powerpc/mm: Cleanup initialization of hugepages on powerpc
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / hash_utils_64.c
blobef1f047f54310c63ebecaa449411767b7ca44bb8
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
69 #define KB (1024)
70 #define MB (1024*KB)
71 #define GB (1024L*MB)
74 * Note: pte --> Linux PTE
75 * HPTE --> PowerPC Hashed Page Table Entry
77 * Execution context:
78 * htab_initialize is called with the MMU off (of course), but
79 * the kernel has been copied down to zero so it can directly
80 * reference global data. At this point it is very difficult
81 * to print debug info.
85 #ifdef CONFIG_U3_DART
86 extern unsigned long dart_tablebase;
87 #endif /* CONFIG_U3_DART */
89 static unsigned long _SDR1;
90 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
92 struct hash_pte *htab_address;
93 unsigned long htab_size_bytes;
94 unsigned long htab_hash_mask;
95 int mmu_linear_psize = MMU_PAGE_4K;
96 int mmu_virtual_psize = MMU_PAGE_4K;
97 int mmu_vmalloc_psize = MMU_PAGE_4K;
98 #ifdef CONFIG_SPARSEMEM_VMEMMAP
99 int mmu_vmemmap_psize = MMU_PAGE_4K;
100 #endif
101 int mmu_io_psize = MMU_PAGE_4K;
102 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
103 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
104 u16 mmu_slb_size = 64;
105 #ifdef CONFIG_HUGETLB_PAGE
106 unsigned int HPAGE_SHIFT;
107 #endif
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions;
110 #endif
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8 *linear_map_hash_slots;
113 static unsigned long linear_map_hash_count;
114 static DEFINE_SPINLOCK(linear_map_hash_lock);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
117 /* There are definitions of page sizes arrays to be used when none
118 * is provided by the firmware.
121 /* Pre-POWER4 CPUs (4k pages only)
123 static struct mmu_psize_def mmu_psize_defaults_old[] = {
124 [MMU_PAGE_4K] = {
125 .shift = 12,
126 .sllp = 0,
127 .penc = 0,
128 .avpnm = 0,
129 .tlbiel = 0,
133 /* POWER4, GPUL, POWER5
135 * Support for 16Mb large pages
137 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
138 [MMU_PAGE_4K] = {
139 .shift = 12,
140 .sllp = 0,
141 .penc = 0,
142 .avpnm = 0,
143 .tlbiel = 1,
145 [MMU_PAGE_16M] = {
146 .shift = 24,
147 .sllp = SLB_VSID_L,
148 .penc = 0,
149 .avpnm = 0x1UL,
150 .tlbiel = 0,
154 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 unsigned long rflags = pteflags & 0x1fa;
158 /* _PAGE_EXEC -> NOEXEC */
159 if ((pteflags & _PAGE_EXEC) == 0)
160 rflags |= HPTE_R_N;
162 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
163 * need to add in 0x1 if it's a read-only user page
165 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
166 (pteflags & _PAGE_DIRTY)))
167 rflags |= 1;
169 /* Always add C */
170 return rflags | HPTE_R_C;
173 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
174 unsigned long pstart, unsigned long prot,
175 int psize, int ssize)
177 unsigned long vaddr, paddr;
178 unsigned int step, shift;
179 int ret = 0;
181 shift = mmu_psize_defs[psize].shift;
182 step = 1 << shift;
184 prot = htab_convert_pte_flags(prot);
186 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
187 vstart, vend, pstart, prot, psize, ssize);
189 for (vaddr = vstart, paddr = pstart; vaddr < vend;
190 vaddr += step, paddr += step) {
191 unsigned long hash, hpteg;
192 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
193 unsigned long va = hpt_va(vaddr, vsid, ssize);
194 unsigned long tprot = prot;
196 /* Make kernel text executable */
197 if (overlaps_kernel_text(vaddr, vaddr + step))
198 tprot &= ~HPTE_R_N;
200 hash = hpt_hash(va, shift, ssize);
201 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203 BUG_ON(!ppc_md.hpte_insert);
204 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
205 HPTE_V_BOLTED, psize, ssize);
207 if (ret < 0)
208 break;
209 #ifdef CONFIG_DEBUG_PAGEALLOC
210 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
211 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
212 #endif /* CONFIG_DEBUG_PAGEALLOC */
214 return ret < 0 ? ret : 0;
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
219 int psize, int ssize)
221 unsigned long vaddr;
222 unsigned int step, shift;
224 shift = mmu_psize_defs[psize].shift;
225 step = 1 << shift;
227 if (!ppc_md.hpte_removebolted) {
228 printk(KERN_WARNING "Platform doesn't implement "
229 "hpte_removebolted\n");
230 return -EINVAL;
233 for (vaddr = vstart; vaddr < vend; vaddr += step)
234 ppc_md.hpte_removebolted(vaddr, psize, ssize);
236 return 0;
238 #endif /* CONFIG_MEMORY_HOTPLUG */
240 static int __init htab_dt_scan_seg_sizes(unsigned long node,
241 const char *uname, int depth,
242 void *data)
244 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
245 u32 *prop;
246 unsigned long size = 0;
248 /* We are scanning "cpu" nodes only */
249 if (type == NULL || strcmp(type, "cpu") != 0)
250 return 0;
252 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
253 &size);
254 if (prop == NULL)
255 return 0;
256 for (; size >= 4; size -= 4, ++prop) {
257 if (prop[0] == 40) {
258 DBG("1T segment support detected\n");
259 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
260 return 1;
263 cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
264 return 0;
267 static void __init htab_init_seg_sizes(void)
269 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
272 static int __init htab_dt_scan_page_sizes(unsigned long node,
273 const char *uname, int depth,
274 void *data)
276 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277 u32 *prop;
278 unsigned long size = 0;
280 /* We are scanning "cpu" nodes only */
281 if (type == NULL || strcmp(type, "cpu") != 0)
282 return 0;
284 prop = (u32 *)of_get_flat_dt_prop(node,
285 "ibm,segment-page-sizes", &size);
286 if (prop != NULL) {
287 DBG("Page sizes from device-tree:\n");
288 size /= 4;
289 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
290 while(size > 0) {
291 unsigned int shift = prop[0];
292 unsigned int slbenc = prop[1];
293 unsigned int lpnum = prop[2];
294 unsigned int lpenc = 0;
295 struct mmu_psize_def *def;
296 int idx = -1;
298 size -= 3; prop += 3;
299 while(size > 0 && lpnum) {
300 if (prop[0] == shift)
301 lpenc = prop[1];
302 prop += 2; size -= 2;
303 lpnum--;
305 switch(shift) {
306 case 0xc:
307 idx = MMU_PAGE_4K;
308 break;
309 case 0x10:
310 idx = MMU_PAGE_64K;
311 break;
312 case 0x14:
313 idx = MMU_PAGE_1M;
314 break;
315 case 0x18:
316 idx = MMU_PAGE_16M;
317 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
318 break;
319 case 0x22:
320 idx = MMU_PAGE_16G;
321 break;
323 if (idx < 0)
324 continue;
325 def = &mmu_psize_defs[idx];
326 def->shift = shift;
327 if (shift <= 23)
328 def->avpnm = 0;
329 else
330 def->avpnm = (1 << (shift - 23)) - 1;
331 def->sllp = slbenc;
332 def->penc = lpenc;
333 /* We don't know for sure what's up with tlbiel, so
334 * for now we only set it for 4K and 64K pages
336 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
337 def->tlbiel = 1;
338 else
339 def->tlbiel = 0;
341 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
342 "tlbiel=%d, penc=%d\n",
343 idx, shift, def->sllp, def->avpnm, def->tlbiel,
344 def->penc);
346 return 1;
348 return 0;
351 #ifdef CONFIG_HUGETLB_PAGE
352 /* Scan for 16G memory blocks that have been set aside for huge pages
353 * and reserve those blocks for 16G huge pages.
355 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
356 const char *uname, int depth,
357 void *data) {
358 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
359 unsigned long *addr_prop;
360 u32 *page_count_prop;
361 unsigned int expected_pages;
362 long unsigned int phys_addr;
363 long unsigned int block_size;
365 /* We are scanning "memory" nodes only */
366 if (type == NULL || strcmp(type, "memory") != 0)
367 return 0;
369 /* This property is the log base 2 of the number of virtual pages that
370 * will represent this memory block. */
371 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
372 if (page_count_prop == NULL)
373 return 0;
374 expected_pages = (1 << page_count_prop[0]);
375 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
376 if (addr_prop == NULL)
377 return 0;
378 phys_addr = addr_prop[0];
379 block_size = addr_prop[1];
380 if (block_size != (16 * GB))
381 return 0;
382 printk(KERN_INFO "Huge page(16GB) memory: "
383 "addr = 0x%lX size = 0x%lX pages = %d\n",
384 phys_addr, block_size, expected_pages);
385 if (phys_addr + (16 * GB) <= lmb_end_of_DRAM()) {
386 lmb_reserve(phys_addr, block_size * expected_pages);
387 add_gpage(phys_addr, block_size, expected_pages);
389 return 0;
391 #endif /* CONFIG_HUGETLB_PAGE */
393 static void __init htab_init_page_sizes(void)
395 int rc;
397 /* Default to 4K pages only */
398 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
399 sizeof(mmu_psize_defaults_old));
402 * Try to find the available page sizes in the device-tree
404 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
405 if (rc != 0) /* Found */
406 goto found;
409 * Not in the device-tree, let's fallback on known size
410 * list for 16M capable GP & GR
412 if (cpu_has_feature(CPU_FTR_16M_PAGE))
413 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
414 sizeof(mmu_psize_defaults_gp));
415 found:
416 #ifndef CONFIG_DEBUG_PAGEALLOC
418 * Pick a size for the linear mapping. Currently, we only support
419 * 16M, 1M and 4K which is the default
421 if (mmu_psize_defs[MMU_PAGE_16M].shift)
422 mmu_linear_psize = MMU_PAGE_16M;
423 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
424 mmu_linear_psize = MMU_PAGE_1M;
425 #endif /* CONFIG_DEBUG_PAGEALLOC */
427 #ifdef CONFIG_PPC_64K_PAGES
429 * Pick a size for the ordinary pages. Default is 4K, we support
430 * 64K for user mappings and vmalloc if supported by the processor.
431 * We only use 64k for ioremap if the processor
432 * (and firmware) support cache-inhibited large pages.
433 * If not, we use 4k and set mmu_ci_restrictions so that
434 * hash_page knows to switch processes that use cache-inhibited
435 * mappings to 4k pages.
437 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
438 mmu_virtual_psize = MMU_PAGE_64K;
439 mmu_vmalloc_psize = MMU_PAGE_64K;
440 if (mmu_linear_psize == MMU_PAGE_4K)
441 mmu_linear_psize = MMU_PAGE_64K;
442 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
444 * Don't use 64k pages for ioremap on pSeries, since
445 * that would stop us accessing the HEA ethernet.
447 if (!machine_is(pseries))
448 mmu_io_psize = MMU_PAGE_64K;
449 } else
450 mmu_ci_restrictions = 1;
452 #endif /* CONFIG_PPC_64K_PAGES */
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
455 /* We try to use 16M pages for vmemmap if that is supported
456 * and we have at least 1G of RAM at boot
458 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
459 lmb_phys_mem_size() >= 0x40000000)
460 mmu_vmemmap_psize = MMU_PAGE_16M;
461 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
462 mmu_vmemmap_psize = MMU_PAGE_64K;
463 else
464 mmu_vmemmap_psize = MMU_PAGE_4K;
465 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
467 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
468 "virtual = %d, io = %d"
469 #ifdef CONFIG_SPARSEMEM_VMEMMAP
470 ", vmemmap = %d"
471 #endif
472 "\n",
473 mmu_psize_defs[mmu_linear_psize].shift,
474 mmu_psize_defs[mmu_virtual_psize].shift,
475 mmu_psize_defs[mmu_io_psize].shift
476 #ifdef CONFIG_SPARSEMEM_VMEMMAP
477 ,mmu_psize_defs[mmu_vmemmap_psize].shift
478 #endif
481 #ifdef CONFIG_HUGETLB_PAGE
482 /* Reserve 16G huge page memory sections for huge pages */
483 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
484 #endif /* CONFIG_HUGETLB_PAGE */
487 static int __init htab_dt_scan_pftsize(unsigned long node,
488 const char *uname, int depth,
489 void *data)
491 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
492 u32 *prop;
494 /* We are scanning "cpu" nodes only */
495 if (type == NULL || strcmp(type, "cpu") != 0)
496 return 0;
498 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
499 if (prop != NULL) {
500 /* pft_size[0] is the NUMA CEC cookie */
501 ppc64_pft_size = prop[1];
502 return 1;
504 return 0;
507 static unsigned long __init htab_get_table_size(void)
509 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
511 /* If hash size isn't already provided by the platform, we try to
512 * retrieve it from the device-tree. If it's not there neither, we
513 * calculate it now based on the total RAM size
515 if (ppc64_pft_size == 0)
516 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
517 if (ppc64_pft_size)
518 return 1UL << ppc64_pft_size;
520 /* round mem_size up to next power of 2 */
521 mem_size = lmb_phys_mem_size();
522 rnd_mem_size = 1UL << __ilog2(mem_size);
523 if (rnd_mem_size < mem_size)
524 rnd_mem_size <<= 1;
526 /* # pages / 2 */
527 psize = mmu_psize_defs[mmu_virtual_psize].shift;
528 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
530 return pteg_count << 7;
533 #ifdef CONFIG_MEMORY_HOTPLUG
534 void create_section_mapping(unsigned long start, unsigned long end)
536 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
537 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
538 mmu_kernel_ssize));
541 int remove_section_mapping(unsigned long start, unsigned long end)
543 return htab_remove_mapping(start, end, mmu_linear_psize,
544 mmu_kernel_ssize);
546 #endif /* CONFIG_MEMORY_HOTPLUG */
548 static inline void make_bl(unsigned int *insn_addr, void *func)
550 unsigned long funcp = *((unsigned long *)func);
551 int offset = funcp - (unsigned long)insn_addr;
553 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
554 flush_icache_range((unsigned long)insn_addr, 4+
555 (unsigned long)insn_addr);
558 static void __init htab_finish_init(void)
560 extern unsigned int *htab_call_hpte_insert1;
561 extern unsigned int *htab_call_hpte_insert2;
562 extern unsigned int *htab_call_hpte_remove;
563 extern unsigned int *htab_call_hpte_updatepp;
565 #ifdef CONFIG_PPC_HAS_HASH_64K
566 extern unsigned int *ht64_call_hpte_insert1;
567 extern unsigned int *ht64_call_hpte_insert2;
568 extern unsigned int *ht64_call_hpte_remove;
569 extern unsigned int *ht64_call_hpte_updatepp;
571 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
572 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
573 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
574 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
575 #endif /* CONFIG_PPC_HAS_HASH_64K */
577 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
578 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
579 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
580 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
583 static void __init htab_initialize(void)
585 unsigned long table;
586 unsigned long pteg_count;
587 unsigned long prot;
588 unsigned long base = 0, size = 0, limit;
589 int i;
591 DBG(" -> htab_initialize()\n");
593 /* Initialize segment sizes */
594 htab_init_seg_sizes();
596 /* Initialize page sizes */
597 htab_init_page_sizes();
599 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
600 mmu_kernel_ssize = MMU_SEGSIZE_1T;
601 mmu_highuser_ssize = MMU_SEGSIZE_1T;
602 printk(KERN_INFO "Using 1TB segments\n");
606 * Calculate the required size of the htab. We want the number of
607 * PTEGs to equal one half the number of real pages.
609 htab_size_bytes = htab_get_table_size();
610 pteg_count = htab_size_bytes >> 7;
612 htab_hash_mask = pteg_count - 1;
614 if (firmware_has_feature(FW_FEATURE_LPAR)) {
615 /* Using a hypervisor which owns the htab */
616 htab_address = NULL;
617 _SDR1 = 0;
618 } else {
619 /* Find storage for the HPT. Must be contiguous in
620 * the absolute address space. On cell we want it to be
621 * in the first 2 Gig so we can use it for IOMMU hacks.
623 if (machine_is(cell))
624 limit = 0x80000000;
625 else
626 limit = 0;
628 table = lmb_alloc_base(htab_size_bytes, htab_size_bytes, limit);
630 DBG("Hash table allocated at %lx, size: %lx\n", table,
631 htab_size_bytes);
633 htab_address = abs_to_virt(table);
635 /* htab absolute addr + encoded htabsize */
636 _SDR1 = table + __ilog2(pteg_count) - 11;
638 /* Initialize the HPT with no entries */
639 memset((void *)table, 0, htab_size_bytes);
641 /* Set SDR1 */
642 mtspr(SPRN_SDR1, _SDR1);
645 prot = pgprot_val(PAGE_KERNEL);
647 #ifdef CONFIG_DEBUG_PAGEALLOC
648 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
649 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
650 1, lmb.rmo_size));
651 memset(linear_map_hash_slots, 0, linear_map_hash_count);
652 #endif /* CONFIG_DEBUG_PAGEALLOC */
654 /* On U3 based machines, we need to reserve the DART area and
655 * _NOT_ map it to avoid cache paradoxes as it's remapped non
656 * cacheable later on
659 /* create bolted the linear mapping in the hash table */
660 for (i=0; i < lmb.memory.cnt; i++) {
661 base = (unsigned long)__va(lmb.memory.region[i].base);
662 size = lmb.memory.region[i].size;
664 DBG("creating mapping for region: %lx..%lx (prot: %x)\n",
665 base, size, prot);
667 #ifdef CONFIG_U3_DART
668 /* Do not map the DART space. Fortunately, it will be aligned
669 * in such a way that it will not cross two lmb regions and
670 * will fit within a single 16Mb page.
671 * The DART space is assumed to be a full 16Mb region even if
672 * we only use 2Mb of that space. We will use more of it later
673 * for AGP GART. We have to use a full 16Mb large page.
675 DBG("DART base: %lx\n", dart_tablebase);
677 if (dart_tablebase != 0 && dart_tablebase >= base
678 && dart_tablebase < (base + size)) {
679 unsigned long dart_table_end = dart_tablebase + 16 * MB;
680 if (base != dart_tablebase)
681 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
682 __pa(base), prot,
683 mmu_linear_psize,
684 mmu_kernel_ssize));
685 if ((base + size) > dart_table_end)
686 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
687 base + size,
688 __pa(dart_table_end),
689 prot,
690 mmu_linear_psize,
691 mmu_kernel_ssize));
692 continue;
694 #endif /* CONFIG_U3_DART */
695 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
696 prot, mmu_linear_psize, mmu_kernel_ssize));
700 * If we have a memory_limit and we've allocated TCEs then we need to
701 * explicitly map the TCE area at the top of RAM. We also cope with the
702 * case that the TCEs start below memory_limit.
703 * tce_alloc_start/end are 16MB aligned so the mapping should work
704 * for either 4K or 16MB pages.
706 if (tce_alloc_start) {
707 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
708 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
710 if (base + size >= tce_alloc_start)
711 tce_alloc_start = base + size + 1;
713 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
714 __pa(tce_alloc_start), prot,
715 mmu_linear_psize, mmu_kernel_ssize));
718 htab_finish_init();
720 DBG(" <- htab_initialize()\n");
722 #undef KB
723 #undef MB
725 void __init early_init_mmu(void)
727 /* Setup initial STAB address in the PACA */
728 get_paca()->stab_real = __pa((u64)&initial_stab);
729 get_paca()->stab_addr = (u64)&initial_stab;
731 /* Initialize the MMU Hash table and create the linear mapping
732 * of memory. Has to be done before stab/slb initialization as
733 * this is currently where the page size encoding is obtained
735 htab_initialize();
737 /* Initialize stab / SLB management except on iSeries
739 if (cpu_has_feature(CPU_FTR_SLB))
740 slb_initialize();
741 else if (!firmware_has_feature(FW_FEATURE_ISERIES))
742 stab_initialize(get_paca()->stab_real);
745 #ifdef CONFIG_SMP
746 void __cpuinit early_init_mmu_secondary(void)
748 /* Initialize hash table for that CPU */
749 if (!firmware_has_feature(FW_FEATURE_LPAR))
750 mtspr(SPRN_SDR1, _SDR1);
752 /* Initialize STAB/SLB. We use a virtual address as it works
753 * in real mode on pSeries and we want a virutal address on
754 * iSeries anyway
756 if (cpu_has_feature(CPU_FTR_SLB))
757 slb_initialize();
758 else
759 stab_initialize(get_paca()->stab_addr);
761 #endif /* CONFIG_SMP */
764 * Called by asm hashtable.S for doing lazy icache flush
766 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
768 struct page *page;
770 if (!pfn_valid(pte_pfn(pte)))
771 return pp;
773 page = pte_page(pte);
775 /* page is dirty */
776 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
777 if (trap == 0x400) {
778 __flush_dcache_icache(page_address(page));
779 set_bit(PG_arch_1, &page->flags);
780 } else
781 pp |= HPTE_R_N;
783 return pp;
786 #ifdef CONFIG_PPC_MM_SLICES
787 unsigned int get_paca_psize(unsigned long addr)
789 unsigned long index, slices;
791 if (addr < SLICE_LOW_TOP) {
792 slices = get_paca()->context.low_slices_psize;
793 index = GET_LOW_SLICE_INDEX(addr);
794 } else {
795 slices = get_paca()->context.high_slices_psize;
796 index = GET_HIGH_SLICE_INDEX(addr);
798 return (slices >> (index * 4)) & 0xF;
801 #else
802 unsigned int get_paca_psize(unsigned long addr)
804 return get_paca()->context.user_psize;
806 #endif
809 * Demote a segment to using 4k pages.
810 * For now this makes the whole process use 4k pages.
812 #ifdef CONFIG_PPC_64K_PAGES
813 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
815 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
816 return;
817 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
818 #ifdef CONFIG_SPU_BASE
819 spu_flush_all_slbs(mm);
820 #endif
821 if (get_paca_psize(addr) != MMU_PAGE_4K) {
822 get_paca()->context = mm->context;
823 slb_flush_and_rebolt();
826 #endif /* CONFIG_PPC_64K_PAGES */
828 #ifdef CONFIG_PPC_SUBPAGE_PROT
830 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
831 * Userspace sets the subpage permissions using the subpage_prot system call.
833 * Result is 0: full permissions, _PAGE_RW: read-only,
834 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
836 static int subpage_protection(pgd_t *pgdir, unsigned long ea)
838 struct subpage_prot_table *spt = pgd_subpage_prot(pgdir);
839 u32 spp = 0;
840 u32 **sbpm, *sbpp;
842 if (ea >= spt->maxaddr)
843 return 0;
844 if (ea < 0x100000000) {
845 /* addresses below 4GB use spt->low_prot */
846 sbpm = spt->low_prot;
847 } else {
848 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
849 if (!sbpm)
850 return 0;
852 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
853 if (!sbpp)
854 return 0;
855 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
857 /* extract 2-bit bitfield for this 4k subpage */
858 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
860 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
861 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
862 return spp;
865 #else /* CONFIG_PPC_SUBPAGE_PROT */
866 static inline int subpage_protection(pgd_t *pgdir, unsigned long ea)
868 return 0;
870 #endif
872 /* Result code is:
873 * 0 - handled
874 * 1 - normal page fault
875 * -1 - critical hash insertion error
876 * -2 - access not permitted by subpage protection mechanism
878 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
880 void *pgdir;
881 unsigned long vsid;
882 struct mm_struct *mm;
883 pte_t *ptep;
884 unsigned hugeshift;
885 const struct cpumask *tmp;
886 int rc, user_region = 0, local = 0;
887 int psize, ssize;
889 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
890 ea, access, trap);
892 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
893 DBG_LOW(" out of pgtable range !\n");
894 return 1;
897 /* Get region & vsid */
898 switch (REGION_ID(ea)) {
899 case USER_REGION_ID:
900 user_region = 1;
901 mm = current->mm;
902 if (! mm) {
903 DBG_LOW(" user region with no mm !\n");
904 return 1;
906 psize = get_slice_psize(mm, ea);
907 ssize = user_segment_size(ea);
908 vsid = get_vsid(mm->context.id, ea, ssize);
909 break;
910 case VMALLOC_REGION_ID:
911 mm = &init_mm;
912 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
913 if (ea < VMALLOC_END)
914 psize = mmu_vmalloc_psize;
915 else
916 psize = mmu_io_psize;
917 ssize = mmu_kernel_ssize;
918 break;
919 default:
920 /* Not a valid range
921 * Send the problem up to do_page_fault
923 return 1;
925 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
927 /* Get pgdir */
928 pgdir = mm->pgd;
929 if (pgdir == NULL)
930 return 1;
932 /* Check CPU locality */
933 tmp = cpumask_of(smp_processor_id());
934 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
935 local = 1;
937 #ifndef CONFIG_PPC_64K_PAGES
938 /* If we use 4K pages and our psize is not 4K, then we might
939 * be hitting a special driver mapping, and need to align the
940 * address before we fetch the PTE.
942 * It could also be a hugepage mapping, in which case this is
943 * not necessary, but it's not harmful, either.
945 if (psize != MMU_PAGE_4K)
946 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
947 #endif /* CONFIG_PPC_64K_PAGES */
949 /* Get PTE and page size from page tables */
950 ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
951 if (ptep == NULL || !pte_present(*ptep)) {
952 DBG_LOW(" no PTE !\n");
953 return 1;
956 #ifdef CONFIG_HUGETLB_PAGE
957 if (hugeshift)
958 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
959 ssize, hugeshift, psize);
960 #endif /* CONFIG_HUGETLB_PAGE */
962 #ifndef CONFIG_PPC_64K_PAGES
963 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
964 #else
965 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
966 pte_val(*(ptep + PTRS_PER_PTE)));
967 #endif
968 /* Pre-check access permissions (will be re-checked atomically
969 * in __hash_page_XX but this pre-check is a fast path
971 if (access & ~pte_val(*ptep)) {
972 DBG_LOW(" no access !\n");
973 return 1;
976 /* Do actual hashing */
977 #ifdef CONFIG_PPC_64K_PAGES
978 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
979 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
980 demote_segment_4k(mm, ea);
981 psize = MMU_PAGE_4K;
984 /* If this PTE is non-cacheable and we have restrictions on
985 * using non cacheable large pages, then we switch to 4k
987 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
988 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
989 if (user_region) {
990 demote_segment_4k(mm, ea);
991 psize = MMU_PAGE_4K;
992 } else if (ea < VMALLOC_END) {
994 * some driver did a non-cacheable mapping
995 * in vmalloc space, so switch vmalloc
996 * to 4k pages
998 printk(KERN_ALERT "Reducing vmalloc segment "
999 "to 4kB pages because of "
1000 "non-cacheable mapping\n");
1001 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1002 #ifdef CONFIG_SPU_BASE
1003 spu_flush_all_slbs(mm);
1004 #endif
1007 if (user_region) {
1008 if (psize != get_paca_psize(ea)) {
1009 get_paca()->context = mm->context;
1010 slb_flush_and_rebolt();
1012 } else if (get_paca()->vmalloc_sllp !=
1013 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1014 get_paca()->vmalloc_sllp =
1015 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1016 slb_vmalloc_update();
1018 #endif /* CONFIG_PPC_64K_PAGES */
1020 #ifdef CONFIG_PPC_HAS_HASH_64K
1021 if (psize == MMU_PAGE_64K)
1022 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1023 else
1024 #endif /* CONFIG_PPC_HAS_HASH_64K */
1026 int spp = subpage_protection(pgdir, ea);
1027 if (access & spp)
1028 rc = -2;
1029 else
1030 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1031 local, ssize, spp);
1034 #ifndef CONFIG_PPC_64K_PAGES
1035 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1036 #else
1037 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1038 pte_val(*(ptep + PTRS_PER_PTE)));
1039 #endif
1040 DBG_LOW(" -> rc=%d\n", rc);
1041 return rc;
1043 EXPORT_SYMBOL_GPL(hash_page);
1045 void hash_preload(struct mm_struct *mm, unsigned long ea,
1046 unsigned long access, unsigned long trap)
1048 unsigned long vsid;
1049 void *pgdir;
1050 pte_t *ptep;
1051 unsigned long flags;
1052 int local = 0;
1053 int ssize;
1055 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1057 #ifdef CONFIG_PPC_MM_SLICES
1058 /* We only prefault standard pages for now */
1059 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1060 return;
1061 #endif
1063 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1064 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1066 /* Get Linux PTE if available */
1067 pgdir = mm->pgd;
1068 if (pgdir == NULL)
1069 return;
1070 ptep = find_linux_pte(pgdir, ea);
1071 if (!ptep)
1072 return;
1074 #ifdef CONFIG_PPC_64K_PAGES
1075 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1076 * a 64K kernel), then we don't preload, hash_page() will take
1077 * care of it once we actually try to access the page.
1078 * That way we don't have to duplicate all of the logic for segment
1079 * page size demotion here
1081 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1082 return;
1083 #endif /* CONFIG_PPC_64K_PAGES */
1085 /* Get VSID */
1086 ssize = user_segment_size(ea);
1087 vsid = get_vsid(mm->context.id, ea, ssize);
1089 /* Hash doesn't like irqs */
1090 local_irq_save(flags);
1092 /* Is that local to this CPU ? */
1093 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1094 local = 1;
1096 /* Hash it in */
1097 #ifdef CONFIG_PPC_HAS_HASH_64K
1098 if (mm->context.user_psize == MMU_PAGE_64K)
1099 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1100 else
1101 #endif /* CONFIG_PPC_HAS_HASH_64K */
1102 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1103 subpage_protection(pgdir, ea));
1105 local_irq_restore(flags);
1108 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1109 * do not forget to update the assembly call site !
1111 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1112 int local)
1114 unsigned long hash, index, shift, hidx, slot;
1116 DBG_LOW("flush_hash_page(va=%016x)\n", va);
1117 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1118 hash = hpt_hash(va, shift, ssize);
1119 hidx = __rpte_to_hidx(pte, index);
1120 if (hidx & _PTEIDX_SECONDARY)
1121 hash = ~hash;
1122 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1123 slot += hidx & _PTEIDX_GROUP_IX;
1124 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
1125 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1126 } pte_iterate_hashed_end();
1129 void flush_hash_range(unsigned long number, int local)
1131 if (ppc_md.flush_hash_range)
1132 ppc_md.flush_hash_range(number, local);
1133 else {
1134 int i;
1135 struct ppc64_tlb_batch *batch =
1136 &__get_cpu_var(ppc64_tlb_batch);
1138 for (i = 0; i < number; i++)
1139 flush_hash_page(batch->vaddr[i], batch->pte[i],
1140 batch->psize, batch->ssize, local);
1145 * low_hash_fault is called when we the low level hash code failed
1146 * to instert a PTE due to an hypervisor error
1148 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1150 if (user_mode(regs)) {
1151 #ifdef CONFIG_PPC_SUBPAGE_PROT
1152 if (rc == -2)
1153 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1154 else
1155 #endif
1156 _exception(SIGBUS, regs, BUS_ADRERR, address);
1157 } else
1158 bad_page_fault(regs, address, SIGBUS);
1161 #ifdef CONFIG_DEBUG_PAGEALLOC
1162 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1164 unsigned long hash, hpteg;
1165 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1166 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1167 unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1168 int ret;
1170 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1171 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1173 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1174 mode, HPTE_V_BOLTED,
1175 mmu_linear_psize, mmu_kernel_ssize);
1176 BUG_ON (ret < 0);
1177 spin_lock(&linear_map_hash_lock);
1178 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1179 linear_map_hash_slots[lmi] = ret | 0x80;
1180 spin_unlock(&linear_map_hash_lock);
1183 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1185 unsigned long hash, hidx, slot;
1186 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1187 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1189 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1190 spin_lock(&linear_map_hash_lock);
1191 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1192 hidx = linear_map_hash_slots[lmi] & 0x7f;
1193 linear_map_hash_slots[lmi] = 0;
1194 spin_unlock(&linear_map_hash_lock);
1195 if (hidx & _PTEIDX_SECONDARY)
1196 hash = ~hash;
1197 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1198 slot += hidx & _PTEIDX_GROUP_IX;
1199 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1202 void kernel_map_pages(struct page *page, int numpages, int enable)
1204 unsigned long flags, vaddr, lmi;
1205 int i;
1207 local_irq_save(flags);
1208 for (i = 0; i < numpages; i++, page++) {
1209 vaddr = (unsigned long)page_address(page);
1210 lmi = __pa(vaddr) >> PAGE_SHIFT;
1211 if (lmi >= linear_map_hash_count)
1212 continue;
1213 if (enable)
1214 kernel_map_linear_page(vaddr, lmi);
1215 else
1216 kernel_unmap_linear_page(vaddr, lmi);
1218 local_irq_restore(flags);
1220 #endif /* CONFIG_DEBUG_PAGEALLOC */