= nr_swapfiles)
223 goto bad_nofile;
224 p = & swap_info[type];
225 if (!(p->flags & SWP_USED))
226 goto bad_device;
227 offset = swp_offset(entry);
228 if (offset >= p->max)
229 goto bad_offset;
230 if (!p->swap_map[offset])
231 goto bad_free;
232 spin_lock(&swap_lock);
233 return p;
235 bad_free:
236 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
237 goto out;
238 bad_offset:
239 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
240 goto out;
241 bad_device:
242 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
243 goto out;
244 bad_nofile:
245 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
246 out:
247 return NULL;
250 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
252 int count = p->swap_map[offset];
254 if (count < SWAP_MAP_MAX) {
255 count--;
256 p->swap_map[offset] = count;
257 if (!count) {
258 if (offset < p->lowest_bit)
259 p->lowest_bit = offset;
260 if (offset > p->highest_bit)
261 p->highest_bit = offset;
262 if (p->prio > swap_info[swap_list.next].prio)
263 swap_list.next = p - swap_info;
264 nr_swap_pages++;
265 p->inuse_pages--;
268 return count;
272 * Caller has made sure that the swapdevice corresponding to entry
273 * is still around or has not been recycled.
275 void swap_free(swp_entry_t entry)
277 struct swap_info_struct * p;
279 p = swap_info_get(entry);
280 if (p) {
281 swap_entry_free(p, swp_offset(entry));
282 spin_unlock(&swap_lock);
287 * How many references to page are currently swapped out?
289 static inline int page_swapcount(struct page *page)
291 int count = 0;
292 struct swap_info_struct *p;
293 swp_entry_t entry;
295 entry.val = page_private(page);
296 p = swap_info_get(entry);
297 if (p) {
298 /* Subtract the 1 for the swap cache itself */
299 count = p->swap_map[swp_offset(entry)] - 1;
300 spin_unlock(&swap_lock);
302 return count;
306 * We can use this swap cache entry directly
307 * if there are no other references to it.
309 int can_share_swap_page(struct page *page)
311 int count;
313 BUG_ON(!PageLocked(page));
314 count = page_mapcount(page);
315 if (count <= 1 && PageSwapCache(page))
316 count += page_swapcount(page);
317 return count == 1;
321 * Work out if there are any other processes sharing this
322 * swap cache page. Free it if you can. Return success.
324 int remove_exclusive_swap_page(struct page *page)
326 int retval;
327 struct swap_info_struct * p;
328 swp_entry_t entry;
330 BUG_ON(PagePrivate(page));
331 BUG_ON(!PageLocked(page));
333 if (!PageSwapCache(page))
334 return 0;
335 if (PageWriteback(page))
336 return 0;
337 if (page_count(page) != 2) /* 2: us + cache */
338 return 0;
340 entry.val = page_private(page);
341 p = swap_info_get(entry);
342 if (!p)
343 return 0;
345 /* Is the only swap cache user the cache itself? */
346 retval = 0;
347 if (p->swap_map[swp_offset(entry)] == 1) {
348 /* Recheck the page count with the swapcache lock held.. */
349 write_lock_irq(&swapper_space.tree_lock);
350 if ((page_count(page) == 2) && !PageWriteback(page)) {
351 __delete_from_swap_cache(page);
352 SetPageDirty(page);
353 retval = 1;
355 write_unlock_irq(&swapper_space.tree_lock);
357 spin_unlock(&swap_lock);
359 if (retval) {
360 swap_free(entry);
361 page_cache_release(page);
364 return retval;
368 * Free the swap entry like above, but also try to
369 * free the page cache entry if it is the last user.
371 void free_swap_and_cache(swp_entry_t entry)
373 struct swap_info_struct * p;
374 struct page *page = NULL;
376 p = swap_info_get(entry);
377 if (p) {
378 if (swap_entry_free(p, swp_offset(entry)) == 1)
379 page = find_trylock_page(&swapper_space, entry.val);
380 spin_unlock(&swap_lock);
382 if (page) {
383 int one_user;
385 BUG_ON(PagePrivate(page));
386 page_cache_get(page);
387 one_user = (page_count(page) == 2);
388 /* Only cache user (+us), or swap space full? Free it! */
389 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
390 delete_from_swap_cache(page);
391 SetPageDirty(page);
393 unlock_page(page);
394 page_cache_release(page);
399 * No need to decide whether this PTE shares the swap entry with others,
400 * just let do_wp_page work it out if a write is requested later - to
401 * force COW, vm_page_prot omits write permission from any private vma.
403 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
404 unsigned long addr, swp_entry_t entry, struct page *page)
406 inc_mm_counter(vma->vm_mm, anon_rss);
407 get_page(page);
408 set_pte_at(vma->vm_mm, addr, pte,
409 pte_mkold(mk_pte(page, vma->vm_page_prot)));
410 page_add_anon_rmap(page, vma, addr);
411 swap_free(entry);
413 * Move the page to the active list so it is not
414 * immediately swapped out again after swapon.
416 activate_page(page);
419 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
420 unsigned long addr, unsigned long end,
421 swp_entry_t entry, struct page *page)
423 pte_t swp_pte = swp_entry_to_pte(entry);
424 pte_t *pte;
425 spinlock_t *ptl;
426 int found = 0;
428 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
429 do {
431 * swapoff spends a _lot_ of time in this loop!
432 * Test inline before going to call unuse_pte.
434 if (unlikely(pte_same(*pte, swp_pte))) {
435 unuse_pte(vma, pte++, addr, entry, page);
436 found = 1;
437 break;
439 } while (pte++, addr += PAGE_SIZE, addr != end);
440 pte_unmap_unlock(pte - 1, ptl);
441 return found;
444 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
445 unsigned long addr, unsigned long end,
446 swp_entry_t entry, struct page *page)
448 pmd_t *pmd;
449 unsigned long next;
451 pmd = pmd_offset(pud, addr);
452 do {
453 next = pmd_addr_end(addr, end);
454 if (pmd_none_or_clear_bad(pmd))
455 continue;
456 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
457 return 1;
458 } while (pmd++, addr = next, addr != end);
459 return 0;
462 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
463 unsigned long addr, unsigned long end,
464 swp_entry_t entry, struct page *page)
466 pud_t *pud;
467 unsigned long next;
469 pud = pud_offset(pgd, addr);
470 do {
471 next = pud_addr_end(addr, end);
472 if (pud_none_or_clear_bad(pud))
473 continue;
474 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
475 return 1;
476 } while (pud++, addr = next, addr != end);
477 return 0;
480 static int unuse_vma(struct vm_area_struct *vma,
481 swp_entry_t entry, struct page *page)
483 pgd_t *pgd;
484 unsigned long addr, end, next;
486 if (page->mapping) {
487 addr = page_address_in_vma(page, vma);
488 if (addr == -EFAULT)
489 return 0;
490 else
491 end = addr + PAGE_SIZE;
492 } else {
493 addr = vma->vm_start;
494 end = vma->vm_end;
497 pgd = pgd_offset(vma->vm_mm, addr);
498 do {
499 next = pgd_addr_end(addr, end);
500 if (pgd_none_or_clear_bad(pgd))
501 continue;
502 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
503 return 1;
504 } while (pgd++, addr = next, addr != end);
505 return 0;
508 static int unuse_mm(struct mm_struct *mm,
509 swp_entry_t entry, struct page *page)
511 struct vm_area_struct *vma;
513 if (!down_read_trylock(&mm->mmap_sem)) {
515 * Activate page so shrink_cache is unlikely to unmap its
516 * ptes while lock is dropped, so swapoff can make progress.
518 activate_page(page);
519 unlock_page(page);
520 down_read(&mm->mmap_sem);
521 lock_page(page);
523 for (vma = mm->mmap; vma; vma = vma->vm_next) {
524 if (vma->anon_vma && unuse_vma(vma, entry, page))
525 break;
527 up_read(&mm->mmap_sem);
529 * Currently unuse_mm cannot fail, but leave error handling
530 * at call sites for now, since we change it from time to time.
532 return 0;
536 * Scan swap_map from current position to next entry still in use.
537 * Recycle to start on reaching the end, returning 0 when empty.
539 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
540 unsigned int prev)
542 unsigned int max = si->max;
543 unsigned int i = prev;
544 int count;
547 * No need for swap_lock here: we're just looking
548 * for whether an entry is in use, not modifying it; false
549 * hits are okay, and sys_swapoff() has already prevented new
550 * allocations from this area (while holding swap_lock).
552 for (;;) {
553 if (++i >= max) {
554 if (!prev) {
555 i = 0;
556 break;
559 * No entries in use at top of swap_map,
560 * loop back to start and recheck there.
562 max = prev + 1;
563 prev = 0;
564 i = 1;
566 count = si->swap_map[i];
567 if (count && count != SWAP_MAP_BAD)
568 break;
570 return i;
574 * We completely avoid races by reading each swap page in advance,
575 * and then search for the process using it. All the necessary
576 * page table adjustments can then be made atomically.
578 static int try_to_unuse(unsigned int type)
580 struct swap_info_struct * si = &swap_info[type];
581 struct mm_struct *start_mm;
582 unsigned short *swap_map;
583 unsigned short swcount;
584 struct page *page;
585 swp_entry_t entry;
586 unsigned int i = 0;
587 int retval = 0;
588 int reset_overflow = 0;
589 int shmem;
592 * When searching mms for an entry, a good strategy is to
593 * start at the first mm we freed the previous entry from
594 * (though actually we don't notice whether we or coincidence
595 * freed the entry). Initialize this start_mm with a hold.
597 * A simpler strategy would be to start at the last mm we
598 * freed the previous entry from; but that would take less
599 * advantage of mmlist ordering, which clusters forked mms
600 * together, child after parent. If we race with dup_mmap(), we
601 * prefer to resolve parent before child, lest we miss entries
602 * duplicated after we scanned child: using last mm would invert
603 * that. Though it's only a serious concern when an overflowed
604 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
606 start_mm = &init_mm;
607 atomic_inc(&init_mm.mm_users);
610 * Keep on scanning until all entries have gone. Usually,
611 * one pass through swap_map is enough, but not necessarily:
612 * there are races when an instance of an entry might be missed.
614 while ((i = find_next_to_unuse(si, i)) != 0) {
615 if (signal_pending(current)) {
616 retval = -EINTR;
617 break;
621 * Get a page for the entry, using the existing swap
622 * cache page if there is one. Otherwise, get a clean
623 * page and read the swap into it.
625 swap_map = &si->swap_map[i];
626 entry = swp_entry(type, i);
627 page = read_swap_cache_async(entry, NULL, 0);
628 if (!page) {
630 * Either swap_duplicate() failed because entry
631 * has been freed independently, and will not be
632 * reused since sys_swapoff() already disabled
633 * allocation from here, or alloc_page() failed.
635 if (!*swap_map)
636 continue;
637 retval = -ENOMEM;
638 break;
642 * Don't hold on to start_mm if it looks like exiting.
644 if (atomic_read(&start_mm->mm_users) == 1) {
645 mmput(start_mm);
646 start_mm = &init_mm;
647 atomic_inc(&init_mm.mm_users);
651 * Wait for and lock page. When do_swap_page races with
652 * try_to_unuse, do_swap_page can handle the fault much
653 * faster than try_to_unuse can locate the entry. This
654 * apparently redundant "wait_on_page_locked" lets try_to_unuse
655 * defer to do_swap_page in such a case - in some tests,
656 * do_swap_page and try_to_unuse repeatedly compete.
658 wait_on_page_locked(page);
659 wait_on_page_writeback(page);
660 lock_page(page);
661 wait_on_page_writeback(page);
664 * Remove all references to entry.
665 * Whenever we reach init_mm, there's no address space
666 * to search, but use it as a reminder to search shmem.
668 shmem = 0;
669 swcount = *swap_map;
670 if (swcount > 1) {
671 if (start_mm == &init_mm)
672 shmem = shmem_unuse(entry, page);
673 else
674 retval = unuse_mm(start_mm, entry, page);
676 if (*swap_map > 1) {
677 int set_start_mm = (*swap_map >= swcount);
678 struct list_head *p = &start_mm->mmlist;
679 struct mm_struct *new_start_mm = start_mm;
680 struct mm_struct *prev_mm = start_mm;
681 struct mm_struct *mm;
683 atomic_inc(&new_start_mm->mm_users);
684 atomic_inc(&prev_mm->mm_users);
685 spin_lock(&mmlist_lock);
686 while (*swap_map > 1 && !retval &&
687 (p = p->next) != &start_mm->mmlist) {
688 mm = list_entry(p, struct mm_struct, mmlist);
689 if (atomic_inc_return(&mm->mm_users) == 1) {
690 atomic_dec(&mm->mm_users);
691 continue;
693 spin_unlock(&mmlist_lock);
694 mmput(prev_mm);
695 prev_mm = mm;
697 cond_resched();
699 swcount = *swap_map;
700 if (swcount <= 1)
702 else if (mm == &init_mm) {
703 set_start_mm = 1;
704 shmem = shmem_unuse(entry, page);
705 } else
706 retval = unuse_mm(mm, entry, page);
707 if (set_start_mm && *swap_map < swcount) {
708 mmput(new_start_mm);
709 atomic_inc(&mm->mm_users);
710 new_start_mm = mm;
711 set_start_mm = 0;
713 spin_lock(&mmlist_lock);
715 spin_unlock(&mmlist_lock);
716 mmput(prev_mm);
717 mmput(start_mm);
718 start_mm = new_start_mm;
720 if (retval) {
721 unlock_page(page);
722 page_cache_release(page);
723 break;
727 * How could swap count reach 0x7fff when the maximum
728 * pid is 0x7fff, and there's no way to repeat a swap
729 * page within an mm (except in shmem, where it's the
730 * shared object which takes the reference count)?
731 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
733 * If that's wrong, then we should worry more about
734 * exit_mmap() and do_munmap() cases described above:
735 * we might be resetting SWAP_MAP_MAX too early here.
736 * We know "Undead"s can happen, they're okay, so don't
737 * report them; but do report if we reset SWAP_MAP_MAX.
739 if (*swap_map == SWAP_MAP_MAX) {
740 spin_lock(&swap_lock);
741 *swap_map = 1;
742 spin_unlock(&swap_lock);
743 reset_overflow = 1;
747 * If a reference remains (rare), we would like to leave
748 * the page in the swap cache; but try_to_unmap could
749 * then re-duplicate the entry once we drop page lock,
750 * so we might loop indefinitely; also, that page could
751 * not be swapped out to other storage meanwhile. So:
752 * delete from cache even if there's another reference,
753 * after ensuring that the data has been saved to disk -
754 * since if the reference remains (rarer), it will be
755 * read from disk into another page. Splitting into two
756 * pages would be incorrect if swap supported "shared
757 * private" pages, but they are handled by tmpfs files.
759 * Note shmem_unuse already deleted a swappage from
760 * the swap cache, unless the move to filepage failed:
761 * in which case it left swappage in cache, lowered its
762 * swap count to pass quickly through the loops above,
763 * and now we must reincrement count to try again later.
765 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
766 struct writeback_control wbc = {
767 .sync_mode = WB_SYNC_NONE,
770 swap_writepage(page, &wbc);
771 lock_page(page);
772 wait_on_page_writeback(page);
774 if (PageSwapCache(page)) {
775 if (shmem)
776 swap_duplicate(entry);
777 else
778 delete_from_swap_cache(page);
782 * So we could skip searching mms once swap count went
783 * to 1, we did not mark any present ptes as dirty: must
784 * mark page dirty so shrink_list will preserve it.
786 SetPageDirty(page);
787 unlock_page(page);
788 page_cache_release(page);
791 * Make sure that we aren't completely killing
792 * interactive performance.
794 cond_resched();
797 mmput(start_mm);
798 if (reset_overflow) {
799 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
800 swap_overflow = 0;
802 return retval;
806 * After a successful try_to_unuse, if no swap is now in use, we know
807 * we can empty the mmlist. swap_lock must be held on entry and exit.
808 * Note that mmlist_lock nests inside swap_lock, and an mm must be
809 * added to the mmlist just after page_duplicate - before would be racy.
811 static void drain_mmlist(void)
813 struct list_head *p, *next;
814 unsigned int i;
816 for (i = 0; i < nr_swapfiles; i++)
817 if (swap_info[i].inuse_pages)
818 return;
819 spin_lock(&mmlist_lock);
820 list_for_each_safe(p, next, &init_mm.mmlist)
821 list_del_init(p);
822 spin_unlock(&mmlist_lock);
826 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
827 * corresponds to page offset `offset'.
829 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
831 struct swap_extent *se = sis->curr_swap_extent;
832 struct swap_extent *start_se = se;
834 for ( ; ; ) {
835 struct list_head *lh;
837 if (se->start_page <= offset &&
838 offset < (se->start_page + se->nr_pages)) {
839 return se->start_block + (offset - se->start_page);
841 lh = se->list.next;
842 if (lh == &sis->extent_list)
843 lh = lh->next;
844 se = list_entry(lh, struct swap_extent, list);
845 sis->curr_swap_extent = se;
846 BUG_ON(se == start_se); /* It *must* be present */
851 * Free all of a swapdev's extent information
853 static void destroy_swap_extents(struct swap_info_struct *sis)
855 while (!list_empty(&sis->extent_list)) {
856 struct swap_extent *se;
858 se = list_entry(sis->extent_list.next,
859 struct swap_extent, list);
860 list_del(&se->list);
861 kfree(se);
866 * Add a block range (and the corresponding page range) into this swapdev's
867 * extent list. The extent list is kept sorted in page order.
869 * This function rather assumes that it is called in ascending page order.
871 static int
872 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
873 unsigned long nr_pages, sector_t start_block)
875 struct swap_extent *se;
876 struct swap_extent *new_se;
877 struct list_head *lh;
879 lh = sis->extent_list.prev; /* The highest page extent */
880 if (lh != &sis->extent_list) {
881 se = list_entry(lh, struct swap_extent, list);
882 BUG_ON(se->start_page + se->nr_pages != start_page);
883 if (se->start_block + se->nr_pages == start_block) {
884 /* Merge it */
885 se->nr_pages += nr_pages;
886 return 0;
891 * No merge. Insert a new extent, preserving ordering.
893 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
894 if (new_se == NULL)
895 return -ENOMEM;
896 new_se->start_page = start_page;
897 new_se->nr_pages = nr_pages;
898 new_se->start_block = start_block;
900 list_add_tail(&new_se->list, &sis->extent_list);
901 return 1;
905 * A `swap extent' is a simple thing which maps a contiguous range of pages
906 * onto a contiguous range of disk blocks. An ordered list of swap extents
907 * is built at swapon time and is then used at swap_writepage/swap_readpage
908 * time for locating where on disk a page belongs.
910 * If the swapfile is an S_ISBLK block device, a single extent is installed.
911 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
912 * swap files identically.
914 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
915 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
916 * swapfiles are handled *identically* after swapon time.
918 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
919 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
920 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
921 * requirements, they are simply tossed out - we will never use those blocks
922 * for swapping.
924 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
925 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
926 * which will scribble on the fs.
928 * The amount of disk space which a single swap extent represents varies.
929 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
930 * extents in the list. To avoid much list walking, we cache the previous
931 * search location in `curr_swap_extent', and start new searches from there.
932 * This is extremely effective. The average number of iterations in
933 * map_swap_page() has been measured at about 0.3 per page. - akpm.
935 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
937 struct inode *inode;
938 unsigned blocks_per_page;
939 unsigned long page_no;
940 unsigned blkbits;
941 sector_t probe_block;
942 sector_t last_block;
943 sector_t lowest_block = -1;
944 sector_t highest_block = 0;
945 int nr_extents = 0;
946 int ret;
948 inode = sis->swap_file->f_mapping->host;
949 if (S_ISBLK(inode->i_mode)) {
950 ret = add_swap_extent(sis, 0, sis->max, 0);
951 *span = sis->pages;
952 goto done;
955 blkbits = inode->i_blkbits;
956 blocks_per_page = PAGE_SIZE >> blkbits;
959 * Map all the blocks into the extent list. This code doesn't try
960 * to be very smart.
962 probe_block = 0;
963 page_no = 0;
964 last_block = i_size_read(inode) >> blkbits;
965 while ((probe_block + blocks_per_page) <= last_block &&
966 page_no < sis->max) {
967 unsigned block_in_page;
968 sector_t first_block;
970 first_block = bmap(inode, probe_block);
971 if (first_block == 0)
972 goto bad_bmap;
975 * It must be PAGE_SIZE aligned on-disk
977 if (first_block & (blocks_per_page - 1)) {
978 probe_block++;
979 goto reprobe;
982 for (block_in_page = 1; block_in_page < blocks_per_page;
983 block_in_page++) {
984 sector_t block;
986 block = bmap(inode, probe_block + block_in_page);
987 if (block == 0)
988 goto bad_bmap;
989 if (block != first_block + block_in_page) {
990 /* Discontiguity */
991 probe_block++;
992 goto reprobe;
996 first_block >>= (PAGE_SHIFT - blkbits);
997 if (page_no) { /* exclude the header page */
998 if (first_block < lowest_block)
999 lowest_block = first_block;
1000 if (first_block > highest_block)
1001 highest_block = first_block;
1005 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1007 ret = add_swap_extent(sis, page_no, 1, first_block);
1008 if (ret < 0)
1009 goto out;
1010 nr_extents += ret;
1011 page_no++;
1012 probe_block += blocks_per_page;
1013 reprobe:
1014 continue;
1016 ret = nr_extents;
1017 *span = 1 + highest_block - lowest_block;
1018 if (page_no == 0)
1019 page_no = 1; /* force Empty message */
1020 sis->max = page_no;
1021 sis->pages = page_no - 1;
1022 sis->highest_bit = page_no - 1;
1023 done:
1024 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1025 struct swap_extent, list);
1026 goto out;
1027 bad_bmap:
1028 printk(KERN_ERR "swapon: swapfile has holes\n");
1029 ret = -EINVAL;
1030 out:
1031 return ret;
1034 #if 0 /* We don't need this yet */
1035 #include <linux/backing-dev.h>
1036 int page_queue_congested(struct page *page)
1038 struct backing_dev_info *bdi;
1040 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1042 if (PageSwapCache(page)) {
1043 swp_entry_t entry = { .val = page_private(page) };
1044 struct swap_info_struct *sis;
1046 sis = get_swap_info_struct(swp_type(entry));
1047 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1048 } else
1049 bdi = page->mapping->backing_dev_info;
1050 return bdi_write_congested(bdi);
1052 #endif
1054 asmlinkage long sys_swapoff(const char __user * specialfile)
1056 struct swap_info_struct * p = NULL;
1057 unsigned short *swap_map;
1058 struct file *swap_file, *victim;
1059 struct address_space *mapping;
1060 struct inode *inode;
1061 char * pathname;
1062 int i, type, prev;
1063 int err;
1065 if (!capable(CAP_SYS_ADMIN))
1066 return -EPERM;
1068 pathname = getname(specialfile);
1069 err = PTR_ERR(pathname);
1070 if (IS_ERR(pathname))
1071 goto out;
1073 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1074 putname(pathname);
1075 err = PTR_ERR(victim);
1076 if (IS_ERR(victim))
1077 goto out;
1079 mapping = victim->f_mapping;
1080 prev = -1;
1081 spin_lock(&swap_lock);
1082 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1083 p = swap_info + type;
1084 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1085 if (p->swap_file->f_mapping == mapping)
1086 break;
1088 prev = type;
1090 if (type < 0) {
1091 err = -EINVAL;
1092 spin_unlock(&swap_lock);
1093 goto out_dput;
1095 if (!security_vm_enough_memory(p->pages))
1096 vm_unacct_memory(p->pages);
1097 else {
1098 err = -ENOMEM;
1099 spin_unlock(&swap_lock);
1100 goto out_dput;
1102 if (prev < 0) {
1103 swap_list.head = p->next;
1104 } else {
1105 swap_info[prev].next = p->next;
1107 if (type == swap_list.next) {
1108 /* just pick something that's safe... */
1109 swap_list.next = swap_list.head;
1111 nr_swap_pages -= p->pages;
1112 total_swap_pages -= p->pages;
1113 p->flags &= ~SWP_WRITEOK;
1114 spin_unlock(&swap_lock);
1116 current->flags |= PF_SWAPOFF;
1117 err = try_to_unuse(type);
1118 current->flags &= ~PF_SWAPOFF;
1120 if (err) {
1121 /* re-insert swap space back into swap_list */
1122 spin_lock(&swap_lock);
1123 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1124 if (p->prio >= swap_info[i].prio)
1125 break;
1126 p->next = i;
1127 if (prev < 0)
1128 swap_list.head = swap_list.next = p - swap_info;
1129 else
1130 swap_info[prev].next = p - swap_info;
1131 nr_swap_pages += p->pages;
1132 total_swap_pages += p->pages;
1133 p->flags |= SWP_WRITEOK;
1134 spin_unlock(&swap_lock);
1135 goto out_dput;
1138 /* wait for any unplug function to finish */
1139 down_write(&swap_unplug_sem);
1140 up_write(&swap_unplug_sem);
1142 destroy_swap_extents(p);
1143 down(&swapon_sem);
1144 spin_lock(&swap_lock);
1145 drain_mmlist();
1147 /* wait for anyone still in scan_swap_map */
1148 p->highest_bit = 0; /* cuts scans short */
1149 while (p->flags >= SWP_SCANNING) {
1150 spin_unlock(&swap_lock);
1151 schedule_timeout_uninterruptible(1);
1152 spin_lock(&swap_lock);
1155 swap_file = p->swap_file;
1156 p->swap_file = NULL;
1157 p->max = 0;
1158 swap_map = p->swap_map;
1159 p->swap_map = NULL;
1160 p->flags = 0;
1161 spin_unlock(&swap_lock);
1162 up(&swapon_sem);
1163 vfree(swap_map);
1164 inode = mapping->host;
1165 if (S_ISBLK(inode->i_mode)) {
1166 struct block_device *bdev = I_BDEV(inode);
1167 set_blocksize(bdev, p->old_block_size);
1168 bd_release(bdev);
1169 } else {
1170 down(&inode->i_sem);
1171 inode->i_flags &= ~S_SWAPFILE;
1172 up(&inode->i_sem);
1174 filp_close(swap_file, NULL);
1175 err = 0;
1177 out_dput:
1178 filp_close(victim, NULL);
1179 out:
1180 return err;
1183 #ifdef CONFIG_PROC_FS
1184 /* iterator */
1185 static void *swap_start(struct seq_file *swap, loff_t *pos)
1187 struct swap_info_struct *ptr = swap_info;
1188 int i;
1189 loff_t l = *pos;
1191 down(&swapon_sem);
1193 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1194 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1195 continue;
1196 if (!l--)
1197 return ptr;
1200 return NULL;
1203 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1205 struct swap_info_struct *ptr = v;
1206 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1208 for (++ptr; ptr < endptr; ptr++) {
1209 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1210 continue;
1211 ++*pos;
1212 return ptr;
1215 return NULL;
1218 static void swap_stop(struct seq_file *swap, void *v)
1220 up(&swapon_sem);
1223 static int swap_show(struct seq_file *swap, void *v)
1225 struct swap_info_struct *ptr = v;
1226 struct file *file;
1227 int len;
1229 if (v == swap_info)
1230 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1232 file = ptr->swap_file;
1233 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1234 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1235 len < 40 ? 40 - len : 1, " ",
1236 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1237 "partition" : "file\t",
1238 ptr->pages << (PAGE_SHIFT - 10),
1239 ptr->inuse_pages << (PAGE_SHIFT - 10),
1240 ptr->prio);
1241 return 0;
1244 static struct seq_operations swaps_op = {
1245 .start = swap_start,
1246 .next = swap_next,
1247 .stop = swap_stop,
1248 .show = swap_show
1251 static int swaps_open(struct inode *inode, struct file *file)
1253 return seq_open(file, &swaps_op);
1256 static struct file_operations proc_swaps_operations = {
1257 .open = swaps_open,
1258 .read = seq_read,
1259 .llseek = seq_lseek,
1260 .release = seq_release,
1263 static int __init procswaps_init(void)
1265 struct proc_dir_entry *entry;
1267 entry = create_proc_entry("swaps", 0, NULL);
1268 if (entry)
1269 entry->proc_fops = &proc_swaps_operations;
1270 return 0;
1272 __initcall(procswaps_init);
1273 #endif /* CONFIG_PROC_FS */
1276 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1278 * The swapon system call
1280 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1282 struct swap_info_struct * p;
1283 char *name = NULL;
1284 struct block_device *bdev = NULL;
1285 struct file *swap_file = NULL;
1286 struct address_space *mapping;
1287 unsigned int type;
1288 int i, prev;
1289 int error;
1290 static int least_priority;
1291 union swap_header *swap_header = NULL;
1292 int swap_header_version;
1293 unsigned int nr_good_pages = 0;
1294 int nr_extents = 0;
1295 sector_t span;
1296 unsigned long maxpages = 1;
1297 int swapfilesize;
1298 unsigned short *swap_map;
1299 struct page *page = NULL;
1300 struct inode *inode = NULL;
1301 int did_down = 0;
1303 if (!capable(CAP_SYS_ADMIN))
1304 return -EPERM;
1305 spin_lock(&swap_lock);
1306 p = swap_info;
1307 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1308 if (!(p->flags & SWP_USED))
1309 break;
1310 error = -EPERM;
1312 * Test if adding another swap device is possible. There are
1313 * two limiting factors: 1) the number of bits for the swap
1314 * type swp_entry_t definition and 2) the number of bits for
1315 * the swap type in the swap ptes as defined by the different
1316 * architectures. To honor both limitations a swap entry
1317 * with swap offset 0 and swap type ~0UL is created, encoded
1318 * to a swap pte, decoded to a swp_entry_t again and finally
1319 * the swap type part is extracted. This will mask all bits
1320 * from the initial ~0UL that can't be encoded in either the
1321 * swp_entry_t or the architecture definition of a swap pte.
1323 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1324 spin_unlock(&swap_lock);
1325 goto out;
1327 if (type >= nr_swapfiles)
1328 nr_swapfiles = type+1;
1329 INIT_LIST_HEAD(&p->extent_list);
1330 p->flags = SWP_USED;
1331 p->swap_file = NULL;
1332 p->old_block_size = 0;
1333 p->swap_map = NULL;
1334 p->lowest_bit = 0;
1335 p->highest_bit = 0;
1336 p->cluster_nr = 0;
1337 p->inuse_pages = 0;
1338 p->next = -1;
1339 if (swap_flags & SWAP_FLAG_PREFER) {
1340 p->prio =
1341 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1342 } else {
1343 p->prio = --least_priority;
1345 spin_unlock(&swap_lock);
1346 name = getname(specialfile);
1347 error = PTR_ERR(name);
1348 if (IS_ERR(name)) {
1349 name = NULL;
1350 goto bad_swap_2;
1352 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1353 error = PTR_ERR(swap_file);
1354 if (IS_ERR(swap_file)) {
1355 swap_file = NULL;
1356 goto bad_swap_2;
1359 p->swap_file = swap_file;
1360 mapping = swap_file->f_mapping;
1361 inode = mapping->host;
1363 error = -EBUSY;
1364 for (i = 0; i < nr_swapfiles; i++) {
1365 struct swap_info_struct *q = &swap_info[i];
1367 if (i == type || !q->swap_file)
1368 continue;
1369 if (mapping == q->swap_file->f_mapping)
1370 goto bad_swap;
1373 error = -EINVAL;
1374 if (S_ISBLK(inode->i_mode)) {
1375 bdev = I_BDEV(inode);
1376 error = bd_claim(bdev, sys_swapon);
1377 if (error < 0) {
1378 bdev = NULL;
1379 error = -EINVAL;
1380 goto bad_swap;
1382 p->old_block_size = block_size(bdev);
1383 error = set_blocksize(bdev, PAGE_SIZE);
1384 if (error < 0)
1385 goto bad_swap;
1386 p->bdev = bdev;
1387 } else if (S_ISREG(inode->i_mode)) {
1388 p->bdev = inode->i_sb->s_bdev;
1389 down(&inode->i_sem);
1390 did_down = 1;
1391 if (IS_SWAPFILE(inode)) {
1392 error = -EBUSY;
1393 goto bad_swap;
1395 } else {
1396 goto bad_swap;
1399 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1402 * Read the swap header.
1404 if (!mapping->a_ops->readpage) {
1405 error = -EINVAL;
1406 goto bad_swap;
1408 page = read_cache_page(mapping, 0,
1409 (filler_t *)mapping->a_ops->readpage, swap_file);
1410 if (IS_ERR(page)) {
1411 error = PTR_ERR(page);
1412 goto bad_swap;
1414 wait_on_page_locked(page);
1415 if (!PageUptodate(page))
1416 goto bad_swap;
1417 kmap(page);
1418 swap_header = page_address(page);
1420 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1421 swap_header_version = 1;
1422 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1423 swap_header_version = 2;
1424 else {
1425 printk("Unable to find swap-space signature\n");
1426 error = -EINVAL;
1427 goto bad_swap;
1430 switch (swap_header_version) {
1431 case 1:
1432 printk(KERN_ERR "version 0 swap is no longer supported. "
1433 "Use mkswap -v1 %s\n", name);
1434 error = -EINVAL;
1435 goto bad_swap;
1436 case 2:
1437 /* Check the swap header's sub-version and the size of
1438 the swap file and bad block lists */
1439 if (swap_header->info.version != 1) {
1440 printk(KERN_WARNING
1441 "Unable to handle swap header version %d\n",
1442 swap_header->info.version);
1443 error = -EINVAL;
1444 goto bad_swap;
1447 p->lowest_bit = 1;
1448 p->cluster_next = 1;
1451 * Find out how many pages are allowed for a single swap
1452 * device. There are two limiting factors: 1) the number of
1453 * bits for the swap offset in the swp_entry_t type and
1454 * 2) the number of bits in the a swap pte as defined by
1455 * the different architectures. In order to find the
1456 * largest possible bit mask a swap entry with swap type 0
1457 * and swap offset ~0UL is created, encoded to a swap pte,
1458 * decoded to a swp_entry_t again and finally the swap
1459 * offset is extracted. This will mask all the bits from
1460 * the initial ~0UL mask that can't be encoded in either
1461 * the swp_entry_t or the architecture definition of a
1462 * swap pte.
1464 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1465 if (maxpages > swap_header->info.last_page)
1466 maxpages = swap_header->info.last_page;
1467 p->highest_bit = maxpages - 1;
1469 error = -EINVAL;
1470 if (!maxpages)
1471 goto bad_swap;
1472 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1473 goto bad_swap;
1474 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1475 goto bad_swap;
1477 /* OK, set up the swap map and apply the bad block list */
1478 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1479 error = -ENOMEM;
1480 goto bad_swap;
1483 error = 0;
1484 memset(p->swap_map, 0, maxpages * sizeof(short));
1485 for (i=0; i<swap_header->info.nr_badpages; i++) {
1486 int page = swap_header->info.badpages[i];
1487 if (page <= 0 || page >= swap_header->info.last_page)
1488 error = -EINVAL;
1489 else
1490 p->swap_map[page] = SWAP_MAP_BAD;
1492 nr_good_pages = swap_header->info.last_page -
1493 swap_header->info.nr_badpages -
1494 1 /* header page */;
1495 if (error)
1496 goto bad_swap;
1499 if (swapfilesize && maxpages > swapfilesize) {
1500 printk(KERN_WARNING
1501 "Swap area shorter than signature indicates\n");
1502 error = -EINVAL;
1503 goto bad_swap;
1505 if (nr_good_pages) {
1506 p->swap_map[0] = SWAP_MAP_BAD;
1507 p->max = maxpages;
1508 p->pages = nr_good_pages;
1509 nr_extents = setup_swap_extents(p, &span);
1510 if (nr_extents < 0) {
1511 error = nr_extents;
1512 goto bad_swap;
1514 nr_good_pages = p->pages;
1516 if (!nr_good_pages) {
1517 printk(KERN_WARNING "Empty swap-file\n");
1518 error = -EINVAL;
1519 goto bad_swap;
1522 down(&swapon_sem);
1523 spin_lock(&swap_lock);
1524 p->flags = SWP_ACTIVE;
1525 nr_swap_pages += nr_good_pages;
1526 total_swap_pages += nr_good_pages;
1528 printk(KERN_INFO "Adding %uk swap on %s. "
1529 "Priority:%d extents:%d across:%lluk\n",
1530 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1531 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1533 /* insert swap space into swap_list: */
1534 prev = -1;
1535 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1536 if (p->prio >= swap_info[i].prio) {
1537 break;
1539 prev = i;
1541 p->next = i;
1542 if (prev < 0) {
1543 swap_list.head = swap_list.next = p - swap_info;
1544 } else {
1545 swap_info[prev].next = p - swap_info;
1547 spin_unlock(&swap_lock);
1548 up(&swapon_sem);
1549 error = 0;
1550 goto out;
1551 bad_swap:
1552 if (bdev) {
1553 set_blocksize(bdev, p->old_block_size);
1554 bd_release(bdev);
1556 destroy_swap_extents(p);
1557 bad_swap_2:
1558 spin_lock(&swap_lock);
1559 swap_map = p->swap_map;
1560 p->swap_file = NULL;
1561 p->swap_map = NULL;
1562 p->flags = 0;
1563 if (!(swap_flags & SWAP_FLAG_PREFER))
1564 ++least_priority;
1565 spin_unlock(&swap_lock);
1566 vfree(swap_map);
1567 if (swap_file)
1568 filp_close(swap_file, NULL);
1569 out:
1570 if (page && !IS_ERR(page)) {
1571 kunmap(page);
1572 page_cache_release(page);
1574 if (name)
1575 putname(name);
1576 if (did_down) {
1577 if (!error)
1578 inode->i_flags |= S_SWAPFILE;
1579 up(&inode->i_sem);
1581 return error;
1584 void si_swapinfo(struct sysinfo *val)
1586 unsigned int i;
1587 unsigned long nr_to_be_unused = 0;
1589 spin_lock(&swap_lock);
1590 for (i = 0; i < nr_swapfiles; i++) {
1591 if (!(swap_info[i].flags & SWP_USED) ||
1592 (swap_info[i].flags & SWP_WRITEOK))
1593 continue;
1594 nr_to_be_unused += swap_info[i].inuse_pages;
1596 val->freeswap = nr_swap_pages + nr_to_be_unused;
1597 val->totalswap = total_swap_pages + nr_to_be_unused;
1598 spin_unlock(&swap_lock);
1602 * Verify that a swap entry is valid and increment its swap map count.
1604 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1605 * "permanent", but will be reclaimed by the next swapoff.
1607 int swap_duplicate(swp_entry_t entry)
1609 struct swap_info_struct * p;
1610 unsigned long offset, type;
1611 int result = 0;
1613 type = swp_type(entry);
1614 if (type >= nr_swapfiles)
1615 goto bad_file;
1616 p = type + swap_info;
1617 offset = swp_offset(entry);
1619 spin_lock(&swap_lock);
1620 if (offset < p->max && p->swap_map[offset]) {
1621 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1622 p->swap_map[offset]++;
1623 result = 1;
1624 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1625 if (swap_overflow++ < 5)
1626 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1627 p->swap_map[offset] = SWAP_MAP_MAX;
1628 result = 1;
1631 spin_unlock(&swap_lock);
1632 out:
1633 return result;
1635 bad_file:
1636 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1637 goto out;
1640 struct swap_info_struct *
1641 get_swap_info_struct(unsigned type)
1643 return &swap_info[type];
1647 * swap_lock prevents swap_map being freed. Don't grab an extra
1648 * reference on the swaphandle, it doesn't matter if it becomes unused.
1650 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1652 int ret = 0, i = 1 << page_cluster;
1653 unsigned long toff;
1654 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1656 if (!page_cluster) /* no readahead */
1657 return 0;
1658 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1659 if (!toff) /* first page is swap header */
1660 toff++, i--;
1661 *offset = toff;
1663 spin_lock(&swap_lock);
1664 do {
1665 /* Don't read-ahead past the end of the swap area */
1666 if (toff >= swapdev->max)
1667 break;
1668 /* Don't read in free or bad pages */
1669 if (!swapdev->swap_map[toff])
1670 break;
1671 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1672 break;
1673 toff++;
1674 ret++;
1675 } while (--i);
1676 spin_unlock(&swap_lock);
1677 return ret;