[CELL] spufs: remove section mismatch warning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / platforms / cell / spufs / sched.c
blob9b1706cc12617ca475a8d129749b73701cdca4b9
1 /* sched.c - SPU scheduler.
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
6 * 2006-03-31 NUMA domains added.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/spu.h>
46 #include <asm/spu_csa.h>
47 #include <asm/spu_priv1.h>
48 #include "spufs.h"
50 struct spu_prio_array {
51 DECLARE_BITMAP(bitmap, MAX_PRIO);
52 struct list_head runq[MAX_PRIO];
53 spinlock_t runq_lock;
54 struct list_head active_list[MAX_NUMNODES];
55 struct mutex active_mutex[MAX_NUMNODES];
56 int nr_active[MAX_NUMNODES];
57 int nr_waiting;
60 static unsigned long spu_avenrun[3];
61 static struct spu_prio_array *spu_prio;
62 static struct task_struct *spusched_task;
63 static struct timer_list spusched_timer;
66 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
68 #define NORMAL_PRIO 120
71 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
72 * tick for every 10 CPU scheduler ticks.
74 #define SPUSCHED_TICK (10)
77 * These are the 'tuning knobs' of the scheduler:
79 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
80 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
82 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
83 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
85 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
86 #define SCALE_PRIO(x, prio) \
87 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
90 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
91 * [800ms ... 100ms ... 5ms]
93 * The higher a thread's priority, the bigger timeslices
94 * it gets during one round of execution. But even the lowest
95 * priority thread gets MIN_TIMESLICE worth of execution time.
97 void spu_set_timeslice(struct spu_context *ctx)
99 if (ctx->prio < NORMAL_PRIO)
100 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
101 else
102 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
106 * Update scheduling information from the owning thread.
108 void __spu_update_sched_info(struct spu_context *ctx)
111 * 32-Bit assignment are atomic on powerpc, and we don't care about
112 * memory ordering here because retriving the controlling thread is
113 * per defintion racy.
115 ctx->tid = current->pid;
118 * We do our own priority calculations, so we normally want
119 * ->static_prio to start with. Unfortunately thies field
120 * contains junk for threads with a realtime scheduling
121 * policy so we have to look at ->prio in this case.
123 if (rt_prio(current->prio))
124 ctx->prio = current->prio;
125 else
126 ctx->prio = current->static_prio;
127 ctx->policy = current->policy;
130 * A lot of places that don't hold active_mutex poke into
131 * cpus_allowed, including grab_runnable_context which
132 * already holds the runq_lock. So abuse runq_lock
133 * to protect this field aswell.
135 spin_lock(&spu_prio->runq_lock);
136 ctx->cpus_allowed = current->cpus_allowed;
137 spin_unlock(&spu_prio->runq_lock);
140 void spu_update_sched_info(struct spu_context *ctx)
142 int node = ctx->spu->node;
144 mutex_lock(&spu_prio->active_mutex[node]);
145 __spu_update_sched_info(ctx);
146 mutex_unlock(&spu_prio->active_mutex[node]);
149 static int __node_allowed(struct spu_context *ctx, int node)
151 if (nr_cpus_node(node)) {
152 cpumask_t mask = node_to_cpumask(node);
154 if (cpus_intersects(mask, ctx->cpus_allowed))
155 return 1;
158 return 0;
161 static int node_allowed(struct spu_context *ctx, int node)
163 int rval;
165 spin_lock(&spu_prio->runq_lock);
166 rval = __node_allowed(ctx, node);
167 spin_unlock(&spu_prio->runq_lock);
169 return rval;
173 * spu_add_to_active_list - add spu to active list
174 * @spu: spu to add to the active list
176 static void spu_add_to_active_list(struct spu *spu)
178 int node = spu->node;
180 mutex_lock(&spu_prio->active_mutex[node]);
181 spu_prio->nr_active[node]++;
182 list_add_tail(&spu->list, &spu_prio->active_list[node]);
183 mutex_unlock(&spu_prio->active_mutex[node]);
186 static void __spu_remove_from_active_list(struct spu *spu)
188 list_del_init(&spu->list);
189 spu_prio->nr_active[spu->node]--;
193 * spu_remove_from_active_list - remove spu from active list
194 * @spu: spu to remove from the active list
196 static void spu_remove_from_active_list(struct spu *spu)
198 int node = spu->node;
200 mutex_lock(&spu_prio->active_mutex[node]);
201 __spu_remove_from_active_list(spu);
202 mutex_unlock(&spu_prio->active_mutex[node]);
205 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
207 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
209 blocking_notifier_call_chain(&spu_switch_notifier,
210 ctx ? ctx->object_id : 0, spu);
213 int spu_switch_event_register(struct notifier_block * n)
215 return blocking_notifier_chain_register(&spu_switch_notifier, n);
218 int spu_switch_event_unregister(struct notifier_block * n)
220 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
224 * spu_bind_context - bind spu context to physical spu
225 * @spu: physical spu to bind to
226 * @ctx: context to bind
228 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
230 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
231 spu->number, spu->node);
233 ctx->stats.slb_flt_base = spu->stats.slb_flt;
234 ctx->stats.class2_intr_base = spu->stats.class2_intr;
236 spu->ctx = ctx;
237 spu->flags = 0;
238 ctx->spu = spu;
239 ctx->ops = &spu_hw_ops;
240 spu->pid = current->pid;
241 spu_associate_mm(spu, ctx->owner);
242 spu->ibox_callback = spufs_ibox_callback;
243 spu->wbox_callback = spufs_wbox_callback;
244 spu->stop_callback = spufs_stop_callback;
245 spu->mfc_callback = spufs_mfc_callback;
246 spu->dma_callback = spufs_dma_callback;
247 mb();
248 spu_unmap_mappings(ctx);
249 spu_restore(&ctx->csa, spu);
250 spu->timestamp = jiffies;
251 spu_cpu_affinity_set(spu, raw_smp_processor_id());
252 spu_switch_notify(spu, ctx);
253 ctx->state = SPU_STATE_RUNNABLE;
254 spu_switch_state(spu, SPU_UTIL_SYSTEM);
258 * spu_unbind_context - unbind spu context from physical spu
259 * @spu: physical spu to unbind from
260 * @ctx: context to unbind
262 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
264 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
265 spu->pid, spu->number, spu->node);
267 spu_switch_state(spu, SPU_UTIL_IDLE);
269 spu_switch_notify(spu, NULL);
270 spu_unmap_mappings(ctx);
271 spu_save(&ctx->csa, spu);
272 spu->timestamp = jiffies;
273 ctx->state = SPU_STATE_SAVED;
274 spu->ibox_callback = NULL;
275 spu->wbox_callback = NULL;
276 spu->stop_callback = NULL;
277 spu->mfc_callback = NULL;
278 spu->dma_callback = NULL;
279 spu_associate_mm(spu, NULL);
280 spu->pid = 0;
281 ctx->ops = &spu_backing_ops;
282 ctx->spu = NULL;
283 spu->flags = 0;
284 spu->ctx = NULL;
286 ctx->stats.slb_flt +=
287 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
288 ctx->stats.class2_intr +=
289 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
293 * spu_add_to_rq - add a context to the runqueue
294 * @ctx: context to add
296 static void __spu_add_to_rq(struct spu_context *ctx)
299 * Unfortunately this code path can be called from multiple threads
300 * on behalf of a single context due to the way the problem state
301 * mmap support works.
303 * Fortunately we need to wake up all these threads at the same time
304 * and can simply skip the runqueue addition for every but the first
305 * thread getting into this codepath.
307 * It's still quite hacky, and long-term we should proxy all other
308 * threads through the owner thread so that spu_run is in control
309 * of all the scheduling activity for a given context.
311 if (list_empty(&ctx->rq)) {
312 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
313 set_bit(ctx->prio, spu_prio->bitmap);
314 if (!spu_prio->nr_waiting++)
315 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
319 static void __spu_del_from_rq(struct spu_context *ctx)
321 int prio = ctx->prio;
323 if (!list_empty(&ctx->rq)) {
324 if (!--spu_prio->nr_waiting)
325 del_timer(&spusched_timer);
326 list_del_init(&ctx->rq);
328 if (list_empty(&spu_prio->runq[prio]))
329 clear_bit(prio, spu_prio->bitmap);
333 static void spu_prio_wait(struct spu_context *ctx)
335 DEFINE_WAIT(wait);
337 spin_lock(&spu_prio->runq_lock);
338 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
339 if (!signal_pending(current)) {
340 __spu_add_to_rq(ctx);
341 spin_unlock(&spu_prio->runq_lock);
342 mutex_unlock(&ctx->state_mutex);
343 schedule();
344 mutex_lock(&ctx->state_mutex);
345 spin_lock(&spu_prio->runq_lock);
346 __spu_del_from_rq(ctx);
348 spin_unlock(&spu_prio->runq_lock);
349 __set_current_state(TASK_RUNNING);
350 remove_wait_queue(&ctx->stop_wq, &wait);
353 static struct spu *spu_get_idle(struct spu_context *ctx)
355 struct spu *spu = NULL;
356 int node = cpu_to_node(raw_smp_processor_id());
357 int n;
359 for (n = 0; n < MAX_NUMNODES; n++, node++) {
360 node = (node < MAX_NUMNODES) ? node : 0;
361 if (!node_allowed(ctx, node))
362 continue;
363 spu = spu_alloc_node(node);
364 if (spu)
365 break;
367 return spu;
371 * find_victim - find a lower priority context to preempt
372 * @ctx: canidate context for running
374 * Returns the freed physical spu to run the new context on.
376 static struct spu *find_victim(struct spu_context *ctx)
378 struct spu_context *victim = NULL;
379 struct spu *spu;
380 int node, n;
383 * Look for a possible preemption candidate on the local node first.
384 * If there is no candidate look at the other nodes. This isn't
385 * exactly fair, but so far the whole spu schedule tries to keep
386 * a strong node affinity. We might want to fine-tune this in
387 * the future.
389 restart:
390 node = cpu_to_node(raw_smp_processor_id());
391 for (n = 0; n < MAX_NUMNODES; n++, node++) {
392 node = (node < MAX_NUMNODES) ? node : 0;
393 if (!node_allowed(ctx, node))
394 continue;
396 mutex_lock(&spu_prio->active_mutex[node]);
397 list_for_each_entry(spu, &spu_prio->active_list[node], list) {
398 struct spu_context *tmp = spu->ctx;
400 if (tmp->prio > ctx->prio &&
401 (!victim || tmp->prio > victim->prio))
402 victim = spu->ctx;
404 mutex_unlock(&spu_prio->active_mutex[node]);
406 if (victim) {
408 * This nests ctx->state_mutex, but we always lock
409 * higher priority contexts before lower priority
410 * ones, so this is safe until we introduce
411 * priority inheritance schemes.
413 if (!mutex_trylock(&victim->state_mutex)) {
414 victim = NULL;
415 goto restart;
418 spu = victim->spu;
419 if (!spu) {
421 * This race can happen because we've dropped
422 * the active list mutex. No a problem, just
423 * restart the search.
425 mutex_unlock(&victim->state_mutex);
426 victim = NULL;
427 goto restart;
429 spu_remove_from_active_list(spu);
430 spu_unbind_context(spu, victim);
431 victim->stats.invol_ctx_switch++;
432 spu->stats.invol_ctx_switch++;
433 mutex_unlock(&victim->state_mutex);
435 * We need to break out of the wait loop in spu_run
436 * manually to ensure this context gets put on the
437 * runqueue again ASAP.
439 wake_up(&victim->stop_wq);
440 return spu;
444 return NULL;
448 * spu_activate - find a free spu for a context and execute it
449 * @ctx: spu context to schedule
450 * @flags: flags (currently ignored)
452 * Tries to find a free spu to run @ctx. If no free spu is available
453 * add the context to the runqueue so it gets woken up once an spu
454 * is available.
456 int spu_activate(struct spu_context *ctx, unsigned long flags)
458 spuctx_switch_state(ctx, SPUCTX_UTIL_SYSTEM);
460 do {
461 struct spu *spu;
464 * If there are multiple threads waiting for a single context
465 * only one actually binds the context while the others will
466 * only be able to acquire the state_mutex once the context
467 * already is in runnable state.
469 if (ctx->spu)
470 return 0;
472 spu = spu_get_idle(ctx);
474 * If this is a realtime thread we try to get it running by
475 * preempting a lower priority thread.
477 if (!spu && rt_prio(ctx->prio))
478 spu = find_victim(ctx);
479 if (spu) {
480 spu_bind_context(spu, ctx);
481 spu_add_to_active_list(spu);
482 return 0;
485 spu_prio_wait(ctx);
486 } while (!signal_pending(current));
488 return -ERESTARTSYS;
492 * grab_runnable_context - try to find a runnable context
494 * Remove the highest priority context on the runqueue and return it
495 * to the caller. Returns %NULL if no runnable context was found.
497 static struct spu_context *grab_runnable_context(int prio, int node)
499 struct spu_context *ctx;
500 int best;
502 spin_lock(&spu_prio->runq_lock);
503 best = sched_find_first_bit(spu_prio->bitmap);
504 while (best < prio) {
505 struct list_head *rq = &spu_prio->runq[best];
507 list_for_each_entry(ctx, rq, rq) {
508 /* XXX(hch): check for affinity here aswell */
509 if (__node_allowed(ctx, node)) {
510 __spu_del_from_rq(ctx);
511 goto found;
514 best++;
516 ctx = NULL;
517 found:
518 spin_unlock(&spu_prio->runq_lock);
519 return ctx;
522 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
524 struct spu *spu = ctx->spu;
525 struct spu_context *new = NULL;
527 if (spu) {
528 new = grab_runnable_context(max_prio, spu->node);
529 if (new || force) {
530 spu_remove_from_active_list(spu);
531 spu_unbind_context(spu, ctx);
532 ctx->stats.vol_ctx_switch++;
533 spu->stats.vol_ctx_switch++;
534 spu_free(spu);
535 if (new)
536 wake_up(&new->stop_wq);
541 return new != NULL;
545 * spu_deactivate - unbind a context from it's physical spu
546 * @ctx: spu context to unbind
548 * Unbind @ctx from the physical spu it is running on and schedule
549 * the highest priority context to run on the freed physical spu.
551 void spu_deactivate(struct spu_context *ctx)
554 * We must never reach this for a nosched context,
555 * but handle the case gracefull instead of panicing.
557 if (ctx->flags & SPU_CREATE_NOSCHED) {
558 WARN_ON(1);
559 return;
562 __spu_deactivate(ctx, 1, MAX_PRIO);
563 spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
567 * spu_yield - yield a physical spu if others are waiting
568 * @ctx: spu context to yield
570 * Check if there is a higher priority context waiting and if yes
571 * unbind @ctx from the physical spu and schedule the highest
572 * priority context to run on the freed physical spu instead.
574 void spu_yield(struct spu_context *ctx)
576 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
577 mutex_lock(&ctx->state_mutex);
578 if (__spu_deactivate(ctx, 0, MAX_PRIO))
579 spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
580 else {
581 spuctx_switch_state(ctx, SPUCTX_UTIL_LOADED);
582 spu_switch_state(ctx->spu, SPU_UTIL_USER);
584 mutex_unlock(&ctx->state_mutex);
588 static void spusched_tick(struct spu_context *ctx)
590 if (ctx->flags & SPU_CREATE_NOSCHED)
591 return;
592 if (ctx->policy == SCHED_FIFO)
593 return;
595 if (--ctx->time_slice)
596 return;
599 * Unfortunately active_mutex ranks outside of state_mutex, so
600 * we have to trylock here. If we fail give the context another
601 * tick and try again.
603 if (mutex_trylock(&ctx->state_mutex)) {
604 struct spu *spu = ctx->spu;
605 struct spu_context *new;
607 new = grab_runnable_context(ctx->prio + 1, spu->node);
608 if (new) {
610 __spu_remove_from_active_list(spu);
611 spu_unbind_context(spu, ctx);
612 ctx->stats.invol_ctx_switch++;
613 spu->stats.invol_ctx_switch++;
614 spu_free(spu);
615 wake_up(&new->stop_wq);
617 * We need to break out of the wait loop in
618 * spu_run manually to ensure this context
619 * gets put on the runqueue again ASAP.
621 wake_up(&ctx->stop_wq);
623 spu_set_timeslice(ctx);
624 mutex_unlock(&ctx->state_mutex);
625 } else {
626 ctx->time_slice++;
631 * count_active_contexts - count nr of active tasks
633 * Return the number of tasks currently running or waiting to run.
635 * Note that we don't take runq_lock / active_mutex here. Reading
636 * a single 32bit value is atomic on powerpc, and we don't care
637 * about memory ordering issues here.
639 static unsigned long count_active_contexts(void)
641 int nr_active = 0, node;
643 for (node = 0; node < MAX_NUMNODES; node++)
644 nr_active += spu_prio->nr_active[node];
645 nr_active += spu_prio->nr_waiting;
647 return nr_active;
651 * spu_calc_load - given tick count, update the avenrun load estimates.
652 * @tick: tick count
654 * No locking against reading these values from userspace, as for
655 * the CPU loadavg code.
657 static void spu_calc_load(unsigned long ticks)
659 unsigned long active_tasks; /* fixed-point */
660 static int count = LOAD_FREQ;
662 count -= ticks;
664 if (unlikely(count < 0)) {
665 active_tasks = count_active_contexts() * FIXED_1;
666 do {
667 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
668 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
669 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
670 count += LOAD_FREQ;
671 } while (count < 0);
675 static void spusched_wake(unsigned long data)
677 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
678 wake_up_process(spusched_task);
679 spu_calc_load(SPUSCHED_TICK);
682 static int spusched_thread(void *unused)
684 struct spu *spu, *next;
685 int node;
687 while (!kthread_should_stop()) {
688 set_current_state(TASK_INTERRUPTIBLE);
689 schedule();
690 for (node = 0; node < MAX_NUMNODES; node++) {
691 mutex_lock(&spu_prio->active_mutex[node]);
692 list_for_each_entry_safe(spu, next,
693 &spu_prio->active_list[node],
694 list)
695 spusched_tick(spu->ctx);
696 mutex_unlock(&spu_prio->active_mutex[node]);
700 return 0;
703 #define LOAD_INT(x) ((x) >> FSHIFT)
704 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
706 static int show_spu_loadavg(struct seq_file *s, void *private)
708 int a, b, c;
710 a = spu_avenrun[0] + (FIXED_1/200);
711 b = spu_avenrun[1] + (FIXED_1/200);
712 c = spu_avenrun[2] + (FIXED_1/200);
715 * Note that last_pid doesn't really make much sense for the
716 * SPU loadavg (it even seems very odd on the CPU side..),
717 * but we include it here to have a 100% compatible interface.
719 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
720 LOAD_INT(a), LOAD_FRAC(a),
721 LOAD_INT(b), LOAD_FRAC(b),
722 LOAD_INT(c), LOAD_FRAC(c),
723 count_active_contexts(),
724 atomic_read(&nr_spu_contexts),
725 current->nsproxy->pid_ns->last_pid);
726 return 0;
729 static int spu_loadavg_open(struct inode *inode, struct file *file)
731 return single_open(file, show_spu_loadavg, NULL);
734 static const struct file_operations spu_loadavg_fops = {
735 .open = spu_loadavg_open,
736 .read = seq_read,
737 .llseek = seq_lseek,
738 .release = single_release,
741 int __init spu_sched_init(void)
743 struct proc_dir_entry *entry;
744 int err = -ENOMEM, i;
746 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
747 if (!spu_prio)
748 goto out;
750 for (i = 0; i < MAX_PRIO; i++) {
751 INIT_LIST_HEAD(&spu_prio->runq[i]);
752 __clear_bit(i, spu_prio->bitmap);
754 __set_bit(MAX_PRIO, spu_prio->bitmap);
755 for (i = 0; i < MAX_NUMNODES; i++) {
756 mutex_init(&spu_prio->active_mutex[i]);
757 INIT_LIST_HEAD(&spu_prio->active_list[i]);
759 spin_lock_init(&spu_prio->runq_lock);
761 setup_timer(&spusched_timer, spusched_wake, 0);
763 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
764 if (IS_ERR(spusched_task)) {
765 err = PTR_ERR(spusched_task);
766 goto out_free_spu_prio;
769 entry = create_proc_entry("spu_loadavg", 0, NULL);
770 if (!entry)
771 goto out_stop_kthread;
772 entry->proc_fops = &spu_loadavg_fops;
774 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
775 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
776 return 0;
778 out_stop_kthread:
779 kthread_stop(spusched_task);
780 out_free_spu_prio:
781 kfree(spu_prio);
782 out:
783 return err;
786 void spu_sched_exit(void)
788 struct spu *spu, *tmp;
789 int node;
791 remove_proc_entry("spu_loadavg", NULL);
793 del_timer_sync(&spusched_timer);
794 kthread_stop(spusched_task);
796 for (node = 0; node < MAX_NUMNODES; node++) {
797 mutex_lock(&spu_prio->active_mutex[node]);
798 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
799 list) {
800 list_del_init(&spu->list);
801 spu_free(spu);
803 mutex_unlock(&spu_prio->active_mutex[node]);
805 kfree(spu_prio);