[PATCH] Kprobes: preempt_disable/enable() simplification
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / kernel / kprobes.c
blob96bd09b098f431876c87778594983f0bf514f85d
1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/config.h>
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <asm/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
13 /* We do not have hardware single-stepping on sparc64.
14 * So we implement software single-stepping with breakpoint
15 * traps. The top-level scheme is similar to that used
16 * in the x86 kprobes implementation.
18 * In the kprobe->ainsn.insn[] array we store the original
19 * instruction at index zero and a break instruction at
20 * index one.
22 * When we hit a kprobe we:
23 * - Run the pre-handler
24 * - Remember "regs->tnpc" and interrupt level stored in
25 * "regs->tstate" so we can restore them later
26 * - Disable PIL interrupts
27 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
28 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
29 * - Mark that we are actively in a kprobe
31 * At this point we wait for the second breakpoint at
32 * kprobe->ainsn.insn[1] to hit. When it does we:
33 * - Run the post-handler
34 * - Set regs->tpc to "remembered" regs->tnpc stored above,
35 * restore the PIL interrupt level in "regs->tstate" as well
36 * - Make any adjustments necessary to regs->tnpc in order
37 * to handle relative branches correctly. See below.
38 * - Mark that we are no longer actively in a kprobe.
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 int __kprobes arch_prepare_kprobe(struct kprobe *p)
46 return 0;
49 void __kprobes arch_copy_kprobe(struct kprobe *p)
51 p->ainsn.insn[0] = *p->addr;
52 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
53 p->opcode = *p->addr;
56 void __kprobes arch_arm_kprobe(struct kprobe *p)
58 *p->addr = BREAKPOINT_INSTRUCTION;
59 flushi(p->addr);
62 void __kprobes arch_disarm_kprobe(struct kprobe *p)
64 *p->addr = p->opcode;
65 flushi(p->addr);
68 void __kprobes arch_remove_kprobe(struct kprobe *p)
72 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
74 kcb->prev_kprobe.kp = kprobe_running();
75 kcb->prev_kprobe.status = kcb->kprobe_status;
76 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
77 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
80 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
82 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
83 kcb->kprobe_status = kcb->prev_kprobe.status;
84 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
85 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
88 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
89 struct kprobe_ctlblk *kcb)
91 __get_cpu_var(current_kprobe) = p;
92 kcb->kprobe_orig_tnpc = regs->tnpc;
93 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
96 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
97 struct kprobe_ctlblk *kcb)
99 regs->tstate |= TSTATE_PIL;
101 /*single step inline, if it a breakpoint instruction*/
102 if (p->opcode == BREAKPOINT_INSTRUCTION) {
103 regs->tpc = (unsigned long) p->addr;
104 regs->tnpc = kcb->kprobe_orig_tnpc;
105 } else {
106 regs->tpc = (unsigned long) &p->ainsn.insn[0];
107 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
111 static int __kprobes kprobe_handler(struct pt_regs *regs)
113 struct kprobe *p;
114 void *addr = (void *) regs->tpc;
115 int ret = 0;
116 struct kprobe_ctlblk *kcb;
119 * We don't want to be preempted for the entire
120 * duration of kprobe processing
122 preempt_disable();
123 kcb = get_kprobe_ctlblk();
125 if (kprobe_running()) {
126 p = get_kprobe(addr);
127 if (p) {
128 if (kcb->kprobe_status == KPROBE_HIT_SS) {
129 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
130 kcb->kprobe_orig_tstate_pil);
131 goto no_kprobe;
133 /* We have reentered the kprobe_handler(), since
134 * another probe was hit while within the handler.
135 * We here save the original kprobes variables and
136 * just single step on the instruction of the new probe
137 * without calling any user handlers.
139 save_previous_kprobe(kcb);
140 set_current_kprobe(p, regs, kcb);
141 p->nmissed++;
142 kcb->kprobe_status = KPROBE_REENTER;
143 prepare_singlestep(p, regs, kcb);
144 return 1;
145 } else {
146 p = __get_cpu_var(current_kprobe);
147 if (p->break_handler && p->break_handler(p, regs))
148 goto ss_probe;
150 goto no_kprobe;
153 p = get_kprobe(addr);
154 if (!p) {
155 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
157 * The breakpoint instruction was removed right
158 * after we hit it. Another cpu has removed
159 * either a probepoint or a debugger breakpoint
160 * at this address. In either case, no further
161 * handling of this interrupt is appropriate.
163 ret = 1;
165 /* Not one of ours: let kernel handle it */
166 goto no_kprobe;
169 set_current_kprobe(p, regs, kcb);
170 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
171 if (p->pre_handler && p->pre_handler(p, regs))
172 return 1;
174 ss_probe:
175 prepare_singlestep(p, regs, kcb);
176 kcb->kprobe_status = KPROBE_HIT_SS;
177 return 1;
179 no_kprobe:
180 preempt_enable_no_resched();
181 return ret;
184 /* If INSN is a relative control transfer instruction,
185 * return the corrected branch destination value.
187 * The original INSN location was REAL_PC, it actually
188 * executed at PC and produced destination address NPC.
190 static unsigned long __kprobes relbranch_fixup(u32 insn, unsigned long real_pc,
191 unsigned long pc,
192 unsigned long npc)
194 /* Branch not taken, no mods necessary. */
195 if (npc == pc + 0x4UL)
196 return real_pc + 0x4UL;
198 /* The three cases are call, branch w/prediction,
199 * and traditional branch.
201 if ((insn & 0xc0000000) == 0x40000000 ||
202 (insn & 0xc1c00000) == 0x00400000 ||
203 (insn & 0xc1c00000) == 0x00800000) {
204 /* The instruction did all the work for us
205 * already, just apply the offset to the correct
206 * instruction location.
208 return (real_pc + (npc - pc));
211 return real_pc + 0x4UL;
214 /* If INSN is an instruction which writes it's PC location
215 * into a destination register, fix that up.
217 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
218 unsigned long real_pc)
220 unsigned long *slot = NULL;
222 /* Simplest cast is call, which always uses %o7 */
223 if ((insn & 0xc0000000) == 0x40000000) {
224 slot = &regs->u_regs[UREG_I7];
227 /* Jmpl encodes the register inside of the opcode */
228 if ((insn & 0xc1f80000) == 0x81c00000) {
229 unsigned long rd = ((insn >> 25) & 0x1f);
231 if (rd <= 15) {
232 slot = &regs->u_regs[rd];
233 } else {
234 /* Hard case, it goes onto the stack. */
235 flushw_all();
237 rd -= 16;
238 slot = (unsigned long *)
239 (regs->u_regs[UREG_FP] + STACK_BIAS);
240 slot += rd;
243 if (slot != NULL)
244 *slot = real_pc;
248 * Called after single-stepping. p->addr is the address of the
249 * instruction whose first byte has been replaced by the breakpoint
250 * instruction. To avoid the SMP problems that can occur when we
251 * temporarily put back the original opcode to single-step, we
252 * single-stepped a copy of the instruction. The address of this
253 * copy is p->ainsn.insn.
255 * This function prepares to return from the post-single-step
256 * breakpoint trap.
258 static void __kprobes resume_execution(struct kprobe *p,
259 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
261 u32 insn = p->ainsn.insn[0];
263 regs->tpc = kcb->kprobe_orig_tnpc;
264 regs->tnpc = relbranch_fixup(insn,
265 (unsigned long) p->addr,
266 (unsigned long) &p->ainsn.insn[0],
267 regs->tnpc);
268 retpc_fixup(regs, insn, (unsigned long) p->addr);
270 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
271 kcb->kprobe_orig_tstate_pil);
274 static inline int post_kprobe_handler(struct pt_regs *regs)
276 struct kprobe *cur = kprobe_running();
277 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
279 if (!cur)
280 return 0;
282 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
283 kcb->kprobe_status = KPROBE_HIT_SSDONE;
284 cur->post_handler(cur, regs, 0);
287 resume_execution(cur, regs, kcb);
289 /*Restore back the original saved kprobes variables and continue. */
290 if (kcb->kprobe_status == KPROBE_REENTER) {
291 restore_previous_kprobe(kcb);
292 goto out;
294 reset_current_kprobe();
295 out:
296 preempt_enable_no_resched();
298 return 1;
301 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
303 struct kprobe *cur = kprobe_running();
304 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
306 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
307 return 1;
309 if (kcb->kprobe_status & KPROBE_HIT_SS) {
310 resume_execution(cur, regs, kcb);
312 reset_current_kprobe();
313 preempt_enable_no_resched();
315 return 0;
319 * Wrapper routine to for handling exceptions.
321 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
322 unsigned long val, void *data)
324 struct die_args *args = (struct die_args *)data;
325 int ret = NOTIFY_DONE;
327 switch (val) {
328 case DIE_DEBUG:
329 if (kprobe_handler(args->regs))
330 ret = NOTIFY_STOP;
331 break;
332 case DIE_DEBUG_2:
333 if (post_kprobe_handler(args->regs))
334 ret = NOTIFY_STOP;
335 break;
336 case DIE_GPF:
337 case DIE_PAGE_FAULT:
338 /* kprobe_running() needs smp_processor_id() */
339 preempt_disable();
340 if (kprobe_running() &&
341 kprobe_fault_handler(args->regs, args->trapnr))
342 ret = NOTIFY_STOP;
343 preempt_enable();
344 break;
345 default:
346 break;
348 return ret;
351 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
352 struct pt_regs *regs)
354 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
356 if (user_mode(regs)) {
357 local_irq_enable();
358 bad_trap(regs, trap_level);
359 return;
362 /* trap_level == 0x170 --> ta 0x70
363 * trap_level == 0x171 --> ta 0x71
365 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
366 (trap_level == 0x170) ? "debug" : "debug_2",
367 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
368 bad_trap(regs, trap_level);
371 /* Jprobes support. */
372 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
374 struct jprobe *jp = container_of(p, struct jprobe, kp);
375 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 kcb->jprobe_saved_regs_location = regs;
378 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
380 /* Save a whole stack frame, this gets arguments
381 * pushed onto the stack after using up all the
382 * arg registers.
384 memcpy(&(kcb->jprobe_saved_stack),
385 (char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
386 sizeof(kcb->jprobe_saved_stack));
388 regs->tpc = (unsigned long) jp->entry;
389 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
390 regs->tstate |= TSTATE_PIL;
392 return 1;
395 void __kprobes jprobe_return(void)
397 __asm__ __volatile__(
398 ".globl jprobe_return_trap_instruction\n"
399 "jprobe_return_trap_instruction:\n\t"
400 "ta 0x70");
403 extern void jprobe_return_trap_instruction(void);
405 extern void __show_regs(struct pt_regs * regs);
407 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
409 u32 *addr = (u32 *) regs->tpc;
410 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
412 if (addr == (u32 *) jprobe_return_trap_instruction) {
413 if (kcb->jprobe_saved_regs_location != regs) {
414 printk("JPROBE: Current regs (%p) does not match "
415 "saved regs (%p).\n",
416 regs, kcb->jprobe_saved_regs_location);
417 printk("JPROBE: Saved registers\n");
418 __show_regs(kcb->jprobe_saved_regs_location);
419 printk("JPROBE: Current registers\n");
420 __show_regs(regs);
421 BUG();
423 /* Restore old register state. Do pt_regs
424 * first so that UREG_FP is the original one for
425 * the stack frame restore.
427 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
429 memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
430 &(kcb->jprobe_saved_stack),
431 sizeof(kcb->jprobe_saved_stack));
433 preempt_enable_no_resched();
434 return 1;
436 return 0;
439 /* architecture specific initialization */
440 int arch_init_kprobes(void)
442 return 0;