[ALSA] Remove xxx_t typedefs: ARM PXA2xx
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / lib / swiotlb.c
blob1ff8dcebf7c6edf33abb7eb2583d5b6eab37ce29
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is for IA-64 and EM64T platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
28 #include <asm/io.h>
29 #include <asm/dma.h>
30 #include <asm/scatterlist.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
35 #define OFFSET(val,align) ((unsigned long) \
36 ( (val) & ( (align) - 1)))
38 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
39 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
42 * Maximum allowable number of contiguous slabs to map,
43 * must be a power of 2. What is the appropriate value ?
44 * The complexity of {map,unmap}_single is linearly dependent on this value.
46 #define IO_TLB_SEGSIZE 128
49 * log of the size of each IO TLB slab. The number of slabs is command line
50 * controllable.
52 #define IO_TLB_SHIFT 11
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
64 * Enumeration for sync targets
66 enum dma_sync_target {
67 SYNC_FOR_CPU = 0,
68 SYNC_FOR_DEVICE = 1,
71 int swiotlb_force;
74 * Used to do a quick range check in swiotlb_unmap_single and
75 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
76 * API.
78 static char *io_tlb_start, *io_tlb_end;
81 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
82 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
84 static unsigned long io_tlb_nslabs;
87 * When the IOMMU overflows we return a fallback buffer. This sets the size.
89 static unsigned long io_tlb_overflow = 32*1024;
91 void *io_tlb_overflow_buffer;
94 * This is a free list describing the number of free entries available from
95 * each index
97 static unsigned int *io_tlb_list;
98 static unsigned int io_tlb_index;
101 * We need to save away the original address corresponding to a mapped entry
102 * for the sync operations.
104 static unsigned char **io_tlb_orig_addr;
107 * Protect the above data structures in the map and unmap calls
109 static DEFINE_SPINLOCK(io_tlb_lock);
111 static int __init
112 setup_io_tlb_npages(char *str)
114 if (isdigit(*str)) {
115 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
119 if (*str == ',')
120 ++str;
121 if (!strcmp(str, "force"))
122 swiotlb_force = 1;
123 return 1;
125 __setup("swiotlb=", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
129 * Statically reserve bounce buffer space and initialize bounce buffer data
130 * structures for the software IO TLB used to implement the DMA API.
132 void
133 swiotlb_init_with_default_size (size_t default_size)
135 unsigned long i;
137 if (!io_tlb_nslabs) {
138 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
139 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
143 * Get IO TLB memory from the low pages
145 io_tlb_start = alloc_bootmem_low_pages_limit(io_tlb_nslabs *
146 (1 << IO_TLB_SHIFT), 0x100000000);
147 if (!io_tlb_start)
148 panic("Cannot allocate SWIOTLB buffer");
149 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
152 * Allocate and initialize the free list array. This array is used
153 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
154 * between io_tlb_start and io_tlb_end.
156 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
157 for (i = 0; i < io_tlb_nslabs; i++)
158 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
159 io_tlb_index = 0;
160 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
163 * Get the overflow emergency buffer
165 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
166 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
167 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
170 void
171 swiotlb_init (void)
173 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
177 * Systems with larger DMA zones (those that don't support ISA) can
178 * initialize the swiotlb later using the slab allocator if needed.
179 * This should be just like above, but with some error catching.
182 swiotlb_late_init_with_default_size (size_t default_size)
184 unsigned long i, req_nslabs = io_tlb_nslabs;
185 unsigned int order;
187 if (!io_tlb_nslabs) {
188 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
189 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
193 * Get IO TLB memory from the low pages
195 order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
196 io_tlb_nslabs = SLABS_PER_PAGE << order;
198 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
199 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
200 order);
201 if (io_tlb_start)
202 break;
203 order--;
206 if (!io_tlb_start)
207 goto cleanup1;
209 if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
210 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
211 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
212 io_tlb_nslabs = SLABS_PER_PAGE << order;
214 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
215 memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
218 * Allocate and initialize the free list array. This array is used
219 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
220 * between io_tlb_start and io_tlb_end.
222 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
223 get_order(io_tlb_nslabs * sizeof(int)));
224 if (!io_tlb_list)
225 goto cleanup2;
227 for (i = 0; i < io_tlb_nslabs; i++)
228 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
229 io_tlb_index = 0;
231 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
232 get_order(io_tlb_nslabs * sizeof(char *)));
233 if (!io_tlb_orig_addr)
234 goto cleanup3;
236 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
239 * Get the overflow emergency buffer
241 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
242 get_order(io_tlb_overflow));
243 if (!io_tlb_overflow_buffer)
244 goto cleanup4;
246 printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
247 "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
248 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
250 return 0;
252 cleanup4:
253 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
254 sizeof(char *)));
255 io_tlb_orig_addr = NULL;
256 cleanup3:
257 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
258 sizeof(int)));
259 io_tlb_list = NULL;
260 io_tlb_end = NULL;
261 cleanup2:
262 free_pages((unsigned long)io_tlb_start, order);
263 io_tlb_start = NULL;
264 cleanup1:
265 io_tlb_nslabs = req_nslabs;
266 return -ENOMEM;
269 static inline int
270 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
272 dma_addr_t mask = 0xffffffff;
273 /* If the device has a mask, use it, otherwise default to 32 bits */
274 if (hwdev && hwdev->dma_mask)
275 mask = *hwdev->dma_mask;
276 return (addr & ~mask) != 0;
280 * Allocates bounce buffer and returns its kernel virtual address.
282 static void *
283 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
285 unsigned long flags;
286 char *dma_addr;
287 unsigned int nslots, stride, index, wrap;
288 int i;
291 * For mappings greater than a page, we limit the stride (and
292 * hence alignment) to a page size.
294 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
295 if (size > PAGE_SIZE)
296 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
297 else
298 stride = 1;
300 if (!nslots)
301 BUG();
304 * Find suitable number of IO TLB entries size that will fit this
305 * request and allocate a buffer from that IO TLB pool.
307 spin_lock_irqsave(&io_tlb_lock, flags);
309 wrap = index = ALIGN(io_tlb_index, stride);
311 if (index >= io_tlb_nslabs)
312 wrap = index = 0;
314 do {
316 * If we find a slot that indicates we have 'nslots'
317 * number of contiguous buffers, we allocate the
318 * buffers from that slot and mark the entries as '0'
319 * indicating unavailable.
321 if (io_tlb_list[index] >= nslots) {
322 int count = 0;
324 for (i = index; i < (int) (index + nslots); i++)
325 io_tlb_list[i] = 0;
326 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
327 io_tlb_list[i] = ++count;
328 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
331 * Update the indices to avoid searching in
332 * the next round.
334 io_tlb_index = ((index + nslots) < io_tlb_nslabs
335 ? (index + nslots) : 0);
337 goto found;
339 index += stride;
340 if (index >= io_tlb_nslabs)
341 index = 0;
342 } while (index != wrap);
344 spin_unlock_irqrestore(&io_tlb_lock, flags);
345 return NULL;
347 found:
348 spin_unlock_irqrestore(&io_tlb_lock, flags);
351 * Save away the mapping from the original address to the DMA address.
352 * This is needed when we sync the memory. Then we sync the buffer if
353 * needed.
355 io_tlb_orig_addr[index] = buffer;
356 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
357 memcpy(dma_addr, buffer, size);
359 return dma_addr;
363 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
365 static void
366 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
368 unsigned long flags;
369 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
370 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
371 char *buffer = io_tlb_orig_addr[index];
374 * First, sync the memory before unmapping the entry
376 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
378 * bounce... copy the data back into the original buffer * and
379 * delete the bounce buffer.
381 memcpy(buffer, dma_addr, size);
384 * Return the buffer to the free list by setting the corresponding
385 * entries to indicate the number of contigous entries available.
386 * While returning the entries to the free list, we merge the entries
387 * with slots below and above the pool being returned.
389 spin_lock_irqsave(&io_tlb_lock, flags);
391 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
392 io_tlb_list[index + nslots] : 0);
394 * Step 1: return the slots to the free list, merging the
395 * slots with superceeding slots
397 for (i = index + nslots - 1; i >= index; i--)
398 io_tlb_list[i] = ++count;
400 * Step 2: merge the returned slots with the preceding slots,
401 * if available (non zero)
403 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
404 io_tlb_list[i] = ++count;
406 spin_unlock_irqrestore(&io_tlb_lock, flags);
409 static void
410 sync_single(struct device *hwdev, char *dma_addr, size_t size,
411 int dir, int target)
413 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
414 char *buffer = io_tlb_orig_addr[index];
416 switch (target) {
417 case SYNC_FOR_CPU:
418 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
419 memcpy(buffer, dma_addr, size);
420 else if (dir != DMA_TO_DEVICE)
421 BUG();
422 break;
423 case SYNC_FOR_DEVICE:
424 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
425 memcpy(dma_addr, buffer, size);
426 else if (dir != DMA_FROM_DEVICE)
427 BUG();
428 break;
429 default:
430 BUG();
434 void *
435 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
436 dma_addr_t *dma_handle, gfp_t flags)
438 unsigned long dev_addr;
439 void *ret;
440 int order = get_order(size);
443 * XXX fix me: the DMA API should pass us an explicit DMA mask
444 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
445 * bit range instead of a 16MB one).
447 flags |= GFP_DMA;
449 ret = (void *)__get_free_pages(flags, order);
450 if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
452 * The allocated memory isn't reachable by the device.
453 * Fall back on swiotlb_map_single().
455 free_pages((unsigned long) ret, order);
456 ret = NULL;
458 if (!ret) {
460 * We are either out of memory or the device can't DMA
461 * to GFP_DMA memory; fall back on
462 * swiotlb_map_single(), which will grab memory from
463 * the lowest available address range.
465 dma_addr_t handle;
466 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
467 if (dma_mapping_error(handle))
468 return NULL;
470 ret = phys_to_virt(handle);
473 memset(ret, 0, size);
474 dev_addr = virt_to_phys(ret);
476 /* Confirm address can be DMA'd by device */
477 if (address_needs_mapping(hwdev, dev_addr)) {
478 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
479 (unsigned long long)*hwdev->dma_mask, dev_addr);
480 panic("swiotlb_alloc_coherent: allocated memory is out of "
481 "range for device");
483 *dma_handle = dev_addr;
484 return ret;
487 void
488 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
489 dma_addr_t dma_handle)
491 if (!(vaddr >= (void *)io_tlb_start
492 && vaddr < (void *)io_tlb_end))
493 free_pages((unsigned long) vaddr, get_order(size));
494 else
495 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
496 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
499 static void
500 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
503 * Ran out of IOMMU space for this operation. This is very bad.
504 * Unfortunately the drivers cannot handle this operation properly.
505 * unless they check for dma_mapping_error (most don't)
506 * When the mapping is small enough return a static buffer to limit
507 * the damage, or panic when the transfer is too big.
509 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
510 "device %s\n", size, dev ? dev->bus_id : "?");
512 if (size > io_tlb_overflow && do_panic) {
513 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
514 panic("DMA: Memory would be corrupted\n");
515 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
516 panic("DMA: Random memory would be DMAed\n");
521 * Map a single buffer of the indicated size for DMA in streaming mode. The
522 * physical address to use is returned.
524 * Once the device is given the dma address, the device owns this memory until
525 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
527 dma_addr_t
528 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
530 unsigned long dev_addr = virt_to_phys(ptr);
531 void *map;
533 if (dir == DMA_NONE)
534 BUG();
536 * If the pointer passed in happens to be in the device's DMA window,
537 * we can safely return the device addr and not worry about bounce
538 * buffering it.
540 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
541 return dev_addr;
544 * Oh well, have to allocate and map a bounce buffer.
546 map = map_single(hwdev, ptr, size, dir);
547 if (!map) {
548 swiotlb_full(hwdev, size, dir, 1);
549 map = io_tlb_overflow_buffer;
552 dev_addr = virt_to_phys(map);
555 * Ensure that the address returned is DMA'ble
557 if (address_needs_mapping(hwdev, dev_addr))
558 panic("map_single: bounce buffer is not DMA'ble");
560 return dev_addr;
564 * Since DMA is i-cache coherent, any (complete) pages that were written via
565 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
566 * flush them when they get mapped into an executable vm-area.
568 static void
569 mark_clean(void *addr, size_t size)
571 unsigned long pg_addr, end;
573 pg_addr = PAGE_ALIGN((unsigned long) addr);
574 end = (unsigned long) addr + size;
575 while (pg_addr + PAGE_SIZE <= end) {
576 struct page *page = virt_to_page(pg_addr);
577 set_bit(PG_arch_1, &page->flags);
578 pg_addr += PAGE_SIZE;
583 * Unmap a single streaming mode DMA translation. The dma_addr and size must
584 * match what was provided for in a previous swiotlb_map_single call. All
585 * other usages are undefined.
587 * After this call, reads by the cpu to the buffer are guaranteed to see
588 * whatever the device wrote there.
590 void
591 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
592 int dir)
594 char *dma_addr = phys_to_virt(dev_addr);
596 if (dir == DMA_NONE)
597 BUG();
598 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
599 unmap_single(hwdev, dma_addr, size, dir);
600 else if (dir == DMA_FROM_DEVICE)
601 mark_clean(dma_addr, size);
605 * Make physical memory consistent for a single streaming mode DMA translation
606 * after a transfer.
608 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
609 * using the cpu, yet do not wish to teardown the dma mapping, you must
610 * call this function before doing so. At the next point you give the dma
611 * address back to the card, you must first perform a
612 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
614 static inline void
615 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
616 size_t size, int dir, int target)
618 char *dma_addr = phys_to_virt(dev_addr);
620 if (dir == DMA_NONE)
621 BUG();
622 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
623 sync_single(hwdev, dma_addr, size, dir, target);
624 else if (dir == DMA_FROM_DEVICE)
625 mark_clean(dma_addr, size);
628 void
629 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
630 size_t size, int dir)
632 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
635 void
636 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
637 size_t size, int dir)
639 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
643 * Same as above, but for a sub-range of the mapping.
645 static inline void
646 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
647 unsigned long offset, size_t size,
648 int dir, int target)
650 char *dma_addr = phys_to_virt(dev_addr) + offset;
652 if (dir == DMA_NONE)
653 BUG();
654 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
655 sync_single(hwdev, dma_addr, size, dir, target);
656 else if (dir == DMA_FROM_DEVICE)
657 mark_clean(dma_addr, size);
660 void
661 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
662 unsigned long offset, size_t size, int dir)
664 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
665 SYNC_FOR_CPU);
668 void
669 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
670 unsigned long offset, size_t size, int dir)
672 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
673 SYNC_FOR_DEVICE);
677 * Map a set of buffers described by scatterlist in streaming mode for DMA.
678 * This is the scatter-gather version of the above swiotlb_map_single
679 * interface. Here the scatter gather list elements are each tagged with the
680 * appropriate dma address and length. They are obtained via
681 * sg_dma_{address,length}(SG).
683 * NOTE: An implementation may be able to use a smaller number of
684 * DMA address/length pairs than there are SG table elements.
685 * (for example via virtual mapping capabilities)
686 * The routine returns the number of addr/length pairs actually
687 * used, at most nents.
689 * Device ownership issues as mentioned above for swiotlb_map_single are the
690 * same here.
693 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
694 int dir)
696 void *addr;
697 unsigned long dev_addr;
698 int i;
700 if (dir == DMA_NONE)
701 BUG();
703 for (i = 0; i < nelems; i++, sg++) {
704 addr = SG_ENT_VIRT_ADDRESS(sg);
705 dev_addr = virt_to_phys(addr);
706 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
707 void *map = map_single(hwdev, addr, sg->length, dir);
708 sg->dma_address = virt_to_bus(map);
709 if (!map) {
710 /* Don't panic here, we expect map_sg users
711 to do proper error handling. */
712 swiotlb_full(hwdev, sg->length, dir, 0);
713 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
714 sg[0].dma_length = 0;
715 return 0;
717 } else
718 sg->dma_address = dev_addr;
719 sg->dma_length = sg->length;
721 return nelems;
725 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
726 * concerning calls here are the same as for swiotlb_unmap_single() above.
728 void
729 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
730 int dir)
732 int i;
734 if (dir == DMA_NONE)
735 BUG();
737 for (i = 0; i < nelems; i++, sg++)
738 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
739 unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
740 else if (dir == DMA_FROM_DEVICE)
741 mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
745 * Make physical memory consistent for a set of streaming mode DMA translations
746 * after a transfer.
748 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
749 * and usage.
751 static inline void
752 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
753 int nelems, int dir, int target)
755 int i;
757 if (dir == DMA_NONE)
758 BUG();
760 for (i = 0; i < nelems; i++, sg++)
761 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
762 sync_single(hwdev, (void *) sg->dma_address,
763 sg->dma_length, dir, target);
766 void
767 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
768 int nelems, int dir)
770 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
773 void
774 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
775 int nelems, int dir)
777 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
781 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
783 return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
787 * Return whether the given device DMA address mask can be supported
788 * properly. For example, if your device can only drive the low 24-bits
789 * during bus mastering, then you would pass 0x00ffffff as the mask to
790 * this function.
793 swiotlb_dma_supported (struct device *hwdev, u64 mask)
795 return (virt_to_phys (io_tlb_end) - 1) <= mask;
798 EXPORT_SYMBOL(swiotlb_init);
799 EXPORT_SYMBOL(swiotlb_map_single);
800 EXPORT_SYMBOL(swiotlb_unmap_single);
801 EXPORT_SYMBOL(swiotlb_map_sg);
802 EXPORT_SYMBOL(swiotlb_unmap_sg);
803 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
804 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
805 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
806 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
807 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
808 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
809 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
810 EXPORT_SYMBOL(swiotlb_alloc_coherent);
811 EXPORT_SYMBOL(swiotlb_free_coherent);
812 EXPORT_SYMBOL(swiotlb_dma_supported);