4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
8 #include <linux/config.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
34 DEFINE_SPINLOCK(swap_lock
);
35 unsigned int nr_swapfiles
;
36 long total_swap_pages
;
37 static int swap_overflow
;
39 static const char Bad_file
[] = "Bad swap file entry ";
40 static const char Unused_file
[] = "Unused swap file entry ";
41 static const char Bad_offset
[] = "Bad swap offset entry ";
42 static const char Unused_offset
[] = "Unused swap offset entry ";
44 struct swap_list_t swap_list
= {-1, -1};
46 struct swap_info_struct swap_info
[MAX_SWAPFILES
];
48 static DECLARE_MUTEX(swapon_sem
);
51 * We need this because the bdev->unplug_fn can sleep and we cannot
52 * hold swap_lock while calling the unplug_fn. And swap_lock
53 * cannot be turned into a semaphore.
55 static DECLARE_RWSEM(swap_unplug_sem
);
57 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
61 down_read(&swap_unplug_sem
);
62 entry
.val
= page_private(page
);
63 if (PageSwapCache(page
)) {
64 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
65 struct backing_dev_info
*bdi
;
68 * If the page is removed from swapcache from under us (with a
69 * racy try_to_unuse/swapoff) we need an additional reference
70 * count to avoid reading garbage from page_private(page) above.
71 * If the WARN_ON triggers during a swapoff it maybe the race
72 * condition and it's harmless. However if it triggers without
73 * swapoff it signals a problem.
75 WARN_ON(page_count(page
) <= 1);
77 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
78 blk_run_backing_dev(bdi
, page
);
80 up_read(&swap_unplug_sem
);
83 #define SWAPFILE_CLUSTER 256
84 #define LATENCY_LIMIT 256
86 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
88 unsigned long offset
, last_in_cluster
;
89 int latency_ration
= LATENCY_LIMIT
;
92 * We try to cluster swap pages by allocating them sequentially
93 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
94 * way, however, we resort to first-free allocation, starting
95 * a new cluster. This prevents us from scattering swap pages
96 * all over the entire swap partition, so that we reduce
97 * overall disk seek times between swap pages. -- sct
98 * But we do now try to find an empty cluster. -Andrea
101 si
->flags
+= SWP_SCANNING
;
102 if (unlikely(!si
->cluster_nr
)) {
103 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
104 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
)
106 spin_unlock(&swap_lock
);
108 offset
= si
->lowest_bit
;
109 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
111 /* Locate the first empty (unaligned) cluster */
112 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
113 if (si
->swap_map
[offset
])
114 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
115 else if (offset
== last_in_cluster
) {
116 spin_lock(&swap_lock
);
117 si
->cluster_next
= offset
-SWAPFILE_CLUSTER
-1;
120 if (unlikely(--latency_ration
< 0)) {
122 latency_ration
= LATENCY_LIMIT
;
125 spin_lock(&swap_lock
);
131 offset
= si
->cluster_next
;
132 if (offset
> si
->highest_bit
)
133 lowest
: offset
= si
->lowest_bit
;
134 checks
: if (!(si
->flags
& SWP_WRITEOK
))
136 if (!si
->highest_bit
)
138 if (!si
->swap_map
[offset
]) {
139 if (offset
== si
->lowest_bit
)
141 if (offset
== si
->highest_bit
)
144 if (si
->inuse_pages
== si
->pages
) {
145 si
->lowest_bit
= si
->max
;
148 si
->swap_map
[offset
] = 1;
149 si
->cluster_next
= offset
+ 1;
150 si
->flags
-= SWP_SCANNING
;
154 spin_unlock(&swap_lock
);
155 while (++offset
<= si
->highest_bit
) {
156 if (!si
->swap_map
[offset
]) {
157 spin_lock(&swap_lock
);
160 if (unlikely(--latency_ration
< 0)) {
162 latency_ration
= LATENCY_LIMIT
;
165 spin_lock(&swap_lock
);
169 si
->flags
-= SWP_SCANNING
;
173 swp_entry_t
get_swap_page(void)
175 struct swap_info_struct
*si
;
180 spin_lock(&swap_lock
);
181 if (nr_swap_pages
<= 0)
185 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
186 si
= swap_info
+ type
;
189 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
190 next
= swap_list
.head
;
194 if (!si
->highest_bit
)
196 if (!(si
->flags
& SWP_WRITEOK
))
199 swap_list
.next
= next
;
200 offset
= scan_swap_map(si
);
202 spin_unlock(&swap_lock
);
203 return swp_entry(type
, offset
);
205 next
= swap_list
.next
;
210 spin_unlock(&swap_lock
);
211 return (swp_entry_t
) {0};
214 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
216 struct swap_info_struct
* p
;
217 unsigned long offset
, type
;
221 type
= swp_type(entry
);
222 if (type
>= nr_swapfiles
)
224 p
= & swap_info
[type
];
225 if (!(p
->flags
& SWP_USED
))
227 offset
= swp_offset(entry
);
228 if (offset
>= p
->max
)
230 if (!p
->swap_map
[offset
])
232 spin_lock(&swap_lock
);
236 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
239 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
242 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
245 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
250 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
252 int count
= p
->swap_map
[offset
];
254 if (count
< SWAP_MAP_MAX
) {
256 p
->swap_map
[offset
] = count
;
258 if (offset
< p
->lowest_bit
)
259 p
->lowest_bit
= offset
;
260 if (offset
> p
->highest_bit
)
261 p
->highest_bit
= offset
;
262 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
263 swap_list
.next
= p
- swap_info
;
272 * Caller has made sure that the swapdevice corresponding to entry
273 * is still around or has not been recycled.
275 void swap_free(swp_entry_t entry
)
277 struct swap_info_struct
* p
;
279 p
= swap_info_get(entry
);
281 swap_entry_free(p
, swp_offset(entry
));
282 spin_unlock(&swap_lock
);
287 * How many references to page are currently swapped out?
289 static inline int page_swapcount(struct page
*page
)
292 struct swap_info_struct
*p
;
295 entry
.val
= page_private(page
);
296 p
= swap_info_get(entry
);
298 /* Subtract the 1 for the swap cache itself */
299 count
= p
->swap_map
[swp_offset(entry
)] - 1;
300 spin_unlock(&swap_lock
);
306 * We can use this swap cache entry directly
307 * if there are no other references to it.
309 int can_share_swap_page(struct page
*page
)
313 BUG_ON(!PageLocked(page
));
314 count
= page_mapcount(page
);
315 if (count
<= 1 && PageSwapCache(page
))
316 count
+= page_swapcount(page
);
321 * Work out if there are any other processes sharing this
322 * swap cache page. Free it if you can. Return success.
324 int remove_exclusive_swap_page(struct page
*page
)
327 struct swap_info_struct
* p
;
330 BUG_ON(PagePrivate(page
));
331 BUG_ON(!PageLocked(page
));
333 if (!PageSwapCache(page
))
335 if (PageWriteback(page
))
337 if (page_count(page
) != 2) /* 2: us + cache */
340 entry
.val
= page_private(page
);
341 p
= swap_info_get(entry
);
345 /* Is the only swap cache user the cache itself? */
347 if (p
->swap_map
[swp_offset(entry
)] == 1) {
348 /* Recheck the page count with the swapcache lock held.. */
349 write_lock_irq(&swapper_space
.tree_lock
);
350 if ((page_count(page
) == 2) && !PageWriteback(page
)) {
351 __delete_from_swap_cache(page
);
355 write_unlock_irq(&swapper_space
.tree_lock
);
357 spin_unlock(&swap_lock
);
361 page_cache_release(page
);
368 * Free the swap entry like above, but also try to
369 * free the page cache entry if it is the last user.
371 void free_swap_and_cache(swp_entry_t entry
)
373 struct swap_info_struct
* p
;
374 struct page
*page
= NULL
;
376 p
= swap_info_get(entry
);
378 if (swap_entry_free(p
, swp_offset(entry
)) == 1)
379 page
= find_trylock_page(&swapper_space
, entry
.val
);
380 spin_unlock(&swap_lock
);
385 BUG_ON(PagePrivate(page
));
386 page_cache_get(page
);
387 one_user
= (page_count(page
) == 2);
388 /* Only cache user (+us), or swap space full? Free it! */
389 if (!PageWriteback(page
) && (one_user
|| vm_swap_full())) {
390 delete_from_swap_cache(page
);
394 page_cache_release(page
);
399 * No need to decide whether this PTE shares the swap entry with others,
400 * just let do_wp_page work it out if a write is requested later - to
401 * force COW, vm_page_prot omits write permission from any private vma.
403 static void unuse_pte(struct vm_area_struct
*vma
, pte_t
*pte
,
404 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
406 inc_mm_counter(vma
->vm_mm
, anon_rss
);
408 set_pte_at(vma
->vm_mm
, addr
, pte
,
409 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
410 page_add_anon_rmap(page
, vma
, addr
);
413 * Move the page to the active list so it is not
414 * immediately swapped out again after swapon.
419 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
420 unsigned long addr
, unsigned long end
,
421 swp_entry_t entry
, struct page
*page
)
423 pte_t swp_pte
= swp_entry_to_pte(entry
);
428 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
431 * swapoff spends a _lot_ of time in this loop!
432 * Test inline before going to call unuse_pte.
434 if (unlikely(pte_same(*pte
, swp_pte
))) {
435 unuse_pte(vma
, pte
++, addr
, entry
, page
);
439 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
440 pte_unmap_unlock(pte
- 1, ptl
);
444 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
445 unsigned long addr
, unsigned long end
,
446 swp_entry_t entry
, struct page
*page
)
451 pmd
= pmd_offset(pud
, addr
);
453 next
= pmd_addr_end(addr
, end
);
454 if (pmd_none_or_clear_bad(pmd
))
456 if (unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
))
458 } while (pmd
++, addr
= next
, addr
!= end
);
462 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
463 unsigned long addr
, unsigned long end
,
464 swp_entry_t entry
, struct page
*page
)
469 pud
= pud_offset(pgd
, addr
);
471 next
= pud_addr_end(addr
, end
);
472 if (pud_none_or_clear_bad(pud
))
474 if (unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
))
476 } while (pud
++, addr
= next
, addr
!= end
);
480 static int unuse_vma(struct vm_area_struct
*vma
,
481 swp_entry_t entry
, struct page
*page
)
484 unsigned long addr
, end
, next
;
487 addr
= page_address_in_vma(page
, vma
);
491 end
= addr
+ PAGE_SIZE
;
493 addr
= vma
->vm_start
;
497 pgd
= pgd_offset(vma
->vm_mm
, addr
);
499 next
= pgd_addr_end(addr
, end
);
500 if (pgd_none_or_clear_bad(pgd
))
502 if (unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
))
504 } while (pgd
++, addr
= next
, addr
!= end
);
508 static int unuse_mm(struct mm_struct
*mm
,
509 swp_entry_t entry
, struct page
*page
)
511 struct vm_area_struct
*vma
;
513 if (!down_read_trylock(&mm
->mmap_sem
)) {
515 * Activate page so shrink_cache is unlikely to unmap its
516 * ptes while lock is dropped, so swapoff can make progress.
520 down_read(&mm
->mmap_sem
);
523 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
524 if (vma
->anon_vma
&& unuse_vma(vma
, entry
, page
))
527 up_read(&mm
->mmap_sem
);
529 * Currently unuse_mm cannot fail, but leave error handling
530 * at call sites for now, since we change it from time to time.
536 * Scan swap_map from current position to next entry still in use.
537 * Recycle to start on reaching the end, returning 0 when empty.
539 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
542 unsigned int max
= si
->max
;
543 unsigned int i
= prev
;
547 * No need for swap_lock here: we're just looking
548 * for whether an entry is in use, not modifying it; false
549 * hits are okay, and sys_swapoff() has already prevented new
550 * allocations from this area (while holding swap_lock).
559 * No entries in use at top of swap_map,
560 * loop back to start and recheck there.
566 count
= si
->swap_map
[i
];
567 if (count
&& count
!= SWAP_MAP_BAD
)
574 * We completely avoid races by reading each swap page in advance,
575 * and then search for the process using it. All the necessary
576 * page table adjustments can then be made atomically.
578 static int try_to_unuse(unsigned int type
)
580 struct swap_info_struct
* si
= &swap_info
[type
];
581 struct mm_struct
*start_mm
;
582 unsigned short *swap_map
;
583 unsigned short swcount
;
588 int reset_overflow
= 0;
592 * When searching mms for an entry, a good strategy is to
593 * start at the first mm we freed the previous entry from
594 * (though actually we don't notice whether we or coincidence
595 * freed the entry). Initialize this start_mm with a hold.
597 * A simpler strategy would be to start at the last mm we
598 * freed the previous entry from; but that would take less
599 * advantage of mmlist ordering, which clusters forked mms
600 * together, child after parent. If we race with dup_mmap(), we
601 * prefer to resolve parent before child, lest we miss entries
602 * duplicated after we scanned child: using last mm would invert
603 * that. Though it's only a serious concern when an overflowed
604 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
607 atomic_inc(&init_mm
.mm_users
);
610 * Keep on scanning until all entries have gone. Usually,
611 * one pass through swap_map is enough, but not necessarily:
612 * there are races when an instance of an entry might be missed.
614 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
615 if (signal_pending(current
)) {
621 * Get a page for the entry, using the existing swap
622 * cache page if there is one. Otherwise, get a clean
623 * page and read the swap into it.
625 swap_map
= &si
->swap_map
[i
];
626 entry
= swp_entry(type
, i
);
627 page
= read_swap_cache_async(entry
, NULL
, 0);
630 * Either swap_duplicate() failed because entry
631 * has been freed independently, and will not be
632 * reused since sys_swapoff() already disabled
633 * allocation from here, or alloc_page() failed.
642 * Don't hold on to start_mm if it looks like exiting.
644 if (atomic_read(&start_mm
->mm_users
) == 1) {
647 atomic_inc(&init_mm
.mm_users
);
651 * Wait for and lock page. When do_swap_page races with
652 * try_to_unuse, do_swap_page can handle the fault much
653 * faster than try_to_unuse can locate the entry. This
654 * apparently redundant "wait_on_page_locked" lets try_to_unuse
655 * defer to do_swap_page in such a case - in some tests,
656 * do_swap_page and try_to_unuse repeatedly compete.
658 wait_on_page_locked(page
);
659 wait_on_page_writeback(page
);
661 wait_on_page_writeback(page
);
664 * Remove all references to entry.
665 * Whenever we reach init_mm, there's no address space
666 * to search, but use it as a reminder to search shmem.
671 if (start_mm
== &init_mm
)
672 shmem
= shmem_unuse(entry
, page
);
674 retval
= unuse_mm(start_mm
, entry
, page
);
677 int set_start_mm
= (*swap_map
>= swcount
);
678 struct list_head
*p
= &start_mm
->mmlist
;
679 struct mm_struct
*new_start_mm
= start_mm
;
680 struct mm_struct
*prev_mm
= start_mm
;
681 struct mm_struct
*mm
;
683 atomic_inc(&new_start_mm
->mm_users
);
684 atomic_inc(&prev_mm
->mm_users
);
685 spin_lock(&mmlist_lock
);
686 while (*swap_map
> 1 && !retval
&&
687 (p
= p
->next
) != &start_mm
->mmlist
) {
688 mm
= list_entry(p
, struct mm_struct
, mmlist
);
689 if (atomic_inc_return(&mm
->mm_users
) == 1) {
690 atomic_dec(&mm
->mm_users
);
693 spin_unlock(&mmlist_lock
);
702 else if (mm
== &init_mm
) {
704 shmem
= shmem_unuse(entry
, page
);
706 retval
= unuse_mm(mm
, entry
, page
);
707 if (set_start_mm
&& *swap_map
< swcount
) {
709 atomic_inc(&mm
->mm_users
);
713 spin_lock(&mmlist_lock
);
715 spin_unlock(&mmlist_lock
);
718 start_mm
= new_start_mm
;
722 page_cache_release(page
);
727 * How could swap count reach 0x7fff when the maximum
728 * pid is 0x7fff, and there's no way to repeat a swap
729 * page within an mm (except in shmem, where it's the
730 * shared object which takes the reference count)?
731 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
733 * If that's wrong, then we should worry more about
734 * exit_mmap() and do_munmap() cases described above:
735 * we might be resetting SWAP_MAP_MAX too early here.
736 * We know "Undead"s can happen, they're okay, so don't
737 * report them; but do report if we reset SWAP_MAP_MAX.
739 if (*swap_map
== SWAP_MAP_MAX
) {
740 spin_lock(&swap_lock
);
742 spin_unlock(&swap_lock
);
747 * If a reference remains (rare), we would like to leave
748 * the page in the swap cache; but try_to_unmap could
749 * then re-duplicate the entry once we drop page lock,
750 * so we might loop indefinitely; also, that page could
751 * not be swapped out to other storage meanwhile. So:
752 * delete from cache even if there's another reference,
753 * after ensuring that the data has been saved to disk -
754 * since if the reference remains (rarer), it will be
755 * read from disk into another page. Splitting into two
756 * pages would be incorrect if swap supported "shared
757 * private" pages, but they are handled by tmpfs files.
759 * Note shmem_unuse already deleted a swappage from
760 * the swap cache, unless the move to filepage failed:
761 * in which case it left swappage in cache, lowered its
762 * swap count to pass quickly through the loops above,
763 * and now we must reincrement count to try again later.
765 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
766 struct writeback_control wbc
= {
767 .sync_mode
= WB_SYNC_NONE
,
770 swap_writepage(page
, &wbc
);
772 wait_on_page_writeback(page
);
774 if (PageSwapCache(page
)) {
776 swap_duplicate(entry
);
778 delete_from_swap_cache(page
);
782 * So we could skip searching mms once swap count went
783 * to 1, we did not mark any present ptes as dirty: must
784 * mark page dirty so shrink_list will preserve it.
788 page_cache_release(page
);
791 * Make sure that we aren't completely killing
792 * interactive performance.
798 if (reset_overflow
) {
799 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
806 * After a successful try_to_unuse, if no swap is now in use, we know
807 * we can empty the mmlist. swap_lock must be held on entry and exit.
808 * Note that mmlist_lock nests inside swap_lock, and an mm must be
809 * added to the mmlist just after page_duplicate - before would be racy.
811 static void drain_mmlist(void)
813 struct list_head
*p
, *next
;
816 for (i
= 0; i
< nr_swapfiles
; i
++)
817 if (swap_info
[i
].inuse_pages
)
819 spin_lock(&mmlist_lock
);
820 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
822 spin_unlock(&mmlist_lock
);
826 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
827 * corresponds to page offset `offset'.
829 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
831 struct swap_extent
*se
= sis
->curr_swap_extent
;
832 struct swap_extent
*start_se
= se
;
835 struct list_head
*lh
;
837 if (se
->start_page
<= offset
&&
838 offset
< (se
->start_page
+ se
->nr_pages
)) {
839 return se
->start_block
+ (offset
- se
->start_page
);
842 if (lh
== &sis
->extent_list
)
844 se
= list_entry(lh
, struct swap_extent
, list
);
845 sis
->curr_swap_extent
= se
;
846 BUG_ON(se
== start_se
); /* It *must* be present */
851 * Free all of a swapdev's extent information
853 static void destroy_swap_extents(struct swap_info_struct
*sis
)
855 while (!list_empty(&sis
->extent_list
)) {
856 struct swap_extent
*se
;
858 se
= list_entry(sis
->extent_list
.next
,
859 struct swap_extent
, list
);
866 * Add a block range (and the corresponding page range) into this swapdev's
867 * extent list. The extent list is kept sorted in page order.
869 * This function rather assumes that it is called in ascending page order.
872 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
873 unsigned long nr_pages
, sector_t start_block
)
875 struct swap_extent
*se
;
876 struct swap_extent
*new_se
;
877 struct list_head
*lh
;
879 lh
= sis
->extent_list
.prev
; /* The highest page extent */
880 if (lh
!= &sis
->extent_list
) {
881 se
= list_entry(lh
, struct swap_extent
, list
);
882 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
883 if (se
->start_block
+ se
->nr_pages
== start_block
) {
885 se
->nr_pages
+= nr_pages
;
891 * No merge. Insert a new extent, preserving ordering.
893 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
896 new_se
->start_page
= start_page
;
897 new_se
->nr_pages
= nr_pages
;
898 new_se
->start_block
= start_block
;
900 list_add_tail(&new_se
->list
, &sis
->extent_list
);
905 * A `swap extent' is a simple thing which maps a contiguous range of pages
906 * onto a contiguous range of disk blocks. An ordered list of swap extents
907 * is built at swapon time and is then used at swap_writepage/swap_readpage
908 * time for locating where on disk a page belongs.
910 * If the swapfile is an S_ISBLK block device, a single extent is installed.
911 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
912 * swap files identically.
914 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
915 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
916 * swapfiles are handled *identically* after swapon time.
918 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
919 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
920 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
921 * requirements, they are simply tossed out - we will never use those blocks
924 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
925 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
926 * which will scribble on the fs.
928 * The amount of disk space which a single swap extent represents varies.
929 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
930 * extents in the list. To avoid much list walking, we cache the previous
931 * search location in `curr_swap_extent', and start new searches from there.
932 * This is extremely effective. The average number of iterations in
933 * map_swap_page() has been measured at about 0.3 per page. - akpm.
935 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
938 unsigned blocks_per_page
;
939 unsigned long page_no
;
941 sector_t probe_block
;
943 sector_t lowest_block
= -1;
944 sector_t highest_block
= 0;
948 inode
= sis
->swap_file
->f_mapping
->host
;
949 if (S_ISBLK(inode
->i_mode
)) {
950 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
955 blkbits
= inode
->i_blkbits
;
956 blocks_per_page
= PAGE_SIZE
>> blkbits
;
959 * Map all the blocks into the extent list. This code doesn't try
964 last_block
= i_size_read(inode
) >> blkbits
;
965 while ((probe_block
+ blocks_per_page
) <= last_block
&&
966 page_no
< sis
->max
) {
967 unsigned block_in_page
;
968 sector_t first_block
;
970 first_block
= bmap(inode
, probe_block
);
971 if (first_block
== 0)
975 * It must be PAGE_SIZE aligned on-disk
977 if (first_block
& (blocks_per_page
- 1)) {
982 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
986 block
= bmap(inode
, probe_block
+ block_in_page
);
989 if (block
!= first_block
+ block_in_page
) {
996 first_block
>>= (PAGE_SHIFT
- blkbits
);
997 if (page_no
) { /* exclude the header page */
998 if (first_block
< lowest_block
)
999 lowest_block
= first_block
;
1000 if (first_block
> highest_block
)
1001 highest_block
= first_block
;
1005 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1007 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1012 probe_block
+= blocks_per_page
;
1017 *span
= 1 + highest_block
- lowest_block
;
1019 page_no
= 1; /* force Empty message */
1021 sis
->pages
= page_no
- 1;
1022 sis
->highest_bit
= page_no
- 1;
1024 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1025 struct swap_extent
, list
);
1028 printk(KERN_ERR
"swapon: swapfile has holes\n");
1034 #if 0 /* We don't need this yet */
1035 #include <linux/backing-dev.h>
1036 int page_queue_congested(struct page
*page
)
1038 struct backing_dev_info
*bdi
;
1040 BUG_ON(!PageLocked(page
)); /* It pins the swap_info_struct */
1042 if (PageSwapCache(page
)) {
1043 swp_entry_t entry
= { .val
= page_private(page
) };
1044 struct swap_info_struct
*sis
;
1046 sis
= get_swap_info_struct(swp_type(entry
));
1047 bdi
= sis
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
1049 bdi
= page
->mapping
->backing_dev_info
;
1050 return bdi_write_congested(bdi
);
1054 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1056 struct swap_info_struct
* p
= NULL
;
1057 unsigned short *swap_map
;
1058 struct file
*swap_file
, *victim
;
1059 struct address_space
*mapping
;
1060 struct inode
*inode
;
1065 if (!capable(CAP_SYS_ADMIN
))
1068 pathname
= getname(specialfile
);
1069 err
= PTR_ERR(pathname
);
1070 if (IS_ERR(pathname
))
1073 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1075 err
= PTR_ERR(victim
);
1079 mapping
= victim
->f_mapping
;
1081 spin_lock(&swap_lock
);
1082 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1083 p
= swap_info
+ type
;
1084 if ((p
->flags
& SWP_ACTIVE
) == SWP_ACTIVE
) {
1085 if (p
->swap_file
->f_mapping
== mapping
)
1092 spin_unlock(&swap_lock
);
1095 if (!security_vm_enough_memory(p
->pages
))
1096 vm_unacct_memory(p
->pages
);
1099 spin_unlock(&swap_lock
);
1103 swap_list
.head
= p
->next
;
1105 swap_info
[prev
].next
= p
->next
;
1107 if (type
== swap_list
.next
) {
1108 /* just pick something that's safe... */
1109 swap_list
.next
= swap_list
.head
;
1111 nr_swap_pages
-= p
->pages
;
1112 total_swap_pages
-= p
->pages
;
1113 p
->flags
&= ~SWP_WRITEOK
;
1114 spin_unlock(&swap_lock
);
1116 current
->flags
|= PF_SWAPOFF
;
1117 err
= try_to_unuse(type
);
1118 current
->flags
&= ~PF_SWAPOFF
;
1121 /* re-insert swap space back into swap_list */
1122 spin_lock(&swap_lock
);
1123 for (prev
= -1, i
= swap_list
.head
; i
>= 0; prev
= i
, i
= swap_info
[i
].next
)
1124 if (p
->prio
>= swap_info
[i
].prio
)
1128 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1130 swap_info
[prev
].next
= p
- swap_info
;
1131 nr_swap_pages
+= p
->pages
;
1132 total_swap_pages
+= p
->pages
;
1133 p
->flags
|= SWP_WRITEOK
;
1134 spin_unlock(&swap_lock
);
1138 /* wait for any unplug function to finish */
1139 down_write(&swap_unplug_sem
);
1140 up_write(&swap_unplug_sem
);
1142 destroy_swap_extents(p
);
1144 spin_lock(&swap_lock
);
1147 /* wait for anyone still in scan_swap_map */
1148 p
->highest_bit
= 0; /* cuts scans short */
1149 while (p
->flags
>= SWP_SCANNING
) {
1150 spin_unlock(&swap_lock
);
1151 schedule_timeout_uninterruptible(1);
1152 spin_lock(&swap_lock
);
1155 swap_file
= p
->swap_file
;
1156 p
->swap_file
= NULL
;
1158 swap_map
= p
->swap_map
;
1161 spin_unlock(&swap_lock
);
1164 inode
= mapping
->host
;
1165 if (S_ISBLK(inode
->i_mode
)) {
1166 struct block_device
*bdev
= I_BDEV(inode
);
1167 set_blocksize(bdev
, p
->old_block_size
);
1170 down(&inode
->i_sem
);
1171 inode
->i_flags
&= ~S_SWAPFILE
;
1174 filp_close(swap_file
, NULL
);
1178 filp_close(victim
, NULL
);
1183 #ifdef CONFIG_PROC_FS
1185 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1187 struct swap_info_struct
*ptr
= swap_info
;
1193 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1194 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1203 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1205 struct swap_info_struct
*ptr
= v
;
1206 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1208 for (++ptr
; ptr
< endptr
; ptr
++) {
1209 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1218 static void swap_stop(struct seq_file
*swap
, void *v
)
1223 static int swap_show(struct seq_file
*swap
, void *v
)
1225 struct swap_info_struct
*ptr
= v
;
1230 seq_puts(swap
, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1232 file
= ptr
->swap_file
;
1233 len
= seq_path(swap
, file
->f_vfsmnt
, file
->f_dentry
, " \t\n\\");
1234 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1235 len
< 40 ? 40 - len
: 1, " ",
1236 S_ISBLK(file
->f_dentry
->d_inode
->i_mode
) ?
1237 "partition" : "file\t",
1238 ptr
->pages
<< (PAGE_SHIFT
- 10),
1239 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1244 static struct seq_operations swaps_op
= {
1245 .start
= swap_start
,
1251 static int swaps_open(struct inode
*inode
, struct file
*file
)
1253 return seq_open(file
, &swaps_op
);
1256 static struct file_operations proc_swaps_operations
= {
1259 .llseek
= seq_lseek
,
1260 .release
= seq_release
,
1263 static int __init
procswaps_init(void)
1265 struct proc_dir_entry
*entry
;
1267 entry
= create_proc_entry("swaps", 0, NULL
);
1269 entry
->proc_fops
= &proc_swaps_operations
;
1272 __initcall(procswaps_init
);
1273 #endif /* CONFIG_PROC_FS */
1276 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1278 * The swapon system call
1280 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1282 struct swap_info_struct
* p
;
1284 struct block_device
*bdev
= NULL
;
1285 struct file
*swap_file
= NULL
;
1286 struct address_space
*mapping
;
1290 static int least_priority
;
1291 union swap_header
*swap_header
= NULL
;
1292 int swap_header_version
;
1293 unsigned int nr_good_pages
= 0;
1296 unsigned long maxpages
= 1;
1298 unsigned short *swap_map
;
1299 struct page
*page
= NULL
;
1300 struct inode
*inode
= NULL
;
1303 if (!capable(CAP_SYS_ADMIN
))
1305 spin_lock(&swap_lock
);
1307 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1308 if (!(p
->flags
& SWP_USED
))
1312 * Test if adding another swap device is possible. There are
1313 * two limiting factors: 1) the number of bits for the swap
1314 * type swp_entry_t definition and 2) the number of bits for
1315 * the swap type in the swap ptes as defined by the different
1316 * architectures. To honor both limitations a swap entry
1317 * with swap offset 0 and swap type ~0UL is created, encoded
1318 * to a swap pte, decoded to a swp_entry_t again and finally
1319 * the swap type part is extracted. This will mask all bits
1320 * from the initial ~0UL that can't be encoded in either the
1321 * swp_entry_t or the architecture definition of a swap pte.
1323 if (type
> swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1324 spin_unlock(&swap_lock
);
1327 if (type
>= nr_swapfiles
)
1328 nr_swapfiles
= type
+1;
1329 INIT_LIST_HEAD(&p
->extent_list
);
1330 p
->flags
= SWP_USED
;
1331 p
->swap_file
= NULL
;
1332 p
->old_block_size
= 0;
1339 if (swap_flags
& SWAP_FLAG_PREFER
) {
1341 (swap_flags
& SWAP_FLAG_PRIO_MASK
)>>SWAP_FLAG_PRIO_SHIFT
;
1343 p
->prio
= --least_priority
;
1345 spin_unlock(&swap_lock
);
1346 name
= getname(specialfile
);
1347 error
= PTR_ERR(name
);
1352 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1353 error
= PTR_ERR(swap_file
);
1354 if (IS_ERR(swap_file
)) {
1359 p
->swap_file
= swap_file
;
1360 mapping
= swap_file
->f_mapping
;
1361 inode
= mapping
->host
;
1364 for (i
= 0; i
< nr_swapfiles
; i
++) {
1365 struct swap_info_struct
*q
= &swap_info
[i
];
1367 if (i
== type
|| !q
->swap_file
)
1369 if (mapping
== q
->swap_file
->f_mapping
)
1374 if (S_ISBLK(inode
->i_mode
)) {
1375 bdev
= I_BDEV(inode
);
1376 error
= bd_claim(bdev
, sys_swapon
);
1382 p
->old_block_size
= block_size(bdev
);
1383 error
= set_blocksize(bdev
, PAGE_SIZE
);
1387 } else if (S_ISREG(inode
->i_mode
)) {
1388 p
->bdev
= inode
->i_sb
->s_bdev
;
1389 down(&inode
->i_sem
);
1391 if (IS_SWAPFILE(inode
)) {
1399 swapfilesize
= i_size_read(inode
) >> PAGE_SHIFT
;
1402 * Read the swap header.
1404 if (!mapping
->a_ops
->readpage
) {
1408 page
= read_cache_page(mapping
, 0,
1409 (filler_t
*)mapping
->a_ops
->readpage
, swap_file
);
1411 error
= PTR_ERR(page
);
1414 wait_on_page_locked(page
);
1415 if (!PageUptodate(page
))
1418 swap_header
= page_address(page
);
1420 if (!memcmp("SWAP-SPACE",swap_header
->magic
.magic
,10))
1421 swap_header_version
= 1;
1422 else if (!memcmp("SWAPSPACE2",swap_header
->magic
.magic
,10))
1423 swap_header_version
= 2;
1425 printk("Unable to find swap-space signature\n");
1430 switch (swap_header_version
) {
1432 printk(KERN_ERR
"version 0 swap is no longer supported. "
1433 "Use mkswap -v1 %s\n", name
);
1437 /* Check the swap header's sub-version and the size of
1438 the swap file and bad block lists */
1439 if (swap_header
->info
.version
!= 1) {
1441 "Unable to handle swap header version %d\n",
1442 swap_header
->info
.version
);
1448 p
->cluster_next
= 1;
1451 * Find out how many pages are allowed for a single swap
1452 * device. There are two limiting factors: 1) the number of
1453 * bits for the swap offset in the swp_entry_t type and
1454 * 2) the number of bits in the a swap pte as defined by
1455 * the different architectures. In order to find the
1456 * largest possible bit mask a swap entry with swap type 0
1457 * and swap offset ~0UL is created, encoded to a swap pte,
1458 * decoded to a swp_entry_t again and finally the swap
1459 * offset is extracted. This will mask all the bits from
1460 * the initial ~0UL mask that can't be encoded in either
1461 * the swp_entry_t or the architecture definition of a
1464 maxpages
= swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1465 if (maxpages
> swap_header
->info
.last_page
)
1466 maxpages
= swap_header
->info
.last_page
;
1467 p
->highest_bit
= maxpages
- 1;
1472 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1474 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1477 /* OK, set up the swap map and apply the bad block list */
1478 if (!(p
->swap_map
= vmalloc(maxpages
* sizeof(short)))) {
1484 memset(p
->swap_map
, 0, maxpages
* sizeof(short));
1485 for (i
=0; i
<swap_header
->info
.nr_badpages
; i
++) {
1486 int page
= swap_header
->info
.badpages
[i
];
1487 if (page
<= 0 || page
>= swap_header
->info
.last_page
)
1490 p
->swap_map
[page
] = SWAP_MAP_BAD
;
1492 nr_good_pages
= swap_header
->info
.last_page
-
1493 swap_header
->info
.nr_badpages
-
1494 1 /* header page */;
1499 if (swapfilesize
&& maxpages
> swapfilesize
) {
1501 "Swap area shorter than signature indicates\n");
1505 if (nr_good_pages
) {
1506 p
->swap_map
[0] = SWAP_MAP_BAD
;
1508 p
->pages
= nr_good_pages
;
1509 nr_extents
= setup_swap_extents(p
, &span
);
1510 if (nr_extents
< 0) {
1514 nr_good_pages
= p
->pages
;
1516 if (!nr_good_pages
) {
1517 printk(KERN_WARNING
"Empty swap-file\n");
1523 spin_lock(&swap_lock
);
1524 p
->flags
= SWP_ACTIVE
;
1525 nr_swap_pages
+= nr_good_pages
;
1526 total_swap_pages
+= nr_good_pages
;
1528 printk(KERN_INFO
"Adding %uk swap on %s. "
1529 "Priority:%d extents:%d across:%lluk\n",
1530 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1531 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10));
1533 /* insert swap space into swap_list: */
1535 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1536 if (p
->prio
>= swap_info
[i
].prio
) {
1543 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1545 swap_info
[prev
].next
= p
- swap_info
;
1547 spin_unlock(&swap_lock
);
1553 set_blocksize(bdev
, p
->old_block_size
);
1556 destroy_swap_extents(p
);
1558 spin_lock(&swap_lock
);
1559 swap_map
= p
->swap_map
;
1560 p
->swap_file
= NULL
;
1563 if (!(swap_flags
& SWAP_FLAG_PREFER
))
1565 spin_unlock(&swap_lock
);
1568 filp_close(swap_file
, NULL
);
1570 if (page
&& !IS_ERR(page
)) {
1572 page_cache_release(page
);
1578 inode
->i_flags
|= S_SWAPFILE
;
1584 void si_swapinfo(struct sysinfo
*val
)
1587 unsigned long nr_to_be_unused
= 0;
1589 spin_lock(&swap_lock
);
1590 for (i
= 0; i
< nr_swapfiles
; i
++) {
1591 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1592 (swap_info
[i
].flags
& SWP_WRITEOK
))
1594 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1596 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1597 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1598 spin_unlock(&swap_lock
);
1602 * Verify that a swap entry is valid and increment its swap map count.
1604 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1605 * "permanent", but will be reclaimed by the next swapoff.
1607 int swap_duplicate(swp_entry_t entry
)
1609 struct swap_info_struct
* p
;
1610 unsigned long offset
, type
;
1613 type
= swp_type(entry
);
1614 if (type
>= nr_swapfiles
)
1616 p
= type
+ swap_info
;
1617 offset
= swp_offset(entry
);
1619 spin_lock(&swap_lock
);
1620 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1621 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1622 p
->swap_map
[offset
]++;
1624 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1625 if (swap_overflow
++ < 5)
1626 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1627 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1631 spin_unlock(&swap_lock
);
1636 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1640 struct swap_info_struct
*
1641 get_swap_info_struct(unsigned type
)
1643 return &swap_info
[type
];
1647 * swap_lock prevents swap_map being freed. Don't grab an extra
1648 * reference on the swaphandle, it doesn't matter if it becomes unused.
1650 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1652 int ret
= 0, i
= 1 << page_cluster
;
1654 struct swap_info_struct
*swapdev
= swp_type(entry
) + swap_info
;
1656 if (!page_cluster
) /* no readahead */
1658 toff
= (swp_offset(entry
) >> page_cluster
) << page_cluster
;
1659 if (!toff
) /* first page is swap header */
1663 spin_lock(&swap_lock
);
1665 /* Don't read-ahead past the end of the swap area */
1666 if (toff
>= swapdev
->max
)
1668 /* Don't read in free or bad pages */
1669 if (!swapdev
->swap_map
[toff
])
1671 if (swapdev
->swap_map
[toff
] == SWAP_MAP_BAD
)
1676 spin_unlock(&swap_lock
);