svcrpc: fix svc_xprt_enqueue/svc_recv busy-looping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blobbe4f856d52f81bab8184544b5dd6dd9b823bc21b
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #include <linux/uprobes.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/signal.h>
36 #include <asm/param.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/siginfo.h>
40 #include <asm/cacheflush.h>
41 #include "audit.h" /* audit_signal_info() */
44 * SLAB caches for signal bits.
47 static struct kmem_cache *sigqueue_cachep;
49 int print_fatal_signals __read_mostly;
51 static void __user *sig_handler(struct task_struct *t, int sig)
53 return t->sighand->action[sig - 1].sa.sa_handler;
56 static int sig_handler_ignored(void __user *handler, int sig)
58 /* Is it explicitly or implicitly ignored? */
59 return handler == SIG_IGN ||
60 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
65 void __user *handler;
67 handler = sig_handler(t, sig);
69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
70 handler == SIG_DFL && !force)
71 return 1;
73 return sig_handler_ignored(handler, sig);
76 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 * Blocked signals are never ignored, since the
80 * signal handler may change by the time it is
81 * unblocked.
83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
84 return 0;
86 if (!sig_task_ignored(t, sig, force))
87 return 0;
90 * Tracers may want to know about even ignored signals.
92 return !t->ptrace;
96 * Re-calculate pending state from the set of locally pending
97 * signals, globally pending signals, and blocked signals.
99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
101 unsigned long ready;
102 long i;
104 switch (_NSIG_WORDS) {
105 default:
106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
107 ready |= signal->sig[i] &~ blocked->sig[i];
108 break;
110 case 4: ready = signal->sig[3] &~ blocked->sig[3];
111 ready |= signal->sig[2] &~ blocked->sig[2];
112 ready |= signal->sig[1] &~ blocked->sig[1];
113 ready |= signal->sig[0] &~ blocked->sig[0];
114 break;
116 case 2: ready = signal->sig[1] &~ blocked->sig[1];
117 ready |= signal->sig[0] &~ blocked->sig[0];
118 break;
120 case 1: ready = signal->sig[0] &~ blocked->sig[0];
122 return ready != 0;
125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
127 static int recalc_sigpending_tsk(struct task_struct *t)
129 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
130 PENDING(&t->pending, &t->blocked) ||
131 PENDING(&t->signal->shared_pending, &t->blocked)) {
132 set_tsk_thread_flag(t, TIF_SIGPENDING);
133 return 1;
136 * We must never clear the flag in another thread, or in current
137 * when it's possible the current syscall is returning -ERESTART*.
138 * So we don't clear it here, and only callers who know they should do.
140 return 0;
144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
145 * This is superfluous when called on current, the wakeup is a harmless no-op.
147 void recalc_sigpending_and_wake(struct task_struct *t)
149 if (recalc_sigpending_tsk(t))
150 signal_wake_up(t, 0);
153 void recalc_sigpending(void)
155 if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * task_set_jobctl_pending - set jobctl pending bits
228 * @task: target task
229 * @mask: pending bits to set
231 * Clear @mask from @task->jobctl. @mask must be subset of
232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
234 * cleared. If @task is already being killed or exiting, this function
235 * becomes noop.
237 * CONTEXT:
238 * Must be called with @task->sighand->siglock held.
240 * RETURNS:
241 * %true if @mask is set, %false if made noop because @task was dying.
243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
250 return false;
252 if (mask & JOBCTL_STOP_SIGMASK)
253 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
255 task->jobctl |= mask;
256 return true;
260 * task_clear_jobctl_trapping - clear jobctl trapping bit
261 * @task: target task
263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
264 * Clear it and wake up the ptracer. Note that we don't need any further
265 * locking. @task->siglock guarantees that @task->parent points to the
266 * ptracer.
268 * CONTEXT:
269 * Must be called with @task->sighand->siglock held.
271 void task_clear_jobctl_trapping(struct task_struct *task)
273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
274 task->jobctl &= ~JOBCTL_TRAPPING;
275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
280 * task_clear_jobctl_pending - clear jobctl pending bits
281 * @task: target task
282 * @mask: pending bits to clear
284 * Clear @mask from @task->jobctl. @mask must be subset of
285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
286 * STOP bits are cleared together.
288 * If clearing of @mask leaves no stop or trap pending, this function calls
289 * task_clear_jobctl_trapping().
291 * CONTEXT:
292 * Must be called with @task->sighand->siglock held.
294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
296 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
298 if (mask & JOBCTL_STOP_PENDING)
299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
301 task->jobctl &= ~mask;
303 if (!(task->jobctl & JOBCTL_PENDING_MASK))
304 task_clear_jobctl_trapping(task);
308 * task_participate_group_stop - participate in a group stop
309 * @task: task participating in a group stop
311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
312 * Group stop states are cleared and the group stop count is consumed if
313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
314 * stop, the appropriate %SIGNAL_* flags are set.
316 * CONTEXT:
317 * Must be called with @task->sighand->siglock held.
319 * RETURNS:
320 * %true if group stop completion should be notified to the parent, %false
321 * otherwise.
323 static bool task_participate_group_stop(struct task_struct *task)
325 struct signal_struct *sig = task->signal;
326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
332 if (!consume)
333 return false;
335 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
336 sig->group_stop_count--;
339 * Tell the caller to notify completion iff we are entering into a
340 * fresh group stop. Read comment in do_signal_stop() for details.
342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
343 sig->flags = SIGNAL_STOP_STOPPED;
344 return true;
346 return false;
350 * allocate a new signal queue record
351 * - this may be called without locks if and only if t == current, otherwise an
352 * appropriate lock must be held to stop the target task from exiting
354 static struct sigqueue *
355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
357 struct sigqueue *q = NULL;
358 struct user_struct *user;
361 * Protect access to @t credentials. This can go away when all
362 * callers hold rcu read lock.
364 rcu_read_lock();
365 user = get_uid(__task_cred(t)->user);
366 atomic_inc(&user->sigpending);
367 rcu_read_unlock();
369 if (override_rlimit ||
370 atomic_read(&user->sigpending) <=
371 task_rlimit(t, RLIMIT_SIGPENDING)) {
372 q = kmem_cache_alloc(sigqueue_cachep, flags);
373 } else {
374 print_dropped_signal(sig);
377 if (unlikely(q == NULL)) {
378 atomic_dec(&user->sigpending);
379 free_uid(user);
380 } else {
381 INIT_LIST_HEAD(&q->list);
382 q->flags = 0;
383 q->user = user;
386 return q;
389 static void __sigqueue_free(struct sigqueue *q)
391 if (q->flags & SIGQUEUE_PREALLOC)
392 return;
393 atomic_dec(&q->user->sigpending);
394 free_uid(q->user);
395 kmem_cache_free(sigqueue_cachep, q);
398 void flush_sigqueue(struct sigpending *queue)
400 struct sigqueue *q;
402 sigemptyset(&queue->signal);
403 while (!list_empty(&queue->list)) {
404 q = list_entry(queue->list.next, struct sigqueue , list);
405 list_del_init(&q->list);
406 __sigqueue_free(q);
411 * Flush all pending signals for a task.
413 void __flush_signals(struct task_struct *t)
415 clear_tsk_thread_flag(t, TIF_SIGPENDING);
416 flush_sigqueue(&t->pending);
417 flush_sigqueue(&t->signal->shared_pending);
420 void flush_signals(struct task_struct *t)
422 unsigned long flags;
424 spin_lock_irqsave(&t->sighand->siglock, flags);
425 __flush_signals(t);
426 spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 static void __flush_itimer_signals(struct sigpending *pending)
431 sigset_t signal, retain;
432 struct sigqueue *q, *n;
434 signal = pending->signal;
435 sigemptyset(&retain);
437 list_for_each_entry_safe(q, n, &pending->list, list) {
438 int sig = q->info.si_signo;
440 if (likely(q->info.si_code != SI_TIMER)) {
441 sigaddset(&retain, sig);
442 } else {
443 sigdelset(&signal, sig);
444 list_del_init(&q->list);
445 __sigqueue_free(q);
449 sigorsets(&pending->signal, &signal, &retain);
452 void flush_itimer_signals(void)
454 struct task_struct *tsk = current;
455 unsigned long flags;
457 spin_lock_irqsave(&tsk->sighand->siglock, flags);
458 __flush_itimer_signals(&tsk->pending);
459 __flush_itimer_signals(&tsk->signal->shared_pending);
460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 void ignore_signals(struct task_struct *t)
465 int i;
467 for (i = 0; i < _NSIG; ++i)
468 t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 flush_signals(t);
474 * Flush all handlers for a task.
477 void
478 flush_signal_handlers(struct task_struct *t, int force_default)
480 int i;
481 struct k_sigaction *ka = &t->sighand->action[0];
482 for (i = _NSIG ; i != 0 ; i--) {
483 if (force_default || ka->sa.sa_handler != SIG_IGN)
484 ka->sa.sa_handler = SIG_DFL;
485 ka->sa.sa_flags = 0;
486 sigemptyset(&ka->sa.sa_mask);
487 ka++;
491 int unhandled_signal(struct task_struct *tsk, int sig)
493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
494 if (is_global_init(tsk))
495 return 1;
496 if (handler != SIG_IGN && handler != SIG_DFL)
497 return 0;
498 /* if ptraced, let the tracer determine */
499 return !tsk->ptrace;
503 * Notify the system that a driver wants to block all signals for this
504 * process, and wants to be notified if any signals at all were to be
505 * sent/acted upon. If the notifier routine returns non-zero, then the
506 * signal will be acted upon after all. If the notifier routine returns 0,
507 * then then signal will be blocked. Only one block per process is
508 * allowed. priv is a pointer to private data that the notifier routine
509 * can use to determine if the signal should be blocked or not.
511 void
512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
514 unsigned long flags;
516 spin_lock_irqsave(&current->sighand->siglock, flags);
517 current->notifier_mask = mask;
518 current->notifier_data = priv;
519 current->notifier = notifier;
520 spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 /* Notify the system that blocking has ended. */
525 void
526 unblock_all_signals(void)
528 unsigned long flags;
530 spin_lock_irqsave(&current->sighand->siglock, flags);
531 current->notifier = NULL;
532 current->notifier_data = NULL;
533 recalc_sigpending();
534 spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
539 struct sigqueue *q, *first = NULL;
542 * Collect the siginfo appropriate to this signal. Check if
543 * there is another siginfo for the same signal.
545 list_for_each_entry(q, &list->list, list) {
546 if (q->info.si_signo == sig) {
547 if (first)
548 goto still_pending;
549 first = q;
553 sigdelset(&list->signal, sig);
555 if (first) {
556 still_pending:
557 list_del_init(&first->list);
558 copy_siginfo(info, &first->info);
559 __sigqueue_free(first);
560 } else {
562 * Ok, it wasn't in the queue. This must be
563 * a fast-pathed signal or we must have been
564 * out of queue space. So zero out the info.
566 info->si_signo = sig;
567 info->si_errno = 0;
568 info->si_code = SI_USER;
569 info->si_pid = 0;
570 info->si_uid = 0;
574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 siginfo_t *info)
577 int sig = next_signal(pending, mask);
579 if (sig) {
580 if (current->notifier) {
581 if (sigismember(current->notifier_mask, sig)) {
582 if (!(current->notifier)(current->notifier_data)) {
583 clear_thread_flag(TIF_SIGPENDING);
584 return 0;
589 collect_signal(sig, pending, info);
592 return sig;
596 * Dequeue a signal and return the element to the caller, which is
597 * expected to free it.
599 * All callers have to hold the siglock.
601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
603 int signr;
605 /* We only dequeue private signals from ourselves, we don't let
606 * signalfd steal them
608 signr = __dequeue_signal(&tsk->pending, mask, info);
609 if (!signr) {
610 signr = __dequeue_signal(&tsk->signal->shared_pending,
611 mask, info);
613 * itimer signal ?
615 * itimers are process shared and we restart periodic
616 * itimers in the signal delivery path to prevent DoS
617 * attacks in the high resolution timer case. This is
618 * compliant with the old way of self-restarting
619 * itimers, as the SIGALRM is a legacy signal and only
620 * queued once. Changing the restart behaviour to
621 * restart the timer in the signal dequeue path is
622 * reducing the timer noise on heavy loaded !highres
623 * systems too.
625 if (unlikely(signr == SIGALRM)) {
626 struct hrtimer *tmr = &tsk->signal->real_timer;
628 if (!hrtimer_is_queued(tmr) &&
629 tsk->signal->it_real_incr.tv64 != 0) {
630 hrtimer_forward(tmr, tmr->base->get_time(),
631 tsk->signal->it_real_incr);
632 hrtimer_restart(tmr);
637 recalc_sigpending();
638 if (!signr)
639 return 0;
641 if (unlikely(sig_kernel_stop(signr))) {
643 * Set a marker that we have dequeued a stop signal. Our
644 * caller might release the siglock and then the pending
645 * stop signal it is about to process is no longer in the
646 * pending bitmasks, but must still be cleared by a SIGCONT
647 * (and overruled by a SIGKILL). So those cases clear this
648 * shared flag after we've set it. Note that this flag may
649 * remain set after the signal we return is ignored or
650 * handled. That doesn't matter because its only purpose
651 * is to alert stop-signal processing code when another
652 * processor has come along and cleared the flag.
654 current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
658 * Release the siglock to ensure proper locking order
659 * of timer locks outside of siglocks. Note, we leave
660 * irqs disabled here, since the posix-timers code is
661 * about to disable them again anyway.
663 spin_unlock(&tsk->sighand->siglock);
664 do_schedule_next_timer(info);
665 spin_lock(&tsk->sighand->siglock);
667 return signr;
671 * Tell a process that it has a new active signal..
673 * NOTE! we rely on the previous spin_lock to
674 * lock interrupts for us! We can only be called with
675 * "siglock" held, and the local interrupt must
676 * have been disabled when that got acquired!
678 * No need to set need_resched since signal event passing
679 * goes through ->blocked
681 void signal_wake_up(struct task_struct *t, int resume)
683 unsigned int mask;
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
688 * For SIGKILL, we want to wake it up in the stopped/traced/killable
689 * case. We don't check t->state here because there is a race with it
690 * executing another processor and just now entering stopped state.
691 * By using wake_up_state, we ensure the process will wake up and
692 * handle its death signal.
694 mask = TASK_INTERRUPTIBLE;
695 if (resume)
696 mask |= TASK_WAKEKILL;
697 if (!wake_up_state(t, mask))
698 kick_process(t);
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
705 * All callers must be holding the siglock.
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
712 struct sigqueue *q, *n;
713 sigset_t m;
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
726 return 1;
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
732 * All callers must be holding the siglock.
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
736 struct sigqueue *q, *n;
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
749 return 1;
752 static inline int is_si_special(const struct siginfo *info)
754 return info <= SEND_SIG_FORCED;
757 static inline bool si_fromuser(const struct siginfo *info)
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
764 * called with RCU read lock from check_kill_permission()
766 static int kill_ok_by_cred(struct task_struct *t)
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
780 return 0;
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
790 struct pid *sid;
791 int error;
793 if (!valid_signal(sig))
794 return -EINVAL;
796 if (!si_fromuser(info))
797 return 0;
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
819 return security_task_kill(t, info, sig, 0);
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
839 static void ptrace_trap_notify(struct task_struct *t)
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
865 * The process is in the middle of dying, nothing to do.
867 } else if (sig_kernel_stop(sig)) {
869 * This is a stop signal. Remove SIGCONT from all queues.
871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 t = p;
873 do {
874 rm_from_queue(sigmask(SIGCONT), &t->pending);
875 } while_each_thread(p, t);
876 } else if (sig == SIGCONT) {
877 unsigned int why;
879 * Remove all stop signals from all queues, wake all threads.
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 t = p;
883 do {
884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 if (likely(!(t->ptrace & PT_SEIZED)))
887 wake_up_state(t, __TASK_STOPPED);
888 else
889 ptrace_trap_notify(t);
890 } while_each_thread(p, t);
893 * Notify the parent with CLD_CONTINUED if we were stopped.
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
900 why = 0;
901 if (signal->flags & SIGNAL_STOP_STOPPED)
902 why |= SIGNAL_CLD_CONTINUED;
903 else if (signal->group_stop_count)
904 why |= SIGNAL_CLD_STOPPED;
906 if (why) {
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
912 signal->flags = why | SIGNAL_STOP_CONTINUED;
913 signal->group_stop_count = 0;
914 signal->group_exit_code = 0;
918 return !sig_ignored(p, sig, force);
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
929 static inline int wants_signal(int sig, struct task_struct *p)
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (task_is_stopped_or_traced(p))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
942 static void complete_signal(int sig, struct task_struct *p, int group)
944 struct signal_struct *signal = p->signal;
945 struct task_struct *t;
948 * Now find a thread we can wake up to take the signal off the queue.
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
953 if (wants_signal(sig, p))
954 t = p;
955 else if (!group || thread_group_empty(p))
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
960 return;
961 else {
963 * Otherwise try to find a suitable thread.
965 t = signal->curr_target;
966 while (!wants_signal(sig, t)) {
967 t = next_thread(t);
968 if (t == signal->curr_target)
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
974 return;
976 signal->curr_target = t;
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
983 if (sig_fatal(p, sig) &&
984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 !sigismember(&t->real_blocked, sig) &&
986 (sig == SIGKILL || !t->ptrace)) {
988 * This signal will be fatal to the whole group.
990 if (!sig_kernel_coredump(sig)) {
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
997 signal->flags = SIGNAL_GROUP_EXIT;
998 signal->group_exit_code = sig;
999 signal->group_stop_count = 0;
1000 t = p;
1001 do {
1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 } while_each_thread(p, t);
1006 return;
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1014 signal_wake_up(t, sig == SIGKILL);
1015 return;
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1026 if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 return;
1029 if (SI_FROMKERNEL(info))
1030 return;
1032 rcu_read_lock();
1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 make_kuid(current_user_ns(), info->si_uid));
1035 rcu_read_unlock();
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1040 return;
1042 #endif
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 int group, int from_ancestor_ns)
1047 struct sigpending *pending;
1048 struct sigqueue *q;
1049 int override_rlimit;
1050 int ret = 0, result;
1052 assert_spin_locked(&t->sighand->siglock);
1054 result = TRACE_SIGNAL_IGNORED;
1055 if (!prepare_signal(sig, t,
1056 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 goto ret;
1059 pending = group ? &t->signal->shared_pending : &t->pending;
1061 * Short-circuit ignored signals and support queuing
1062 * exactly one non-rt signal, so that we can get more
1063 * detailed information about the cause of the signal.
1065 result = TRACE_SIGNAL_ALREADY_PENDING;
1066 if (legacy_queue(pending, sig))
1067 goto ret;
1069 result = TRACE_SIGNAL_DELIVERED;
1071 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 * or SIGKILL.
1074 if (info == SEND_SIG_FORCED)
1075 goto out_set;
1078 * Real-time signals must be queued if sent by sigqueue, or
1079 * some other real-time mechanism. It is implementation
1080 * defined whether kill() does so. We attempt to do so, on
1081 * the principle of least surprise, but since kill is not
1082 * allowed to fail with EAGAIN when low on memory we just
1083 * make sure at least one signal gets delivered and don't
1084 * pass on the info struct.
1086 if (sig < SIGRTMIN)
1087 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 else
1089 override_rlimit = 0;
1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 override_rlimit);
1093 if (q) {
1094 list_add_tail(&q->list, &pending->list);
1095 switch ((unsigned long) info) {
1096 case (unsigned long) SEND_SIG_NOINFO:
1097 q->info.si_signo = sig;
1098 q->info.si_errno = 0;
1099 q->info.si_code = SI_USER;
1100 q->info.si_pid = task_tgid_nr_ns(current,
1101 task_active_pid_ns(t));
1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 q->info.si_signo = sig;
1106 q->info.si_errno = 0;
1107 q->info.si_code = SI_KERNEL;
1108 q->info.si_pid = 0;
1109 q->info.si_uid = 0;
1110 break;
1111 default:
1112 copy_siginfo(&q->info, info);
1113 if (from_ancestor_ns)
1114 q->info.si_pid = 0;
1115 break;
1118 userns_fixup_signal_uid(&q->info, t);
1120 } else if (!is_si_special(info)) {
1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1123 * Queue overflow, abort. We may abort if the
1124 * signal was rt and sent by user using something
1125 * other than kill().
1127 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 ret = -EAGAIN;
1129 goto ret;
1130 } else {
1132 * This is a silent loss of information. We still
1133 * send the signal, but the *info bits are lost.
1135 result = TRACE_SIGNAL_LOSE_INFO;
1139 out_set:
1140 signalfd_notify(t, sig);
1141 sigaddset(&pending->signal, sig);
1142 complete_signal(sig, t, group);
1143 ret:
1144 trace_signal_generate(sig, info, t, group, result);
1145 return ret;
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 int group)
1151 int from_ancestor_ns = 0;
1153 #ifdef CONFIG_PID_NS
1154 from_ancestor_ns = si_fromuser(info) &&
1155 !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1158 return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1163 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 current->comm, task_pid_nr(current), signr);
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 printk("code at %08lx: ", regs->ip);
1169 int i;
1170 for (i = 0; i < 16; i++) {
1171 unsigned char insn;
1173 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 break;
1175 printk("%02x ", insn);
1178 #endif
1179 printk("\n");
1180 preempt_disable();
1181 show_regs(regs);
1182 preempt_enable();
1185 static int __init setup_print_fatal_signals(char *str)
1187 get_option (&str, &print_fatal_signals);
1189 return 1;
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1197 return send_signal(sig, info, p, 1);
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1203 return send_signal(sig, info, t, 0);
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 bool group)
1209 unsigned long flags;
1210 int ret = -ESRCH;
1212 if (lock_task_sighand(p, &flags)) {
1213 ret = send_signal(sig, info, p, group);
1214 unlock_task_sighand(p, &flags);
1217 return ret;
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1234 unsigned long int flags;
1235 int ret, blocked, ignored;
1236 struct k_sigaction *action;
1238 spin_lock_irqsave(&t->sighand->siglock, flags);
1239 action = &t->sighand->action[sig-1];
1240 ignored = action->sa.sa_handler == SIG_IGN;
1241 blocked = sigismember(&t->blocked, sig);
1242 if (blocked || ignored) {
1243 action->sa.sa_handler = SIG_DFL;
1244 if (blocked) {
1245 sigdelset(&t->blocked, sig);
1246 recalc_sigpending_and_wake(t);
1249 if (action->sa.sa_handler == SIG_DFL)
1250 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 ret = specific_send_sig_info(sig, info, t);
1252 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1254 return ret;
1258 * Nuke all other threads in the group.
1260 int zap_other_threads(struct task_struct *p)
1262 struct task_struct *t = p;
1263 int count = 0;
1265 p->signal->group_stop_count = 0;
1267 while_each_thread(p, t) {
1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 count++;
1271 /* Don't bother with already dead threads */
1272 if (t->exit_state)
1273 continue;
1274 sigaddset(&t->pending.signal, SIGKILL);
1275 signal_wake_up(t, 1);
1278 return count;
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 unsigned long *flags)
1284 struct sighand_struct *sighand;
1286 for (;;) {
1287 local_irq_save(*flags);
1288 rcu_read_lock();
1289 sighand = rcu_dereference(tsk->sighand);
1290 if (unlikely(sighand == NULL)) {
1291 rcu_read_unlock();
1292 local_irq_restore(*flags);
1293 break;
1296 spin_lock(&sighand->siglock);
1297 if (likely(sighand == tsk->sighand)) {
1298 rcu_read_unlock();
1299 break;
1301 spin_unlock(&sighand->siglock);
1302 rcu_read_unlock();
1303 local_irq_restore(*flags);
1306 return sighand;
1310 * send signal info to all the members of a group
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1314 int ret;
1316 rcu_read_lock();
1317 ret = check_kill_permission(sig, info, p);
1318 rcu_read_unlock();
1320 if (!ret && sig)
1321 ret = do_send_sig_info(sig, info, p, true);
1323 return ret;
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1333 struct task_struct *p = NULL;
1334 int retval, success;
1336 success = 0;
1337 retval = -ESRCH;
1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 int err = group_send_sig_info(sig, info, p);
1340 success |= !err;
1341 retval = err;
1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 return success ? 0 : retval;
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1348 int error = -ESRCH;
1349 struct task_struct *p;
1351 rcu_read_lock();
1352 retry:
1353 p = pid_task(pid, PIDTYPE_PID);
1354 if (p) {
1355 error = group_send_sig_info(sig, info, p);
1356 if (unlikely(error == -ESRCH))
1358 * The task was unhashed in between, try again.
1359 * If it is dead, pid_task() will return NULL,
1360 * if we race with de_thread() it will find the
1361 * new leader.
1363 goto retry;
1365 rcu_read_unlock();
1367 return error;
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1372 int error;
1373 rcu_read_lock();
1374 error = kill_pid_info(sig, info, find_vpid(pid));
1375 rcu_read_unlock();
1376 return error;
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 struct task_struct *target)
1382 const struct cred *pcred = __task_cred(target);
1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1385 return 0;
1386 return 1;
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 const struct cred *cred, u32 secid)
1393 int ret = -EINVAL;
1394 struct task_struct *p;
1395 unsigned long flags;
1397 if (!valid_signal(sig))
1398 return ret;
1400 rcu_read_lock();
1401 p = pid_task(pid, PIDTYPE_PID);
1402 if (!p) {
1403 ret = -ESRCH;
1404 goto out_unlock;
1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 ret = -EPERM;
1408 goto out_unlock;
1410 ret = security_task_kill(p, info, sig, secid);
1411 if (ret)
1412 goto out_unlock;
1414 if (sig) {
1415 if (lock_task_sighand(p, &flags)) {
1416 ret = __send_signal(sig, info, p, 1, 0);
1417 unlock_task_sighand(p, &flags);
1418 } else
1419 ret = -ESRCH;
1421 out_unlock:
1422 rcu_read_unlock();
1423 return ret;
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong. Should make it like BSD or SYSV.
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1436 int ret;
1438 if (pid > 0) {
1439 rcu_read_lock();
1440 ret = kill_pid_info(sig, info, find_vpid(pid));
1441 rcu_read_unlock();
1442 return ret;
1445 read_lock(&tasklist_lock);
1446 if (pid != -1) {
1447 ret = __kill_pgrp_info(sig, info,
1448 pid ? find_vpid(-pid) : task_pgrp(current));
1449 } else {
1450 int retval = 0, count = 0;
1451 struct task_struct * p;
1453 for_each_process(p) {
1454 if (task_pid_vnr(p) > 1 &&
1455 !same_thread_group(p, current)) {
1456 int err = group_send_sig_info(sig, info, p);
1457 ++count;
1458 if (err != -EPERM)
1459 retval = err;
1462 ret = count ? retval : -ESRCH;
1464 read_unlock(&tasklist_lock);
1466 return ret;
1470 * These are for backward compatibility with the rest of the kernel source.
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 * Make sure legacy kernel users don't send in bad values
1477 * (normal paths check this in check_kill_permission).
1479 if (!valid_signal(sig))
1480 return -EINVAL;
1482 return do_send_sig_info(sig, info, p, false);
1485 #define __si_special(priv) \
1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489 send_sig(int sig, struct task_struct *p, int priv)
1491 return send_sig_info(sig, __si_special(priv), p);
1494 void
1495 force_sig(int sig, struct task_struct *p)
1497 force_sig_info(sig, SEND_SIG_PRIV, p);
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1507 force_sigsegv(int sig, struct task_struct *p)
1509 if (sig == SIGSEGV) {
1510 unsigned long flags;
1511 spin_lock_irqsave(&p->sighand->siglock, flags);
1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1515 force_sig(SIGSEGV, p);
1516 return 0;
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1521 int ret;
1523 read_lock(&tasklist_lock);
1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 read_unlock(&tasklist_lock);
1527 return ret;
1529 EXPORT_SYMBOL(kill_pgrp);
1531 int kill_pid(struct pid *pid, int sig, int priv)
1533 return kill_pid_info(sig, __si_special(priv), pid);
1535 EXPORT_SYMBOL(kill_pid);
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures. This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions". In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create. If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1546 struct sigqueue *sigqueue_alloc(void)
1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1550 if (q)
1551 q->flags |= SIGQUEUE_PREALLOC;
1553 return q;
1556 void sigqueue_free(struct sigqueue *q)
1558 unsigned long flags;
1559 spinlock_t *lock = &current->sighand->siglock;
1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1563 * We must hold ->siglock while testing q->list
1564 * to serialize with collect_signal() or with
1565 * __exit_signal()->flush_sigqueue().
1567 spin_lock_irqsave(lock, flags);
1568 q->flags &= ~SIGQUEUE_PREALLOC;
1570 * If it is queued it will be freed when dequeued,
1571 * like the "regular" sigqueue.
1573 if (!list_empty(&q->list))
1574 q = NULL;
1575 spin_unlock_irqrestore(lock, flags);
1577 if (q)
1578 __sigqueue_free(q);
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1583 int sig = q->info.si_signo;
1584 struct sigpending *pending;
1585 unsigned long flags;
1586 int ret, result;
1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1590 ret = -1;
1591 if (!likely(lock_task_sighand(t, &flags)))
1592 goto ret;
1594 ret = 1; /* the signal is ignored */
1595 result = TRACE_SIGNAL_IGNORED;
1596 if (!prepare_signal(sig, t, false))
1597 goto out;
1599 ret = 0;
1600 if (unlikely(!list_empty(&q->list))) {
1602 * If an SI_TIMER entry is already queue just increment
1603 * the overrun count.
1605 BUG_ON(q->info.si_code != SI_TIMER);
1606 q->info.si_overrun++;
1607 result = TRACE_SIGNAL_ALREADY_PENDING;
1608 goto out;
1610 q->info.si_overrun = 0;
1612 signalfd_notify(t, sig);
1613 pending = group ? &t->signal->shared_pending : &t->pending;
1614 list_add_tail(&q->list, &pending->list);
1615 sigaddset(&pending->signal, sig);
1616 complete_signal(sig, t, group);
1617 result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 trace_signal_generate(sig, &q->info, t, group, result);
1620 unlock_task_sighand(t, &flags);
1621 ret:
1622 return ret;
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1634 struct siginfo info;
1635 unsigned long flags;
1636 struct sighand_struct *psig;
1637 bool autoreap = false;
1639 BUG_ON(sig == -1);
1641 /* do_notify_parent_cldstop should have been called instead. */
1642 BUG_ON(task_is_stopped_or_traced(tsk));
1644 BUG_ON(!tsk->ptrace &&
1645 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1647 if (sig != SIGCHLD) {
1649 * This is only possible if parent == real_parent.
1650 * Check if it has changed security domain.
1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 sig = SIGCHLD;
1656 info.si_signo = sig;
1657 info.si_errno = 0;
1659 * We are under tasklist_lock here so our parent is tied to
1660 * us and cannot change.
1662 * task_active_pid_ns will always return the same pid namespace
1663 * until a task passes through release_task.
1665 * write_lock() currently calls preempt_disable() which is the
1666 * same as rcu_read_lock(), but according to Oleg, this is not
1667 * correct to rely on this
1669 rcu_read_lock();
1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 task_uid(tsk));
1673 rcu_read_unlock();
1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1678 info.si_status = tsk->exit_code & 0x7f;
1679 if (tsk->exit_code & 0x80)
1680 info.si_code = CLD_DUMPED;
1681 else if (tsk->exit_code & 0x7f)
1682 info.si_code = CLD_KILLED;
1683 else {
1684 info.si_code = CLD_EXITED;
1685 info.si_status = tsk->exit_code >> 8;
1688 psig = tsk->parent->sighand;
1689 spin_lock_irqsave(&psig->siglock, flags);
1690 if (!tsk->ptrace && sig == SIGCHLD &&
1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1694 * We are exiting and our parent doesn't care. POSIX.1
1695 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 * automatically and not left for our parent's wait4 call.
1698 * Rather than having the parent do it as a magic kind of
1699 * signal handler, we just set this to tell do_exit that we
1700 * can be cleaned up without becoming a zombie. Note that
1701 * we still call __wake_up_parent in this case, because a
1702 * blocked sys_wait4 might now return -ECHILD.
1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 * is implementation-defined: we do (if you don't want
1706 * it, just use SIG_IGN instead).
1708 autoreap = true;
1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 sig = 0;
1712 if (valid_signal(sig) && sig)
1713 __group_send_sig_info(sig, &info, tsk->parent);
1714 __wake_up_parent(tsk, tsk->parent);
1715 spin_unlock_irqrestore(&psig->siglock, flags);
1717 return autoreap;
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1726 * Notify @tsk's parent that the stopped/continued state has changed. If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 bool for_ptracer, int why)
1736 struct siginfo info;
1737 unsigned long flags;
1738 struct task_struct *parent;
1739 struct sighand_struct *sighand;
1741 if (for_ptracer) {
1742 parent = tsk->parent;
1743 } else {
1744 tsk = tsk->group_leader;
1745 parent = tsk->real_parent;
1748 info.si_signo = SIGCHLD;
1749 info.si_errno = 0;
1751 * see comment in do_notify_parent() about the following 4 lines
1753 rcu_read_lock();
1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 rcu_read_unlock();
1758 info.si_utime = cputime_to_clock_t(tsk->utime);
1759 info.si_stime = cputime_to_clock_t(tsk->stime);
1761 info.si_code = why;
1762 switch (why) {
1763 case CLD_CONTINUED:
1764 info.si_status = SIGCONT;
1765 break;
1766 case CLD_STOPPED:
1767 info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 break;
1769 case CLD_TRAPPED:
1770 info.si_status = tsk->exit_code & 0x7f;
1771 break;
1772 default:
1773 BUG();
1776 sighand = parent->sighand;
1777 spin_lock_irqsave(&sighand->siglock, flags);
1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 __group_send_sig_info(SIGCHLD, &info, parent);
1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 __wake_up_parent(tsk, parent);
1785 spin_unlock_irqrestore(&sighand->siglock, flags);
1788 static inline int may_ptrace_stop(void)
1790 if (!likely(current->ptrace))
1791 return 0;
1793 * Are we in the middle of do_coredump?
1794 * If so and our tracer is also part of the coredump stopping
1795 * is a deadlock situation, and pointless because our tracer
1796 * is dead so don't allow us to stop.
1797 * If SIGKILL was already sent before the caller unlocked
1798 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 * is safe to enter schedule().
1801 if (unlikely(current->mm->core_state) &&
1802 unlikely(current->mm == current->parent->mm))
1803 return 0;
1805 return 1;
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1812 static int sigkill_pending(struct task_struct *tsk)
1814 return sigismember(&tsk->pending.signal, SIGKILL) ||
1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1819 * This must be called with current->sighand->siglock held.
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 __releases(&current->sighand->siglock)
1831 __acquires(&current->sighand->siglock)
1833 bool gstop_done = false;
1835 if (arch_ptrace_stop_needed(exit_code, info)) {
1837 * The arch code has something special to do before a
1838 * ptrace stop. This is allowed to block, e.g. for faults
1839 * on user stack pages. We can't keep the siglock while
1840 * calling arch_ptrace_stop, so we must release it now.
1841 * To preserve proper semantics, we must do this before
1842 * any signal bookkeeping like checking group_stop_count.
1843 * Meanwhile, a SIGKILL could come in before we retake the
1844 * siglock. That must prevent us from sleeping in TASK_TRACED.
1845 * So after regaining the lock, we must check for SIGKILL.
1847 spin_unlock_irq(&current->sighand->siglock);
1848 arch_ptrace_stop(exit_code, info);
1849 spin_lock_irq(&current->sighand->siglock);
1850 if (sigkill_pending(current))
1851 return;
1855 * We're committing to trapping. TRACED should be visible before
1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 * Also, transition to TRACED and updates to ->jobctl should be
1858 * atomic with respect to siglock and should be done after the arch
1859 * hook as siglock is released and regrabbed across it.
1861 set_current_state(TASK_TRACED);
1863 current->last_siginfo = info;
1864 current->exit_code = exit_code;
1867 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1869 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 * could be clear now. We act as if SIGCONT is received after
1871 * TASK_TRACED is entered - ignore it.
1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 gstop_done = task_participate_group_stop(current);
1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881 /* entering a trap, clear TRAPPING */
1882 task_clear_jobctl_trapping(current);
1884 spin_unlock_irq(&current->sighand->siglock);
1885 read_lock(&tasklist_lock);
1886 if (may_ptrace_stop()) {
1888 * Notify parents of the stop.
1890 * While ptraced, there are two parents - the ptracer and
1891 * the real_parent of the group_leader. The ptracer should
1892 * know about every stop while the real parent is only
1893 * interested in the completion of group stop. The states
1894 * for the two don't interact with each other. Notify
1895 * separately unless they're gonna be duplicates.
1897 do_notify_parent_cldstop(current, true, why);
1898 if (gstop_done && ptrace_reparented(current))
1899 do_notify_parent_cldstop(current, false, why);
1902 * Don't want to allow preemption here, because
1903 * sys_ptrace() needs this task to be inactive.
1905 * XXX: implement read_unlock_no_resched().
1907 preempt_disable();
1908 read_unlock(&tasklist_lock);
1909 preempt_enable_no_resched();
1910 schedule();
1911 } else {
1913 * By the time we got the lock, our tracer went away.
1914 * Don't drop the lock yet, another tracer may come.
1916 * If @gstop_done, the ptracer went away between group stop
1917 * completion and here. During detach, it would have set
1918 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 * the real parent of the group stop completion is enough.
1922 if (gstop_done)
1923 do_notify_parent_cldstop(current, false, why);
1925 __set_current_state(TASK_RUNNING);
1926 if (clear_code)
1927 current->exit_code = 0;
1928 read_unlock(&tasklist_lock);
1932 * While in TASK_TRACED, we were considered "frozen enough".
1933 * Now that we woke up, it's crucial if we're supposed to be
1934 * frozen that we freeze now before running anything substantial.
1936 try_to_freeze();
1939 * We are back. Now reacquire the siglock before touching
1940 * last_siginfo, so that we are sure to have synchronized with
1941 * any signal-sending on another CPU that wants to examine it.
1943 spin_lock_irq(&current->sighand->siglock);
1944 current->last_siginfo = NULL;
1946 /* LISTENING can be set only during STOP traps, clear it */
1947 current->jobctl &= ~JOBCTL_LISTENING;
1950 * Queued signals ignored us while we were stopped for tracing.
1951 * So check for any that we should take before resuming user mode.
1952 * This sets TIF_SIGPENDING, but never clears it.
1954 recalc_sigpending_tsk(current);
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1959 siginfo_t info;
1961 memset(&info, 0, sizeof info);
1962 info.si_signo = signr;
1963 info.si_code = exit_code;
1964 info.si_pid = task_pid_vnr(current);
1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1967 /* Let the debugger run. */
1968 ptrace_stop(exit_code, why, 1, &info);
1971 void ptrace_notify(int exit_code)
1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974 if (unlikely(current->task_works)) {
1975 if (test_and_clear_ti_thread_flag(current_thread_info(),
1976 TIF_NOTIFY_RESUME)) {
1977 smp_mb__after_clear_bit();
1978 task_work_run();
1982 spin_lock_irq(&current->sighand->siglock);
1983 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1984 spin_unlock_irq(&current->sighand->siglock);
1988 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1989 * @signr: signr causing group stop if initiating
1991 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1992 * and participate in it. If already set, participate in the existing
1993 * group stop. If participated in a group stop (and thus slept), %true is
1994 * returned with siglock released.
1996 * If ptraced, this function doesn't handle stop itself. Instead,
1997 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1998 * untouched. The caller must ensure that INTERRUPT trap handling takes
1999 * places afterwards.
2001 * CONTEXT:
2002 * Must be called with @current->sighand->siglock held, which is released
2003 * on %true return.
2005 * RETURNS:
2006 * %false if group stop is already cancelled or ptrace trap is scheduled.
2007 * %true if participated in group stop.
2009 static bool do_signal_stop(int signr)
2010 __releases(&current->sighand->siglock)
2012 struct signal_struct *sig = current->signal;
2014 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2015 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2016 struct task_struct *t;
2018 /* signr will be recorded in task->jobctl for retries */
2019 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2022 unlikely(signal_group_exit(sig)))
2023 return false;
2025 * There is no group stop already in progress. We must
2026 * initiate one now.
2028 * While ptraced, a task may be resumed while group stop is
2029 * still in effect and then receive a stop signal and
2030 * initiate another group stop. This deviates from the
2031 * usual behavior as two consecutive stop signals can't
2032 * cause two group stops when !ptraced. That is why we
2033 * also check !task_is_stopped(t) below.
2035 * The condition can be distinguished by testing whether
2036 * SIGNAL_STOP_STOPPED is already set. Don't generate
2037 * group_exit_code in such case.
2039 * This is not necessary for SIGNAL_STOP_CONTINUED because
2040 * an intervening stop signal is required to cause two
2041 * continued events regardless of ptrace.
2043 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2044 sig->group_exit_code = signr;
2046 sig->group_stop_count = 0;
2048 if (task_set_jobctl_pending(current, signr | gstop))
2049 sig->group_stop_count++;
2051 for (t = next_thread(current); t != current;
2052 t = next_thread(t)) {
2054 * Setting state to TASK_STOPPED for a group
2055 * stop is always done with the siglock held,
2056 * so this check has no races.
2058 if (!task_is_stopped(t) &&
2059 task_set_jobctl_pending(t, signr | gstop)) {
2060 sig->group_stop_count++;
2061 if (likely(!(t->ptrace & PT_SEIZED)))
2062 signal_wake_up(t, 0);
2063 else
2064 ptrace_trap_notify(t);
2069 if (likely(!current->ptrace)) {
2070 int notify = 0;
2073 * If there are no other threads in the group, or if there
2074 * is a group stop in progress and we are the last to stop,
2075 * report to the parent.
2077 if (task_participate_group_stop(current))
2078 notify = CLD_STOPPED;
2080 __set_current_state(TASK_STOPPED);
2081 spin_unlock_irq(&current->sighand->siglock);
2084 * Notify the parent of the group stop completion. Because
2085 * we're not holding either the siglock or tasklist_lock
2086 * here, ptracer may attach inbetween; however, this is for
2087 * group stop and should always be delivered to the real
2088 * parent of the group leader. The new ptracer will get
2089 * its notification when this task transitions into
2090 * TASK_TRACED.
2092 if (notify) {
2093 read_lock(&tasklist_lock);
2094 do_notify_parent_cldstop(current, false, notify);
2095 read_unlock(&tasklist_lock);
2098 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2099 schedule();
2100 return true;
2101 } else {
2103 * While ptraced, group stop is handled by STOP trap.
2104 * Schedule it and let the caller deal with it.
2106 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2107 return false;
2112 * do_jobctl_trap - take care of ptrace jobctl traps
2114 * When PT_SEIZED, it's used for both group stop and explicit
2115 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2116 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2117 * the stop signal; otherwise, %SIGTRAP.
2119 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2120 * number as exit_code and no siginfo.
2122 * CONTEXT:
2123 * Must be called with @current->sighand->siglock held, which may be
2124 * released and re-acquired before returning with intervening sleep.
2126 static void do_jobctl_trap(void)
2128 struct signal_struct *signal = current->signal;
2129 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131 if (current->ptrace & PT_SEIZED) {
2132 if (!signal->group_stop_count &&
2133 !(signal->flags & SIGNAL_STOP_STOPPED))
2134 signr = SIGTRAP;
2135 WARN_ON_ONCE(!signr);
2136 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2137 CLD_STOPPED);
2138 } else {
2139 WARN_ON_ONCE(!signr);
2140 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2141 current->exit_code = 0;
2145 static int ptrace_signal(int signr, siginfo_t *info,
2146 struct pt_regs *regs, void *cookie)
2148 ptrace_signal_deliver(regs, cookie);
2150 * We do not check sig_kernel_stop(signr) but set this marker
2151 * unconditionally because we do not know whether debugger will
2152 * change signr. This flag has no meaning unless we are going
2153 * to stop after return from ptrace_stop(). In this case it will
2154 * be checked in do_signal_stop(), we should only stop if it was
2155 * not cleared by SIGCONT while we were sleeping. See also the
2156 * comment in dequeue_signal().
2158 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2161 /* We're back. Did the debugger cancel the sig? */
2162 signr = current->exit_code;
2163 if (signr == 0)
2164 return signr;
2166 current->exit_code = 0;
2169 * Update the siginfo structure if the signal has
2170 * changed. If the debugger wanted something
2171 * specific in the siginfo structure then it should
2172 * have updated *info via PTRACE_SETSIGINFO.
2174 if (signr != info->si_signo) {
2175 info->si_signo = signr;
2176 info->si_errno = 0;
2177 info->si_code = SI_USER;
2178 rcu_read_lock();
2179 info->si_pid = task_pid_vnr(current->parent);
2180 info->si_uid = from_kuid_munged(current_user_ns(),
2181 task_uid(current->parent));
2182 rcu_read_unlock();
2185 /* If the (new) signal is now blocked, requeue it. */
2186 if (sigismember(&current->blocked, signr)) {
2187 specific_send_sig_info(signr, info, current);
2188 signr = 0;
2191 return signr;
2194 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195 struct pt_regs *regs, void *cookie)
2197 struct sighand_struct *sighand = current->sighand;
2198 struct signal_struct *signal = current->signal;
2199 int signr;
2201 if (unlikely(current->task_works)) {
2202 if (test_and_clear_ti_thread_flag(current_thread_info(),
2203 TIF_NOTIFY_RESUME)) {
2204 smp_mb__after_clear_bit();
2205 task_work_run();
2209 if (unlikely(uprobe_deny_signal()))
2210 return 0;
2212 relock:
2214 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2215 * While in TASK_STOPPED, we were considered "frozen enough".
2216 * Now that we woke up, it's crucial if we're supposed to be
2217 * frozen that we freeze now before running anything substantial.
2219 try_to_freeze();
2221 spin_lock_irq(&sighand->siglock);
2223 * Every stopped thread goes here after wakeup. Check to see if
2224 * we should notify the parent, prepare_signal(SIGCONT) encodes
2225 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2227 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2228 int why;
2230 if (signal->flags & SIGNAL_CLD_CONTINUED)
2231 why = CLD_CONTINUED;
2232 else
2233 why = CLD_STOPPED;
2235 signal->flags &= ~SIGNAL_CLD_MASK;
2237 spin_unlock_irq(&sighand->siglock);
2240 * Notify the parent that we're continuing. This event is
2241 * always per-process and doesn't make whole lot of sense
2242 * for ptracers, who shouldn't consume the state via
2243 * wait(2) either, but, for backward compatibility, notify
2244 * the ptracer of the group leader too unless it's gonna be
2245 * a duplicate.
2247 read_lock(&tasklist_lock);
2248 do_notify_parent_cldstop(current, false, why);
2250 if (ptrace_reparented(current->group_leader))
2251 do_notify_parent_cldstop(current->group_leader,
2252 true, why);
2253 read_unlock(&tasklist_lock);
2255 goto relock;
2258 for (;;) {
2259 struct k_sigaction *ka;
2261 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2262 do_signal_stop(0))
2263 goto relock;
2265 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2266 do_jobctl_trap();
2267 spin_unlock_irq(&sighand->siglock);
2268 goto relock;
2271 signr = dequeue_signal(current, &current->blocked, info);
2273 if (!signr)
2274 break; /* will return 0 */
2276 if (unlikely(current->ptrace) && signr != SIGKILL) {
2277 signr = ptrace_signal(signr, info,
2278 regs, cookie);
2279 if (!signr)
2280 continue;
2283 ka = &sighand->action[signr-1];
2285 /* Trace actually delivered signals. */
2286 trace_signal_deliver(signr, info, ka);
2288 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2289 continue;
2290 if (ka->sa.sa_handler != SIG_DFL) {
2291 /* Run the handler. */
2292 *return_ka = *ka;
2294 if (ka->sa.sa_flags & SA_ONESHOT)
2295 ka->sa.sa_handler = SIG_DFL;
2297 break; /* will return non-zero "signr" value */
2301 * Now we are doing the default action for this signal.
2303 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2304 continue;
2307 * Global init gets no signals it doesn't want.
2308 * Container-init gets no signals it doesn't want from same
2309 * container.
2311 * Note that if global/container-init sees a sig_kernel_only()
2312 * signal here, the signal must have been generated internally
2313 * or must have come from an ancestor namespace. In either
2314 * case, the signal cannot be dropped.
2316 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2317 !sig_kernel_only(signr))
2318 continue;
2320 if (sig_kernel_stop(signr)) {
2322 * The default action is to stop all threads in
2323 * the thread group. The job control signals
2324 * do nothing in an orphaned pgrp, but SIGSTOP
2325 * always works. Note that siglock needs to be
2326 * dropped during the call to is_orphaned_pgrp()
2327 * because of lock ordering with tasklist_lock.
2328 * This allows an intervening SIGCONT to be posted.
2329 * We need to check for that and bail out if necessary.
2331 if (signr != SIGSTOP) {
2332 spin_unlock_irq(&sighand->siglock);
2334 /* signals can be posted during this window */
2336 if (is_current_pgrp_orphaned())
2337 goto relock;
2339 spin_lock_irq(&sighand->siglock);
2342 if (likely(do_signal_stop(info->si_signo))) {
2343 /* It released the siglock. */
2344 goto relock;
2348 * We didn't actually stop, due to a race
2349 * with SIGCONT or something like that.
2351 continue;
2354 spin_unlock_irq(&sighand->siglock);
2357 * Anything else is fatal, maybe with a core dump.
2359 current->flags |= PF_SIGNALED;
2361 if (sig_kernel_coredump(signr)) {
2362 if (print_fatal_signals)
2363 print_fatal_signal(regs, info->si_signo);
2365 * If it was able to dump core, this kills all
2366 * other threads in the group and synchronizes with
2367 * their demise. If we lost the race with another
2368 * thread getting here, it set group_exit_code
2369 * first and our do_group_exit call below will use
2370 * that value and ignore the one we pass it.
2372 do_coredump(info->si_signo, info->si_signo, regs);
2376 * Death signals, no core dump.
2378 do_group_exit(info->si_signo);
2379 /* NOTREACHED */
2381 spin_unlock_irq(&sighand->siglock);
2382 return signr;
2386 * signal_delivered -
2387 * @sig: number of signal being delivered
2388 * @info: siginfo_t of signal being delivered
2389 * @ka: sigaction setting that chose the handler
2390 * @regs: user register state
2391 * @stepping: nonzero if debugger single-step or block-step in use
2393 * This function should be called when a signal has succesfully been
2394 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2395 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2396 * is set in @ka->sa.sa_flags. Tracing is notified.
2398 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2399 struct pt_regs *regs, int stepping)
2401 sigset_t blocked;
2403 /* A signal was successfully delivered, and the
2404 saved sigmask was stored on the signal frame,
2405 and will be restored by sigreturn. So we can
2406 simply clear the restore sigmask flag. */
2407 clear_restore_sigmask();
2409 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2410 if (!(ka->sa.sa_flags & SA_NODEFER))
2411 sigaddset(&blocked, sig);
2412 set_current_blocked(&blocked);
2413 tracehook_signal_handler(sig, info, ka, regs, stepping);
2417 * It could be that complete_signal() picked us to notify about the
2418 * group-wide signal. Other threads should be notified now to take
2419 * the shared signals in @which since we will not.
2421 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2423 sigset_t retarget;
2424 struct task_struct *t;
2426 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2427 if (sigisemptyset(&retarget))
2428 return;
2430 t = tsk;
2431 while_each_thread(tsk, t) {
2432 if (t->flags & PF_EXITING)
2433 continue;
2435 if (!has_pending_signals(&retarget, &t->blocked))
2436 continue;
2437 /* Remove the signals this thread can handle. */
2438 sigandsets(&retarget, &retarget, &t->blocked);
2440 if (!signal_pending(t))
2441 signal_wake_up(t, 0);
2443 if (sigisemptyset(&retarget))
2444 break;
2448 void exit_signals(struct task_struct *tsk)
2450 int group_stop = 0;
2451 sigset_t unblocked;
2454 * @tsk is about to have PF_EXITING set - lock out users which
2455 * expect stable threadgroup.
2457 threadgroup_change_begin(tsk);
2459 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2460 tsk->flags |= PF_EXITING;
2461 threadgroup_change_end(tsk);
2462 return;
2465 spin_lock_irq(&tsk->sighand->siglock);
2467 * From now this task is not visible for group-wide signals,
2468 * see wants_signal(), do_signal_stop().
2470 tsk->flags |= PF_EXITING;
2472 threadgroup_change_end(tsk);
2474 if (!signal_pending(tsk))
2475 goto out;
2477 unblocked = tsk->blocked;
2478 signotset(&unblocked);
2479 retarget_shared_pending(tsk, &unblocked);
2481 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2482 task_participate_group_stop(tsk))
2483 group_stop = CLD_STOPPED;
2484 out:
2485 spin_unlock_irq(&tsk->sighand->siglock);
2488 * If group stop has completed, deliver the notification. This
2489 * should always go to the real parent of the group leader.
2491 if (unlikely(group_stop)) {
2492 read_lock(&tasklist_lock);
2493 do_notify_parent_cldstop(tsk, false, group_stop);
2494 read_unlock(&tasklist_lock);
2498 EXPORT_SYMBOL(recalc_sigpending);
2499 EXPORT_SYMBOL_GPL(dequeue_signal);
2500 EXPORT_SYMBOL(flush_signals);
2501 EXPORT_SYMBOL(force_sig);
2502 EXPORT_SYMBOL(send_sig);
2503 EXPORT_SYMBOL(send_sig_info);
2504 EXPORT_SYMBOL(sigprocmask);
2505 EXPORT_SYMBOL(block_all_signals);
2506 EXPORT_SYMBOL(unblock_all_signals);
2510 * System call entry points.
2514 * sys_restart_syscall - restart a system call
2516 SYSCALL_DEFINE0(restart_syscall)
2518 struct restart_block *restart = &current_thread_info()->restart_block;
2519 return restart->fn(restart);
2522 long do_no_restart_syscall(struct restart_block *param)
2524 return -EINTR;
2527 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2529 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2530 sigset_t newblocked;
2531 /* A set of now blocked but previously unblocked signals. */
2532 sigandnsets(&newblocked, newset, &current->blocked);
2533 retarget_shared_pending(tsk, &newblocked);
2535 tsk->blocked = *newset;
2536 recalc_sigpending();
2540 * set_current_blocked - change current->blocked mask
2541 * @newset: new mask
2543 * It is wrong to change ->blocked directly, this helper should be used
2544 * to ensure the process can't miss a shared signal we are going to block.
2546 void set_current_blocked(sigset_t *newset)
2548 struct task_struct *tsk = current;
2549 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2550 spin_lock_irq(&tsk->sighand->siglock);
2551 __set_task_blocked(tsk, newset);
2552 spin_unlock_irq(&tsk->sighand->siglock);
2555 void __set_current_blocked(const sigset_t *newset)
2557 struct task_struct *tsk = current;
2559 spin_lock_irq(&tsk->sighand->siglock);
2560 __set_task_blocked(tsk, newset);
2561 spin_unlock_irq(&tsk->sighand->siglock);
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2572 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2574 struct task_struct *tsk = current;
2575 sigset_t newset;
2577 /* Lockless, only current can change ->blocked, never from irq */
2578 if (oldset)
2579 *oldset = tsk->blocked;
2581 switch (how) {
2582 case SIG_BLOCK:
2583 sigorsets(&newset, &tsk->blocked, set);
2584 break;
2585 case SIG_UNBLOCK:
2586 sigandnsets(&newset, &tsk->blocked, set);
2587 break;
2588 case SIG_SETMASK:
2589 newset = *set;
2590 break;
2591 default:
2592 return -EINVAL;
2595 __set_current_blocked(&newset);
2596 return 0;
2600 * sys_rt_sigprocmask - change the list of currently blocked signals
2601 * @how: whether to add, remove, or set signals
2602 * @nset: stores pending signals
2603 * @oset: previous value of signal mask if non-null
2604 * @sigsetsize: size of sigset_t type
2606 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607 sigset_t __user *, oset, size_t, sigsetsize)
2609 sigset_t old_set, new_set;
2610 int error;
2612 /* XXX: Don't preclude handling different sized sigset_t's. */
2613 if (sigsetsize != sizeof(sigset_t))
2614 return -EINVAL;
2616 old_set = current->blocked;
2618 if (nset) {
2619 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620 return -EFAULT;
2621 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2623 error = sigprocmask(how, &new_set, NULL);
2624 if (error)
2625 return error;
2628 if (oset) {
2629 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630 return -EFAULT;
2633 return 0;
2636 long do_sigpending(void __user *set, unsigned long sigsetsize)
2638 long error = -EINVAL;
2639 sigset_t pending;
2641 if (sigsetsize > sizeof(sigset_t))
2642 goto out;
2644 spin_lock_irq(&current->sighand->siglock);
2645 sigorsets(&pending, &current->pending.signal,
2646 &current->signal->shared_pending.signal);
2647 spin_unlock_irq(&current->sighand->siglock);
2649 /* Outside the lock because only this thread touches it. */
2650 sigandsets(&pending, &current->blocked, &pending);
2652 error = -EFAULT;
2653 if (!copy_to_user(set, &pending, sigsetsize))
2654 error = 0;
2656 out:
2657 return error;
2661 * sys_rt_sigpending - examine a pending signal that has been raised
2662 * while blocked
2663 * @set: stores pending signals
2664 * @sigsetsize: size of sigset_t type or larger
2666 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2668 return do_sigpending(set, sigsetsize);
2671 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2673 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2675 int err;
2677 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2678 return -EFAULT;
2679 if (from->si_code < 0)
2680 return __copy_to_user(to, from, sizeof(siginfo_t))
2681 ? -EFAULT : 0;
2683 * If you change siginfo_t structure, please be sure
2684 * this code is fixed accordingly.
2685 * Please remember to update the signalfd_copyinfo() function
2686 * inside fs/signalfd.c too, in case siginfo_t changes.
2687 * It should never copy any pad contained in the structure
2688 * to avoid security leaks, but must copy the generic
2689 * 3 ints plus the relevant union member.
2691 err = __put_user(from->si_signo, &to->si_signo);
2692 err |= __put_user(from->si_errno, &to->si_errno);
2693 err |= __put_user((short)from->si_code, &to->si_code);
2694 switch (from->si_code & __SI_MASK) {
2695 case __SI_KILL:
2696 err |= __put_user(from->si_pid, &to->si_pid);
2697 err |= __put_user(from->si_uid, &to->si_uid);
2698 break;
2699 case __SI_TIMER:
2700 err |= __put_user(from->si_tid, &to->si_tid);
2701 err |= __put_user(from->si_overrun, &to->si_overrun);
2702 err |= __put_user(from->si_ptr, &to->si_ptr);
2703 break;
2704 case __SI_POLL:
2705 err |= __put_user(from->si_band, &to->si_band);
2706 err |= __put_user(from->si_fd, &to->si_fd);
2707 break;
2708 case __SI_FAULT:
2709 err |= __put_user(from->si_addr, &to->si_addr);
2710 #ifdef __ARCH_SI_TRAPNO
2711 err |= __put_user(from->si_trapno, &to->si_trapno);
2712 #endif
2713 #ifdef BUS_MCEERR_AO
2715 * Other callers might not initialize the si_lsb field,
2716 * so check explicitly for the right codes here.
2718 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2719 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2720 #endif
2721 break;
2722 case __SI_CHLD:
2723 err |= __put_user(from->si_pid, &to->si_pid);
2724 err |= __put_user(from->si_uid, &to->si_uid);
2725 err |= __put_user(from->si_status, &to->si_status);
2726 err |= __put_user(from->si_utime, &to->si_utime);
2727 err |= __put_user(from->si_stime, &to->si_stime);
2728 break;
2729 case __SI_RT: /* This is not generated by the kernel as of now. */
2730 case __SI_MESGQ: /* But this is */
2731 err |= __put_user(from->si_pid, &to->si_pid);
2732 err |= __put_user(from->si_uid, &to->si_uid);
2733 err |= __put_user(from->si_ptr, &to->si_ptr);
2734 break;
2735 #ifdef __ARCH_SIGSYS
2736 case __SI_SYS:
2737 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2738 err |= __put_user(from->si_syscall, &to->si_syscall);
2739 err |= __put_user(from->si_arch, &to->si_arch);
2740 break;
2741 #endif
2742 default: /* this is just in case for now ... */
2743 err |= __put_user(from->si_pid, &to->si_pid);
2744 err |= __put_user(from->si_uid, &to->si_uid);
2745 break;
2747 return err;
2750 #endif
2753 * do_sigtimedwait - wait for queued signals specified in @which
2754 * @which: queued signals to wait for
2755 * @info: if non-null, the signal's siginfo is returned here
2756 * @ts: upper bound on process time suspension
2758 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2759 const struct timespec *ts)
2761 struct task_struct *tsk = current;
2762 long timeout = MAX_SCHEDULE_TIMEOUT;
2763 sigset_t mask = *which;
2764 int sig;
2766 if (ts) {
2767 if (!timespec_valid(ts))
2768 return -EINVAL;
2769 timeout = timespec_to_jiffies(ts);
2771 * We can be close to the next tick, add another one
2772 * to ensure we will wait at least the time asked for.
2774 if (ts->tv_sec || ts->tv_nsec)
2775 timeout++;
2779 * Invert the set of allowed signals to get those we want to block.
2781 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2782 signotset(&mask);
2784 spin_lock_irq(&tsk->sighand->siglock);
2785 sig = dequeue_signal(tsk, &mask, info);
2786 if (!sig && timeout) {
2788 * None ready, temporarily unblock those we're interested
2789 * while we are sleeping in so that we'll be awakened when
2790 * they arrive. Unblocking is always fine, we can avoid
2791 * set_current_blocked().
2793 tsk->real_blocked = tsk->blocked;
2794 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2795 recalc_sigpending();
2796 spin_unlock_irq(&tsk->sighand->siglock);
2798 timeout = schedule_timeout_interruptible(timeout);
2800 spin_lock_irq(&tsk->sighand->siglock);
2801 __set_task_blocked(tsk, &tsk->real_blocked);
2802 siginitset(&tsk->real_blocked, 0);
2803 sig = dequeue_signal(tsk, &mask, info);
2805 spin_unlock_irq(&tsk->sighand->siglock);
2807 if (sig)
2808 return sig;
2809 return timeout ? -EINTR : -EAGAIN;
2813 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2814 * in @uthese
2815 * @uthese: queued signals to wait for
2816 * @uinfo: if non-null, the signal's siginfo is returned here
2817 * @uts: upper bound on process time suspension
2818 * @sigsetsize: size of sigset_t type
2820 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2821 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2822 size_t, sigsetsize)
2824 sigset_t these;
2825 struct timespec ts;
2826 siginfo_t info;
2827 int ret;
2829 /* XXX: Don't preclude handling different sized sigset_t's. */
2830 if (sigsetsize != sizeof(sigset_t))
2831 return -EINVAL;
2833 if (copy_from_user(&these, uthese, sizeof(these)))
2834 return -EFAULT;
2836 if (uts) {
2837 if (copy_from_user(&ts, uts, sizeof(ts)))
2838 return -EFAULT;
2841 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2843 if (ret > 0 && uinfo) {
2844 if (copy_siginfo_to_user(uinfo, &info))
2845 ret = -EFAULT;
2848 return ret;
2852 * sys_kill - send a signal to a process
2853 * @pid: the PID of the process
2854 * @sig: signal to be sent
2856 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2858 struct siginfo info;
2860 info.si_signo = sig;
2861 info.si_errno = 0;
2862 info.si_code = SI_USER;
2863 info.si_pid = task_tgid_vnr(current);
2864 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2866 return kill_something_info(sig, &info, pid);
2869 static int
2870 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2872 struct task_struct *p;
2873 int error = -ESRCH;
2875 rcu_read_lock();
2876 p = find_task_by_vpid(pid);
2877 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2878 error = check_kill_permission(sig, info, p);
2880 * The null signal is a permissions and process existence
2881 * probe. No signal is actually delivered.
2883 if (!error && sig) {
2884 error = do_send_sig_info(sig, info, p, false);
2886 * If lock_task_sighand() failed we pretend the task
2887 * dies after receiving the signal. The window is tiny,
2888 * and the signal is private anyway.
2890 if (unlikely(error == -ESRCH))
2891 error = 0;
2894 rcu_read_unlock();
2896 return error;
2899 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2901 struct siginfo info;
2903 info.si_signo = sig;
2904 info.si_errno = 0;
2905 info.si_code = SI_TKILL;
2906 info.si_pid = task_tgid_vnr(current);
2907 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2909 return do_send_specific(tgid, pid, sig, &info);
2913 * sys_tgkill - send signal to one specific thread
2914 * @tgid: the thread group ID of the thread
2915 * @pid: the PID of the thread
2916 * @sig: signal to be sent
2918 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2919 * exists but it's not belonging to the target process anymore. This
2920 * method solves the problem of threads exiting and PIDs getting reused.
2922 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2924 /* This is only valid for single tasks */
2925 if (pid <= 0 || tgid <= 0)
2926 return -EINVAL;
2928 return do_tkill(tgid, pid, sig);
2932 * sys_tkill - send signal to one specific task
2933 * @pid: the PID of the task
2934 * @sig: signal to be sent
2936 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2938 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2940 /* This is only valid for single tasks */
2941 if (pid <= 0)
2942 return -EINVAL;
2944 return do_tkill(0, pid, sig);
2948 * sys_rt_sigqueueinfo - send signal information to a signal
2949 * @pid: the PID of the thread
2950 * @sig: signal to be sent
2951 * @uinfo: signal info to be sent
2953 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2954 siginfo_t __user *, uinfo)
2956 siginfo_t info;
2958 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2959 return -EFAULT;
2961 /* Not even root can pretend to send signals from the kernel.
2962 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2964 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2965 /* We used to allow any < 0 si_code */
2966 WARN_ON_ONCE(info.si_code < 0);
2967 return -EPERM;
2969 info.si_signo = sig;
2971 /* POSIX.1b doesn't mention process groups. */
2972 return kill_proc_info(sig, &info, pid);
2975 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2977 /* This is only valid for single tasks */
2978 if (pid <= 0 || tgid <= 0)
2979 return -EINVAL;
2981 /* Not even root can pretend to send signals from the kernel.
2982 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2984 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2985 /* We used to allow any < 0 si_code */
2986 WARN_ON_ONCE(info->si_code < 0);
2987 return -EPERM;
2989 info->si_signo = sig;
2991 return do_send_specific(tgid, pid, sig, info);
2994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2995 siginfo_t __user *, uinfo)
2997 siginfo_t info;
2999 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3000 return -EFAULT;
3002 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3005 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3007 struct task_struct *t = current;
3008 struct k_sigaction *k;
3009 sigset_t mask;
3011 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3012 return -EINVAL;
3014 k = &t->sighand->action[sig-1];
3016 spin_lock_irq(&current->sighand->siglock);
3017 if (oact)
3018 *oact = *k;
3020 if (act) {
3021 sigdelsetmask(&act->sa.sa_mask,
3022 sigmask(SIGKILL) | sigmask(SIGSTOP));
3023 *k = *act;
3025 * POSIX 3.3.1.3:
3026 * "Setting a signal action to SIG_IGN for a signal that is
3027 * pending shall cause the pending signal to be discarded,
3028 * whether or not it is blocked."
3030 * "Setting a signal action to SIG_DFL for a signal that is
3031 * pending and whose default action is to ignore the signal
3032 * (for example, SIGCHLD), shall cause the pending signal to
3033 * be discarded, whether or not it is blocked"
3035 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3036 sigemptyset(&mask);
3037 sigaddset(&mask, sig);
3038 rm_from_queue_full(&mask, &t->signal->shared_pending);
3039 do {
3040 rm_from_queue_full(&mask, &t->pending);
3041 t = next_thread(t);
3042 } while (t != current);
3046 spin_unlock_irq(&current->sighand->siglock);
3047 return 0;
3050 int
3051 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3053 stack_t oss;
3054 int error;
3056 oss.ss_sp = (void __user *) current->sas_ss_sp;
3057 oss.ss_size = current->sas_ss_size;
3058 oss.ss_flags = sas_ss_flags(sp);
3060 if (uss) {
3061 void __user *ss_sp;
3062 size_t ss_size;
3063 int ss_flags;
3065 error = -EFAULT;
3066 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3067 goto out;
3068 error = __get_user(ss_sp, &uss->ss_sp) |
3069 __get_user(ss_flags, &uss->ss_flags) |
3070 __get_user(ss_size, &uss->ss_size);
3071 if (error)
3072 goto out;
3074 error = -EPERM;
3075 if (on_sig_stack(sp))
3076 goto out;
3078 error = -EINVAL;
3080 * Note - this code used to test ss_flags incorrectly:
3081 * old code may have been written using ss_flags==0
3082 * to mean ss_flags==SS_ONSTACK (as this was the only
3083 * way that worked) - this fix preserves that older
3084 * mechanism.
3086 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3087 goto out;
3089 if (ss_flags == SS_DISABLE) {
3090 ss_size = 0;
3091 ss_sp = NULL;
3092 } else {
3093 error = -ENOMEM;
3094 if (ss_size < MINSIGSTKSZ)
3095 goto out;
3098 current->sas_ss_sp = (unsigned long) ss_sp;
3099 current->sas_ss_size = ss_size;
3102 error = 0;
3103 if (uoss) {
3104 error = -EFAULT;
3105 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3106 goto out;
3107 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3108 __put_user(oss.ss_size, &uoss->ss_size) |
3109 __put_user(oss.ss_flags, &uoss->ss_flags);
3112 out:
3113 return error;
3116 #ifdef __ARCH_WANT_SYS_SIGPENDING
3119 * sys_sigpending - examine pending signals
3120 * @set: where mask of pending signal is returned
3122 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3124 return do_sigpending(set, sizeof(*set));
3127 #endif
3129 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3131 * sys_sigprocmask - examine and change blocked signals
3132 * @how: whether to add, remove, or set signals
3133 * @nset: signals to add or remove (if non-null)
3134 * @oset: previous value of signal mask if non-null
3136 * Some platforms have their own version with special arguments;
3137 * others support only sys_rt_sigprocmask.
3140 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3141 old_sigset_t __user *, oset)
3143 old_sigset_t old_set, new_set;
3144 sigset_t new_blocked;
3146 old_set = current->blocked.sig[0];
3148 if (nset) {
3149 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3150 return -EFAULT;
3151 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3153 new_blocked = current->blocked;
3155 switch (how) {
3156 case SIG_BLOCK:
3157 sigaddsetmask(&new_blocked, new_set);
3158 break;
3159 case SIG_UNBLOCK:
3160 sigdelsetmask(&new_blocked, new_set);
3161 break;
3162 case SIG_SETMASK:
3163 new_blocked.sig[0] = new_set;
3164 break;
3165 default:
3166 return -EINVAL;
3169 __set_current_blocked(&new_blocked);
3172 if (oset) {
3173 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3174 return -EFAULT;
3177 return 0;
3179 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3181 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3183 * sys_rt_sigaction - alter an action taken by a process
3184 * @sig: signal to be sent
3185 * @act: new sigaction
3186 * @oact: used to save the previous sigaction
3187 * @sigsetsize: size of sigset_t type
3189 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3190 const struct sigaction __user *, act,
3191 struct sigaction __user *, oact,
3192 size_t, sigsetsize)
3194 struct k_sigaction new_sa, old_sa;
3195 int ret = -EINVAL;
3197 /* XXX: Don't preclude handling different sized sigset_t's. */
3198 if (sigsetsize != sizeof(sigset_t))
3199 goto out;
3201 if (act) {
3202 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3203 return -EFAULT;
3206 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3208 if (!ret && oact) {
3209 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3210 return -EFAULT;
3212 out:
3213 return ret;
3215 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3217 #ifdef __ARCH_WANT_SYS_SGETMASK
3220 * For backwards compatibility. Functionality superseded by sigprocmask.
3222 SYSCALL_DEFINE0(sgetmask)
3224 /* SMP safe */
3225 return current->blocked.sig[0];
3228 SYSCALL_DEFINE1(ssetmask, int, newmask)
3230 int old = current->blocked.sig[0];
3231 sigset_t newset;
3233 set_current_blocked(&newset);
3235 return old;
3237 #endif /* __ARCH_WANT_SGETMASK */
3239 #ifdef __ARCH_WANT_SYS_SIGNAL
3241 * For backwards compatibility. Functionality superseded by sigaction.
3243 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3245 struct k_sigaction new_sa, old_sa;
3246 int ret;
3248 new_sa.sa.sa_handler = handler;
3249 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3250 sigemptyset(&new_sa.sa.sa_mask);
3252 ret = do_sigaction(sig, &new_sa, &old_sa);
3254 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3256 #endif /* __ARCH_WANT_SYS_SIGNAL */
3258 #ifdef __ARCH_WANT_SYS_PAUSE
3260 SYSCALL_DEFINE0(pause)
3262 while (!signal_pending(current)) {
3263 current->state = TASK_INTERRUPTIBLE;
3264 schedule();
3266 return -ERESTARTNOHAND;
3269 #endif
3271 int sigsuspend(sigset_t *set)
3273 current->saved_sigmask = current->blocked;
3274 set_current_blocked(set);
3276 current->state = TASK_INTERRUPTIBLE;
3277 schedule();
3278 set_restore_sigmask();
3279 return -ERESTARTNOHAND;
3282 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3284 * sys_rt_sigsuspend - replace the signal mask for a value with the
3285 * @unewset value until a signal is received
3286 * @unewset: new signal mask value
3287 * @sigsetsize: size of sigset_t type
3289 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3291 sigset_t newset;
3293 /* XXX: Don't preclude handling different sized sigset_t's. */
3294 if (sigsetsize != sizeof(sigset_t))
3295 return -EINVAL;
3297 if (copy_from_user(&newset, unewset, sizeof(newset)))
3298 return -EFAULT;
3299 return sigsuspend(&newset);
3301 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3303 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3305 return NULL;
3308 void __init signals_init(void)
3310 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3313 #ifdef CONFIG_KGDB_KDB
3314 #include <linux/kdb.h>
3316 * kdb_send_sig_info - Allows kdb to send signals without exposing
3317 * signal internals. This function checks if the required locks are
3318 * available before calling the main signal code, to avoid kdb
3319 * deadlocks.
3321 void
3322 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3324 static struct task_struct *kdb_prev_t;
3325 int sig, new_t;
3326 if (!spin_trylock(&t->sighand->siglock)) {
3327 kdb_printf("Can't do kill command now.\n"
3328 "The sigmask lock is held somewhere else in "
3329 "kernel, try again later\n");
3330 return;
3332 spin_unlock(&t->sighand->siglock);
3333 new_t = kdb_prev_t != t;
3334 kdb_prev_t = t;
3335 if (t->state != TASK_RUNNING && new_t) {
3336 kdb_printf("Process is not RUNNING, sending a signal from "
3337 "kdb risks deadlock\n"
3338 "on the run queue locks. "
3339 "The signal has _not_ been sent.\n"
3340 "Reissue the kill command if you want to risk "
3341 "the deadlock.\n");
3342 return;
3344 sig = info->si_signo;
3345 if (send_sig_info(sig, info, t))
3346 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3347 sig, t->pid);
3348 else
3349 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3351 #endif /* CONFIG_KGDB_KDB */