svcrpc: fix svc_xprt_enqueue/svc_recv busy-looping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / auditsc.c
blob4b96415527b8664753e18cb169f0de9f391f9314
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
72 #include "audit.h"
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* number of audit rules */
91 int audit_n_rules;
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
96 struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct audit_names {
111 struct list_head list; /* audit_context->names_list */
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
116 uid_t uid;
117 gid_t gid;
118 dev_t rdev;
119 u32 osid;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
129 bool should_free;
132 struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
137 #define AUDIT_AUX_IPCPERM 0
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS 16
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
149 struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 uid_t target_auid[AUDIT_AUX_PIDS];
153 uid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 int pid_count;
160 struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
168 struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
174 struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
179 /* The per-task audit context. */
180 struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
189 u64 prio;
190 int return_valid; /* return code is valid */
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
203 struct path pwd;
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
209 /* Save things to print about task_struct */
210 pid_t pid, ppid;
211 uid_t uid, euid, suid, fsuid;
212 gid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
214 int arch;
216 pid_t target_pid;
217 uid_t target_auid;
218 uid_t target_uid;
219 unsigned int target_sessionid;
220 u32 target_sid;
221 char target_comm[TASK_COMM_LEN];
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
225 int tree_count;
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
233 struct {
234 uid_t uid;
235 gid_t gid;
236 umode_t mode;
237 u32 osid;
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
241 umode_t perm_mode;
242 unsigned long qbytes;
243 } ipc;
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
258 struct {
259 int oflag;
260 umode_t mode;
261 struct mq_attr attr;
262 } mq_open;
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
267 struct {
268 int fd;
269 int flags;
270 } mmap;
272 int fds[2];
274 #if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277 #endif
280 static inline int open_arg(int flags, int mask)
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
288 static int audit_match_perm(struct audit_context *ctx, int mask)
290 unsigned n;
291 if (unlikely(!ctx))
292 return 0;
293 n = ctx->major;
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
331 static int audit_match_filetype(struct audit_context *ctx, int val)
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
336 if (unlikely(!ctx))
337 return 0;
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
342 return 1;
345 return 0;
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
385 return 0;
388 static int grow_tree_refs(struct audit_context *ctx)
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
403 #endif
405 static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
408 #ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
430 ctx->trees = p;
431 ctx->tree_count = count;
432 #endif
435 static void free_tree_refs(struct audit_context *ctx)
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
446 #ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
463 #endif
464 return 0;
467 static int audit_compare_id(uid_t uid1,
468 struct audit_names *name,
469 unsigned long name_offset,
470 struct audit_field *f,
471 struct audit_context *ctx)
473 struct audit_names *n;
474 unsigned long addr;
475 uid_t uid2;
476 int rc;
478 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
480 if (name) {
481 addr = (unsigned long)name;
482 addr += name_offset;
484 uid2 = *(uid_t *)addr;
485 rc = audit_comparator(uid1, f->op, uid2);
486 if (rc)
487 return rc;
490 if (ctx) {
491 list_for_each_entry(n, &ctx->names_list, list) {
492 addr = (unsigned long)n;
493 addr += name_offset;
495 uid2 = *(uid_t *)addr;
497 rc = audit_comparator(uid1, f->op, uid2);
498 if (rc)
499 return rc;
502 return 0;
505 static int audit_field_compare(struct task_struct *tsk,
506 const struct cred *cred,
507 struct audit_field *f,
508 struct audit_context *ctx,
509 struct audit_names *name)
511 switch (f->val) {
512 /* process to file object comparisons */
513 case AUDIT_COMPARE_UID_TO_OBJ_UID:
514 return audit_compare_id(cred->uid,
515 name, offsetof(struct audit_names, uid),
516 f, ctx);
517 case AUDIT_COMPARE_GID_TO_OBJ_GID:
518 return audit_compare_id(cred->gid,
519 name, offsetof(struct audit_names, gid),
520 f, ctx);
521 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
522 return audit_compare_id(cred->euid,
523 name, offsetof(struct audit_names, uid),
524 f, ctx);
525 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
526 return audit_compare_id(cred->egid,
527 name, offsetof(struct audit_names, gid),
528 f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_id(tsk->loginuid,
531 name, offsetof(struct audit_names, uid),
532 f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_id(cred->suid,
535 name, offsetof(struct audit_names, uid),
536 f, ctx);
537 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
538 return audit_compare_id(cred->sgid,
539 name, offsetof(struct audit_names, gid),
540 f, ctx);
541 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
542 return audit_compare_id(cred->fsuid,
543 name, offsetof(struct audit_names, uid),
544 f, ctx);
545 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
546 return audit_compare_id(cred->fsgid,
547 name, offsetof(struct audit_names, gid),
548 f, ctx);
549 /* uid comparisons */
550 case AUDIT_COMPARE_UID_TO_AUID:
551 return audit_comparator(cred->uid, f->op, tsk->loginuid);
552 case AUDIT_COMPARE_UID_TO_EUID:
553 return audit_comparator(cred->uid, f->op, cred->euid);
554 case AUDIT_COMPARE_UID_TO_SUID:
555 return audit_comparator(cred->uid, f->op, cred->suid);
556 case AUDIT_COMPARE_UID_TO_FSUID:
557 return audit_comparator(cred->uid, f->op, cred->fsuid);
558 /* auid comparisons */
559 case AUDIT_COMPARE_AUID_TO_EUID:
560 return audit_comparator(tsk->loginuid, f->op, cred->euid);
561 case AUDIT_COMPARE_AUID_TO_SUID:
562 return audit_comparator(tsk->loginuid, f->op, cred->suid);
563 case AUDIT_COMPARE_AUID_TO_FSUID:
564 return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
565 /* euid comparisons */
566 case AUDIT_COMPARE_EUID_TO_SUID:
567 return audit_comparator(cred->euid, f->op, cred->suid);
568 case AUDIT_COMPARE_EUID_TO_FSUID:
569 return audit_comparator(cred->euid, f->op, cred->fsuid);
570 /* suid comparisons */
571 case AUDIT_COMPARE_SUID_TO_FSUID:
572 return audit_comparator(cred->suid, f->op, cred->fsuid);
573 /* gid comparisons */
574 case AUDIT_COMPARE_GID_TO_EGID:
575 return audit_comparator(cred->gid, f->op, cred->egid);
576 case AUDIT_COMPARE_GID_TO_SGID:
577 return audit_comparator(cred->gid, f->op, cred->sgid);
578 case AUDIT_COMPARE_GID_TO_FSGID:
579 return audit_comparator(cred->gid, f->op, cred->fsgid);
580 /* egid comparisons */
581 case AUDIT_COMPARE_EGID_TO_SGID:
582 return audit_comparator(cred->egid, f->op, cred->sgid);
583 case AUDIT_COMPARE_EGID_TO_FSGID:
584 return audit_comparator(cred->egid, f->op, cred->fsgid);
585 /* sgid comparison */
586 case AUDIT_COMPARE_SGID_TO_FSGID:
587 return audit_comparator(cred->sgid, f->op, cred->fsgid);
588 default:
589 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
590 return 0;
592 return 0;
595 /* Determine if any context name data matches a rule's watch data */
596 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
597 * otherwise.
599 * If task_creation is true, this is an explicit indication that we are
600 * filtering a task rule at task creation time. This and tsk == current are
601 * the only situations where tsk->cred may be accessed without an rcu read lock.
603 static int audit_filter_rules(struct task_struct *tsk,
604 struct audit_krule *rule,
605 struct audit_context *ctx,
606 struct audit_names *name,
607 enum audit_state *state,
608 bool task_creation)
610 const struct cred *cred;
611 int i, need_sid = 1;
612 u32 sid;
614 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
616 for (i = 0; i < rule->field_count; i++) {
617 struct audit_field *f = &rule->fields[i];
618 struct audit_names *n;
619 int result = 0;
621 switch (f->type) {
622 case AUDIT_PID:
623 result = audit_comparator(tsk->pid, f->op, f->val);
624 break;
625 case AUDIT_PPID:
626 if (ctx) {
627 if (!ctx->ppid)
628 ctx->ppid = sys_getppid();
629 result = audit_comparator(ctx->ppid, f->op, f->val);
631 break;
632 case AUDIT_UID:
633 result = audit_comparator(cred->uid, f->op, f->val);
634 break;
635 case AUDIT_EUID:
636 result = audit_comparator(cred->euid, f->op, f->val);
637 break;
638 case AUDIT_SUID:
639 result = audit_comparator(cred->suid, f->op, f->val);
640 break;
641 case AUDIT_FSUID:
642 result = audit_comparator(cred->fsuid, f->op, f->val);
643 break;
644 case AUDIT_GID:
645 result = audit_comparator(cred->gid, f->op, f->val);
646 break;
647 case AUDIT_EGID:
648 result = audit_comparator(cred->egid, f->op, f->val);
649 break;
650 case AUDIT_SGID:
651 result = audit_comparator(cred->sgid, f->op, f->val);
652 break;
653 case AUDIT_FSGID:
654 result = audit_comparator(cred->fsgid, f->op, f->val);
655 break;
656 case AUDIT_PERS:
657 result = audit_comparator(tsk->personality, f->op, f->val);
658 break;
659 case AUDIT_ARCH:
660 if (ctx)
661 result = audit_comparator(ctx->arch, f->op, f->val);
662 break;
664 case AUDIT_EXIT:
665 if (ctx && ctx->return_valid)
666 result = audit_comparator(ctx->return_code, f->op, f->val);
667 break;
668 case AUDIT_SUCCESS:
669 if (ctx && ctx->return_valid) {
670 if (f->val)
671 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
672 else
673 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
675 break;
676 case AUDIT_DEVMAJOR:
677 if (name) {
678 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
679 audit_comparator(MAJOR(name->rdev), f->op, f->val))
680 ++result;
681 } else if (ctx) {
682 list_for_each_entry(n, &ctx->names_list, list) {
683 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
684 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
685 ++result;
686 break;
690 break;
691 case AUDIT_DEVMINOR:
692 if (name) {
693 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
694 audit_comparator(MINOR(name->rdev), f->op, f->val))
695 ++result;
696 } else if (ctx) {
697 list_for_each_entry(n, &ctx->names_list, list) {
698 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
699 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
700 ++result;
701 break;
705 break;
706 case AUDIT_INODE:
707 if (name)
708 result = (name->ino == f->val);
709 else if (ctx) {
710 list_for_each_entry(n, &ctx->names_list, list) {
711 if (audit_comparator(n->ino, f->op, f->val)) {
712 ++result;
713 break;
717 break;
718 case AUDIT_OBJ_UID:
719 if (name) {
720 result = audit_comparator(name->uid, f->op, f->val);
721 } else if (ctx) {
722 list_for_each_entry(n, &ctx->names_list, list) {
723 if (audit_comparator(n->uid, f->op, f->val)) {
724 ++result;
725 break;
729 break;
730 case AUDIT_OBJ_GID:
731 if (name) {
732 result = audit_comparator(name->gid, f->op, f->val);
733 } else if (ctx) {
734 list_for_each_entry(n, &ctx->names_list, list) {
735 if (audit_comparator(n->gid, f->op, f->val)) {
736 ++result;
737 break;
741 break;
742 case AUDIT_WATCH:
743 if (name)
744 result = audit_watch_compare(rule->watch, name->ino, name->dev);
745 break;
746 case AUDIT_DIR:
747 if (ctx)
748 result = match_tree_refs(ctx, rule->tree);
749 break;
750 case AUDIT_LOGINUID:
751 result = 0;
752 if (ctx)
753 result = audit_comparator(tsk->loginuid, f->op, f->val);
754 break;
755 case AUDIT_SUBJ_USER:
756 case AUDIT_SUBJ_ROLE:
757 case AUDIT_SUBJ_TYPE:
758 case AUDIT_SUBJ_SEN:
759 case AUDIT_SUBJ_CLR:
760 /* NOTE: this may return negative values indicating
761 a temporary error. We simply treat this as a
762 match for now to avoid losing information that
763 may be wanted. An error message will also be
764 logged upon error */
765 if (f->lsm_rule) {
766 if (need_sid) {
767 security_task_getsecid(tsk, &sid);
768 need_sid = 0;
770 result = security_audit_rule_match(sid, f->type,
771 f->op,
772 f->lsm_rule,
773 ctx);
775 break;
776 case AUDIT_OBJ_USER:
777 case AUDIT_OBJ_ROLE:
778 case AUDIT_OBJ_TYPE:
779 case AUDIT_OBJ_LEV_LOW:
780 case AUDIT_OBJ_LEV_HIGH:
781 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
782 also applies here */
783 if (f->lsm_rule) {
784 /* Find files that match */
785 if (name) {
786 result = security_audit_rule_match(
787 name->osid, f->type, f->op,
788 f->lsm_rule, ctx);
789 } else if (ctx) {
790 list_for_each_entry(n, &ctx->names_list, list) {
791 if (security_audit_rule_match(n->osid, f->type,
792 f->op, f->lsm_rule,
793 ctx)) {
794 ++result;
795 break;
799 /* Find ipc objects that match */
800 if (!ctx || ctx->type != AUDIT_IPC)
801 break;
802 if (security_audit_rule_match(ctx->ipc.osid,
803 f->type, f->op,
804 f->lsm_rule, ctx))
805 ++result;
807 break;
808 case AUDIT_ARG0:
809 case AUDIT_ARG1:
810 case AUDIT_ARG2:
811 case AUDIT_ARG3:
812 if (ctx)
813 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
814 break;
815 case AUDIT_FILTERKEY:
816 /* ignore this field for filtering */
817 result = 1;
818 break;
819 case AUDIT_PERM:
820 result = audit_match_perm(ctx, f->val);
821 break;
822 case AUDIT_FILETYPE:
823 result = audit_match_filetype(ctx, f->val);
824 break;
825 case AUDIT_FIELD_COMPARE:
826 result = audit_field_compare(tsk, cred, f, ctx, name);
827 break;
829 if (!result)
830 return 0;
833 if (ctx) {
834 if (rule->prio <= ctx->prio)
835 return 0;
836 if (rule->filterkey) {
837 kfree(ctx->filterkey);
838 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
840 ctx->prio = rule->prio;
842 switch (rule->action) {
843 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
844 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
846 return 1;
849 /* At process creation time, we can determine if system-call auditing is
850 * completely disabled for this task. Since we only have the task
851 * structure at this point, we can only check uid and gid.
853 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
855 struct audit_entry *e;
856 enum audit_state state;
858 rcu_read_lock();
859 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
860 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
861 &state, true)) {
862 if (state == AUDIT_RECORD_CONTEXT)
863 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
864 rcu_read_unlock();
865 return state;
868 rcu_read_unlock();
869 return AUDIT_BUILD_CONTEXT;
872 /* At syscall entry and exit time, this filter is called if the
873 * audit_state is not low enough that auditing cannot take place, but is
874 * also not high enough that we already know we have to write an audit
875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
877 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
878 struct audit_context *ctx,
879 struct list_head *list)
881 struct audit_entry *e;
882 enum audit_state state;
884 if (audit_pid && tsk->tgid == audit_pid)
885 return AUDIT_DISABLED;
887 rcu_read_lock();
888 if (!list_empty(list)) {
889 int word = AUDIT_WORD(ctx->major);
890 int bit = AUDIT_BIT(ctx->major);
892 list_for_each_entry_rcu(e, list, list) {
893 if ((e->rule.mask[word] & bit) == bit &&
894 audit_filter_rules(tsk, &e->rule, ctx, NULL,
895 &state, false)) {
896 rcu_read_unlock();
897 ctx->current_state = state;
898 return state;
902 rcu_read_unlock();
903 return AUDIT_BUILD_CONTEXT;
907 * Given an audit_name check the inode hash table to see if they match.
908 * Called holding the rcu read lock to protect the use of audit_inode_hash
910 static int audit_filter_inode_name(struct task_struct *tsk,
911 struct audit_names *n,
912 struct audit_context *ctx) {
913 int word, bit;
914 int h = audit_hash_ino((u32)n->ino);
915 struct list_head *list = &audit_inode_hash[h];
916 struct audit_entry *e;
917 enum audit_state state;
919 word = AUDIT_WORD(ctx->major);
920 bit = AUDIT_BIT(ctx->major);
922 if (list_empty(list))
923 return 0;
925 list_for_each_entry_rcu(e, list, list) {
926 if ((e->rule.mask[word] & bit) == bit &&
927 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
928 ctx->current_state = state;
929 return 1;
933 return 0;
936 /* At syscall exit time, this filter is called if any audit_names have been
937 * collected during syscall processing. We only check rules in sublists at hash
938 * buckets applicable to the inode numbers in audit_names.
939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
941 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
943 struct audit_names *n;
945 if (audit_pid && tsk->tgid == audit_pid)
946 return;
948 rcu_read_lock();
950 list_for_each_entry(n, &ctx->names_list, list) {
951 if (audit_filter_inode_name(tsk, n, ctx))
952 break;
954 rcu_read_unlock();
957 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
958 int return_valid,
959 long return_code)
961 struct audit_context *context = tsk->audit_context;
963 if (!context)
964 return NULL;
965 context->return_valid = return_valid;
968 * we need to fix up the return code in the audit logs if the actual
969 * return codes are later going to be fixed up by the arch specific
970 * signal handlers
972 * This is actually a test for:
973 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
974 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
976 * but is faster than a bunch of ||
978 if (unlikely(return_code <= -ERESTARTSYS) &&
979 (return_code >= -ERESTART_RESTARTBLOCK) &&
980 (return_code != -ENOIOCTLCMD))
981 context->return_code = -EINTR;
982 else
983 context->return_code = return_code;
985 if (context->in_syscall && !context->dummy) {
986 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
987 audit_filter_inodes(tsk, context);
990 tsk->audit_context = NULL;
991 return context;
994 static inline void audit_free_names(struct audit_context *context)
996 struct audit_names *n, *next;
998 #if AUDIT_DEBUG == 2
999 if (context->put_count + context->ino_count != context->name_count) {
1000 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001 " name_count=%d put_count=%d"
1002 " ino_count=%d [NOT freeing]\n",
1003 __FILE__, __LINE__,
1004 context->serial, context->major, context->in_syscall,
1005 context->name_count, context->put_count,
1006 context->ino_count);
1007 list_for_each_entry(n, &context->names_list, list) {
1008 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009 n->name, n->name ?: "(null)");
1011 dump_stack();
1012 return;
1014 #endif
1015 #if AUDIT_DEBUG
1016 context->put_count = 0;
1017 context->ino_count = 0;
1018 #endif
1020 list_for_each_entry_safe(n, next, &context->names_list, list) {
1021 list_del(&n->list);
1022 if (n->name && n->name_put)
1023 __putname(n->name);
1024 if (n->should_free)
1025 kfree(n);
1027 context->name_count = 0;
1028 path_put(&context->pwd);
1029 context->pwd.dentry = NULL;
1030 context->pwd.mnt = NULL;
1033 static inline void audit_free_aux(struct audit_context *context)
1035 struct audit_aux_data *aux;
1037 while ((aux = context->aux)) {
1038 context->aux = aux->next;
1039 kfree(aux);
1041 while ((aux = context->aux_pids)) {
1042 context->aux_pids = aux->next;
1043 kfree(aux);
1047 static inline void audit_zero_context(struct audit_context *context,
1048 enum audit_state state)
1050 memset(context, 0, sizeof(*context));
1051 context->state = state;
1052 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1055 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1057 struct audit_context *context;
1059 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060 return NULL;
1061 audit_zero_context(context, state);
1062 INIT_LIST_HEAD(&context->killed_trees);
1063 INIT_LIST_HEAD(&context->names_list);
1064 return context;
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary. Doing so turns on system call auditing for the
1073 * specified task. This is called from copy_process, so no lock is
1074 * needed.
1076 int audit_alloc(struct task_struct *tsk)
1078 struct audit_context *context;
1079 enum audit_state state;
1080 char *key = NULL;
1082 if (likely(!audit_ever_enabled))
1083 return 0; /* Return if not auditing. */
1085 state = audit_filter_task(tsk, &key);
1086 if (state == AUDIT_DISABLED)
1087 return 0;
1089 if (!(context = audit_alloc_context(state))) {
1090 kfree(key);
1091 audit_log_lost("out of memory in audit_alloc");
1092 return -ENOMEM;
1094 context->filterkey = key;
1096 tsk->audit_context = context;
1097 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098 return 0;
1101 static inline void audit_free_context(struct audit_context *context)
1103 struct audit_context *previous;
1104 int count = 0;
1106 do {
1107 previous = context->previous;
1108 if (previous || (count && count < 10)) {
1109 ++count;
1110 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111 " freeing multiple contexts (%d)\n",
1112 context->serial, context->major,
1113 context->name_count, count);
1115 audit_free_names(context);
1116 unroll_tree_refs(context, NULL, 0);
1117 free_tree_refs(context);
1118 audit_free_aux(context);
1119 kfree(context->filterkey);
1120 kfree(context->sockaddr);
1121 kfree(context);
1122 context = previous;
1123 } while (context);
1124 if (count >= 10)
1125 printk(KERN_ERR "audit: freed %d contexts\n", count);
1128 void audit_log_task_context(struct audit_buffer *ab)
1130 char *ctx = NULL;
1131 unsigned len;
1132 int error;
1133 u32 sid;
1135 security_task_getsecid(current, &sid);
1136 if (!sid)
1137 return;
1139 error = security_secid_to_secctx(sid, &ctx, &len);
1140 if (error) {
1141 if (error != -EINVAL)
1142 goto error_path;
1143 return;
1146 audit_log_format(ab, " subj=%s", ctx);
1147 security_release_secctx(ctx, len);
1148 return;
1150 error_path:
1151 audit_panic("error in audit_log_task_context");
1152 return;
1155 EXPORT_SYMBOL(audit_log_task_context);
1157 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1159 char name[sizeof(tsk->comm)];
1160 struct mm_struct *mm = tsk->mm;
1161 struct vm_area_struct *vma;
1163 /* tsk == current */
1165 get_task_comm(name, tsk);
1166 audit_log_format(ab, " comm=");
1167 audit_log_untrustedstring(ab, name);
1169 if (mm) {
1170 down_read(&mm->mmap_sem);
1171 vma = mm->mmap;
1172 while (vma) {
1173 if ((vma->vm_flags & VM_EXECUTABLE) &&
1174 vma->vm_file) {
1175 audit_log_d_path(ab, " exe=",
1176 &vma->vm_file->f_path);
1177 break;
1179 vma = vma->vm_next;
1181 up_read(&mm->mmap_sem);
1183 audit_log_task_context(ab);
1186 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187 uid_t auid, uid_t uid, unsigned int sessionid,
1188 u32 sid, char *comm)
1190 struct audit_buffer *ab;
1191 char *ctx = NULL;
1192 u32 len;
1193 int rc = 0;
1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196 if (!ab)
1197 return rc;
1199 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200 uid, sessionid);
1201 if (security_secid_to_secctx(sid, &ctx, &len)) {
1202 audit_log_format(ab, " obj=(none)");
1203 rc = 1;
1204 } else {
1205 audit_log_format(ab, " obj=%s", ctx);
1206 security_release_secctx(ctx, len);
1208 audit_log_format(ab, " ocomm=");
1209 audit_log_untrustedstring(ab, comm);
1210 audit_log_end(ab);
1212 return rc;
1216 * to_send and len_sent accounting are very loose estimates. We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1220 * why snprintf? an int is up to 12 digits long. if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message. In one 7500 byte message we can log up to
1223 * about 1000 min size arguments. That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1226 static int audit_log_single_execve_arg(struct audit_context *context,
1227 struct audit_buffer **ab,
1228 int arg_num,
1229 size_t *len_sent,
1230 const char __user *p,
1231 char *buf)
1233 char arg_num_len_buf[12];
1234 const char __user *tmp_p = p;
1235 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1236 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237 size_t len, len_left, to_send;
1238 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239 unsigned int i, has_cntl = 0, too_long = 0;
1240 int ret;
1242 /* strnlen_user includes the null we don't want to send */
1243 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1246 * We just created this mm, if we can't find the strings
1247 * we just copied into it something is _very_ wrong. Similar
1248 * for strings that are too long, we should not have created
1249 * any.
1251 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252 WARN_ON(1);
1253 send_sig(SIGKILL, current, 0);
1254 return -1;
1257 /* walk the whole argument looking for non-ascii chars */
1258 do {
1259 if (len_left > MAX_EXECVE_AUDIT_LEN)
1260 to_send = MAX_EXECVE_AUDIT_LEN;
1261 else
1262 to_send = len_left;
1263 ret = copy_from_user(buf, tmp_p, to_send);
1265 * There is no reason for this copy to be short. We just
1266 * copied them here, and the mm hasn't been exposed to user-
1267 * space yet.
1269 if (ret) {
1270 WARN_ON(1);
1271 send_sig(SIGKILL, current, 0);
1272 return -1;
1274 buf[to_send] = '\0';
1275 has_cntl = audit_string_contains_control(buf, to_send);
1276 if (has_cntl) {
1278 * hex messages get logged as 2 bytes, so we can only
1279 * send half as much in each message
1281 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282 break;
1284 len_left -= to_send;
1285 tmp_p += to_send;
1286 } while (len_left > 0);
1288 len_left = len;
1290 if (len > max_execve_audit_len)
1291 too_long = 1;
1293 /* rewalk the argument actually logging the message */
1294 for (i = 0; len_left > 0; i++) {
1295 int room_left;
1297 if (len_left > max_execve_audit_len)
1298 to_send = max_execve_audit_len;
1299 else
1300 to_send = len_left;
1302 /* do we have space left to send this argument in this ab? */
1303 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304 if (has_cntl)
1305 room_left -= (to_send * 2);
1306 else
1307 room_left -= to_send;
1308 if (room_left < 0) {
1309 *len_sent = 0;
1310 audit_log_end(*ab);
1311 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312 if (!*ab)
1313 return 0;
1317 * first record needs to say how long the original string was
1318 * so we can be sure nothing was lost.
1320 if ((i == 0) && (too_long))
1321 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322 has_cntl ? 2*len : len);
1325 * normally arguments are small enough to fit and we already
1326 * filled buf above when we checked for control characters
1327 * so don't bother with another copy_from_user
1329 if (len >= max_execve_audit_len)
1330 ret = copy_from_user(buf, p, to_send);
1331 else
1332 ret = 0;
1333 if (ret) {
1334 WARN_ON(1);
1335 send_sig(SIGKILL, current, 0);
1336 return -1;
1338 buf[to_send] = '\0';
1340 /* actually log it */
1341 audit_log_format(*ab, " a%d", arg_num);
1342 if (too_long)
1343 audit_log_format(*ab, "[%d]", i);
1344 audit_log_format(*ab, "=");
1345 if (has_cntl)
1346 audit_log_n_hex(*ab, buf, to_send);
1347 else
1348 audit_log_string(*ab, buf);
1350 p += to_send;
1351 len_left -= to_send;
1352 *len_sent += arg_num_len;
1353 if (has_cntl)
1354 *len_sent += to_send * 2;
1355 else
1356 *len_sent += to_send;
1358 /* include the null we didn't log */
1359 return len + 1;
1362 static void audit_log_execve_info(struct audit_context *context,
1363 struct audit_buffer **ab,
1364 struct audit_aux_data_execve *axi)
1366 int i, len;
1367 size_t len_sent = 0;
1368 const char __user *p;
1369 char *buf;
1371 if (axi->mm != current->mm)
1372 return; /* execve failed, no additional info */
1374 p = (const char __user *)axi->mm->arg_start;
1376 audit_log_format(*ab, "argc=%d", axi->argc);
1379 * we need some kernel buffer to hold the userspace args. Just
1380 * allocate one big one rather than allocating one of the right size
1381 * for every single argument inside audit_log_single_execve_arg()
1382 * should be <8k allocation so should be pretty safe.
1384 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385 if (!buf) {
1386 audit_panic("out of memory for argv string\n");
1387 return;
1390 for (i = 0; i < axi->argc; i++) {
1391 len = audit_log_single_execve_arg(context, ab, i,
1392 &len_sent, p, buf);
1393 if (len <= 0)
1394 break;
1395 p += len;
1397 kfree(buf);
1400 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1402 int i;
1404 audit_log_format(ab, " %s=", prefix);
1405 CAP_FOR_EACH_U32(i) {
1406 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1410 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1412 kernel_cap_t *perm = &name->fcap.permitted;
1413 kernel_cap_t *inh = &name->fcap.inheritable;
1414 int log = 0;
1416 if (!cap_isclear(*perm)) {
1417 audit_log_cap(ab, "cap_fp", perm);
1418 log = 1;
1420 if (!cap_isclear(*inh)) {
1421 audit_log_cap(ab, "cap_fi", inh);
1422 log = 1;
1425 if (log)
1426 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1429 static void show_special(struct audit_context *context, int *call_panic)
1431 struct audit_buffer *ab;
1432 int i;
1434 ab = audit_log_start(context, GFP_KERNEL, context->type);
1435 if (!ab)
1436 return;
1438 switch (context->type) {
1439 case AUDIT_SOCKETCALL: {
1440 int nargs = context->socketcall.nargs;
1441 audit_log_format(ab, "nargs=%d", nargs);
1442 for (i = 0; i < nargs; i++)
1443 audit_log_format(ab, " a%d=%lx", i,
1444 context->socketcall.args[i]);
1445 break; }
1446 case AUDIT_IPC: {
1447 u32 osid = context->ipc.osid;
1449 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451 if (osid) {
1452 char *ctx = NULL;
1453 u32 len;
1454 if (security_secid_to_secctx(osid, &ctx, &len)) {
1455 audit_log_format(ab, " osid=%u", osid);
1456 *call_panic = 1;
1457 } else {
1458 audit_log_format(ab, " obj=%s", ctx);
1459 security_release_secctx(ctx, len);
1462 if (context->ipc.has_perm) {
1463 audit_log_end(ab);
1464 ab = audit_log_start(context, GFP_KERNEL,
1465 AUDIT_IPC_SET_PERM);
1466 audit_log_format(ab,
1467 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468 context->ipc.qbytes,
1469 context->ipc.perm_uid,
1470 context->ipc.perm_gid,
1471 context->ipc.perm_mode);
1472 if (!ab)
1473 return;
1475 break; }
1476 case AUDIT_MQ_OPEN: {
1477 audit_log_format(ab,
1478 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479 "mq_msgsize=%ld mq_curmsgs=%ld",
1480 context->mq_open.oflag, context->mq_open.mode,
1481 context->mq_open.attr.mq_flags,
1482 context->mq_open.attr.mq_maxmsg,
1483 context->mq_open.attr.mq_msgsize,
1484 context->mq_open.attr.mq_curmsgs);
1485 break; }
1486 case AUDIT_MQ_SENDRECV: {
1487 audit_log_format(ab,
1488 "mqdes=%d msg_len=%zd msg_prio=%u "
1489 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490 context->mq_sendrecv.mqdes,
1491 context->mq_sendrecv.msg_len,
1492 context->mq_sendrecv.msg_prio,
1493 context->mq_sendrecv.abs_timeout.tv_sec,
1494 context->mq_sendrecv.abs_timeout.tv_nsec);
1495 break; }
1496 case AUDIT_MQ_NOTIFY: {
1497 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498 context->mq_notify.mqdes,
1499 context->mq_notify.sigev_signo);
1500 break; }
1501 case AUDIT_MQ_GETSETATTR: {
1502 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503 audit_log_format(ab,
1504 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505 "mq_curmsgs=%ld ",
1506 context->mq_getsetattr.mqdes,
1507 attr->mq_flags, attr->mq_maxmsg,
1508 attr->mq_msgsize, attr->mq_curmsgs);
1509 break; }
1510 case AUDIT_CAPSET: {
1511 audit_log_format(ab, "pid=%d", context->capset.pid);
1512 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515 break; }
1516 case AUDIT_MMAP: {
1517 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518 context->mmap.flags);
1519 break; }
1521 audit_log_end(ab);
1524 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525 int record_num, int *call_panic)
1527 struct audit_buffer *ab;
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529 if (!ab)
1530 return; /* audit_panic has been called */
1532 audit_log_format(ab, "item=%d", record_num);
1534 if (n->name) {
1535 switch (n->name_len) {
1536 case AUDIT_NAME_FULL:
1537 /* log the full path */
1538 audit_log_format(ab, " name=");
1539 audit_log_untrustedstring(ab, n->name);
1540 break;
1541 case 0:
1542 /* name was specified as a relative path and the
1543 * directory component is the cwd */
1544 audit_log_d_path(ab, " name=", &context->pwd);
1545 break;
1546 default:
1547 /* log the name's directory component */
1548 audit_log_format(ab, " name=");
1549 audit_log_n_untrustedstring(ab, n->name,
1550 n->name_len);
1552 } else
1553 audit_log_format(ab, " name=(null)");
1555 if (n->ino != (unsigned long)-1) {
1556 audit_log_format(ab, " inode=%lu"
1557 " dev=%02x:%02x mode=%#ho"
1558 " ouid=%u ogid=%u rdev=%02x:%02x",
1559 n->ino,
1560 MAJOR(n->dev),
1561 MINOR(n->dev),
1562 n->mode,
1563 n->uid,
1564 n->gid,
1565 MAJOR(n->rdev),
1566 MINOR(n->rdev));
1568 if (n->osid != 0) {
1569 char *ctx = NULL;
1570 u32 len;
1571 if (security_secid_to_secctx(
1572 n->osid, &ctx, &len)) {
1573 audit_log_format(ab, " osid=%u", n->osid);
1574 *call_panic = 2;
1575 } else {
1576 audit_log_format(ab, " obj=%s", ctx);
1577 security_release_secctx(ctx, len);
1581 audit_log_fcaps(ab, n);
1583 audit_log_end(ab);
1586 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1588 const struct cred *cred;
1589 int i, call_panic = 0;
1590 struct audit_buffer *ab;
1591 struct audit_aux_data *aux;
1592 const char *tty;
1593 struct audit_names *n;
1595 /* tsk == current */
1596 context->pid = tsk->pid;
1597 if (!context->ppid)
1598 context->ppid = sys_getppid();
1599 cred = current_cred();
1600 context->uid = cred->uid;
1601 context->gid = cred->gid;
1602 context->euid = cred->euid;
1603 context->suid = cred->suid;
1604 context->fsuid = cred->fsuid;
1605 context->egid = cred->egid;
1606 context->sgid = cred->sgid;
1607 context->fsgid = cred->fsgid;
1608 context->personality = tsk->personality;
1610 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611 if (!ab)
1612 return; /* audit_panic has been called */
1613 audit_log_format(ab, "arch=%x syscall=%d",
1614 context->arch, context->major);
1615 if (context->personality != PER_LINUX)
1616 audit_log_format(ab, " per=%lx", context->personality);
1617 if (context->return_valid)
1618 audit_log_format(ab, " success=%s exit=%ld",
1619 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620 context->return_code);
1622 spin_lock_irq(&tsk->sighand->siglock);
1623 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624 tty = tsk->signal->tty->name;
1625 else
1626 tty = "(none)";
1627 spin_unlock_irq(&tsk->sighand->siglock);
1629 audit_log_format(ab,
1630 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632 " euid=%u suid=%u fsuid=%u"
1633 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634 context->argv[0],
1635 context->argv[1],
1636 context->argv[2],
1637 context->argv[3],
1638 context->name_count,
1639 context->ppid,
1640 context->pid,
1641 tsk->loginuid,
1642 context->uid,
1643 context->gid,
1644 context->euid, context->suid, context->fsuid,
1645 context->egid, context->sgid, context->fsgid, tty,
1646 tsk->sessionid);
1649 audit_log_task_info(ab, tsk);
1650 audit_log_key(ab, context->filterkey);
1651 audit_log_end(ab);
1653 for (aux = context->aux; aux; aux = aux->next) {
1655 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656 if (!ab)
1657 continue; /* audit_panic has been called */
1659 switch (aux->type) {
1661 case AUDIT_EXECVE: {
1662 struct audit_aux_data_execve *axi = (void *)aux;
1663 audit_log_execve_info(context, &ab, axi);
1664 break; }
1666 case AUDIT_BPRM_FCAPS: {
1667 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678 break; }
1681 audit_log_end(ab);
1684 if (context->type)
1685 show_special(context, &call_panic);
1687 if (context->fds[0] >= 0) {
1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689 if (ab) {
1690 audit_log_format(ab, "fd0=%d fd1=%d",
1691 context->fds[0], context->fds[1]);
1692 audit_log_end(ab);
1696 if (context->sockaddr_len) {
1697 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698 if (ab) {
1699 audit_log_format(ab, "saddr=");
1700 audit_log_n_hex(ab, (void *)context->sockaddr,
1701 context->sockaddr_len);
1702 audit_log_end(ab);
1706 for (aux = context->aux_pids; aux; aux = aux->next) {
1707 struct audit_aux_data_pids *axs = (void *)aux;
1709 for (i = 0; i < axs->pid_count; i++)
1710 if (audit_log_pid_context(context, axs->target_pid[i],
1711 axs->target_auid[i],
1712 axs->target_uid[i],
1713 axs->target_sessionid[i],
1714 axs->target_sid[i],
1715 axs->target_comm[i]))
1716 call_panic = 1;
1719 if (context->target_pid &&
1720 audit_log_pid_context(context, context->target_pid,
1721 context->target_auid, context->target_uid,
1722 context->target_sessionid,
1723 context->target_sid, context->target_comm))
1724 call_panic = 1;
1726 if (context->pwd.dentry && context->pwd.mnt) {
1727 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728 if (ab) {
1729 audit_log_d_path(ab, " cwd=", &context->pwd);
1730 audit_log_end(ab);
1734 i = 0;
1735 list_for_each_entry(n, &context->names_list, list)
1736 audit_log_name(context, n, i++, &call_panic);
1738 /* Send end of event record to help user space know we are finished */
1739 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740 if (ab)
1741 audit_log_end(ab);
1742 if (call_panic)
1743 audit_panic("error converting sid to string");
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1750 * Called from copy_process and do_exit
1752 void __audit_free(struct task_struct *tsk)
1754 struct audit_context *context;
1756 context = audit_get_context(tsk, 0, 0);
1757 if (!context)
1758 return;
1760 /* Check for system calls that do not go through the exit
1761 * function (e.g., exit_group), then free context block.
1762 * We use GFP_ATOMIC here because we might be doing this
1763 * in the context of the idle thread */
1764 /* that can happen only if we are called from do_exit() */
1765 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766 audit_log_exit(context, tsk);
1767 if (!list_empty(&context->killed_trees))
1768 audit_kill_trees(&context->killed_trees);
1770 audit_free_context(context);
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1782 * Fill in audit context at syscall entry. This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built. If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1790 void __audit_syscall_entry(int arch, int major,
1791 unsigned long a1, unsigned long a2,
1792 unsigned long a3, unsigned long a4)
1794 struct task_struct *tsk = current;
1795 struct audit_context *context = tsk->audit_context;
1796 enum audit_state state;
1798 if (!context)
1799 return;
1802 * This happens only on certain architectures that make system
1803 * calls in kernel_thread via the entry.S interface, instead of
1804 * with direct calls. (If you are porting to a new
1805 * architecture, hitting this condition can indicate that you
1806 * got the _exit/_leave calls backward in entry.S.)
1808 * i386 no
1809 * x86_64 no
1810 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1812 * This also happens with vm86 emulation in a non-nested manner
1813 * (entries without exits), so this case must be caught.
1815 if (context->in_syscall) {
1816 struct audit_context *newctx;
1818 #if AUDIT_DEBUG
1819 printk(KERN_ERR
1820 "audit(:%d) pid=%d in syscall=%d;"
1821 " entering syscall=%d\n",
1822 context->serial, tsk->pid, context->major, major);
1823 #endif
1824 newctx = audit_alloc_context(context->state);
1825 if (newctx) {
1826 newctx->previous = context;
1827 context = newctx;
1828 tsk->audit_context = newctx;
1829 } else {
1830 /* If we can't alloc a new context, the best we
1831 * can do is to leak memory (any pending putname
1832 * will be lost). The only other alternative is
1833 * to abandon auditing. */
1834 audit_zero_context(context, context->state);
1837 BUG_ON(context->in_syscall || context->name_count);
1839 if (!audit_enabled)
1840 return;
1842 context->arch = arch;
1843 context->major = major;
1844 context->argv[0] = a1;
1845 context->argv[1] = a2;
1846 context->argv[2] = a3;
1847 context->argv[3] = a4;
1849 state = context->state;
1850 context->dummy = !audit_n_rules;
1851 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852 context->prio = 0;
1853 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1855 if (state == AUDIT_DISABLED)
1856 return;
1858 context->serial = 0;
1859 context->ctime = CURRENT_TIME;
1860 context->in_syscall = 1;
1861 context->current_state = state;
1862 context->ppid = 0;
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1870 * Tear down after system call. If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information. In call cases,
1874 * free the names stored from getname().
1876 void __audit_syscall_exit(int success, long return_code)
1878 struct task_struct *tsk = current;
1879 struct audit_context *context;
1881 if (success)
1882 success = AUDITSC_SUCCESS;
1883 else
1884 success = AUDITSC_FAILURE;
1886 context = audit_get_context(tsk, success, return_code);
1887 if (!context)
1888 return;
1890 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891 audit_log_exit(context, tsk);
1893 context->in_syscall = 0;
1894 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1896 if (!list_empty(&context->killed_trees))
1897 audit_kill_trees(&context->killed_trees);
1899 if (context->previous) {
1900 struct audit_context *new_context = context->previous;
1901 context->previous = NULL;
1902 audit_free_context(context);
1903 tsk->audit_context = new_context;
1904 } else {
1905 audit_free_names(context);
1906 unroll_tree_refs(context, NULL, 0);
1907 audit_free_aux(context);
1908 context->aux = NULL;
1909 context->aux_pids = NULL;
1910 context->target_pid = 0;
1911 context->target_sid = 0;
1912 context->sockaddr_len = 0;
1913 context->type = 0;
1914 context->fds[0] = -1;
1915 if (context->state != AUDIT_RECORD_CONTEXT) {
1916 kfree(context->filterkey);
1917 context->filterkey = NULL;
1919 tsk->audit_context = context;
1923 static inline void handle_one(const struct inode *inode)
1925 #ifdef CONFIG_AUDIT_TREE
1926 struct audit_context *context;
1927 struct audit_tree_refs *p;
1928 struct audit_chunk *chunk;
1929 int count;
1930 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931 return;
1932 context = current->audit_context;
1933 p = context->trees;
1934 count = context->tree_count;
1935 rcu_read_lock();
1936 chunk = audit_tree_lookup(inode);
1937 rcu_read_unlock();
1938 if (!chunk)
1939 return;
1940 if (likely(put_tree_ref(context, chunk)))
1941 return;
1942 if (unlikely(!grow_tree_refs(context))) {
1943 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944 audit_set_auditable(context);
1945 audit_put_chunk(chunk);
1946 unroll_tree_refs(context, p, count);
1947 return;
1949 put_tree_ref(context, chunk);
1950 #endif
1953 static void handle_path(const struct dentry *dentry)
1955 #ifdef CONFIG_AUDIT_TREE
1956 struct audit_context *context;
1957 struct audit_tree_refs *p;
1958 const struct dentry *d, *parent;
1959 struct audit_chunk *drop;
1960 unsigned long seq;
1961 int count;
1963 context = current->audit_context;
1964 p = context->trees;
1965 count = context->tree_count;
1966 retry:
1967 drop = NULL;
1968 d = dentry;
1969 rcu_read_lock();
1970 seq = read_seqbegin(&rename_lock);
1971 for(;;) {
1972 struct inode *inode = d->d_inode;
1973 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974 struct audit_chunk *chunk;
1975 chunk = audit_tree_lookup(inode);
1976 if (chunk) {
1977 if (unlikely(!put_tree_ref(context, chunk))) {
1978 drop = chunk;
1979 break;
1983 parent = d->d_parent;
1984 if (parent == d)
1985 break;
1986 d = parent;
1988 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1989 rcu_read_unlock();
1990 if (!drop) {
1991 /* just a race with rename */
1992 unroll_tree_refs(context, p, count);
1993 goto retry;
1995 audit_put_chunk(drop);
1996 if (grow_tree_refs(context)) {
1997 /* OK, got more space */
1998 unroll_tree_refs(context, p, count);
1999 goto retry;
2001 /* too bad */
2002 printk(KERN_WARNING
2003 "out of memory, audit has lost a tree reference\n");
2004 unroll_tree_refs(context, p, count);
2005 audit_set_auditable(context);
2006 return;
2008 rcu_read_unlock();
2009 #endif
2012 static struct audit_names *audit_alloc_name(struct audit_context *context)
2014 struct audit_names *aname;
2016 if (context->name_count < AUDIT_NAMES) {
2017 aname = &context->preallocated_names[context->name_count];
2018 memset(aname, 0, sizeof(*aname));
2019 } else {
2020 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021 if (!aname)
2022 return NULL;
2023 aname->should_free = true;
2026 aname->ino = (unsigned long)-1;
2027 list_add_tail(&aname->list, &context->names_list);
2029 context->name_count++;
2030 #if AUDIT_DEBUG
2031 context->ino_count++;
2032 #endif
2033 return aname;
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2043 void __audit_getname(const char *name)
2045 struct audit_context *context = current->audit_context;
2046 struct audit_names *n;
2048 if (!context->in_syscall) {
2049 #if AUDIT_DEBUG == 2
2050 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051 __FILE__, __LINE__, context->serial, name);
2052 dump_stack();
2053 #endif
2054 return;
2057 n = audit_alloc_name(context);
2058 if (!n)
2059 return;
2061 n->name = name;
2062 n->name_len = AUDIT_NAME_FULL;
2063 n->name_put = true;
2065 if (!context->pwd.dentry)
2066 get_fs_pwd(current->fs, &context->pwd);
2069 /* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2076 void audit_putname(const char *name)
2078 struct audit_context *context = current->audit_context;
2080 BUG_ON(!context);
2081 if (!context->in_syscall) {
2082 #if AUDIT_DEBUG == 2
2083 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084 __FILE__, __LINE__, context->serial, name);
2085 if (context->name_count) {
2086 struct audit_names *n;
2087 int i;
2089 list_for_each_entry(n, &context->names_list, list)
2090 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091 n->name, n->name ?: "(null)");
2093 #endif
2094 __putname(name);
2096 #if AUDIT_DEBUG
2097 else {
2098 ++context->put_count;
2099 if (context->put_count > context->name_count) {
2100 printk(KERN_ERR "%s:%d(:%d): major=%d"
2101 " in_syscall=%d putname(%p) name_count=%d"
2102 " put_count=%d\n",
2103 __FILE__, __LINE__,
2104 context->serial, context->major,
2105 context->in_syscall, name, context->name_count,
2106 context->put_count);
2107 dump_stack();
2110 #endif
2113 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2115 struct cpu_vfs_cap_data caps;
2116 int rc;
2118 if (!dentry)
2119 return 0;
2121 rc = get_vfs_caps_from_disk(dentry, &caps);
2122 if (rc)
2123 return rc;
2125 name->fcap.permitted = caps.permitted;
2126 name->fcap.inheritable = caps.inheritable;
2127 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2130 return 0;
2134 /* Copy inode data into an audit_names. */
2135 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136 const struct inode *inode)
2138 name->ino = inode->i_ino;
2139 name->dev = inode->i_sb->s_dev;
2140 name->mode = inode->i_mode;
2141 name->uid = inode->i_uid;
2142 name->gid = inode->i_gid;
2143 name->rdev = inode->i_rdev;
2144 security_inode_getsecid(inode, &name->osid);
2145 audit_copy_fcaps(name, dentry);
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2153 * Called from fs/namei.c:path_lookup().
2155 void __audit_inode(const char *name, const struct dentry *dentry)
2157 struct audit_context *context = current->audit_context;
2158 const struct inode *inode = dentry->d_inode;
2159 struct audit_names *n;
2161 if (!context->in_syscall)
2162 return;
2164 list_for_each_entry_reverse(n, &context->names_list, list) {
2165 if (n->name && (n->name == name))
2166 goto out;
2169 /* unable to find the name from a previous getname() */
2170 n = audit_alloc_name(context);
2171 if (!n)
2172 return;
2173 out:
2174 handle_path(dentry);
2175 audit_copy_inode(n, dentry, inode);
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created. Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2191 void __audit_inode_child(const struct dentry *dentry,
2192 const struct inode *parent)
2194 struct audit_context *context = current->audit_context;
2195 const char *found_parent = NULL, *found_child = NULL;
2196 const struct inode *inode = dentry->d_inode;
2197 const char *dname = dentry->d_name.name;
2198 struct audit_names *n;
2199 int dirlen = 0;
2201 if (!context->in_syscall)
2202 return;
2204 if (inode)
2205 handle_one(inode);
2207 /* parent is more likely, look for it first */
2208 list_for_each_entry(n, &context->names_list, list) {
2209 if (!n->name)
2210 continue;
2212 if (n->ino == parent->i_ino &&
2213 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214 n->name_len = dirlen; /* update parent data in place */
2215 found_parent = n->name;
2216 goto add_names;
2220 /* no matching parent, look for matching child */
2221 list_for_each_entry(n, &context->names_list, list) {
2222 if (!n->name)
2223 continue;
2225 /* strcmp() is the more likely scenario */
2226 if (!strcmp(dname, n->name) ||
2227 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228 if (inode)
2229 audit_copy_inode(n, NULL, inode);
2230 else
2231 n->ino = (unsigned long)-1;
2232 found_child = n->name;
2233 goto add_names;
2237 add_names:
2238 if (!found_parent) {
2239 n = audit_alloc_name(context);
2240 if (!n)
2241 return;
2242 audit_copy_inode(n, NULL, parent);
2245 if (!found_child) {
2246 n = audit_alloc_name(context);
2247 if (!n)
2248 return;
2250 /* Re-use the name belonging to the slot for a matching parent
2251 * directory. All names for this context are relinquished in
2252 * audit_free_names() */
2253 if (found_parent) {
2254 n->name = found_parent;
2255 n->name_len = AUDIT_NAME_FULL;
2256 /* don't call __putname() */
2257 n->name_put = false;
2260 if (inode)
2261 audit_copy_inode(n, NULL, inode);
2264 EXPORT_SYMBOL_GPL(__audit_inode_child);
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2272 * Also sets the context as auditable.
2274 int auditsc_get_stamp(struct audit_context *ctx,
2275 struct timespec *t, unsigned int *serial)
2277 if (!ctx->in_syscall)
2278 return 0;
2279 if (!ctx->serial)
2280 ctx->serial = audit_serial();
2281 t->tv_sec = ctx->ctime.tv_sec;
2282 t->tv_nsec = ctx->ctime.tv_nsec;
2283 *serial = ctx->serial;
2284 if (!ctx->prio) {
2285 ctx->prio = 1;
2286 ctx->current_state = AUDIT_RECORD_CONTEXT;
2288 return 1;
2291 /* global counter which is incremented every time something logs in */
2292 static atomic_t session_id = ATOMIC_INIT(0);
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2298 * Returns 0.
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2302 int audit_set_loginuid(uid_t loginuid)
2304 struct task_struct *task = current;
2305 struct audit_context *context = task->audit_context;
2306 unsigned int sessionid;
2308 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309 if (task->loginuid != -1)
2310 return -EPERM;
2311 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312 if (!capable(CAP_AUDIT_CONTROL))
2313 return -EPERM;
2314 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2316 sessionid = atomic_inc_return(&session_id);
2317 if (context && context->in_syscall) {
2318 struct audit_buffer *ab;
2320 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321 if (ab) {
2322 audit_log_format(ab, "login pid=%d uid=%u "
2323 "old auid=%u new auid=%u"
2324 " old ses=%u new ses=%u",
2325 task->pid, task_uid(task),
2326 task->loginuid, loginuid,
2327 task->sessionid, sessionid);
2328 audit_log_end(ab);
2331 task->sessionid = sessionid;
2332 task->loginuid = loginuid;
2333 return 0;
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2343 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2345 struct audit_context *context = current->audit_context;
2347 if (attr)
2348 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349 else
2350 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2352 context->mq_open.oflag = oflag;
2353 context->mq_open.mode = mode;
2355 context->type = AUDIT_MQ_OPEN;
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2366 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367 const struct timespec *abs_timeout)
2369 struct audit_context *context = current->audit_context;
2370 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2372 if (abs_timeout)
2373 memcpy(p, abs_timeout, sizeof(struct timespec));
2374 else
2375 memset(p, 0, sizeof(struct timespec));
2377 context->mq_sendrecv.mqdes = mqdes;
2378 context->mq_sendrecv.msg_len = msg_len;
2379 context->mq_sendrecv.msg_prio = msg_prio;
2381 context->type = AUDIT_MQ_SENDRECV;
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2391 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2393 struct audit_context *context = current->audit_context;
2395 if (notification)
2396 context->mq_notify.sigev_signo = notification->sigev_signo;
2397 else
2398 context->mq_notify.sigev_signo = 0;
2400 context->mq_notify.mqdes = mqdes;
2401 context->type = AUDIT_MQ_NOTIFY;
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2410 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2412 struct audit_context *context = current->audit_context;
2413 context->mq_getsetattr.mqdes = mqdes;
2414 context->mq_getsetattr.mqstat = *mqstat;
2415 context->type = AUDIT_MQ_GETSETATTR;
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2423 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2425 struct audit_context *context = current->audit_context;
2426 context->ipc.uid = ipcp->uid;
2427 context->ipc.gid = ipcp->gid;
2428 context->ipc.mode = ipcp->mode;
2429 context->ipc.has_perm = 0;
2430 security_ipc_getsecid(ipcp, &context->ipc.osid);
2431 context->type = AUDIT_IPC;
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2441 * Called only after audit_ipc_obj().
2443 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2445 struct audit_context *context = current->audit_context;
2447 context->ipc.qbytes = qbytes;
2448 context->ipc.perm_uid = uid;
2449 context->ipc.perm_gid = gid;
2450 context->ipc.perm_mode = mode;
2451 context->ipc.has_perm = 1;
2454 int __audit_bprm(struct linux_binprm *bprm)
2456 struct audit_aux_data_execve *ax;
2457 struct audit_context *context = current->audit_context;
2459 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460 if (!ax)
2461 return -ENOMEM;
2463 ax->argc = bprm->argc;
2464 ax->envc = bprm->envc;
2465 ax->mm = bprm->mm;
2466 ax->d.type = AUDIT_EXECVE;
2467 ax->d.next = context->aux;
2468 context->aux = (void *)ax;
2469 return 0;
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2479 void __audit_socketcall(int nargs, unsigned long *args)
2481 struct audit_context *context = current->audit_context;
2483 context->type = AUDIT_SOCKETCALL;
2484 context->socketcall.nargs = nargs;
2485 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2494 void __audit_fd_pair(int fd1, int fd2)
2496 struct audit_context *context = current->audit_context;
2497 context->fds[0] = fd1;
2498 context->fds[1] = fd2;
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2506 * Returns 0 for success or NULL context or < 0 on error.
2508 int __audit_sockaddr(int len, void *a)
2510 struct audit_context *context = current->audit_context;
2512 if (!context->sockaddr) {
2513 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514 if (!p)
2515 return -ENOMEM;
2516 context->sockaddr = p;
2519 context->sockaddr_len = len;
2520 memcpy(context->sockaddr, a, len);
2521 return 0;
2524 void __audit_ptrace(struct task_struct *t)
2526 struct audit_context *context = current->audit_context;
2528 context->target_pid = t->pid;
2529 context->target_auid = audit_get_loginuid(t);
2530 context->target_uid = task_uid(t);
2531 context->target_sessionid = audit_get_sessionid(t);
2532 security_task_getsecid(t, &context->target_sid);
2533 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2544 int __audit_signal_info(int sig, struct task_struct *t)
2546 struct audit_aux_data_pids *axp;
2547 struct task_struct *tsk = current;
2548 struct audit_context *ctx = tsk->audit_context;
2549 uid_t uid = current_uid(), t_uid = task_uid(t);
2551 if (audit_pid && t->tgid == audit_pid) {
2552 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553 audit_sig_pid = tsk->pid;
2554 if (tsk->loginuid != -1)
2555 audit_sig_uid = tsk->loginuid;
2556 else
2557 audit_sig_uid = uid;
2558 security_task_getsecid(tsk, &audit_sig_sid);
2560 if (!audit_signals || audit_dummy_context())
2561 return 0;
2564 /* optimize the common case by putting first signal recipient directly
2565 * in audit_context */
2566 if (!ctx->target_pid) {
2567 ctx->target_pid = t->tgid;
2568 ctx->target_auid = audit_get_loginuid(t);
2569 ctx->target_uid = t_uid;
2570 ctx->target_sessionid = audit_get_sessionid(t);
2571 security_task_getsecid(t, &ctx->target_sid);
2572 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573 return 0;
2576 axp = (void *)ctx->aux_pids;
2577 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579 if (!axp)
2580 return -ENOMEM;
2582 axp->d.type = AUDIT_OBJ_PID;
2583 axp->d.next = ctx->aux_pids;
2584 ctx->aux_pids = (void *)axp;
2586 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2588 axp->target_pid[axp->pid_count] = t->tgid;
2589 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590 axp->target_uid[axp->pid_count] = t_uid;
2591 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594 axp->pid_count++;
2596 return 0;
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2608 * -Eric
2610 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611 const struct cred *new, const struct cred *old)
2613 struct audit_aux_data_bprm_fcaps *ax;
2614 struct audit_context *context = current->audit_context;
2615 struct cpu_vfs_cap_data vcaps;
2616 struct dentry *dentry;
2618 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619 if (!ax)
2620 return -ENOMEM;
2622 ax->d.type = AUDIT_BPRM_FCAPS;
2623 ax->d.next = context->aux;
2624 context->aux = (void *)ax;
2626 dentry = dget(bprm->file->f_dentry);
2627 get_vfs_caps_from_disk(dentry, &vcaps);
2628 dput(dentry);
2630 ax->fcap.permitted = vcaps.permitted;
2631 ax->fcap.inheritable = vcaps.inheritable;
2632 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2635 ax->old_pcap.permitted = old->cap_permitted;
2636 ax->old_pcap.inheritable = old->cap_inheritable;
2637 ax->old_pcap.effective = old->cap_effective;
2639 ax->new_pcap.permitted = new->cap_permitted;
2640 ax->new_pcap.inheritable = new->cap_inheritable;
2641 ax->new_pcap.effective = new->cap_effective;
2642 return 0;
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2654 void __audit_log_capset(pid_t pid,
2655 const struct cred *new, const struct cred *old)
2657 struct audit_context *context = current->audit_context;
2658 context->capset.pid = pid;
2659 context->capset.cap.effective = new->cap_effective;
2660 context->capset.cap.inheritable = new->cap_effective;
2661 context->capset.cap.permitted = new->cap_permitted;
2662 context->type = AUDIT_CAPSET;
2665 void __audit_mmap_fd(int fd, int flags)
2667 struct audit_context *context = current->audit_context;
2668 context->mmap.fd = fd;
2669 context->mmap.flags = flags;
2670 context->type = AUDIT_MMAP;
2673 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2675 uid_t auid, uid;
2676 gid_t gid;
2677 unsigned int sessionid;
2679 auid = audit_get_loginuid(current);
2680 sessionid = audit_get_sessionid(current);
2681 current_uid_gid(&uid, &gid);
2683 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684 auid, uid, gid, sessionid);
2685 audit_log_task_context(ab);
2686 audit_log_format(ab, " pid=%d comm=", current->pid);
2687 audit_log_untrustedstring(ab, current->comm);
2688 audit_log_format(ab, " reason=");
2689 audit_log_string(ab, reason);
2690 audit_log_format(ab, " sig=%ld", signr);
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2699 void audit_core_dumps(long signr)
2701 struct audit_buffer *ab;
2703 if (!audit_enabled)
2704 return;
2706 if (signr == SIGQUIT) /* don't care for those */
2707 return;
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "memory violation", signr);
2711 audit_log_end(ab);
2714 void __audit_seccomp(unsigned long syscall, long signr, int code)
2716 struct audit_buffer *ab;
2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 audit_log_abend(ab, "seccomp", signr);
2720 audit_log_format(ab, " syscall=%ld", syscall);
2721 audit_log_format(ab, " compat=%d", is_compat_task());
2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 audit_log_format(ab, " code=0x%x", code);
2724 audit_log_end(ab);
2727 struct list_head *audit_killed_trees(void)
2729 struct audit_context *ctx = current->audit_context;
2730 if (likely(!ctx || !ctx->in_syscall))
2731 return NULL;
2732 return &ctx->killed_trees;