2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
77 static void scsi_run_queue(struct request_queue
*q
);
80 * Function: scsi_unprep_request()
82 * Purpose: Remove all preparation done for a request, including its
83 * associated scsi_cmnd, so that it can be requeued.
85 * Arguments: req - request to unprepare
87 * Lock status: Assumed that no locks are held upon entry.
91 static void scsi_unprep_request(struct request
*req
)
93 struct scsi_cmnd
*cmd
= req
->special
;
95 blk_unprep_request(req
);
98 scsi_put_command(cmd
);
102 * __scsi_queue_insert - private queue insertion
103 * @cmd: The SCSI command being requeued
104 * @reason: The reason for the requeue
105 * @unbusy: Whether the queue should be unbusied
107 * This is a private queue insertion. The public interface
108 * scsi_queue_insert() always assumes the queue should be unbusied
109 * because it's always called before the completion. This function is
110 * for a requeue after completion, which should only occur in this
113 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
115 struct Scsi_Host
*host
= cmd
->device
->host
;
116 struct scsi_device
*device
= cmd
->device
;
117 struct scsi_target
*starget
= scsi_target(device
);
118 struct request_queue
*q
= device
->request_queue
;
122 printk("Inserting command %p into mlqueue\n", cmd
));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
138 case SCSI_MLQUEUE_HOST_BUSY
:
139 host
->host_blocked
= host
->max_host_blocked
;
141 case SCSI_MLQUEUE_DEVICE_BUSY
:
142 device
->device_blocked
= device
->max_device_blocked
;
144 case SCSI_MLQUEUE_TARGET_BUSY
:
145 starget
->target_blocked
= starget
->max_target_blocked
;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device
);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q
->queue_lock
, flags
);
161 blk_requeue_request(q
, cmd
->request
);
162 spin_unlock_irqrestore(q
->queue_lock
, flags
);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
190 return __scsi_queue_insert(cmd
, reason
, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
209 int data_direction
, void *buffer
, unsigned bufflen
,
210 unsigned char *sense
, int timeout
, int retries
, int flags
,
214 int write
= (data_direction
== DMA_TO_DEVICE
);
215 int ret
= DRIVER_ERROR
<< 24;
217 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
219 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
220 buffer
, bufflen
, __GFP_WAIT
))
223 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
224 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
227 req
->retries
= retries
;
228 req
->timeout
= timeout
;
229 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
230 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req
->q
, NULL
, req
, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
244 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
247 *resid
= req
->resid_len
;
250 blk_put_request(req
);
254 EXPORT_SYMBOL(scsi_execute
);
257 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
258 int data_direction
, void *buffer
, unsigned bufflen
,
259 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
266 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
268 return DRIVER_ERROR
<< 24;
270 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
271 sense
, timeout
, retries
, 0, resid
);
273 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
278 EXPORT_SYMBOL(scsi_execute_req
);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
293 cmd
->serial_number
= 0;
294 scsi_set_resid(cmd
, 0);
295 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
296 if (cmd
->cmd_len
== 0)
297 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
300 void scsi_device_unbusy(struct scsi_device
*sdev
)
302 struct Scsi_Host
*shost
= sdev
->host
;
303 struct scsi_target
*starget
= scsi_target(sdev
);
306 spin_lock_irqsave(shost
->host_lock
, flags
);
308 starget
->target_busy
--;
309 if (unlikely(scsi_host_in_recovery(shost
) &&
310 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
311 scsi_eh_wakeup(shost
);
312 spin_unlock(shost
->host_lock
);
313 spin_lock(sdev
->request_queue
->queue_lock
);
315 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
327 struct Scsi_Host
*shost
= current_sdev
->host
;
328 struct scsi_device
*sdev
, *tmp
;
329 struct scsi_target
*starget
= scsi_target(current_sdev
);
332 spin_lock_irqsave(shost
->host_lock
, flags
);
333 starget
->starget_sdev_user
= NULL
;
334 spin_unlock_irqrestore(shost
->host_lock
, flags
);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev
->request_queue
);
344 spin_lock_irqsave(shost
->host_lock
, flags
);
345 if (starget
->starget_sdev_user
)
347 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
348 same_target_siblings
) {
349 if (sdev
== current_sdev
)
351 if (scsi_device_get(sdev
))
354 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 blk_run_queue(sdev
->request_queue
);
356 spin_lock_irqsave(shost
->host_lock
, flags
);
358 scsi_device_put(sdev
);
361 spin_unlock_irqrestore(shost
->host_lock
, flags
);
364 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
366 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
372 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
374 return ((starget
->can_queue
> 0 &&
375 starget
->target_busy
>= starget
->can_queue
) ||
376 starget
->target_blocked
);
379 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
381 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
382 shost
->host_blocked
|| shost
->host_self_blocked
)
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue
*q
)
402 struct scsi_device
*sdev
= q
->queuedata
;
403 struct Scsi_Host
*shost
;
404 LIST_HEAD(starved_list
);
407 /* if the device is dead, sdev will be NULL, so no queue to run */
412 if (scsi_target(sdev
)->single_lun
)
413 scsi_single_lun_run(sdev
);
415 spin_lock_irqsave(shost
->host_lock
, flags
);
416 list_splice_init(&shost
->starved_list
, &starved_list
);
418 while (!list_empty(&starved_list
)) {
420 * As long as shost is accepting commands and we have
421 * starved queues, call blk_run_queue. scsi_request_fn
422 * drops the queue_lock and can add us back to the
425 * host_lock protects the starved_list and starved_entry.
426 * scsi_request_fn must get the host_lock before checking
427 * or modifying starved_list or starved_entry.
429 if (scsi_host_is_busy(shost
))
432 sdev
= list_entry(starved_list
.next
,
433 struct scsi_device
, starved_entry
);
434 list_del_init(&sdev
->starved_entry
);
435 if (scsi_target_is_busy(scsi_target(sdev
))) {
436 list_move_tail(&sdev
->starved_entry
,
437 &shost
->starved_list
);
441 blk_run_queue_async(sdev
->request_queue
);
443 /* put any unprocessed entries back */
444 list_splice(&starved_list
, &shost
->starved_list
);
445 spin_unlock_irqrestore(shost
->host_lock
, flags
);
451 * Function: scsi_requeue_command()
453 * Purpose: Handle post-processing of completed commands.
455 * Arguments: q - queue to operate on
456 * cmd - command that may need to be requeued.
460 * Notes: After command completion, there may be blocks left
461 * over which weren't finished by the previous command
462 * this can be for a number of reasons - the main one is
463 * I/O errors in the middle of the request, in which case
464 * we need to request the blocks that come after the bad
466 * Notes: Upon return, cmd is a stale pointer.
468 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
470 struct request
*req
= cmd
->request
;
473 spin_lock_irqsave(q
->queue_lock
, flags
);
474 scsi_unprep_request(req
);
475 blk_requeue_request(q
, req
);
476 spin_unlock_irqrestore(q
->queue_lock
, flags
);
481 void scsi_next_command(struct scsi_cmnd
*cmd
)
483 struct scsi_device
*sdev
= cmd
->device
;
484 struct request_queue
*q
= sdev
->request_queue
;
486 /* need to hold a reference on the device before we let go of the cmd */
487 get_device(&sdev
->sdev_gendev
);
489 scsi_put_command(cmd
);
492 /* ok to remove device now */
493 put_device(&sdev
->sdev_gendev
);
496 void scsi_run_host_queues(struct Scsi_Host
*shost
)
498 struct scsi_device
*sdev
;
500 shost_for_each_device(sdev
, shost
)
501 scsi_run_queue(sdev
->request_queue
);
504 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
507 * Function: scsi_end_request()
509 * Purpose: Post-processing of completed commands (usually invoked at end
510 * of upper level post-processing and scsi_io_completion).
512 * Arguments: cmd - command that is complete.
513 * error - 0 if I/O indicates success, < 0 for I/O error.
514 * bytes - number of bytes of completed I/O
515 * requeue - indicates whether we should requeue leftovers.
517 * Lock status: Assumed that lock is not held upon entry.
519 * Returns: cmd if requeue required, NULL otherwise.
521 * Notes: This is called for block device requests in order to
522 * mark some number of sectors as complete.
524 * We are guaranteeing that the request queue will be goosed
525 * at some point during this call.
526 * Notes: If cmd was requeued, upon return it will be a stale pointer.
528 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
529 int bytes
, int requeue
)
531 struct request_queue
*q
= cmd
->device
->request_queue
;
532 struct request
*req
= cmd
->request
;
535 * If there are blocks left over at the end, set up the command
536 * to queue the remainder of them.
538 if (blk_end_request(req
, error
, bytes
)) {
539 /* kill remainder if no retrys */
540 if (error
&& scsi_noretry_cmd(cmd
))
541 blk_end_request_all(req
, error
);
545 * Bleah. Leftovers again. Stick the
546 * leftovers in the front of the
547 * queue, and goose the queue again.
549 scsi_release_buffers(cmd
);
550 scsi_requeue_command(q
, cmd
);
558 * This will goose the queue request function at the end, so we don't
559 * need to worry about launching another command.
561 __scsi_release_buffers(cmd
, 0);
562 scsi_next_command(cmd
);
566 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
570 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
575 index
= get_count_order(nents
) - 3;
580 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
582 struct scsi_host_sg_pool
*sgp
;
584 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
585 mempool_free(sgl
, sgp
->pool
);
588 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
590 struct scsi_host_sg_pool
*sgp
;
592 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
593 return mempool_alloc(sgp
->pool
, gfp_mask
);
596 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
603 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
604 gfp_mask
, scsi_sg_alloc
);
606 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
612 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
614 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
617 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
620 if (cmd
->sdb
.table
.nents
)
621 scsi_free_sgtable(&cmd
->sdb
);
623 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
625 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
626 struct scsi_data_buffer
*bidi_sdb
=
627 cmd
->request
->next_rq
->special
;
628 scsi_free_sgtable(bidi_sdb
);
629 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
630 cmd
->request
->next_rq
->special
= NULL
;
633 if (scsi_prot_sg_count(cmd
))
634 scsi_free_sgtable(cmd
->prot_sdb
);
638 * Function: scsi_release_buffers()
640 * Purpose: Completion processing for block device I/O requests.
642 * Arguments: cmd - command that we are bailing.
644 * Lock status: Assumed that no lock is held upon entry.
648 * Notes: In the event that an upper level driver rejects a
649 * command, we must release resources allocated during
650 * the __init_io() function. Primarily this would involve
651 * the scatter-gather table, and potentially any bounce
654 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
656 __scsi_release_buffers(cmd
, 1);
658 EXPORT_SYMBOL(scsi_release_buffers
);
660 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
664 switch(host_byte(result
)) {
665 case DID_TRANSPORT_FAILFAST
:
668 case DID_TARGET_FAILURE
:
669 cmd
->result
|= (DID_OK
<< 16);
672 case DID_NEXUS_FAILURE
:
673 cmd
->result
|= (DID_OK
<< 16);
685 * Function: scsi_io_completion()
687 * Purpose: Completion processing for block device I/O requests.
689 * Arguments: cmd - command that is finished.
691 * Lock status: Assumed that no lock is held upon entry.
695 * Notes: This function is matched in terms of capabilities to
696 * the function that created the scatter-gather list.
697 * In other words, if there are no bounce buffers
698 * (the normal case for most drivers), we don't need
699 * the logic to deal with cleaning up afterwards.
701 * We must call scsi_end_request(). This will finish off
702 * the specified number of sectors. If we are done, the
703 * command block will be released and the queue function
704 * will be goosed. If we are not done then we have to
705 * figure out what to do next:
707 * a) We can call scsi_requeue_command(). The request
708 * will be unprepared and put back on the queue. Then
709 * a new command will be created for it. This should
710 * be used if we made forward progress, or if we want
711 * to switch from READ(10) to READ(6) for example.
713 * b) We can call scsi_queue_insert(). The request will
714 * be put back on the queue and retried using the same
715 * command as before, possibly after a delay.
717 * c) We can call blk_end_request() with -EIO to fail
718 * the remainder of the request.
720 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
722 int result
= cmd
->result
;
723 struct request_queue
*q
= cmd
->device
->request_queue
;
724 struct request
*req
= cmd
->request
;
726 struct scsi_sense_hdr sshdr
;
728 int sense_deferred
= 0;
729 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
730 ACTION_DELAYED_RETRY
} action
;
731 char *description
= NULL
;
734 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
736 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
739 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
740 req
->errors
= result
;
742 if (sense_valid
&& req
->sense
) {
744 * SG_IO wants current and deferred errors
746 int len
= 8 + cmd
->sense_buffer
[7];
748 if (len
> SCSI_SENSE_BUFFERSIZE
)
749 len
= SCSI_SENSE_BUFFERSIZE
;
750 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
751 req
->sense_len
= len
;
754 error
= __scsi_error_from_host_byte(cmd
, result
);
757 req
->resid_len
= scsi_get_resid(cmd
);
759 if (scsi_bidi_cmnd(cmd
)) {
761 * Bidi commands Must be complete as a whole,
762 * both sides at once.
764 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
766 scsi_release_buffers(cmd
);
767 blk_end_request_all(req
, 0);
769 scsi_next_command(cmd
);
774 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
775 BUG_ON(blk_bidi_rq(req
));
778 * Next deal with any sectors which we were able to correctly
781 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
783 blk_rq_sectors(req
), good_bytes
));
786 * Recovered errors need reporting, but they're always treated
787 * as success, so fiddle the result code here. For BLOCK_PC
788 * we already took a copy of the original into rq->errors which
789 * is what gets returned to the user
791 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
792 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
793 * print since caller wants ATA registers. Only occurs on
794 * SCSI ATA PASS_THROUGH commands when CK_COND=1
796 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
798 else if (!(req
->cmd_flags
& REQ_QUIET
))
799 scsi_print_sense("", cmd
);
801 /* BLOCK_PC may have set error */
806 * A number of bytes were successfully read. If there
807 * are leftovers and there is some kind of error
808 * (result != 0), retry the rest.
810 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
813 error
= __scsi_error_from_host_byte(cmd
, result
);
815 if (host_byte(result
) == DID_RESET
) {
816 /* Third party bus reset or reset for error recovery
817 * reasons. Just retry the command and see what
820 action
= ACTION_RETRY
;
821 } else if (sense_valid
&& !sense_deferred
) {
822 switch (sshdr
.sense_key
) {
824 if (cmd
->device
->removable
) {
825 /* Detected disc change. Set a bit
826 * and quietly refuse further access.
828 cmd
->device
->changed
= 1;
829 description
= "Media Changed";
830 action
= ACTION_FAIL
;
832 /* Must have been a power glitch, or a
833 * bus reset. Could not have been a
834 * media change, so we just retry the
835 * command and see what happens.
837 action
= ACTION_RETRY
;
840 case ILLEGAL_REQUEST
:
841 /* If we had an ILLEGAL REQUEST returned, then
842 * we may have performed an unsupported
843 * command. The only thing this should be
844 * would be a ten byte read where only a six
845 * byte read was supported. Also, on a system
846 * where READ CAPACITY failed, we may have
847 * read past the end of the disk.
849 if ((cmd
->device
->use_10_for_rw
&&
850 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
851 (cmd
->cmnd
[0] == READ_10
||
852 cmd
->cmnd
[0] == WRITE_10
)) {
853 /* This will issue a new 6-byte command. */
854 cmd
->device
->use_10_for_rw
= 0;
855 action
= ACTION_REPREP
;
856 } else if (sshdr
.asc
== 0x10) /* DIX */ {
857 description
= "Host Data Integrity Failure";
858 action
= ACTION_FAIL
;
860 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
861 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
862 (cmd
->cmnd
[0] == UNMAP
||
863 cmd
->cmnd
[0] == WRITE_SAME_16
||
864 cmd
->cmnd
[0] == WRITE_SAME
)) {
865 description
= "Discard failure";
866 action
= ACTION_FAIL
;
868 action
= ACTION_FAIL
;
870 case ABORTED_COMMAND
:
871 action
= ACTION_FAIL
;
872 if (sshdr
.asc
== 0x10) { /* DIF */
873 description
= "Target Data Integrity Failure";
878 /* If the device is in the process of becoming
879 * ready, or has a temporary blockage, retry.
881 if (sshdr
.asc
== 0x04) {
882 switch (sshdr
.ascq
) {
883 case 0x01: /* becoming ready */
884 case 0x04: /* format in progress */
885 case 0x05: /* rebuild in progress */
886 case 0x06: /* recalculation in progress */
887 case 0x07: /* operation in progress */
888 case 0x08: /* Long write in progress */
889 case 0x09: /* self test in progress */
890 case 0x14: /* space allocation in progress */
891 action
= ACTION_DELAYED_RETRY
;
894 description
= "Device not ready";
895 action
= ACTION_FAIL
;
899 description
= "Device not ready";
900 action
= ACTION_FAIL
;
903 case VOLUME_OVERFLOW
:
904 /* See SSC3rXX or current. */
905 action
= ACTION_FAIL
;
908 description
= "Unhandled sense code";
909 action
= ACTION_FAIL
;
913 description
= "Unhandled error code";
914 action
= ACTION_FAIL
;
919 /* Give up and fail the remainder of the request */
920 scsi_release_buffers(cmd
);
921 if (!(req
->cmd_flags
& REQ_QUIET
)) {
923 scmd_printk(KERN_INFO
, cmd
, "%s\n",
925 scsi_print_result(cmd
);
926 if (driver_byte(result
) & DRIVER_SENSE
)
927 scsi_print_sense("", cmd
);
928 scsi_print_command(cmd
);
930 if (blk_end_request_err(req
, error
))
931 scsi_requeue_command(q
, cmd
);
933 scsi_next_command(cmd
);
936 /* Unprep the request and put it back at the head of the queue.
937 * A new command will be prepared and issued.
939 scsi_release_buffers(cmd
);
940 scsi_requeue_command(q
, cmd
);
943 /* Retry the same command immediately */
944 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
946 case ACTION_DELAYED_RETRY
:
947 /* Retry the same command after a delay */
948 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
953 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
959 * If sg table allocation fails, requeue request later.
961 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
963 return BLKPREP_DEFER
;
969 * Next, walk the list, and fill in the addresses and sizes of
972 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
973 BUG_ON(count
> sdb
->table
.nents
);
974 sdb
->table
.nents
= count
;
975 sdb
->length
= blk_rq_bytes(req
);
980 * Function: scsi_init_io()
982 * Purpose: SCSI I/O initialize function.
984 * Arguments: cmd - Command descriptor we wish to initialize
986 * Returns: 0 on success
987 * BLKPREP_DEFER if the failure is retryable
988 * BLKPREP_KILL if the failure is fatal
990 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
992 struct request
*rq
= cmd
->request
;
994 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
998 if (blk_bidi_rq(rq
)) {
999 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1000 scsi_sdb_cache
, GFP_ATOMIC
);
1002 error
= BLKPREP_DEFER
;
1006 rq
->next_rq
->special
= bidi_sdb
;
1007 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1012 if (blk_integrity_rq(rq
)) {
1013 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1016 BUG_ON(prot_sdb
== NULL
);
1017 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1019 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1020 error
= BLKPREP_DEFER
;
1024 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1025 prot_sdb
->table
.sgl
);
1026 BUG_ON(unlikely(count
> ivecs
));
1027 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1029 cmd
->prot_sdb
= prot_sdb
;
1030 cmd
->prot_sdb
->table
.nents
= count
;
1036 scsi_release_buffers(cmd
);
1037 cmd
->request
->special
= NULL
;
1038 scsi_put_command(cmd
);
1041 EXPORT_SYMBOL(scsi_init_io
);
1043 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1044 struct request
*req
)
1046 struct scsi_cmnd
*cmd
;
1048 if (!req
->special
) {
1049 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1057 /* pull a tag out of the request if we have one */
1058 cmd
->tag
= req
->tag
;
1061 cmd
->cmnd
= req
->cmd
;
1062 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1067 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1069 struct scsi_cmnd
*cmd
;
1070 int ret
= scsi_prep_state_check(sdev
, req
);
1072 if (ret
!= BLKPREP_OK
)
1075 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1077 return BLKPREP_DEFER
;
1080 * BLOCK_PC requests may transfer data, in which case they must
1081 * a bio attached to them. Or they might contain a SCSI command
1082 * that does not transfer data, in which case they may optionally
1083 * submit a request without an attached bio.
1088 BUG_ON(!req
->nr_phys_segments
);
1090 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1094 BUG_ON(blk_rq_bytes(req
));
1096 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1100 cmd
->cmd_len
= req
->cmd_len
;
1101 if (!blk_rq_bytes(req
))
1102 cmd
->sc_data_direction
= DMA_NONE
;
1103 else if (rq_data_dir(req
) == WRITE
)
1104 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1106 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1108 cmd
->transfersize
= blk_rq_bytes(req
);
1109 cmd
->allowed
= req
->retries
;
1112 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1115 * Setup a REQ_TYPE_FS command. These are simple read/write request
1116 * from filesystems that still need to be translated to SCSI CDBs from
1119 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1121 struct scsi_cmnd
*cmd
;
1122 int ret
= scsi_prep_state_check(sdev
, req
);
1124 if (ret
!= BLKPREP_OK
)
1127 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1128 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1129 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1130 if (ret
!= BLKPREP_OK
)
1135 * Filesystem requests must transfer data.
1137 BUG_ON(!req
->nr_phys_segments
);
1139 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1141 return BLKPREP_DEFER
;
1143 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1144 return scsi_init_io(cmd
, GFP_ATOMIC
);
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1148 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1150 int ret
= BLKPREP_OK
;
1153 * If the device is not in running state we will reject some
1156 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1157 switch (sdev
->sdev_state
) {
1160 * If the device is offline we refuse to process any
1161 * commands. The device must be brought online
1162 * before trying any recovery commands.
1164 sdev_printk(KERN_ERR
, sdev
,
1165 "rejecting I/O to offline device\n");
1170 * If the device is fully deleted, we refuse to
1171 * process any commands as well.
1173 sdev_printk(KERN_ERR
, sdev
,
1174 "rejecting I/O to dead device\n");
1179 case SDEV_CREATED_BLOCK
:
1181 * If the devices is blocked we defer normal commands.
1183 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1184 ret
= BLKPREP_DEFER
;
1188 * For any other not fully online state we only allow
1189 * special commands. In particular any user initiated
1190 * command is not allowed.
1192 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1199 EXPORT_SYMBOL(scsi_prep_state_check
);
1201 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1203 struct scsi_device
*sdev
= q
->queuedata
;
1207 req
->errors
= DID_NO_CONNECT
<< 16;
1208 /* release the command and kill it */
1210 struct scsi_cmnd
*cmd
= req
->special
;
1211 scsi_release_buffers(cmd
);
1212 scsi_put_command(cmd
);
1213 req
->special
= NULL
;
1218 * If we defer, the blk_peek_request() returns NULL, but the
1219 * queue must be restarted, so we schedule a callback to happen
1222 if (sdev
->device_busy
== 0)
1223 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1226 req
->cmd_flags
|= REQ_DONTPREP
;
1231 EXPORT_SYMBOL(scsi_prep_return
);
1233 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1235 struct scsi_device
*sdev
= q
->queuedata
;
1236 int ret
= BLKPREP_KILL
;
1238 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1239 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1240 return scsi_prep_return(q
, req
, ret
);
1242 EXPORT_SYMBOL(scsi_prep_fn
);
1245 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1248 * Called with the queue_lock held.
1250 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1251 struct scsi_device
*sdev
)
1253 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1255 * unblock after device_blocked iterates to zero
1257 if (--sdev
->device_blocked
== 0) {
1259 sdev_printk(KERN_INFO
, sdev
,
1260 "unblocking device at zero depth\n"));
1262 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1266 if (scsi_device_is_busy(sdev
))
1274 * scsi_target_queue_ready: checks if there we can send commands to target
1275 * @sdev: scsi device on starget to check.
1277 * Called with the host lock held.
1279 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1280 struct scsi_device
*sdev
)
1282 struct scsi_target
*starget
= scsi_target(sdev
);
1284 if (starget
->single_lun
) {
1285 if (starget
->starget_sdev_user
&&
1286 starget
->starget_sdev_user
!= sdev
)
1288 starget
->starget_sdev_user
= sdev
;
1291 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1293 * unblock after target_blocked iterates to zero
1295 if (--starget
->target_blocked
== 0) {
1296 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1297 "unblocking target at zero depth\n"));
1302 if (scsi_target_is_busy(starget
)) {
1303 if (list_empty(&sdev
->starved_entry
))
1304 list_add_tail(&sdev
->starved_entry
,
1305 &shost
->starved_list
);
1309 /* We're OK to process the command, so we can't be starved */
1310 if (!list_empty(&sdev
->starved_entry
))
1311 list_del_init(&sdev
->starved_entry
);
1316 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317 * return 0. We must end up running the queue again whenever 0 is
1318 * returned, else IO can hang.
1320 * Called with host_lock held.
1322 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1323 struct Scsi_Host
*shost
,
1324 struct scsi_device
*sdev
)
1326 if (scsi_host_in_recovery(shost
))
1328 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1330 * unblock after host_blocked iterates to zero
1332 if (--shost
->host_blocked
== 0) {
1334 printk("scsi%d unblocking host at zero depth\n",
1340 if (scsi_host_is_busy(shost
)) {
1341 if (list_empty(&sdev
->starved_entry
))
1342 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1346 /* We're OK to process the command, so we can't be starved */
1347 if (!list_empty(&sdev
->starved_entry
))
1348 list_del_init(&sdev
->starved_entry
);
1354 * Busy state exporting function for request stacking drivers.
1356 * For efficiency, no lock is taken to check the busy state of
1357 * shost/starget/sdev, since the returned value is not guaranteed and
1358 * may be changed after request stacking drivers call the function,
1359 * regardless of taking lock or not.
1361 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1362 * (e.g. !sdev), scsi needs to return 'not busy'.
1363 * Otherwise, request stacking drivers may hold requests forever.
1365 static int scsi_lld_busy(struct request_queue
*q
)
1367 struct scsi_device
*sdev
= q
->queuedata
;
1368 struct Scsi_Host
*shost
;
1369 struct scsi_target
*starget
;
1375 starget
= scsi_target(sdev
);
1377 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1378 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1385 * Kill a request for a dead device
1387 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1389 struct scsi_cmnd
*cmd
= req
->special
;
1390 struct scsi_device
*sdev
;
1391 struct scsi_target
*starget
;
1392 struct Scsi_Host
*shost
;
1394 blk_start_request(req
);
1397 starget
= scsi_target(sdev
);
1399 scsi_init_cmd_errh(cmd
);
1400 cmd
->result
= DID_NO_CONNECT
<< 16;
1401 atomic_inc(&cmd
->device
->iorequest_cnt
);
1404 * SCSI request completion path will do scsi_device_unbusy(),
1405 * bump busy counts. To bump the counters, we need to dance
1406 * with the locks as normal issue path does.
1408 sdev
->device_busy
++;
1409 spin_unlock(sdev
->request_queue
->queue_lock
);
1410 spin_lock(shost
->host_lock
);
1412 starget
->target_busy
++;
1413 spin_unlock(shost
->host_lock
);
1414 spin_lock(sdev
->request_queue
->queue_lock
);
1416 blk_complete_request(req
);
1419 static void scsi_softirq_done(struct request
*rq
)
1421 struct scsi_cmnd
*cmd
= rq
->special
;
1422 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1425 INIT_LIST_HEAD(&cmd
->eh_entry
);
1427 atomic_inc(&cmd
->device
->iodone_cnt
);
1429 atomic_inc(&cmd
->device
->ioerr_cnt
);
1431 disposition
= scsi_decide_disposition(cmd
);
1432 if (disposition
!= SUCCESS
&&
1433 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1434 sdev_printk(KERN_ERR
, cmd
->device
,
1435 "timing out command, waited %lus\n",
1437 disposition
= SUCCESS
;
1440 scsi_log_completion(cmd
, disposition
);
1442 switch (disposition
) {
1444 scsi_finish_command(cmd
);
1447 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1449 case ADD_TO_MLQUEUE
:
1450 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1453 if (!scsi_eh_scmd_add(cmd
, 0))
1454 scsi_finish_command(cmd
);
1459 * Function: scsi_request_fn()
1461 * Purpose: Main strategy routine for SCSI.
1463 * Arguments: q - Pointer to actual queue.
1467 * Lock status: IO request lock assumed to be held when called.
1469 static void scsi_request_fn(struct request_queue
*q
)
1471 struct scsi_device
*sdev
= q
->queuedata
;
1472 struct Scsi_Host
*shost
;
1473 struct scsi_cmnd
*cmd
;
1474 struct request
*req
;
1477 printk("scsi: killing requests for dead queue\n");
1478 while ((req
= blk_peek_request(q
)) != NULL
)
1479 scsi_kill_request(req
, q
);
1483 if(!get_device(&sdev
->sdev_gendev
))
1484 /* We must be tearing the block queue down already */
1488 * To start with, we keep looping until the queue is empty, or until
1489 * the host is no longer able to accept any more requests.
1495 * get next queueable request. We do this early to make sure
1496 * that the request is fully prepared even if we cannot
1499 req
= blk_peek_request(q
);
1500 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1503 if (unlikely(!scsi_device_online(sdev
))) {
1504 sdev_printk(KERN_ERR
, sdev
,
1505 "rejecting I/O to offline device\n");
1506 scsi_kill_request(req
, q
);
1512 * Remove the request from the request list.
1514 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1515 blk_start_request(req
);
1516 sdev
->device_busy
++;
1518 spin_unlock(q
->queue_lock
);
1520 if (unlikely(cmd
== NULL
)) {
1521 printk(KERN_CRIT
"impossible request in %s.\n"
1522 "please mail a stack trace to "
1523 "linux-scsi@vger.kernel.org\n",
1525 blk_dump_rq_flags(req
, "foo");
1528 spin_lock(shost
->host_lock
);
1531 * We hit this when the driver is using a host wide
1532 * tag map. For device level tag maps the queue_depth check
1533 * in the device ready fn would prevent us from trying
1534 * to allocate a tag. Since the map is a shared host resource
1535 * we add the dev to the starved list so it eventually gets
1536 * a run when a tag is freed.
1538 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1539 if (list_empty(&sdev
->starved_entry
))
1540 list_add_tail(&sdev
->starved_entry
,
1541 &shost
->starved_list
);
1545 if (!scsi_target_queue_ready(shost
, sdev
))
1548 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1551 scsi_target(sdev
)->target_busy
++;
1555 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1556 * take the lock again.
1558 spin_unlock_irq(shost
->host_lock
);
1561 * Finally, initialize any error handling parameters, and set up
1562 * the timers for timeouts.
1564 scsi_init_cmd_errh(cmd
);
1567 * Dispatch the command to the low-level driver.
1569 rtn
= scsi_dispatch_cmd(cmd
);
1570 spin_lock_irq(q
->queue_lock
);
1578 spin_unlock_irq(shost
->host_lock
);
1581 * lock q, handle tag, requeue req, and decrement device_busy. We
1582 * must return with queue_lock held.
1584 * Decrementing device_busy without checking it is OK, as all such
1585 * cases (host limits or settings) should run the queue at some
1588 spin_lock_irq(q
->queue_lock
);
1589 blk_requeue_request(q
, req
);
1590 sdev
->device_busy
--;
1592 if (sdev
->device_busy
== 0)
1593 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1595 /* must be careful here...if we trigger the ->remove() function
1596 * we cannot be holding the q lock */
1597 spin_unlock_irq(q
->queue_lock
);
1598 put_device(&sdev
->sdev_gendev
);
1599 spin_lock_irq(q
->queue_lock
);
1602 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1604 struct device
*host_dev
;
1605 u64 bounce_limit
= 0xffffffff;
1607 if (shost
->unchecked_isa_dma
)
1608 return BLK_BOUNCE_ISA
;
1610 * Platforms with virtual-DMA translation
1611 * hardware have no practical limit.
1613 if (!PCI_DMA_BUS_IS_PHYS
)
1614 return BLK_BOUNCE_ANY
;
1616 host_dev
= scsi_get_device(shost
);
1617 if (host_dev
&& host_dev
->dma_mask
)
1618 bounce_limit
= *host_dev
->dma_mask
;
1620 return bounce_limit
;
1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1624 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1625 request_fn_proc
*request_fn
)
1627 struct request_queue
*q
;
1628 struct device
*dev
= shost
->shost_gendev
.parent
;
1630 q
= blk_init_queue(request_fn
, NULL
);
1635 * this limit is imposed by hardware restrictions
1637 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1638 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1640 if (scsi_host_prot_dma(shost
)) {
1641 shost
->sg_prot_tablesize
=
1642 min_not_zero(shost
->sg_prot_tablesize
,
1643 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1644 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1645 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1648 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1649 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1650 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1651 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1653 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1655 if (!shost
->use_clustering
)
1656 q
->limits
.cluster
= 0;
1659 * set a reasonable default alignment on word boundaries: the
1660 * host and device may alter it using
1661 * blk_queue_update_dma_alignment() later.
1663 blk_queue_dma_alignment(q
, 0x03);
1667 EXPORT_SYMBOL(__scsi_alloc_queue
);
1669 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1671 struct request_queue
*q
;
1673 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1677 blk_queue_prep_rq(q
, scsi_prep_fn
);
1678 blk_queue_softirq_done(q
, scsi_softirq_done
);
1679 blk_queue_rq_timed_out(q
, scsi_times_out
);
1680 blk_queue_lld_busy(q
, scsi_lld_busy
);
1684 void scsi_free_queue(struct request_queue
*q
)
1686 blk_cleanup_queue(q
);
1690 * Function: scsi_block_requests()
1692 * Purpose: Utility function used by low-level drivers to prevent further
1693 * commands from being queued to the device.
1695 * Arguments: shost - Host in question
1699 * Lock status: No locks are assumed held.
1701 * Notes: There is no timer nor any other means by which the requests
1702 * get unblocked other than the low-level driver calling
1703 * scsi_unblock_requests().
1705 void scsi_block_requests(struct Scsi_Host
*shost
)
1707 shost
->host_self_blocked
= 1;
1709 EXPORT_SYMBOL(scsi_block_requests
);
1712 * Function: scsi_unblock_requests()
1714 * Purpose: Utility function used by low-level drivers to allow further
1715 * commands from being queued to the device.
1717 * Arguments: shost - Host in question
1721 * Lock status: No locks are assumed held.
1723 * Notes: There is no timer nor any other means by which the requests
1724 * get unblocked other than the low-level driver calling
1725 * scsi_unblock_requests().
1727 * This is done as an API function so that changes to the
1728 * internals of the scsi mid-layer won't require wholesale
1729 * changes to drivers that use this feature.
1731 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1733 shost
->host_self_blocked
= 0;
1734 scsi_run_host_queues(shost
);
1736 EXPORT_SYMBOL(scsi_unblock_requests
);
1738 int __init
scsi_init_queue(void)
1742 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1743 sizeof(struct scsi_data_buffer
),
1745 if (!scsi_sdb_cache
) {
1746 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1750 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1751 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1752 int size
= sgp
->size
* sizeof(struct scatterlist
);
1754 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1755 SLAB_HWCACHE_ALIGN
, NULL
);
1757 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1762 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1765 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1774 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1775 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1777 mempool_destroy(sgp
->pool
);
1779 kmem_cache_destroy(sgp
->slab
);
1781 kmem_cache_destroy(scsi_sdb_cache
);
1786 void scsi_exit_queue(void)
1790 kmem_cache_destroy(scsi_sdb_cache
);
1792 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1793 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1794 mempool_destroy(sgp
->pool
);
1795 kmem_cache_destroy(sgp
->slab
);
1800 * scsi_mode_select - issue a mode select
1801 * @sdev: SCSI device to be queried
1802 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1803 * @sp: Save page bit (0 == don't save, 1 == save)
1804 * @modepage: mode page being requested
1805 * @buffer: request buffer (may not be smaller than eight bytes)
1806 * @len: length of request buffer.
1807 * @timeout: command timeout
1808 * @retries: number of retries before failing
1809 * @data: returns a structure abstracting the mode header data
1810 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1811 * must be SCSI_SENSE_BUFFERSIZE big.
1813 * Returns zero if successful; negative error number or scsi
1818 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1819 unsigned char *buffer
, int len
, int timeout
, int retries
,
1820 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1822 unsigned char cmd
[10];
1823 unsigned char *real_buffer
;
1826 memset(cmd
, 0, sizeof(cmd
));
1827 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1829 if (sdev
->use_10_for_ms
) {
1832 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1835 memcpy(real_buffer
+ 8, buffer
, len
);
1839 real_buffer
[2] = data
->medium_type
;
1840 real_buffer
[3] = data
->device_specific
;
1841 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1843 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1844 real_buffer
[7] = data
->block_descriptor_length
;
1846 cmd
[0] = MODE_SELECT_10
;
1850 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1854 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1857 memcpy(real_buffer
+ 4, buffer
, len
);
1860 real_buffer
[1] = data
->medium_type
;
1861 real_buffer
[2] = data
->device_specific
;
1862 real_buffer
[3] = data
->block_descriptor_length
;
1865 cmd
[0] = MODE_SELECT
;
1869 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1870 sshdr
, timeout
, retries
, NULL
);
1874 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1877 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1878 * @sdev: SCSI device to be queried
1879 * @dbd: set if mode sense will allow block descriptors to be returned
1880 * @modepage: mode page being requested
1881 * @buffer: request buffer (may not be smaller than eight bytes)
1882 * @len: length of request buffer.
1883 * @timeout: command timeout
1884 * @retries: number of retries before failing
1885 * @data: returns a structure abstracting the mode header data
1886 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1887 * must be SCSI_SENSE_BUFFERSIZE big.
1889 * Returns zero if unsuccessful, or the header offset (either 4
1890 * or 8 depending on whether a six or ten byte command was
1891 * issued) if successful.
1894 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1895 unsigned char *buffer
, int len
, int timeout
, int retries
,
1896 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1898 unsigned char cmd
[12];
1902 struct scsi_sense_hdr my_sshdr
;
1904 memset(data
, 0, sizeof(*data
));
1905 memset(&cmd
[0], 0, 12);
1906 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1909 /* caller might not be interested in sense, but we need it */
1914 use_10_for_ms
= sdev
->use_10_for_ms
;
1916 if (use_10_for_ms
) {
1920 cmd
[0] = MODE_SENSE_10
;
1927 cmd
[0] = MODE_SENSE
;
1932 memset(buffer
, 0, len
);
1934 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1935 sshdr
, timeout
, retries
, NULL
);
1937 /* This code looks awful: what it's doing is making sure an
1938 * ILLEGAL REQUEST sense return identifies the actual command
1939 * byte as the problem. MODE_SENSE commands can return
1940 * ILLEGAL REQUEST if the code page isn't supported */
1942 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1943 (driver_byte(result
) & DRIVER_SENSE
)) {
1944 if (scsi_sense_valid(sshdr
)) {
1945 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1946 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1948 * Invalid command operation code
1950 sdev
->use_10_for_ms
= 0;
1956 if(scsi_status_is_good(result
)) {
1957 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1958 (modepage
== 6 || modepage
== 8))) {
1959 /* Initio breakage? */
1962 data
->medium_type
= 0;
1963 data
->device_specific
= 0;
1965 data
->block_descriptor_length
= 0;
1966 } else if(use_10_for_ms
) {
1967 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1968 data
->medium_type
= buffer
[2];
1969 data
->device_specific
= buffer
[3];
1970 data
->longlba
= buffer
[4] & 0x01;
1971 data
->block_descriptor_length
= buffer
[6]*256
1974 data
->length
= buffer
[0] + 1;
1975 data
->medium_type
= buffer
[1];
1976 data
->device_specific
= buffer
[2];
1977 data
->block_descriptor_length
= buffer
[3];
1979 data
->header_length
= header_length
;
1984 EXPORT_SYMBOL(scsi_mode_sense
);
1987 * scsi_test_unit_ready - test if unit is ready
1988 * @sdev: scsi device to change the state of.
1989 * @timeout: command timeout
1990 * @retries: number of retries before failing
1991 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1992 * returning sense. Make sure that this is cleared before passing
1995 * Returns zero if unsuccessful or an error if TUR failed. For
1996 * removable media, UNIT_ATTENTION sets ->changed flag.
1999 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2000 struct scsi_sense_hdr
*sshdr_external
)
2003 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2005 struct scsi_sense_hdr
*sshdr
;
2008 if (!sshdr_external
)
2009 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2011 sshdr
= sshdr_external
;
2013 /* try to eat the UNIT_ATTENTION if there are enough retries */
2015 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2016 timeout
, retries
, NULL
);
2017 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2018 sshdr
->sense_key
== UNIT_ATTENTION
)
2020 } while (scsi_sense_valid(sshdr
) &&
2021 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2023 if (!sshdr_external
)
2027 EXPORT_SYMBOL(scsi_test_unit_ready
);
2030 * scsi_device_set_state - Take the given device through the device state model.
2031 * @sdev: scsi device to change the state of.
2032 * @state: state to change to.
2034 * Returns zero if unsuccessful or an error if the requested
2035 * transition is illegal.
2038 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2040 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2042 if (state
== oldstate
)
2048 case SDEV_CREATED_BLOCK
:
2092 case SDEV_CREATED_BLOCK
:
2099 case SDEV_CREATED_BLOCK
:
2134 sdev
->sdev_state
= state
;
2138 SCSI_LOG_ERROR_RECOVERY(1,
2139 sdev_printk(KERN_ERR
, sdev
,
2140 "Illegal state transition %s->%s\n",
2141 scsi_device_state_name(oldstate
),
2142 scsi_device_state_name(state
))
2146 EXPORT_SYMBOL(scsi_device_set_state
);
2149 * sdev_evt_emit - emit a single SCSI device uevent
2150 * @sdev: associated SCSI device
2151 * @evt: event to emit
2153 * Send a single uevent (scsi_event) to the associated scsi_device.
2155 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2160 switch (evt
->evt_type
) {
2161 case SDEV_EVT_MEDIA_CHANGE
:
2162 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2172 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2176 * sdev_evt_thread - send a uevent for each scsi event
2177 * @work: work struct for scsi_device
2179 * Dispatch queued events to their associated scsi_device kobjects
2182 void scsi_evt_thread(struct work_struct
*work
)
2184 struct scsi_device
*sdev
;
2185 LIST_HEAD(event_list
);
2187 sdev
= container_of(work
, struct scsi_device
, event_work
);
2190 struct scsi_event
*evt
;
2191 struct list_head
*this, *tmp
;
2192 unsigned long flags
;
2194 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2195 list_splice_init(&sdev
->event_list
, &event_list
);
2196 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2198 if (list_empty(&event_list
))
2201 list_for_each_safe(this, tmp
, &event_list
) {
2202 evt
= list_entry(this, struct scsi_event
, node
);
2203 list_del(&evt
->node
);
2204 scsi_evt_emit(sdev
, evt
);
2211 * sdev_evt_send - send asserted event to uevent thread
2212 * @sdev: scsi_device event occurred on
2213 * @evt: event to send
2215 * Assert scsi device event asynchronously.
2217 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2219 unsigned long flags
;
2222 /* FIXME: currently this check eliminates all media change events
2223 * for polled devices. Need to update to discriminate between AN
2224 * and polled events */
2225 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2231 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2232 list_add_tail(&evt
->node
, &sdev
->event_list
);
2233 schedule_work(&sdev
->event_work
);
2234 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2236 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2239 * sdev_evt_alloc - allocate a new scsi event
2240 * @evt_type: type of event to allocate
2241 * @gfpflags: GFP flags for allocation
2243 * Allocates and returns a new scsi_event.
2245 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2248 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2252 evt
->evt_type
= evt_type
;
2253 INIT_LIST_HEAD(&evt
->node
);
2255 /* evt_type-specific initialization, if any */
2257 case SDEV_EVT_MEDIA_CHANGE
:
2265 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2268 * sdev_evt_send_simple - send asserted event to uevent thread
2269 * @sdev: scsi_device event occurred on
2270 * @evt_type: type of event to send
2271 * @gfpflags: GFP flags for allocation
2273 * Assert scsi device event asynchronously, given an event type.
2275 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2276 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2278 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2280 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2285 sdev_evt_send(sdev
, evt
);
2287 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2290 * scsi_device_quiesce - Block user issued commands.
2291 * @sdev: scsi device to quiesce.
2293 * This works by trying to transition to the SDEV_QUIESCE state
2294 * (which must be a legal transition). When the device is in this
2295 * state, only special requests will be accepted, all others will
2296 * be deferred. Since special requests may also be requeued requests,
2297 * a successful return doesn't guarantee the device will be
2298 * totally quiescent.
2300 * Must be called with user context, may sleep.
2302 * Returns zero if unsuccessful or an error if not.
2305 scsi_device_quiesce(struct scsi_device
*sdev
)
2307 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2311 scsi_run_queue(sdev
->request_queue
);
2312 while (sdev
->device_busy
) {
2313 msleep_interruptible(200);
2314 scsi_run_queue(sdev
->request_queue
);
2318 EXPORT_SYMBOL(scsi_device_quiesce
);
2321 * scsi_device_resume - Restart user issued commands to a quiesced device.
2322 * @sdev: scsi device to resume.
2324 * Moves the device from quiesced back to running and restarts the
2327 * Must be called with user context, may sleep.
2330 scsi_device_resume(struct scsi_device
*sdev
)
2332 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2334 scsi_run_queue(sdev
->request_queue
);
2336 EXPORT_SYMBOL(scsi_device_resume
);
2339 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2341 scsi_device_quiesce(sdev
);
2345 scsi_target_quiesce(struct scsi_target
*starget
)
2347 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2349 EXPORT_SYMBOL(scsi_target_quiesce
);
2352 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2354 scsi_device_resume(sdev
);
2358 scsi_target_resume(struct scsi_target
*starget
)
2360 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2362 EXPORT_SYMBOL(scsi_target_resume
);
2365 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2366 * @sdev: device to block
2368 * Block request made by scsi lld's to temporarily stop all
2369 * scsi commands on the specified device. Called from interrupt
2370 * or normal process context.
2372 * Returns zero if successful or error if not
2375 * This routine transitions the device to the SDEV_BLOCK state
2376 * (which must be a legal transition). When the device is in this
2377 * state, all commands are deferred until the scsi lld reenables
2378 * the device with scsi_device_unblock or device_block_tmo fires.
2379 * This routine assumes the host_lock is held on entry.
2382 scsi_internal_device_block(struct scsi_device
*sdev
)
2384 struct request_queue
*q
= sdev
->request_queue
;
2385 unsigned long flags
;
2388 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2390 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2397 * The device has transitioned to SDEV_BLOCK. Stop the
2398 * block layer from calling the midlayer with this device's
2401 spin_lock_irqsave(q
->queue_lock
, flags
);
2403 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2407 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2410 * scsi_internal_device_unblock - resume a device after a block request
2411 * @sdev: device to resume
2413 * Called by scsi lld's or the midlayer to restart the device queue
2414 * for the previously suspended scsi device. Called from interrupt or
2415 * normal process context.
2417 * Returns zero if successful or error if not.
2420 * This routine transitions the device to the SDEV_RUNNING state
2421 * (which must be a legal transition) allowing the midlayer to
2422 * goose the queue for this device. This routine assumes the
2423 * host_lock is held upon entry.
2426 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2428 struct request_queue
*q
= sdev
->request_queue
;
2429 unsigned long flags
;
2432 * Try to transition the scsi device to SDEV_RUNNING
2433 * and goose the device queue if successful.
2435 if (sdev
->sdev_state
== SDEV_BLOCK
)
2436 sdev
->sdev_state
= SDEV_RUNNING
;
2437 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2438 sdev
->sdev_state
= SDEV_CREATED
;
2439 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2440 sdev
->sdev_state
!= SDEV_OFFLINE
)
2443 spin_lock_irqsave(q
->queue_lock
, flags
);
2445 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2452 device_block(struct scsi_device
*sdev
, void *data
)
2454 scsi_internal_device_block(sdev
);
2458 target_block(struct device
*dev
, void *data
)
2460 if (scsi_is_target_device(dev
))
2461 starget_for_each_device(to_scsi_target(dev
), NULL
,
2467 scsi_target_block(struct device
*dev
)
2469 if (scsi_is_target_device(dev
))
2470 starget_for_each_device(to_scsi_target(dev
), NULL
,
2473 device_for_each_child(dev
, NULL
, target_block
);
2475 EXPORT_SYMBOL_GPL(scsi_target_block
);
2478 device_unblock(struct scsi_device
*sdev
, void *data
)
2480 scsi_internal_device_unblock(sdev
);
2484 target_unblock(struct device
*dev
, void *data
)
2486 if (scsi_is_target_device(dev
))
2487 starget_for_each_device(to_scsi_target(dev
), NULL
,
2493 scsi_target_unblock(struct device
*dev
)
2495 if (scsi_is_target_device(dev
))
2496 starget_for_each_device(to_scsi_target(dev
), NULL
,
2499 device_for_each_child(dev
, NULL
, target_unblock
);
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2504 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505 * @sgl: scatter-gather list
2506 * @sg_count: number of segments in sg
2507 * @offset: offset in bytes into sg, on return offset into the mapped area
2508 * @len: bytes to map, on return number of bytes mapped
2510 * Returns virtual address of the start of the mapped page
2512 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2513 size_t *offset
, size_t *len
)
2516 size_t sg_len
= 0, len_complete
= 0;
2517 struct scatterlist
*sg
;
2520 WARN_ON(!irqs_disabled());
2522 for_each_sg(sgl
, sg
, sg_count
, i
) {
2523 len_complete
= sg_len
; /* Complete sg-entries */
2524 sg_len
+= sg
->length
;
2525 if (sg_len
> *offset
)
2529 if (unlikely(i
== sg_count
)) {
2530 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2532 __func__
, sg_len
, *offset
, sg_count
);
2537 /* Offset starting from the beginning of first page in this sg-entry */
2538 *offset
= *offset
- len_complete
+ sg
->offset
;
2540 /* Assumption: contiguous pages can be accessed as "page + i" */
2541 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2542 *offset
&= ~PAGE_MASK
;
2544 /* Bytes in this sg-entry from *offset to the end of the page */
2545 sg_len
= PAGE_SIZE
- *offset
;
2549 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2554 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555 * @virt: virtual address to be unmapped
2557 void scsi_kunmap_atomic_sg(void *virt
)
2559 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);