5 #include <asm-generic/4level-fixup.h>
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <asm/processor.h> /* For TASK_SIZE */
14 #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
17 extern unsigned long va_to_phys(unsigned long address
);
18 extern pte_t
*va_to_pte(unsigned long address
);
19 extern unsigned long ioremap_bot
, ioremap_base
;
20 #endif /* __ASSEMBLY__ */
23 * The PowerPC MMU uses a hash table containing PTEs, together with
24 * a set of 16 segment registers (on 32-bit implementations), to define
25 * the virtual to physical address mapping.
27 * We use the hash table as an extended TLB, i.e. a cache of currently
28 * active mappings. We maintain a two-level page table tree, much
29 * like that used by the i386, for the sake of the Linux memory
30 * management code. Low-level assembler code in hashtable.S
31 * (procedure hash_page) is responsible for extracting ptes from the
32 * tree and putting them into the hash table when necessary, and
33 * updating the accessed and modified bits in the page table tree.
37 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
38 * We also use the two level tables, but we can put the real bits in them
39 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
40 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
41 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
42 * based upon user/super access. The TLB does not have accessed nor write
43 * protect. We assume that if the TLB get loaded with an entry it is
44 * accessed, and overload the changed bit for write protect. We use
45 * two bits in the software pte that are supposed to be set to zero in
46 * the TLB entry (24 and 25) for these indicators. Although the level 1
47 * descriptor contains the guarded and writethrough/copyback bits, we can
48 * set these at the page level since they get copied from the Mx_TWC
49 * register when the TLB entry is loaded. We will use bit 27 for guard, since
50 * that is where it exists in the MD_TWC, and bit 26 for writethrough.
51 * These will get masked from the level 2 descriptor at TLB load time, and
52 * copied to the MD_TWC before it gets loaded.
53 * Large page sizes added. We currently support two sizes, 4K and 8M.
54 * This also allows a TLB hander optimization because we can directly
55 * load the PMD into MD_TWC. The 8M pages are only used for kernel
56 * mapping of well known areas. The PMD (PGD) entries contain control
57 * flags in addition to the address, so care must be taken that the
58 * software no longer assumes these are only pointers.
62 * At present, all PowerPC 400-class processors share a similar TLB
63 * architecture. The instruction and data sides share a unified,
64 * 64-entry, fully-associative TLB which is maintained totally under
65 * software control. In addition, the instruction side has a
66 * hardware-managed, 4-entry, fully-associative TLB which serves as a
67 * first level to the shared TLB. These two TLBs are known as the UTLB
68 * and ITLB, respectively (see "mmu.h" for definitions).
72 * The normal case is that PTEs are 32-bits and we have a 1-page
73 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
75 * For any >32-bit physical address platform, we can use the following
76 * two level page table layout where the pgdir is 8KB and the MS 13 bits
77 * are an index to the second level table. The combined pgdir/pmd first
78 * level has 2048 entries and the second level has 512 64-bit PTE entries.
81 /* PMD_SHIFT determines the size of the area mapped by the PTE pages */
82 #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT)
83 #define PMD_SIZE (1UL << PMD_SHIFT)
84 #define PMD_MASK (~(PMD_SIZE-1))
86 /* PGDIR_SHIFT determines what a top-level page table entry can map */
87 #define PGDIR_SHIFT PMD_SHIFT
88 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
89 #define PGDIR_MASK (~(PGDIR_SIZE-1))
92 * entries per page directory level: our page-table tree is two-level, so
93 * we don't really have any PMD directory.
95 #define PTRS_PER_PTE (1 << PTE_SHIFT)
96 #define PTRS_PER_PMD 1
97 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
99 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
100 #define FIRST_USER_ADDRESS 0
102 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
103 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
105 #define pte_ERROR(e) \
106 printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e))
107 #define pmd_ERROR(e) \
108 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
109 #define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
113 * Just any arbitrary offset to the start of the vmalloc VM area: the
114 * current 64MB value just means that there will be a 64MB "hole" after the
115 * physical memory until the kernel virtual memory starts. That means that
116 * any out-of-bounds memory accesses will hopefully be caught.
117 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
118 * area for the same reason. ;)
120 * We no longer map larger than phys RAM with the BATs so we don't have
121 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
122 * about clashes between our early calls to ioremap() that start growing down
123 * from ioremap_base being run into the VM area allocations (growing upwards
124 * from VMALLOC_START). For this reason we have ioremap_bot to check when
125 * we actually run into our mappings setup in the early boot with the VM
126 * system. This really does become a problem for machines with good amounts
129 #define VMALLOC_OFFSET (0x1000000) /* 16M */
131 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
133 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
135 #define VMALLOC_END ioremap_bot
138 * Bits in a linux-style PTE. These match the bits in the
139 * (hardware-defined) PowerPC PTE as closely as possible.
142 #if defined(CONFIG_40x)
144 /* There are several potential gotchas here. The 40x hardware TLBLO
145 field looks like this:
147 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
148 RPN..................... 0 0 EX WR ZSEL....... W I M G
150 Where possible we make the Linux PTE bits match up with this
152 - bits 20 and 21 must be cleared, because we use 4k pages (40x can
153 support down to 1k pages), this is done in the TLBMiss exception
155 - We use only zones 0 (for kernel pages) and 1 (for user pages)
156 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
157 miss handler. Bit 27 is PAGE_USER, thus selecting the correct
159 - PRESENT *must* be in the bottom two bits because swap cache
160 entries use the top 30 bits. Because 40x doesn't support SMP
161 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
162 is cleared in the TLB miss handler before the TLB entry is loaded.
163 - All other bits of the PTE are loaded into TLBLO without
164 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
165 software PTE bits. We actually use use bits 21, 24, 25, and
166 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
170 /* Definitions for 40x embedded chips. */
171 #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
172 #define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
173 #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
174 #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
175 #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
176 #define _PAGE_USER 0x010 /* matches one of the zone permission bits */
177 #define _PAGE_RW 0x040 /* software: Writes permitted */
178 #define _PAGE_DIRTY 0x080 /* software: dirty page */
179 #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
180 #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
181 #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
183 #define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */
184 #define _PMD_BAD 0x802
185 #define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */
186 #define _PMD_SIZE_4M 0x0c0
187 #define _PMD_SIZE_16M 0x0e0
188 #define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4))
190 #elif defined(CONFIG_44x)
192 * Definitions for PPC440
194 * Because of the 3 word TLB entries to support 36-bit addressing,
195 * the attribute are difficult to map in such a fashion that they
196 * are easily loaded during exception processing. I decided to
197 * organize the entry so the ERPN is the only portion in the
198 * upper word of the PTE and the attribute bits below are packed
199 * in as sensibly as they can be in the area below a 4KB page size
200 * oriented RPN. This at least makes it easy to load the RPN and
201 * ERPN fields in the TLB. -Matt
203 * Note that these bits preclude future use of a page size
207 * PPC 440 core has following TLB attribute fields;
210 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
211 * RPN................................. - - - - - - ERPN.......
214 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
215 * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
217 * There are some constrains and options, to decide mapping software bits
220 * - PRESENT *must* be in the bottom three bits because swap cache
221 * entries use the top 29 bits for TLB2.
223 * - FILE *must* be in the bottom three bits because swap cache
224 * entries use the top 29 bits for TLB2.
226 * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it
227 * doesn't support SMP. So we can use this as software bit, like
230 * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
231 * for memory protection related functions (see PTE structure in
232 * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the
233 * above bits. Note that the bit values are CPU specific, not architecture
236 * The kernel PTE entry holds an arch-dependent swp_entry structure under
237 * certain situations. In other words, in such situations some portion of
238 * the PTE bits are used as a swp_entry. In the PPC implementation, the
239 * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
240 * hold protection values. That means the three protection bits are
241 * reserved for both PTE and SWAP entry at the most significant three
244 * There are three protection bits available for SWAP entry:
247 * _PAGE_HASHPTE (if HW has)
249 * So those three bits have to be inside of 0-2nd LSB of PTE.
253 #define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
254 #define _PAGE_RW 0x00000002 /* S: Write permission */
255 #define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
256 #define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
257 #define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */
258 #define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */
259 #define _PAGE_USER 0x00000040 /* S: User page */
260 #define _PAGE_ENDIAN 0x00000080 /* H: E bit */
261 #define _PAGE_GUARDED 0x00000100 /* H: G bit */
262 #define _PAGE_DIRTY 0x00000200 /* S: Page dirty */
263 #define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
264 #define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
266 /* TODO: Add large page lowmem mapping support */
267 #define _PMD_PRESENT 0
268 #define _PMD_PRESENT_MASK (PAGE_MASK)
269 #define _PMD_BAD (~PAGE_MASK)
271 /* ERPN in a PTE never gets cleared, ignore it */
272 #define _PTE_NONE_MASK 0xffffffff00000000ULL
274 #elif defined(CONFIG_8xx)
275 /* Definitions for 8xx embedded chips. */
276 #define _PAGE_PRESENT 0x0001 /* Page is valid */
277 #define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
278 #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
279 #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
281 /* These five software bits must be masked out when the entry is loaded
284 #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
285 #define _PAGE_GUARDED 0x0010 /* software: guarded access */
286 #define _PAGE_DIRTY 0x0020 /* software: page changed */
287 #define _PAGE_RW 0x0040 /* software: user write access allowed */
288 #define _PAGE_ACCESSED 0x0080 /* software: page referenced */
290 /* Setting any bits in the nibble with the follow two controls will
291 * require a TLB exception handler change. It is assumed unused bits
294 #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
295 #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
297 #define _PMD_PRESENT 0x0001
298 #define _PMD_BAD 0x0ff0
299 #define _PMD_PAGE_MASK 0x000c
300 #define _PMD_PAGE_8M 0x000c
302 #define _PTE_NONE_MASK _PAGE_ACCESSED
304 #else /* CONFIG_6xx */
305 /* Definitions for 60x, 740/750, etc. */
306 #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
307 #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
308 #define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
309 #define _PAGE_USER 0x004 /* usermode access allowed */
310 #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
311 #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
312 #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
313 #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
314 #define _PAGE_DIRTY 0x080 /* C: page changed */
315 #define _PAGE_ACCESSED 0x100 /* R: page referenced */
316 #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
317 #define _PAGE_RW 0x400 /* software: user write access allowed */
319 #define _PTE_NONE_MASK _PAGE_HASHPTE
321 #define _PMD_PRESENT 0
322 #define _PMD_PRESENT_MASK (PAGE_MASK)
323 #define _PMD_BAD (~PAGE_MASK)
327 * Some bits are only used on some cpu families...
329 #ifndef _PAGE_HASHPTE
330 #define _PAGE_HASHPTE 0
332 #ifndef _PTE_NONE_MASK
333 #define _PTE_NONE_MASK 0
336 #define _PAGE_SHARED 0
338 #ifndef _PAGE_HWWRITE
339 #define _PAGE_HWWRITE 0
342 #define _PAGE_HWEXEC 0
347 #ifndef _PMD_PRESENT_MASK
348 #define _PMD_PRESENT_MASK _PMD_PRESENT
352 #define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
355 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
358 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
359 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
360 * to have it in the Linux PTE, and in fact the bit could be reused for
361 * another purpose. -- paulus.
365 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED)
367 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
369 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
370 #define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
372 #ifdef CONFIG_PPC_STD_MMU
373 /* On standard PPC MMU, no user access implies kernel read/write access,
374 * so to write-protect kernel memory we must turn on user access */
375 #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
377 #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
380 #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
381 #define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
383 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH)
384 /* We want the debuggers to be able to set breakpoints anywhere, so
385 * don't write protect the kernel text */
386 #define _PAGE_RAM_TEXT _PAGE_RAM
388 #define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
391 #define PAGE_NONE __pgprot(_PAGE_BASE)
392 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
393 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
394 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
395 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
396 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
397 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
399 #define PAGE_KERNEL __pgprot(_PAGE_RAM)
400 #define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
403 * The PowerPC can only do execute protection on a segment (256MB) basis,
404 * not on a page basis. So we consider execute permission the same as read.
405 * Also, write permissions imply read permissions.
406 * This is the closest we can get..
408 #define __P000 PAGE_NONE
409 #define __P001 PAGE_READONLY_X
410 #define __P010 PAGE_COPY
411 #define __P011 PAGE_COPY_X
412 #define __P100 PAGE_READONLY
413 #define __P101 PAGE_READONLY_X
414 #define __P110 PAGE_COPY
415 #define __P111 PAGE_COPY_X
417 #define __S000 PAGE_NONE
418 #define __S001 PAGE_READONLY_X
419 #define __S010 PAGE_SHARED
420 #define __S011 PAGE_SHARED_X
421 #define __S100 PAGE_READONLY
422 #define __S101 PAGE_READONLY_X
423 #define __S110 PAGE_SHARED
424 #define __S111 PAGE_SHARED_X
427 /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
428 * kernel without large page PMD support */
429 extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
432 * Conversions between PTE values and page frame numbers.
435 /* in some case we want to additionaly adjust where the pfn is in the pte to
436 * allow room for more flags */
437 #define PFN_SHIFT_OFFSET (PAGE_SHIFT)
439 #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
440 #define pte_page(x) pfn_to_page(pte_pfn(x))
442 #define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
444 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
447 * ZERO_PAGE is a global shared page that is always zero: used
448 * for zero-mapped memory areas etc..
450 extern unsigned long empty_zero_page
[1024];
451 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
453 #endif /* __ASSEMBLY__ */
455 #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
456 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
457 #define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
459 #define pmd_none(pmd) (!pmd_val(pmd))
460 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
461 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
462 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
466 * The "pgd_xxx()" functions here are trivial for a folded two-level
467 * setup: the pgd is never bad, and a pmd always exists (as it's folded
468 * into the pgd entry)
470 static inline int pgd_none(pgd_t pgd
) { return 0; }
471 static inline int pgd_bad(pgd_t pgd
) { return 0; }
472 static inline int pgd_present(pgd_t pgd
) { return 1; }
473 #define pgd_clear(xp) do { } while (0)
475 #define pgd_page_vaddr(pgd) \
476 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
479 * The following only work if pte_present() is true.
480 * Undefined behaviour if not..
482 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_RW
; }
483 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
484 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
485 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
487 static inline void pte_uncache(pte_t pte
) { pte_val(pte
) |= _PAGE_NO_CACHE
; }
488 static inline void pte_cache(pte_t pte
) { pte_val(pte
) &= ~_PAGE_NO_CACHE
; }
490 static inline pte_t
pte_wrprotect(pte_t pte
) {
491 pte_val(pte
) &= ~(_PAGE_RW
| _PAGE_HWWRITE
); return pte
; }
492 static inline pte_t
pte_mkclean(pte_t pte
) {
493 pte_val(pte
) &= ~(_PAGE_DIRTY
| _PAGE_HWWRITE
); return pte
; }
494 static inline pte_t
pte_mkold(pte_t pte
) {
495 pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
497 static inline pte_t
pte_mkwrite(pte_t pte
) {
498 pte_val(pte
) |= _PAGE_RW
; return pte
; }
499 static inline pte_t
pte_mkdirty(pte_t pte
) {
500 pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
501 static inline pte_t
pte_mkyoung(pte_t pte
) {
502 pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
504 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
506 pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
);
511 * When flushing the tlb entry for a page, we also need to flush the hash
512 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
514 extern int flush_hash_pages(unsigned context
, unsigned long va
,
515 unsigned long pmdval
, int count
);
517 /* Add an HPTE to the hash table */
518 extern void add_hash_page(unsigned context
, unsigned long va
,
519 unsigned long pmdval
);
522 * Atomic PTE updates.
524 * pte_update clears and sets bit atomically, and returns
525 * the old pte value. In the 64-bit PTE case we lock around the
526 * low PTE word since we expect ALL flag bits to be there
528 #ifndef CONFIG_PTE_64BIT
529 static inline unsigned long pte_update(pte_t
*p
, unsigned long clr
,
532 unsigned long old
, tmp
;
534 __asm__
__volatile__("\
541 : "=&r" (old
), "=&r" (tmp
), "=m" (*p
)
542 : "r" (p
), "r" (clr
), "r" (set
), "m" (*p
)
547 static inline unsigned long long pte_update(pte_t
*p
, unsigned long clr
,
550 unsigned long long old
;
553 __asm__
__volatile__("\
561 : "=&r" (old
), "=&r" (tmp
), "=m" (*p
)
562 : "r" (p
), "r" ((unsigned long)(p
) + 4), "r" (clr
), "r" (set
), "m" (*p
)
569 * set_pte stores a linux PTE into the linux page table.
570 * On machines which use an MMU hash table we avoid changing the
573 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
574 pte_t
*ptep
, pte_t pte
)
576 #if _PAGE_HASHPTE != 0
577 pte_update(ptep
, ~_PAGE_HASHPTE
, pte_val(pte
) & ~_PAGE_HASHPTE
);
584 * 2.6 calles this without flushing the TLB entry, this is wrong
585 * for our hash-based implementation, we fix that up here
587 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
588 static inline int __ptep_test_and_clear_young(unsigned int context
, unsigned long addr
, pte_t
*ptep
)
591 old
= pte_update(ptep
, _PAGE_ACCESSED
, 0);
592 #if _PAGE_HASHPTE != 0
593 if (old
& _PAGE_HASHPTE
) {
594 unsigned long ptephys
= __pa(ptep
) & PAGE_MASK
;
595 flush_hash_pages(context
, addr
, ptephys
, 1);
598 return (old
& _PAGE_ACCESSED
) != 0;
600 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
601 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
603 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
604 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
607 return __pte(pte_update(ptep
, ~_PAGE_HASHPTE
, 0));
610 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
611 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
,
614 pte_update(ptep
, (_PAGE_RW
| _PAGE_HWWRITE
), 0);
617 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
618 static inline void __ptep_set_access_flags(pte_t
*ptep
, pte_t entry
, int dirty
)
620 unsigned long bits
= pte_val(entry
) &
621 (_PAGE_DIRTY
| _PAGE_ACCESSED
| _PAGE_RW
);
622 pte_update(ptep
, 0, bits
);
625 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
627 int __changed = !pte_same(*(__ptep), __entry); \
629 __ptep_set_access_flags(__ptep, __entry, __dirty); \
630 flush_tlb_page_nohash(__vma, __address); \
636 * Macro to mark a page protection value as "uncacheable".
638 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
641 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
642 unsigned long size
, pgprot_t vma_prot
);
643 #define __HAVE_PHYS_MEM_ACCESS_PROT
645 #define __HAVE_ARCH_PTE_SAME
646 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
649 * Note that on Book E processors, the pmd contains the kernel virtual
650 * (lowmem) address of the pte page. The physical address is less useful
651 * because everything runs with translation enabled (even the TLB miss
652 * handler). On everything else the pmd contains the physical address
653 * of the pte page. -- paulus
656 #define pmd_page_vaddr(pmd) \
657 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
658 #define pmd_page(pmd) \
659 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
661 #define pmd_page_vaddr(pmd) \
662 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
663 #define pmd_page(pmd) \
664 (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT))
667 /* to find an entry in a kernel page-table-directory */
668 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
670 /* to find an entry in a page-table-directory */
671 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
672 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
674 /* Find an entry in the second-level page table.. */
675 static inline pmd_t
* pmd_offset(pgd_t
* dir
, unsigned long address
)
677 return (pmd_t
*) dir
;
680 /* Find an entry in the third-level page table.. */
681 #define pte_index(address) \
682 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
683 #define pte_offset_kernel(dir, addr) \
684 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
685 #define pte_offset_map(dir, addr) \
686 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
687 #define pte_offset_map_nested(dir, addr) \
688 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
690 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
691 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
693 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
695 extern void paging_init(void);
698 * Encode and decode a swap entry.
699 * Note that the bits we use in a PTE for representing a swap entry
700 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
701 *_PAGE_HASHPTE bit (if used). -- paulus
703 #define __swp_type(entry) ((entry).val & 0x1f)
704 #define __swp_offset(entry) ((entry).val >> 5)
705 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
706 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
707 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
709 /* Encode and decode a nonlinear file mapping entry */
710 #define PTE_FILE_MAX_BITS 29
711 #define pte_to_pgoff(pte) (pte_val(pte) >> 3)
712 #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
714 /* Values for nocacheflag and cmode */
715 /* These are not used by the APUS kernel_map, but prevents
716 compilation errors. */
717 #define KERNELMAP_FULL_CACHING 0
718 #define KERNELMAP_NOCACHE_SER 1
719 #define KERNELMAP_NOCACHE_NONSER 2
720 #define KERNELMAP_NO_COPYBACK 3
723 * Map some physical address range into the kernel address space.
725 extern unsigned long kernel_map(unsigned long paddr
, unsigned long size
,
726 int nocacheflag
, unsigned long *memavailp
);
729 * Set cache mode of (kernel space) address range.
731 extern void kernel_set_cachemode (unsigned long address
, unsigned long size
,
734 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
735 #define kern_addr_valid(addr) (1)
737 #ifdef CONFIG_PHYS_64BIT
738 extern int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long from
,
739 unsigned long paddr
, unsigned long size
, pgprot_t prot
);
741 static inline int io_remap_pfn_range(struct vm_area_struct
*vma
,
747 phys_addr_t paddr64
= fixup_bigphys_addr(pfn
<< PAGE_SHIFT
, size
);
748 return remap_pfn_range(vma
, vaddr
, paddr64
>> PAGE_SHIFT
, size
, prot
);
751 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
752 remap_pfn_range(vma, vaddr, pfn, size, prot)
756 * No page table caches to initialise
758 #define pgtable_cache_init() do { } while (0)
760 extern int get_pteptr(struct mm_struct
*mm
, unsigned long addr
, pte_t
**ptep
,
763 #include <asm-generic/pgtable.h>
765 #endif /* !__ASSEMBLY__ */
767 #endif /* _PPC_PGTABLE_H */
768 #endif /* __KERNEL__ */