fuse: fix oops in revalidate when called with NULL nameidata
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / scsi_lib.c
blob0bac91e72370725cb79d8320b3a9daba01b1114c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
77 static void scsi_run_queue(struct request_queue *q);
80 * Function: scsi_unprep_request()
82 * Purpose: Remove all preparation done for a request, including its
83 * associated scsi_cmnd, so that it can be requeued.
85 * Arguments: req - request to unprepare
87 * Lock status: Assumed that no locks are held upon entry.
89 * Returns: Nothing.
91 static void scsi_unprep_request(struct request *req)
93 struct scsi_cmnd *cmd = req->special;
95 blk_unprep_request(req);
96 req->special = NULL;
98 scsi_put_command(cmd);
102 * __scsi_queue_insert - private queue insertion
103 * @cmd: The SCSI command being requeued
104 * @reason: The reason for the requeue
105 * @unbusy: Whether the queue should be unbusied
107 * This is a private queue insertion. The public interface
108 * scsi_queue_insert() always assumes the queue should be unbusied
109 * because it's always called before the completion. This function is
110 * for a requeue after completion, which should only occur in this
111 * file.
113 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 if (unbusy)
154 scsi_device_unbusy(device);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 /* if the device is dead, sdev will be NULL, so no queue to run */
408 if (!sdev)
409 return;
411 shost = sdev->host;
412 if (scsi_target(sdev)->single_lun)
413 scsi_single_lun_run(sdev);
415 spin_lock_irqsave(shost->host_lock, flags);
416 list_splice_init(&shost->starved_list, &starved_list);
418 while (!list_empty(&starved_list)) {
420 * As long as shost is accepting commands and we have
421 * starved queues, call blk_run_queue. scsi_request_fn
422 * drops the queue_lock and can add us back to the
423 * starved_list.
425 * host_lock protects the starved_list and starved_entry.
426 * scsi_request_fn must get the host_lock before checking
427 * or modifying starved_list or starved_entry.
429 if (scsi_host_is_busy(shost))
430 break;
432 sdev = list_entry(starved_list.next,
433 struct scsi_device, starved_entry);
434 list_del_init(&sdev->starved_entry);
435 if (scsi_target_is_busy(scsi_target(sdev))) {
436 list_move_tail(&sdev->starved_entry,
437 &shost->starved_list);
438 continue;
441 blk_run_queue_async(sdev->request_queue);
443 /* put any unprocessed entries back */
444 list_splice(&starved_list, &shost->starved_list);
445 spin_unlock_irqrestore(shost->host_lock, flags);
447 blk_run_queue(q);
451 * Function: scsi_requeue_command()
453 * Purpose: Handle post-processing of completed commands.
455 * Arguments: q - queue to operate on
456 * cmd - command that may need to be requeued.
458 * Returns: Nothing
460 * Notes: After command completion, there may be blocks left
461 * over which weren't finished by the previous command
462 * this can be for a number of reasons - the main one is
463 * I/O errors in the middle of the request, in which case
464 * we need to request the blocks that come after the bad
465 * sector.
466 * Notes: Upon return, cmd is a stale pointer.
468 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
470 struct request *req = cmd->request;
471 unsigned long flags;
473 spin_lock_irqsave(q->queue_lock, flags);
474 scsi_unprep_request(req);
475 blk_requeue_request(q, req);
476 spin_unlock_irqrestore(q->queue_lock, flags);
478 scsi_run_queue(q);
481 void scsi_next_command(struct scsi_cmnd *cmd)
483 struct scsi_device *sdev = cmd->device;
484 struct request_queue *q = sdev->request_queue;
486 /* need to hold a reference on the device before we let go of the cmd */
487 get_device(&sdev->sdev_gendev);
489 scsi_put_command(cmd);
490 scsi_run_queue(q);
492 /* ok to remove device now */
493 put_device(&sdev->sdev_gendev);
496 void scsi_run_host_queues(struct Scsi_Host *shost)
498 struct scsi_device *sdev;
500 shost_for_each_device(sdev, shost)
501 scsi_run_queue(sdev->request_queue);
504 static void __scsi_release_buffers(struct scsi_cmnd *, int);
507 * Function: scsi_end_request()
509 * Purpose: Post-processing of completed commands (usually invoked at end
510 * of upper level post-processing and scsi_io_completion).
512 * Arguments: cmd - command that is complete.
513 * error - 0 if I/O indicates success, < 0 for I/O error.
514 * bytes - number of bytes of completed I/O
515 * requeue - indicates whether we should requeue leftovers.
517 * Lock status: Assumed that lock is not held upon entry.
519 * Returns: cmd if requeue required, NULL otherwise.
521 * Notes: This is called for block device requests in order to
522 * mark some number of sectors as complete.
524 * We are guaranteeing that the request queue will be goosed
525 * at some point during this call.
526 * Notes: If cmd was requeued, upon return it will be a stale pointer.
528 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
529 int bytes, int requeue)
531 struct request_queue *q = cmd->device->request_queue;
532 struct request *req = cmd->request;
535 * If there are blocks left over at the end, set up the command
536 * to queue the remainder of them.
538 if (blk_end_request(req, error, bytes)) {
539 /* kill remainder if no retrys */
540 if (error && scsi_noretry_cmd(cmd))
541 blk_end_request_all(req, error);
542 else {
543 if (requeue) {
545 * Bleah. Leftovers again. Stick the
546 * leftovers in the front of the
547 * queue, and goose the queue again.
549 scsi_release_buffers(cmd);
550 scsi_requeue_command(q, cmd);
551 cmd = NULL;
553 return cmd;
558 * This will goose the queue request function at the end, so we don't
559 * need to worry about launching another command.
561 __scsi_release_buffers(cmd, 0);
562 scsi_next_command(cmd);
563 return NULL;
566 static inline unsigned int scsi_sgtable_index(unsigned short nents)
568 unsigned int index;
570 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
572 if (nents <= 8)
573 index = 0;
574 else
575 index = get_count_order(nents) - 3;
577 return index;
580 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
582 struct scsi_host_sg_pool *sgp;
584 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
585 mempool_free(sgl, sgp->pool);
588 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
590 struct scsi_host_sg_pool *sgp;
592 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
593 return mempool_alloc(sgp->pool, gfp_mask);
596 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
597 gfp_t gfp_mask)
599 int ret;
601 BUG_ON(!nents);
603 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
604 gfp_mask, scsi_sg_alloc);
605 if (unlikely(ret))
606 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
607 scsi_sg_free);
609 return ret;
612 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
614 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
617 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
620 if (cmd->sdb.table.nents)
621 scsi_free_sgtable(&cmd->sdb);
623 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
625 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
626 struct scsi_data_buffer *bidi_sdb =
627 cmd->request->next_rq->special;
628 scsi_free_sgtable(bidi_sdb);
629 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
630 cmd->request->next_rq->special = NULL;
633 if (scsi_prot_sg_count(cmd))
634 scsi_free_sgtable(cmd->prot_sdb);
638 * Function: scsi_release_buffers()
640 * Purpose: Completion processing for block device I/O requests.
642 * Arguments: cmd - command that we are bailing.
644 * Lock status: Assumed that no lock is held upon entry.
646 * Returns: Nothing
648 * Notes: In the event that an upper level driver rejects a
649 * command, we must release resources allocated during
650 * the __init_io() function. Primarily this would involve
651 * the scatter-gather table, and potentially any bounce
652 * buffers.
654 void scsi_release_buffers(struct scsi_cmnd *cmd)
656 __scsi_release_buffers(cmd, 1);
658 EXPORT_SYMBOL(scsi_release_buffers);
660 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
662 int error = 0;
664 switch(host_byte(result)) {
665 case DID_TRANSPORT_FAILFAST:
666 error = -ENOLINK;
667 break;
668 case DID_TARGET_FAILURE:
669 cmd->result |= (DID_OK << 16);
670 error = -EREMOTEIO;
671 break;
672 case DID_NEXUS_FAILURE:
673 cmd->result |= (DID_OK << 16);
674 error = -EBADE;
675 break;
676 default:
677 error = -EIO;
678 break;
681 return error;
685 * Function: scsi_io_completion()
687 * Purpose: Completion processing for block device I/O requests.
689 * Arguments: cmd - command that is finished.
691 * Lock status: Assumed that no lock is held upon entry.
693 * Returns: Nothing
695 * Notes: This function is matched in terms of capabilities to
696 * the function that created the scatter-gather list.
697 * In other words, if there are no bounce buffers
698 * (the normal case for most drivers), we don't need
699 * the logic to deal with cleaning up afterwards.
701 * We must call scsi_end_request(). This will finish off
702 * the specified number of sectors. If we are done, the
703 * command block will be released and the queue function
704 * will be goosed. If we are not done then we have to
705 * figure out what to do next:
707 * a) We can call scsi_requeue_command(). The request
708 * will be unprepared and put back on the queue. Then
709 * a new command will be created for it. This should
710 * be used if we made forward progress, or if we want
711 * to switch from READ(10) to READ(6) for example.
713 * b) We can call scsi_queue_insert(). The request will
714 * be put back on the queue and retried using the same
715 * command as before, possibly after a delay.
717 * c) We can call blk_end_request() with -EIO to fail
718 * the remainder of the request.
720 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
722 int result = cmd->result;
723 struct request_queue *q = cmd->device->request_queue;
724 struct request *req = cmd->request;
725 int error = 0;
726 struct scsi_sense_hdr sshdr;
727 int sense_valid = 0;
728 int sense_deferred = 0;
729 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
730 ACTION_DELAYED_RETRY} action;
731 char *description = NULL;
733 if (result) {
734 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
735 if (sense_valid)
736 sense_deferred = scsi_sense_is_deferred(&sshdr);
739 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
740 req->errors = result;
741 if (result) {
742 if (sense_valid && req->sense) {
744 * SG_IO wants current and deferred errors
746 int len = 8 + cmd->sense_buffer[7];
748 if (len > SCSI_SENSE_BUFFERSIZE)
749 len = SCSI_SENSE_BUFFERSIZE;
750 memcpy(req->sense, cmd->sense_buffer, len);
751 req->sense_len = len;
753 if (!sense_deferred)
754 error = __scsi_error_from_host_byte(cmd, result);
757 req->resid_len = scsi_get_resid(cmd);
759 if (scsi_bidi_cmnd(cmd)) {
761 * Bidi commands Must be complete as a whole,
762 * both sides at once.
764 req->next_rq->resid_len = scsi_in(cmd)->resid;
766 scsi_release_buffers(cmd);
767 blk_end_request_all(req, 0);
769 scsi_next_command(cmd);
770 return;
774 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
775 BUG_ON(blk_bidi_rq(req));
778 * Next deal with any sectors which we were able to correctly
779 * handle.
781 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
782 "%d bytes done.\n",
783 blk_rq_sectors(req), good_bytes));
786 * Recovered errors need reporting, but they're always treated
787 * as success, so fiddle the result code here. For BLOCK_PC
788 * we already took a copy of the original into rq->errors which
789 * is what gets returned to the user
791 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
792 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
793 * print since caller wants ATA registers. Only occurs on
794 * SCSI ATA PASS_THROUGH commands when CK_COND=1
796 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
798 else if (!(req->cmd_flags & REQ_QUIET))
799 scsi_print_sense("", cmd);
800 result = 0;
801 /* BLOCK_PC may have set error */
802 error = 0;
806 * A number of bytes were successfully read. If there
807 * are leftovers and there is some kind of error
808 * (result != 0), retry the rest.
810 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
811 return;
813 error = __scsi_error_from_host_byte(cmd, result);
815 if (host_byte(result) == DID_RESET) {
816 /* Third party bus reset or reset for error recovery
817 * reasons. Just retry the command and see what
818 * happens.
820 action = ACTION_RETRY;
821 } else if (sense_valid && !sense_deferred) {
822 switch (sshdr.sense_key) {
823 case UNIT_ATTENTION:
824 if (cmd->device->removable) {
825 /* Detected disc change. Set a bit
826 * and quietly refuse further access.
828 cmd->device->changed = 1;
829 description = "Media Changed";
830 action = ACTION_FAIL;
831 } else {
832 /* Must have been a power glitch, or a
833 * bus reset. Could not have been a
834 * media change, so we just retry the
835 * command and see what happens.
837 action = ACTION_RETRY;
839 break;
840 case ILLEGAL_REQUEST:
841 /* If we had an ILLEGAL REQUEST returned, then
842 * we may have performed an unsupported
843 * command. The only thing this should be
844 * would be a ten byte read where only a six
845 * byte read was supported. Also, on a system
846 * where READ CAPACITY failed, we may have
847 * read past the end of the disk.
849 if ((cmd->device->use_10_for_rw &&
850 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
851 (cmd->cmnd[0] == READ_10 ||
852 cmd->cmnd[0] == WRITE_10)) {
853 /* This will issue a new 6-byte command. */
854 cmd->device->use_10_for_rw = 0;
855 action = ACTION_REPREP;
856 } else if (sshdr.asc == 0x10) /* DIX */ {
857 description = "Host Data Integrity Failure";
858 action = ACTION_FAIL;
859 error = -EILSEQ;
860 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
861 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
862 (cmd->cmnd[0] == UNMAP ||
863 cmd->cmnd[0] == WRITE_SAME_16 ||
864 cmd->cmnd[0] == WRITE_SAME)) {
865 description = "Discard failure";
866 action = ACTION_FAIL;
867 } else
868 action = ACTION_FAIL;
869 break;
870 case ABORTED_COMMAND:
871 action = ACTION_FAIL;
872 if (sshdr.asc == 0x10) { /* DIF */
873 description = "Target Data Integrity Failure";
874 error = -EILSEQ;
876 break;
877 case NOT_READY:
878 /* If the device is in the process of becoming
879 * ready, or has a temporary blockage, retry.
881 if (sshdr.asc == 0x04) {
882 switch (sshdr.ascq) {
883 case 0x01: /* becoming ready */
884 case 0x04: /* format in progress */
885 case 0x05: /* rebuild in progress */
886 case 0x06: /* recalculation in progress */
887 case 0x07: /* operation in progress */
888 case 0x08: /* Long write in progress */
889 case 0x09: /* self test in progress */
890 case 0x14: /* space allocation in progress */
891 action = ACTION_DELAYED_RETRY;
892 break;
893 default:
894 description = "Device not ready";
895 action = ACTION_FAIL;
896 break;
898 } else {
899 description = "Device not ready";
900 action = ACTION_FAIL;
902 break;
903 case VOLUME_OVERFLOW:
904 /* See SSC3rXX or current. */
905 action = ACTION_FAIL;
906 break;
907 default:
908 description = "Unhandled sense code";
909 action = ACTION_FAIL;
910 break;
912 } else {
913 description = "Unhandled error code";
914 action = ACTION_FAIL;
917 switch (action) {
918 case ACTION_FAIL:
919 /* Give up and fail the remainder of the request */
920 scsi_release_buffers(cmd);
921 if (!(req->cmd_flags & REQ_QUIET)) {
922 if (description)
923 scmd_printk(KERN_INFO, cmd, "%s\n",
924 description);
925 scsi_print_result(cmd);
926 if (driver_byte(result) & DRIVER_SENSE)
927 scsi_print_sense("", cmd);
928 scsi_print_command(cmd);
930 if (blk_end_request_err(req, error))
931 scsi_requeue_command(q, cmd);
932 else
933 scsi_next_command(cmd);
934 break;
935 case ACTION_REPREP:
936 /* Unprep the request and put it back at the head of the queue.
937 * A new command will be prepared and issued.
939 scsi_release_buffers(cmd);
940 scsi_requeue_command(q, cmd);
941 break;
942 case ACTION_RETRY:
943 /* Retry the same command immediately */
944 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
945 break;
946 case ACTION_DELAYED_RETRY:
947 /* Retry the same command after a delay */
948 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
949 break;
953 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
954 gfp_t gfp_mask)
956 int count;
959 * If sg table allocation fails, requeue request later.
961 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
962 gfp_mask))) {
963 return BLKPREP_DEFER;
966 req->buffer = NULL;
969 * Next, walk the list, and fill in the addresses and sizes of
970 * each segment.
972 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
973 BUG_ON(count > sdb->table.nents);
974 sdb->table.nents = count;
975 sdb->length = blk_rq_bytes(req);
976 return BLKPREP_OK;
980 * Function: scsi_init_io()
982 * Purpose: SCSI I/O initialize function.
984 * Arguments: cmd - Command descriptor we wish to initialize
986 * Returns: 0 on success
987 * BLKPREP_DEFER if the failure is retryable
988 * BLKPREP_KILL if the failure is fatal
990 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
992 struct request *rq = cmd->request;
994 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
995 if (error)
996 goto err_exit;
998 if (blk_bidi_rq(rq)) {
999 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1000 scsi_sdb_cache, GFP_ATOMIC);
1001 if (!bidi_sdb) {
1002 error = BLKPREP_DEFER;
1003 goto err_exit;
1006 rq->next_rq->special = bidi_sdb;
1007 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1008 if (error)
1009 goto err_exit;
1012 if (blk_integrity_rq(rq)) {
1013 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1014 int ivecs, count;
1016 BUG_ON(prot_sdb == NULL);
1017 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1019 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1020 error = BLKPREP_DEFER;
1021 goto err_exit;
1024 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1025 prot_sdb->table.sgl);
1026 BUG_ON(unlikely(count > ivecs));
1027 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1029 cmd->prot_sdb = prot_sdb;
1030 cmd->prot_sdb->table.nents = count;
1033 return BLKPREP_OK ;
1035 err_exit:
1036 scsi_release_buffers(cmd);
1037 cmd->request->special = NULL;
1038 scsi_put_command(cmd);
1039 return error;
1041 EXPORT_SYMBOL(scsi_init_io);
1043 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1044 struct request *req)
1046 struct scsi_cmnd *cmd;
1048 if (!req->special) {
1049 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1050 if (unlikely(!cmd))
1051 return NULL;
1052 req->special = cmd;
1053 } else {
1054 cmd = req->special;
1057 /* pull a tag out of the request if we have one */
1058 cmd->tag = req->tag;
1059 cmd->request = req;
1061 cmd->cmnd = req->cmd;
1062 cmd->prot_op = SCSI_PROT_NORMAL;
1064 return cmd;
1067 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1069 struct scsi_cmnd *cmd;
1070 int ret = scsi_prep_state_check(sdev, req);
1072 if (ret != BLKPREP_OK)
1073 return ret;
1075 cmd = scsi_get_cmd_from_req(sdev, req);
1076 if (unlikely(!cmd))
1077 return BLKPREP_DEFER;
1080 * BLOCK_PC requests may transfer data, in which case they must
1081 * a bio attached to them. Or they might contain a SCSI command
1082 * that does not transfer data, in which case they may optionally
1083 * submit a request without an attached bio.
1085 if (req->bio) {
1086 int ret;
1088 BUG_ON(!req->nr_phys_segments);
1090 ret = scsi_init_io(cmd, GFP_ATOMIC);
1091 if (unlikely(ret))
1092 return ret;
1093 } else {
1094 BUG_ON(blk_rq_bytes(req));
1096 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1097 req->buffer = NULL;
1100 cmd->cmd_len = req->cmd_len;
1101 if (!blk_rq_bytes(req))
1102 cmd->sc_data_direction = DMA_NONE;
1103 else if (rq_data_dir(req) == WRITE)
1104 cmd->sc_data_direction = DMA_TO_DEVICE;
1105 else
1106 cmd->sc_data_direction = DMA_FROM_DEVICE;
1108 cmd->transfersize = blk_rq_bytes(req);
1109 cmd->allowed = req->retries;
1110 return BLKPREP_OK;
1112 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1115 * Setup a REQ_TYPE_FS command. These are simple read/write request
1116 * from filesystems that still need to be translated to SCSI CDBs from
1117 * the ULD.
1119 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1121 struct scsi_cmnd *cmd;
1122 int ret = scsi_prep_state_check(sdev, req);
1124 if (ret != BLKPREP_OK)
1125 return ret;
1127 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1128 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1129 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1130 if (ret != BLKPREP_OK)
1131 return ret;
1135 * Filesystem requests must transfer data.
1137 BUG_ON(!req->nr_phys_segments);
1139 cmd = scsi_get_cmd_from_req(sdev, req);
1140 if (unlikely(!cmd))
1141 return BLKPREP_DEFER;
1143 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1144 return scsi_init_io(cmd, GFP_ATOMIC);
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1150 int ret = BLKPREP_OK;
1153 * If the device is not in running state we will reject some
1154 * or all commands.
1156 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1157 switch (sdev->sdev_state) {
1158 case SDEV_OFFLINE:
1160 * If the device is offline we refuse to process any
1161 * commands. The device must be brought online
1162 * before trying any recovery commands.
1164 sdev_printk(KERN_ERR, sdev,
1165 "rejecting I/O to offline device\n");
1166 ret = BLKPREP_KILL;
1167 break;
1168 case SDEV_DEL:
1170 * If the device is fully deleted, we refuse to
1171 * process any commands as well.
1173 sdev_printk(KERN_ERR, sdev,
1174 "rejecting I/O to dead device\n");
1175 ret = BLKPREP_KILL;
1176 break;
1177 case SDEV_QUIESCE:
1178 case SDEV_BLOCK:
1179 case SDEV_CREATED_BLOCK:
1181 * If the devices is blocked we defer normal commands.
1183 if (!(req->cmd_flags & REQ_PREEMPT))
1184 ret = BLKPREP_DEFER;
1185 break;
1186 default:
1188 * For any other not fully online state we only allow
1189 * special commands. In particular any user initiated
1190 * command is not allowed.
1192 if (!(req->cmd_flags & REQ_PREEMPT))
1193 ret = BLKPREP_KILL;
1194 break;
1197 return ret;
1199 EXPORT_SYMBOL(scsi_prep_state_check);
1201 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1203 struct scsi_device *sdev = q->queuedata;
1205 switch (ret) {
1206 case BLKPREP_KILL:
1207 req->errors = DID_NO_CONNECT << 16;
1208 /* release the command and kill it */
1209 if (req->special) {
1210 struct scsi_cmnd *cmd = req->special;
1211 scsi_release_buffers(cmd);
1212 scsi_put_command(cmd);
1213 req->special = NULL;
1215 break;
1216 case BLKPREP_DEFER:
1218 * If we defer, the blk_peek_request() returns NULL, but the
1219 * queue must be restarted, so we schedule a callback to happen
1220 * shortly.
1222 if (sdev->device_busy == 0)
1223 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1224 break;
1225 default:
1226 req->cmd_flags |= REQ_DONTPREP;
1229 return ret;
1231 EXPORT_SYMBOL(scsi_prep_return);
1233 int scsi_prep_fn(struct request_queue *q, struct request *req)
1235 struct scsi_device *sdev = q->queuedata;
1236 int ret = BLKPREP_KILL;
1238 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1239 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1240 return scsi_prep_return(q, req, ret);
1242 EXPORT_SYMBOL(scsi_prep_fn);
1245 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1246 * return 0.
1248 * Called with the queue_lock held.
1250 static inline int scsi_dev_queue_ready(struct request_queue *q,
1251 struct scsi_device *sdev)
1253 if (sdev->device_busy == 0 && sdev->device_blocked) {
1255 * unblock after device_blocked iterates to zero
1257 if (--sdev->device_blocked == 0) {
1258 SCSI_LOG_MLQUEUE(3,
1259 sdev_printk(KERN_INFO, sdev,
1260 "unblocking device at zero depth\n"));
1261 } else {
1262 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1263 return 0;
1266 if (scsi_device_is_busy(sdev))
1267 return 0;
1269 return 1;
1274 * scsi_target_queue_ready: checks if there we can send commands to target
1275 * @sdev: scsi device on starget to check.
1277 * Called with the host lock held.
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280 struct scsi_device *sdev)
1282 struct scsi_target *starget = scsi_target(sdev);
1284 if (starget->single_lun) {
1285 if (starget->starget_sdev_user &&
1286 starget->starget_sdev_user != sdev)
1287 return 0;
1288 starget->starget_sdev_user = sdev;
1291 if (starget->target_busy == 0 && starget->target_blocked) {
1293 * unblock after target_blocked iterates to zero
1295 if (--starget->target_blocked == 0) {
1296 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1297 "unblocking target at zero depth\n"));
1298 } else
1299 return 0;
1302 if (scsi_target_is_busy(starget)) {
1303 if (list_empty(&sdev->starved_entry))
1304 list_add_tail(&sdev->starved_entry,
1305 &shost->starved_list);
1306 return 0;
1309 /* We're OK to process the command, so we can't be starved */
1310 if (!list_empty(&sdev->starved_entry))
1311 list_del_init(&sdev->starved_entry);
1312 return 1;
1316 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317 * return 0. We must end up running the queue again whenever 0 is
1318 * returned, else IO can hang.
1320 * Called with host_lock held.
1322 static inline int scsi_host_queue_ready(struct request_queue *q,
1323 struct Scsi_Host *shost,
1324 struct scsi_device *sdev)
1326 if (scsi_host_in_recovery(shost))
1327 return 0;
1328 if (shost->host_busy == 0 && shost->host_blocked) {
1330 * unblock after host_blocked iterates to zero
1332 if (--shost->host_blocked == 0) {
1333 SCSI_LOG_MLQUEUE(3,
1334 printk("scsi%d unblocking host at zero depth\n",
1335 shost->host_no));
1336 } else {
1337 return 0;
1340 if (scsi_host_is_busy(shost)) {
1341 if (list_empty(&sdev->starved_entry))
1342 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1343 return 0;
1346 /* We're OK to process the command, so we can't be starved */
1347 if (!list_empty(&sdev->starved_entry))
1348 list_del_init(&sdev->starved_entry);
1350 return 1;
1354 * Busy state exporting function for request stacking drivers.
1356 * For efficiency, no lock is taken to check the busy state of
1357 * shost/starget/sdev, since the returned value is not guaranteed and
1358 * may be changed after request stacking drivers call the function,
1359 * regardless of taking lock or not.
1361 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1362 * (e.g. !sdev), scsi needs to return 'not busy'.
1363 * Otherwise, request stacking drivers may hold requests forever.
1365 static int scsi_lld_busy(struct request_queue *q)
1367 struct scsi_device *sdev = q->queuedata;
1368 struct Scsi_Host *shost;
1369 struct scsi_target *starget;
1371 if (!sdev)
1372 return 0;
1374 shost = sdev->host;
1375 starget = scsi_target(sdev);
1377 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1378 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1379 return 1;
1381 return 0;
1385 * Kill a request for a dead device
1387 static void scsi_kill_request(struct request *req, struct request_queue *q)
1389 struct scsi_cmnd *cmd = req->special;
1390 struct scsi_device *sdev;
1391 struct scsi_target *starget;
1392 struct Scsi_Host *shost;
1394 blk_start_request(req);
1396 sdev = cmd->device;
1397 starget = scsi_target(sdev);
1398 shost = sdev->host;
1399 scsi_init_cmd_errh(cmd);
1400 cmd->result = DID_NO_CONNECT << 16;
1401 atomic_inc(&cmd->device->iorequest_cnt);
1404 * SCSI request completion path will do scsi_device_unbusy(),
1405 * bump busy counts. To bump the counters, we need to dance
1406 * with the locks as normal issue path does.
1408 sdev->device_busy++;
1409 spin_unlock(sdev->request_queue->queue_lock);
1410 spin_lock(shost->host_lock);
1411 shost->host_busy++;
1412 starget->target_busy++;
1413 spin_unlock(shost->host_lock);
1414 spin_lock(sdev->request_queue->queue_lock);
1416 blk_complete_request(req);
1419 static void scsi_softirq_done(struct request *rq)
1421 struct scsi_cmnd *cmd = rq->special;
1422 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1423 int disposition;
1425 INIT_LIST_HEAD(&cmd->eh_entry);
1427 atomic_inc(&cmd->device->iodone_cnt);
1428 if (cmd->result)
1429 atomic_inc(&cmd->device->ioerr_cnt);
1431 disposition = scsi_decide_disposition(cmd);
1432 if (disposition != SUCCESS &&
1433 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1434 sdev_printk(KERN_ERR, cmd->device,
1435 "timing out command, waited %lus\n",
1436 wait_for/HZ);
1437 disposition = SUCCESS;
1440 scsi_log_completion(cmd, disposition);
1442 switch (disposition) {
1443 case SUCCESS:
1444 scsi_finish_command(cmd);
1445 break;
1446 case NEEDS_RETRY:
1447 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1448 break;
1449 case ADD_TO_MLQUEUE:
1450 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1451 break;
1452 default:
1453 if (!scsi_eh_scmd_add(cmd, 0))
1454 scsi_finish_command(cmd);
1459 * Function: scsi_request_fn()
1461 * Purpose: Main strategy routine for SCSI.
1463 * Arguments: q - Pointer to actual queue.
1465 * Returns: Nothing
1467 * Lock status: IO request lock assumed to be held when called.
1469 static void scsi_request_fn(struct request_queue *q)
1471 struct scsi_device *sdev = q->queuedata;
1472 struct Scsi_Host *shost;
1473 struct scsi_cmnd *cmd;
1474 struct request *req;
1476 if (!sdev) {
1477 printk("scsi: killing requests for dead queue\n");
1478 while ((req = blk_peek_request(q)) != NULL)
1479 scsi_kill_request(req, q);
1480 return;
1483 if(!get_device(&sdev->sdev_gendev))
1484 /* We must be tearing the block queue down already */
1485 return;
1488 * To start with, we keep looping until the queue is empty, or until
1489 * the host is no longer able to accept any more requests.
1491 shost = sdev->host;
1492 for (;;) {
1493 int rtn;
1495 * get next queueable request. We do this early to make sure
1496 * that the request is fully prepared even if we cannot
1497 * accept it.
1499 req = blk_peek_request(q);
1500 if (!req || !scsi_dev_queue_ready(q, sdev))
1501 break;
1503 if (unlikely(!scsi_device_online(sdev))) {
1504 sdev_printk(KERN_ERR, sdev,
1505 "rejecting I/O to offline device\n");
1506 scsi_kill_request(req, q);
1507 continue;
1512 * Remove the request from the request list.
1514 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1515 blk_start_request(req);
1516 sdev->device_busy++;
1518 spin_unlock(q->queue_lock);
1519 cmd = req->special;
1520 if (unlikely(cmd == NULL)) {
1521 printk(KERN_CRIT "impossible request in %s.\n"
1522 "please mail a stack trace to "
1523 "linux-scsi@vger.kernel.org\n",
1524 __func__);
1525 blk_dump_rq_flags(req, "foo");
1526 BUG();
1528 spin_lock(shost->host_lock);
1531 * We hit this when the driver is using a host wide
1532 * tag map. For device level tag maps the queue_depth check
1533 * in the device ready fn would prevent us from trying
1534 * to allocate a tag. Since the map is a shared host resource
1535 * we add the dev to the starved list so it eventually gets
1536 * a run when a tag is freed.
1538 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1539 if (list_empty(&sdev->starved_entry))
1540 list_add_tail(&sdev->starved_entry,
1541 &shost->starved_list);
1542 goto not_ready;
1545 if (!scsi_target_queue_ready(shost, sdev))
1546 goto not_ready;
1548 if (!scsi_host_queue_ready(q, shost, sdev))
1549 goto not_ready;
1551 scsi_target(sdev)->target_busy++;
1552 shost->host_busy++;
1555 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1556 * take the lock again.
1558 spin_unlock_irq(shost->host_lock);
1561 * Finally, initialize any error handling parameters, and set up
1562 * the timers for timeouts.
1564 scsi_init_cmd_errh(cmd);
1567 * Dispatch the command to the low-level driver.
1569 rtn = scsi_dispatch_cmd(cmd);
1570 spin_lock_irq(q->queue_lock);
1571 if (rtn)
1572 goto out_delay;
1575 goto out;
1577 not_ready:
1578 spin_unlock_irq(shost->host_lock);
1581 * lock q, handle tag, requeue req, and decrement device_busy. We
1582 * must return with queue_lock held.
1584 * Decrementing device_busy without checking it is OK, as all such
1585 * cases (host limits or settings) should run the queue at some
1586 * later time.
1588 spin_lock_irq(q->queue_lock);
1589 blk_requeue_request(q, req);
1590 sdev->device_busy--;
1591 out_delay:
1592 if (sdev->device_busy == 0)
1593 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1594 out:
1595 /* must be careful here...if we trigger the ->remove() function
1596 * we cannot be holding the q lock */
1597 spin_unlock_irq(q->queue_lock);
1598 put_device(&sdev->sdev_gendev);
1599 spin_lock_irq(q->queue_lock);
1602 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1604 struct device *host_dev;
1605 u64 bounce_limit = 0xffffffff;
1607 if (shost->unchecked_isa_dma)
1608 return BLK_BOUNCE_ISA;
1610 * Platforms with virtual-DMA translation
1611 * hardware have no practical limit.
1613 if (!PCI_DMA_BUS_IS_PHYS)
1614 return BLK_BOUNCE_ANY;
1616 host_dev = scsi_get_device(shost);
1617 if (host_dev && host_dev->dma_mask)
1618 bounce_limit = *host_dev->dma_mask;
1620 return bounce_limit;
1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1624 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1625 request_fn_proc *request_fn)
1627 struct request_queue *q;
1628 struct device *dev = shost->shost_gendev.parent;
1630 q = blk_init_queue(request_fn, NULL);
1631 if (!q)
1632 return NULL;
1635 * this limit is imposed by hardware restrictions
1637 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1638 SCSI_MAX_SG_CHAIN_SEGMENTS));
1640 if (scsi_host_prot_dma(shost)) {
1641 shost->sg_prot_tablesize =
1642 min_not_zero(shost->sg_prot_tablesize,
1643 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1644 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1645 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1648 blk_queue_max_hw_sectors(q, shost->max_sectors);
1649 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1650 blk_queue_segment_boundary(q, shost->dma_boundary);
1651 dma_set_seg_boundary(dev, shost->dma_boundary);
1653 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1655 if (!shost->use_clustering)
1656 q->limits.cluster = 0;
1659 * set a reasonable default alignment on word boundaries: the
1660 * host and device may alter it using
1661 * blk_queue_update_dma_alignment() later.
1663 blk_queue_dma_alignment(q, 0x03);
1665 return q;
1667 EXPORT_SYMBOL(__scsi_alloc_queue);
1669 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1671 struct request_queue *q;
1673 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1674 if (!q)
1675 return NULL;
1677 blk_queue_prep_rq(q, scsi_prep_fn);
1678 blk_queue_softirq_done(q, scsi_softirq_done);
1679 blk_queue_rq_timed_out(q, scsi_times_out);
1680 blk_queue_lld_busy(q, scsi_lld_busy);
1681 return q;
1684 void scsi_free_queue(struct request_queue *q)
1686 blk_cleanup_queue(q);
1690 * Function: scsi_block_requests()
1692 * Purpose: Utility function used by low-level drivers to prevent further
1693 * commands from being queued to the device.
1695 * Arguments: shost - Host in question
1697 * Returns: Nothing
1699 * Lock status: No locks are assumed held.
1701 * Notes: There is no timer nor any other means by which the requests
1702 * get unblocked other than the low-level driver calling
1703 * scsi_unblock_requests().
1705 void scsi_block_requests(struct Scsi_Host *shost)
1707 shost->host_self_blocked = 1;
1709 EXPORT_SYMBOL(scsi_block_requests);
1712 * Function: scsi_unblock_requests()
1714 * Purpose: Utility function used by low-level drivers to allow further
1715 * commands from being queued to the device.
1717 * Arguments: shost - Host in question
1719 * Returns: Nothing
1721 * Lock status: No locks are assumed held.
1723 * Notes: There is no timer nor any other means by which the requests
1724 * get unblocked other than the low-level driver calling
1725 * scsi_unblock_requests().
1727 * This is done as an API function so that changes to the
1728 * internals of the scsi mid-layer won't require wholesale
1729 * changes to drivers that use this feature.
1731 void scsi_unblock_requests(struct Scsi_Host *shost)
1733 shost->host_self_blocked = 0;
1734 scsi_run_host_queues(shost);
1736 EXPORT_SYMBOL(scsi_unblock_requests);
1738 int __init scsi_init_queue(void)
1740 int i;
1742 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1743 sizeof(struct scsi_data_buffer),
1744 0, 0, NULL);
1745 if (!scsi_sdb_cache) {
1746 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1747 return -ENOMEM;
1750 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1751 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1752 int size = sgp->size * sizeof(struct scatterlist);
1754 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1755 SLAB_HWCACHE_ALIGN, NULL);
1756 if (!sgp->slab) {
1757 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1758 sgp->name);
1759 goto cleanup_sdb;
1762 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1763 sgp->slab);
1764 if (!sgp->pool) {
1765 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1766 sgp->name);
1767 goto cleanup_sdb;
1771 return 0;
1773 cleanup_sdb:
1774 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1775 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1776 if (sgp->pool)
1777 mempool_destroy(sgp->pool);
1778 if (sgp->slab)
1779 kmem_cache_destroy(sgp->slab);
1781 kmem_cache_destroy(scsi_sdb_cache);
1783 return -ENOMEM;
1786 void scsi_exit_queue(void)
1788 int i;
1790 kmem_cache_destroy(scsi_sdb_cache);
1792 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1793 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1794 mempool_destroy(sgp->pool);
1795 kmem_cache_destroy(sgp->slab);
1800 * scsi_mode_select - issue a mode select
1801 * @sdev: SCSI device to be queried
1802 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1803 * @sp: Save page bit (0 == don't save, 1 == save)
1804 * @modepage: mode page being requested
1805 * @buffer: request buffer (may not be smaller than eight bytes)
1806 * @len: length of request buffer.
1807 * @timeout: command timeout
1808 * @retries: number of retries before failing
1809 * @data: returns a structure abstracting the mode header data
1810 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1811 * must be SCSI_SENSE_BUFFERSIZE big.
1813 * Returns zero if successful; negative error number or scsi
1814 * status on error
1818 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1819 unsigned char *buffer, int len, int timeout, int retries,
1820 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1822 unsigned char cmd[10];
1823 unsigned char *real_buffer;
1824 int ret;
1826 memset(cmd, 0, sizeof(cmd));
1827 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1829 if (sdev->use_10_for_ms) {
1830 if (len > 65535)
1831 return -EINVAL;
1832 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1833 if (!real_buffer)
1834 return -ENOMEM;
1835 memcpy(real_buffer + 8, buffer, len);
1836 len += 8;
1837 real_buffer[0] = 0;
1838 real_buffer[1] = 0;
1839 real_buffer[2] = data->medium_type;
1840 real_buffer[3] = data->device_specific;
1841 real_buffer[4] = data->longlba ? 0x01 : 0;
1842 real_buffer[5] = 0;
1843 real_buffer[6] = data->block_descriptor_length >> 8;
1844 real_buffer[7] = data->block_descriptor_length;
1846 cmd[0] = MODE_SELECT_10;
1847 cmd[7] = len >> 8;
1848 cmd[8] = len;
1849 } else {
1850 if (len > 255 || data->block_descriptor_length > 255 ||
1851 data->longlba)
1852 return -EINVAL;
1854 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1855 if (!real_buffer)
1856 return -ENOMEM;
1857 memcpy(real_buffer + 4, buffer, len);
1858 len += 4;
1859 real_buffer[0] = 0;
1860 real_buffer[1] = data->medium_type;
1861 real_buffer[2] = data->device_specific;
1862 real_buffer[3] = data->block_descriptor_length;
1865 cmd[0] = MODE_SELECT;
1866 cmd[4] = len;
1869 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1870 sshdr, timeout, retries, NULL);
1871 kfree(real_buffer);
1872 return ret;
1874 EXPORT_SYMBOL_GPL(scsi_mode_select);
1877 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1878 * @sdev: SCSI device to be queried
1879 * @dbd: set if mode sense will allow block descriptors to be returned
1880 * @modepage: mode page being requested
1881 * @buffer: request buffer (may not be smaller than eight bytes)
1882 * @len: length of request buffer.
1883 * @timeout: command timeout
1884 * @retries: number of retries before failing
1885 * @data: returns a structure abstracting the mode header data
1886 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1887 * must be SCSI_SENSE_BUFFERSIZE big.
1889 * Returns zero if unsuccessful, or the header offset (either 4
1890 * or 8 depending on whether a six or ten byte command was
1891 * issued) if successful.
1894 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1895 unsigned char *buffer, int len, int timeout, int retries,
1896 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1898 unsigned char cmd[12];
1899 int use_10_for_ms;
1900 int header_length;
1901 int result;
1902 struct scsi_sense_hdr my_sshdr;
1904 memset(data, 0, sizeof(*data));
1905 memset(&cmd[0], 0, 12);
1906 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1907 cmd[2] = modepage;
1909 /* caller might not be interested in sense, but we need it */
1910 if (!sshdr)
1911 sshdr = &my_sshdr;
1913 retry:
1914 use_10_for_ms = sdev->use_10_for_ms;
1916 if (use_10_for_ms) {
1917 if (len < 8)
1918 len = 8;
1920 cmd[0] = MODE_SENSE_10;
1921 cmd[8] = len;
1922 header_length = 8;
1923 } else {
1924 if (len < 4)
1925 len = 4;
1927 cmd[0] = MODE_SENSE;
1928 cmd[4] = len;
1929 header_length = 4;
1932 memset(buffer, 0, len);
1934 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1935 sshdr, timeout, retries, NULL);
1937 /* This code looks awful: what it's doing is making sure an
1938 * ILLEGAL REQUEST sense return identifies the actual command
1939 * byte as the problem. MODE_SENSE commands can return
1940 * ILLEGAL REQUEST if the code page isn't supported */
1942 if (use_10_for_ms && !scsi_status_is_good(result) &&
1943 (driver_byte(result) & DRIVER_SENSE)) {
1944 if (scsi_sense_valid(sshdr)) {
1945 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1946 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1948 * Invalid command operation code
1950 sdev->use_10_for_ms = 0;
1951 goto retry;
1956 if(scsi_status_is_good(result)) {
1957 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1958 (modepage == 6 || modepage == 8))) {
1959 /* Initio breakage? */
1960 header_length = 0;
1961 data->length = 13;
1962 data->medium_type = 0;
1963 data->device_specific = 0;
1964 data->longlba = 0;
1965 data->block_descriptor_length = 0;
1966 } else if(use_10_for_ms) {
1967 data->length = buffer[0]*256 + buffer[1] + 2;
1968 data->medium_type = buffer[2];
1969 data->device_specific = buffer[3];
1970 data->longlba = buffer[4] & 0x01;
1971 data->block_descriptor_length = buffer[6]*256
1972 + buffer[7];
1973 } else {
1974 data->length = buffer[0] + 1;
1975 data->medium_type = buffer[1];
1976 data->device_specific = buffer[2];
1977 data->block_descriptor_length = buffer[3];
1979 data->header_length = header_length;
1982 return result;
1984 EXPORT_SYMBOL(scsi_mode_sense);
1987 * scsi_test_unit_ready - test if unit is ready
1988 * @sdev: scsi device to change the state of.
1989 * @timeout: command timeout
1990 * @retries: number of retries before failing
1991 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1992 * returning sense. Make sure that this is cleared before passing
1993 * in.
1995 * Returns zero if unsuccessful or an error if TUR failed. For
1996 * removable media, UNIT_ATTENTION sets ->changed flag.
1999 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2000 struct scsi_sense_hdr *sshdr_external)
2002 char cmd[] = {
2003 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2005 struct scsi_sense_hdr *sshdr;
2006 int result;
2008 if (!sshdr_external)
2009 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2010 else
2011 sshdr = sshdr_external;
2013 /* try to eat the UNIT_ATTENTION if there are enough retries */
2014 do {
2015 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2016 timeout, retries, NULL);
2017 if (sdev->removable && scsi_sense_valid(sshdr) &&
2018 sshdr->sense_key == UNIT_ATTENTION)
2019 sdev->changed = 1;
2020 } while (scsi_sense_valid(sshdr) &&
2021 sshdr->sense_key == UNIT_ATTENTION && --retries);
2023 if (!sshdr_external)
2024 kfree(sshdr);
2025 return result;
2027 EXPORT_SYMBOL(scsi_test_unit_ready);
2030 * scsi_device_set_state - Take the given device through the device state model.
2031 * @sdev: scsi device to change the state of.
2032 * @state: state to change to.
2034 * Returns zero if unsuccessful or an error if the requested
2035 * transition is illegal.
2038 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2040 enum scsi_device_state oldstate = sdev->sdev_state;
2042 if (state == oldstate)
2043 return 0;
2045 switch (state) {
2046 case SDEV_CREATED:
2047 switch (oldstate) {
2048 case SDEV_CREATED_BLOCK:
2049 break;
2050 default:
2051 goto illegal;
2053 break;
2055 case SDEV_RUNNING:
2056 switch (oldstate) {
2057 case SDEV_CREATED:
2058 case SDEV_OFFLINE:
2059 case SDEV_QUIESCE:
2060 case SDEV_BLOCK:
2061 break;
2062 default:
2063 goto illegal;
2065 break;
2067 case SDEV_QUIESCE:
2068 switch (oldstate) {
2069 case SDEV_RUNNING:
2070 case SDEV_OFFLINE:
2071 break;
2072 default:
2073 goto illegal;
2075 break;
2077 case SDEV_OFFLINE:
2078 switch (oldstate) {
2079 case SDEV_CREATED:
2080 case SDEV_RUNNING:
2081 case SDEV_QUIESCE:
2082 case SDEV_BLOCK:
2083 break;
2084 default:
2085 goto illegal;
2087 break;
2089 case SDEV_BLOCK:
2090 switch (oldstate) {
2091 case SDEV_RUNNING:
2092 case SDEV_CREATED_BLOCK:
2093 break;
2094 default:
2095 goto illegal;
2097 break;
2099 case SDEV_CREATED_BLOCK:
2100 switch (oldstate) {
2101 case SDEV_CREATED:
2102 break;
2103 default:
2104 goto illegal;
2106 break;
2108 case SDEV_CANCEL:
2109 switch (oldstate) {
2110 case SDEV_CREATED:
2111 case SDEV_RUNNING:
2112 case SDEV_QUIESCE:
2113 case SDEV_OFFLINE:
2114 case SDEV_BLOCK:
2115 break;
2116 default:
2117 goto illegal;
2119 break;
2121 case SDEV_DEL:
2122 switch (oldstate) {
2123 case SDEV_CREATED:
2124 case SDEV_RUNNING:
2125 case SDEV_OFFLINE:
2126 case SDEV_CANCEL:
2127 break;
2128 default:
2129 goto illegal;
2131 break;
2134 sdev->sdev_state = state;
2135 return 0;
2137 illegal:
2138 SCSI_LOG_ERROR_RECOVERY(1,
2139 sdev_printk(KERN_ERR, sdev,
2140 "Illegal state transition %s->%s\n",
2141 scsi_device_state_name(oldstate),
2142 scsi_device_state_name(state))
2144 return -EINVAL;
2146 EXPORT_SYMBOL(scsi_device_set_state);
2149 * sdev_evt_emit - emit a single SCSI device uevent
2150 * @sdev: associated SCSI device
2151 * @evt: event to emit
2153 * Send a single uevent (scsi_event) to the associated scsi_device.
2155 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2157 int idx = 0;
2158 char *envp[3];
2160 switch (evt->evt_type) {
2161 case SDEV_EVT_MEDIA_CHANGE:
2162 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2163 break;
2165 default:
2166 /* do nothing */
2167 break;
2170 envp[idx++] = NULL;
2172 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2176 * sdev_evt_thread - send a uevent for each scsi event
2177 * @work: work struct for scsi_device
2179 * Dispatch queued events to their associated scsi_device kobjects
2180 * as uevents.
2182 void scsi_evt_thread(struct work_struct *work)
2184 struct scsi_device *sdev;
2185 LIST_HEAD(event_list);
2187 sdev = container_of(work, struct scsi_device, event_work);
2189 while (1) {
2190 struct scsi_event *evt;
2191 struct list_head *this, *tmp;
2192 unsigned long flags;
2194 spin_lock_irqsave(&sdev->list_lock, flags);
2195 list_splice_init(&sdev->event_list, &event_list);
2196 spin_unlock_irqrestore(&sdev->list_lock, flags);
2198 if (list_empty(&event_list))
2199 break;
2201 list_for_each_safe(this, tmp, &event_list) {
2202 evt = list_entry(this, struct scsi_event, node);
2203 list_del(&evt->node);
2204 scsi_evt_emit(sdev, evt);
2205 kfree(evt);
2211 * sdev_evt_send - send asserted event to uevent thread
2212 * @sdev: scsi_device event occurred on
2213 * @evt: event to send
2215 * Assert scsi device event asynchronously.
2217 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2219 unsigned long flags;
2221 #if 0
2222 /* FIXME: currently this check eliminates all media change events
2223 * for polled devices. Need to update to discriminate between AN
2224 * and polled events */
2225 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2226 kfree(evt);
2227 return;
2229 #endif
2231 spin_lock_irqsave(&sdev->list_lock, flags);
2232 list_add_tail(&evt->node, &sdev->event_list);
2233 schedule_work(&sdev->event_work);
2234 spin_unlock_irqrestore(&sdev->list_lock, flags);
2236 EXPORT_SYMBOL_GPL(sdev_evt_send);
2239 * sdev_evt_alloc - allocate a new scsi event
2240 * @evt_type: type of event to allocate
2241 * @gfpflags: GFP flags for allocation
2243 * Allocates and returns a new scsi_event.
2245 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2246 gfp_t gfpflags)
2248 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2249 if (!evt)
2250 return NULL;
2252 evt->evt_type = evt_type;
2253 INIT_LIST_HEAD(&evt->node);
2255 /* evt_type-specific initialization, if any */
2256 switch (evt_type) {
2257 case SDEV_EVT_MEDIA_CHANGE:
2258 default:
2259 /* do nothing */
2260 break;
2263 return evt;
2265 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2268 * sdev_evt_send_simple - send asserted event to uevent thread
2269 * @sdev: scsi_device event occurred on
2270 * @evt_type: type of event to send
2271 * @gfpflags: GFP flags for allocation
2273 * Assert scsi device event asynchronously, given an event type.
2275 void sdev_evt_send_simple(struct scsi_device *sdev,
2276 enum scsi_device_event evt_type, gfp_t gfpflags)
2278 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2279 if (!evt) {
2280 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2281 evt_type);
2282 return;
2285 sdev_evt_send(sdev, evt);
2287 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2290 * scsi_device_quiesce - Block user issued commands.
2291 * @sdev: scsi device to quiesce.
2293 * This works by trying to transition to the SDEV_QUIESCE state
2294 * (which must be a legal transition). When the device is in this
2295 * state, only special requests will be accepted, all others will
2296 * be deferred. Since special requests may also be requeued requests,
2297 * a successful return doesn't guarantee the device will be
2298 * totally quiescent.
2300 * Must be called with user context, may sleep.
2302 * Returns zero if unsuccessful or an error if not.
2305 scsi_device_quiesce(struct scsi_device *sdev)
2307 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2308 if (err)
2309 return err;
2311 scsi_run_queue(sdev->request_queue);
2312 while (sdev->device_busy) {
2313 msleep_interruptible(200);
2314 scsi_run_queue(sdev->request_queue);
2316 return 0;
2318 EXPORT_SYMBOL(scsi_device_quiesce);
2321 * scsi_device_resume - Restart user issued commands to a quiesced device.
2322 * @sdev: scsi device to resume.
2324 * Moves the device from quiesced back to running and restarts the
2325 * queues.
2327 * Must be called with user context, may sleep.
2329 void
2330 scsi_device_resume(struct scsi_device *sdev)
2332 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2333 return;
2334 scsi_run_queue(sdev->request_queue);
2336 EXPORT_SYMBOL(scsi_device_resume);
2338 static void
2339 device_quiesce_fn(struct scsi_device *sdev, void *data)
2341 scsi_device_quiesce(sdev);
2344 void
2345 scsi_target_quiesce(struct scsi_target *starget)
2347 starget_for_each_device(starget, NULL, device_quiesce_fn);
2349 EXPORT_SYMBOL(scsi_target_quiesce);
2351 static void
2352 device_resume_fn(struct scsi_device *sdev, void *data)
2354 scsi_device_resume(sdev);
2357 void
2358 scsi_target_resume(struct scsi_target *starget)
2360 starget_for_each_device(starget, NULL, device_resume_fn);
2362 EXPORT_SYMBOL(scsi_target_resume);
2365 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2366 * @sdev: device to block
2368 * Block request made by scsi lld's to temporarily stop all
2369 * scsi commands on the specified device. Called from interrupt
2370 * or normal process context.
2372 * Returns zero if successful or error if not
2374 * Notes:
2375 * This routine transitions the device to the SDEV_BLOCK state
2376 * (which must be a legal transition). When the device is in this
2377 * state, all commands are deferred until the scsi lld reenables
2378 * the device with scsi_device_unblock or device_block_tmo fires.
2379 * This routine assumes the host_lock is held on entry.
2382 scsi_internal_device_block(struct scsi_device *sdev)
2384 struct request_queue *q = sdev->request_queue;
2385 unsigned long flags;
2386 int err = 0;
2388 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2389 if (err) {
2390 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2392 if (err)
2393 return err;
2397 * The device has transitioned to SDEV_BLOCK. Stop the
2398 * block layer from calling the midlayer with this device's
2399 * request queue.
2401 spin_lock_irqsave(q->queue_lock, flags);
2402 blk_stop_queue(q);
2403 spin_unlock_irqrestore(q->queue_lock, flags);
2405 return 0;
2407 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2410 * scsi_internal_device_unblock - resume a device after a block request
2411 * @sdev: device to resume
2413 * Called by scsi lld's or the midlayer to restart the device queue
2414 * for the previously suspended scsi device. Called from interrupt or
2415 * normal process context.
2417 * Returns zero if successful or error if not.
2419 * Notes:
2420 * This routine transitions the device to the SDEV_RUNNING state
2421 * (which must be a legal transition) allowing the midlayer to
2422 * goose the queue for this device. This routine assumes the
2423 * host_lock is held upon entry.
2426 scsi_internal_device_unblock(struct scsi_device *sdev)
2428 struct request_queue *q = sdev->request_queue;
2429 unsigned long flags;
2432 * Try to transition the scsi device to SDEV_RUNNING
2433 * and goose the device queue if successful.
2435 if (sdev->sdev_state == SDEV_BLOCK)
2436 sdev->sdev_state = SDEV_RUNNING;
2437 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2438 sdev->sdev_state = SDEV_CREATED;
2439 else if (sdev->sdev_state != SDEV_CANCEL &&
2440 sdev->sdev_state != SDEV_OFFLINE)
2441 return -EINVAL;
2443 spin_lock_irqsave(q->queue_lock, flags);
2444 blk_start_queue(q);
2445 spin_unlock_irqrestore(q->queue_lock, flags);
2447 return 0;
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2451 static void
2452 device_block(struct scsi_device *sdev, void *data)
2454 scsi_internal_device_block(sdev);
2457 static int
2458 target_block(struct device *dev, void *data)
2460 if (scsi_is_target_device(dev))
2461 starget_for_each_device(to_scsi_target(dev), NULL,
2462 device_block);
2463 return 0;
2466 void
2467 scsi_target_block(struct device *dev)
2469 if (scsi_is_target_device(dev))
2470 starget_for_each_device(to_scsi_target(dev), NULL,
2471 device_block);
2472 else
2473 device_for_each_child(dev, NULL, target_block);
2475 EXPORT_SYMBOL_GPL(scsi_target_block);
2477 static void
2478 device_unblock(struct scsi_device *sdev, void *data)
2480 scsi_internal_device_unblock(sdev);
2483 static int
2484 target_unblock(struct device *dev, void *data)
2486 if (scsi_is_target_device(dev))
2487 starget_for_each_device(to_scsi_target(dev), NULL,
2488 device_unblock);
2489 return 0;
2492 void
2493 scsi_target_unblock(struct device *dev)
2495 if (scsi_is_target_device(dev))
2496 starget_for_each_device(to_scsi_target(dev), NULL,
2497 device_unblock);
2498 else
2499 device_for_each_child(dev, NULL, target_unblock);
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2504 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505 * @sgl: scatter-gather list
2506 * @sg_count: number of segments in sg
2507 * @offset: offset in bytes into sg, on return offset into the mapped area
2508 * @len: bytes to map, on return number of bytes mapped
2510 * Returns virtual address of the start of the mapped page
2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513 size_t *offset, size_t *len)
2515 int i;
2516 size_t sg_len = 0, len_complete = 0;
2517 struct scatterlist *sg;
2518 struct page *page;
2520 WARN_ON(!irqs_disabled());
2522 for_each_sg(sgl, sg, sg_count, i) {
2523 len_complete = sg_len; /* Complete sg-entries */
2524 sg_len += sg->length;
2525 if (sg_len > *offset)
2526 break;
2529 if (unlikely(i == sg_count)) {
2530 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531 "elements %d\n",
2532 __func__, sg_len, *offset, sg_count);
2533 WARN_ON(1);
2534 return NULL;
2537 /* Offset starting from the beginning of first page in this sg-entry */
2538 *offset = *offset - len_complete + sg->offset;
2540 /* Assumption: contiguous pages can be accessed as "page + i" */
2541 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542 *offset &= ~PAGE_MASK;
2544 /* Bytes in this sg-entry from *offset to the end of the page */
2545 sg_len = PAGE_SIZE - *offset;
2546 if (*len > sg_len)
2547 *len = sg_len;
2549 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2554 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555 * @virt: virtual address to be unmapped
2557 void scsi_kunmap_atomic_sg(void *virt)
2559 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);