svcrpc: fix svc_xprt_enqueue/svc_recv busy-looping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / sync.c
blobeb8722dc556f5b567c40438919c6ef1ddeef084d
1 /*
2 * High-level sync()-related operations
3 */
5 #include <linux/kernel.h>
6 #include <linux/file.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/namei.h>
11 #include <linux/sched.h>
12 #include <linux/writeback.h>
13 #include <linux/syscalls.h>
14 #include <linux/linkage.h>
15 #include <linux/pagemap.h>
16 #include <linux/quotaops.h>
17 #include <linux/backing-dev.h>
18 #include "internal.h"
20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 SYNC_FILE_RANGE_WAIT_AFTER)
24 * Do the filesystem syncing work. For simple filesystems
25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27 * wait == 1 case since in that case write_inode() functions do
28 * sync_dirty_buffer() and thus effectively write one block at a time.
30 static int __sync_filesystem(struct super_block *sb, int wait)
32 if (wait)
33 sync_inodes_sb(sb);
34 else
35 writeback_inodes_sb(sb, WB_REASON_SYNC);
37 if (sb->s_op->sync_fs)
38 sb->s_op->sync_fs(sb, wait);
39 return __sync_blockdev(sb->s_bdev, wait);
43 * Write out and wait upon all dirty data associated with this
44 * superblock. Filesystem data as well as the underlying block
45 * device. Takes the superblock lock.
47 int sync_filesystem(struct super_block *sb)
49 int ret;
52 * We need to be protected against the filesystem going from
53 * r/o to r/w or vice versa.
55 WARN_ON(!rwsem_is_locked(&sb->s_umount));
58 * No point in syncing out anything if the filesystem is read-only.
60 if (sb->s_flags & MS_RDONLY)
61 return 0;
63 ret = __sync_filesystem(sb, 0);
64 if (ret < 0)
65 return ret;
66 return __sync_filesystem(sb, 1);
68 EXPORT_SYMBOL_GPL(sync_filesystem);
70 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
72 if (!(sb->s_flags & MS_RDONLY))
73 sync_inodes_sb(sb);
76 static void sync_fs_one_sb(struct super_block *sb, void *arg)
78 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
79 sb->s_op->sync_fs(sb, *(int *)arg);
82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
84 filemap_fdatawrite(bdev->bd_inode->i_mapping);
87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
89 filemap_fdatawait(bdev->bd_inode->i_mapping);
93 * Sync everything. We start by waking flusher threads so that most of
94 * writeback runs on all devices in parallel. Then we sync all inodes reliably
95 * which effectively also waits for all flusher threads to finish doing
96 * writeback. At this point all data is on disk so metadata should be stable
97 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
98 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
99 * just write metadata (such as inodes or bitmaps) to block device page cache
100 * and do not sync it on their own in ->sync_fs().
102 SYSCALL_DEFINE0(sync)
104 int nowait = 0, wait = 1;
106 wakeup_flusher_threads(0, WB_REASON_SYNC);
107 iterate_supers(sync_inodes_one_sb, NULL);
108 iterate_supers(sync_fs_one_sb, &nowait);
109 iterate_supers(sync_fs_one_sb, &wait);
110 iterate_bdevs(fdatawrite_one_bdev, NULL);
111 iterate_bdevs(fdatawait_one_bdev, NULL);
112 if (unlikely(laptop_mode))
113 laptop_sync_completion();
114 return 0;
117 static void do_sync_work(struct work_struct *work)
119 int nowait = 0;
122 * Sync twice to reduce the possibility we skipped some inodes / pages
123 * because they were temporarily locked
125 iterate_supers(sync_inodes_one_sb, &nowait);
126 iterate_supers(sync_fs_one_sb, &nowait);
127 iterate_bdevs(fdatawrite_one_bdev, NULL);
128 iterate_supers(sync_inodes_one_sb, &nowait);
129 iterate_supers(sync_fs_one_sb, &nowait);
130 iterate_bdevs(fdatawrite_one_bdev, NULL);
131 printk("Emergency Sync complete\n");
132 kfree(work);
135 void emergency_sync(void)
137 struct work_struct *work;
139 work = kmalloc(sizeof(*work), GFP_ATOMIC);
140 if (work) {
141 INIT_WORK(work, do_sync_work);
142 schedule_work(work);
147 * sync a single super
149 SYSCALL_DEFINE1(syncfs, int, fd)
151 struct file *file;
152 struct super_block *sb;
153 int ret;
154 int fput_needed;
156 file = fget_light(fd, &fput_needed);
157 if (!file)
158 return -EBADF;
159 sb = file->f_dentry->d_sb;
161 down_read(&sb->s_umount);
162 ret = sync_filesystem(sb);
163 up_read(&sb->s_umount);
165 fput_light(file, fput_needed);
166 return ret;
170 * vfs_fsync_range - helper to sync a range of data & metadata to disk
171 * @file: file to sync
172 * @start: offset in bytes of the beginning of data range to sync
173 * @end: offset in bytes of the end of data range (inclusive)
174 * @datasync: perform only datasync
176 * Write back data in range @start..@end and metadata for @file to disk. If
177 * @datasync is set only metadata needed to access modified file data is
178 * written.
180 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
182 if (!file->f_op || !file->f_op->fsync)
183 return -EINVAL;
184 return file->f_op->fsync(file, start, end, datasync);
186 EXPORT_SYMBOL(vfs_fsync_range);
189 * vfs_fsync - perform a fsync or fdatasync on a file
190 * @file: file to sync
191 * @datasync: only perform a fdatasync operation
193 * Write back data and metadata for @file to disk. If @datasync is
194 * set only metadata needed to access modified file data is written.
196 int vfs_fsync(struct file *file, int datasync)
198 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
200 EXPORT_SYMBOL(vfs_fsync);
202 static int do_fsync(unsigned int fd, int datasync)
204 struct file *file;
205 int ret = -EBADF;
206 int fput_needed;
208 file = fget_light(fd, &fput_needed);
209 if (file) {
210 ret = vfs_fsync(file, datasync);
211 fput_light(file, fput_needed);
213 return ret;
216 SYSCALL_DEFINE1(fsync, unsigned int, fd)
218 return do_fsync(fd, 0);
221 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
223 return do_fsync(fd, 1);
227 * generic_write_sync - perform syncing after a write if file / inode is sync
228 * @file: file to which the write happened
229 * @pos: offset where the write started
230 * @count: length of the write
232 * This is just a simple wrapper about our general syncing function.
234 int generic_write_sync(struct file *file, loff_t pos, loff_t count)
236 if (!(file->f_flags & O_DSYNC) && !IS_SYNC(file->f_mapping->host))
237 return 0;
238 return vfs_fsync_range(file, pos, pos + count - 1,
239 (file->f_flags & __O_SYNC) ? 0 : 1);
241 EXPORT_SYMBOL(generic_write_sync);
244 * sys_sync_file_range() permits finely controlled syncing over a segment of
245 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
246 * zero then sys_sync_file_range() will operate from offset out to EOF.
248 * The flag bits are:
250 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
251 * before performing the write.
253 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
254 * range which are not presently under writeback. Note that this may block for
255 * significant periods due to exhaustion of disk request structures.
257 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
258 * after performing the write.
260 * Useful combinations of the flag bits are:
262 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
263 * in the range which were dirty on entry to sys_sync_file_range() are placed
264 * under writeout. This is a start-write-for-data-integrity operation.
266 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
267 * are not presently under writeout. This is an asynchronous flush-to-disk
268 * operation. Not suitable for data integrity operations.
270 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
271 * completion of writeout of all pages in the range. This will be used after an
272 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
273 * for that operation to complete and to return the result.
275 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
276 * a traditional sync() operation. This is a write-for-data-integrity operation
277 * which will ensure that all pages in the range which were dirty on entry to
278 * sys_sync_file_range() are committed to disk.
281 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
282 * I/O errors or ENOSPC conditions and will return those to the caller, after
283 * clearing the EIO and ENOSPC flags in the address_space.
285 * It should be noted that none of these operations write out the file's
286 * metadata. So unless the application is strictly performing overwrites of
287 * already-instantiated disk blocks, there are no guarantees here that the data
288 * will be available after a crash.
290 SYSCALL_DEFINE(sync_file_range)(int fd, loff_t offset, loff_t nbytes,
291 unsigned int flags)
293 int ret;
294 struct file *file;
295 struct address_space *mapping;
296 loff_t endbyte; /* inclusive */
297 int fput_needed;
298 umode_t i_mode;
300 ret = -EINVAL;
301 if (flags & ~VALID_FLAGS)
302 goto out;
304 endbyte = offset + nbytes;
306 if ((s64)offset < 0)
307 goto out;
308 if ((s64)endbyte < 0)
309 goto out;
310 if (endbyte < offset)
311 goto out;
313 if (sizeof(pgoff_t) == 4) {
314 if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
316 * The range starts outside a 32 bit machine's
317 * pagecache addressing capabilities. Let it "succeed"
319 ret = 0;
320 goto out;
322 if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
324 * Out to EOF
326 nbytes = 0;
330 if (nbytes == 0)
331 endbyte = LLONG_MAX;
332 else
333 endbyte--; /* inclusive */
335 ret = -EBADF;
336 file = fget_light(fd, &fput_needed);
337 if (!file)
338 goto out;
340 i_mode = file->f_path.dentry->d_inode->i_mode;
341 ret = -ESPIPE;
342 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
343 !S_ISLNK(i_mode))
344 goto out_put;
346 mapping = file->f_mapping;
347 if (!mapping) {
348 ret = -EINVAL;
349 goto out_put;
352 ret = 0;
353 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
354 ret = filemap_fdatawait_range(mapping, offset, endbyte);
355 if (ret < 0)
356 goto out_put;
359 if (flags & SYNC_FILE_RANGE_WRITE) {
360 ret = filemap_fdatawrite_range(mapping, offset, endbyte);
361 if (ret < 0)
362 goto out_put;
365 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
366 ret = filemap_fdatawait_range(mapping, offset, endbyte);
368 out_put:
369 fput_light(file, fput_needed);
370 out:
371 return ret;
373 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
374 asmlinkage long SyS_sync_file_range(long fd, loff_t offset, loff_t nbytes,
375 long flags)
377 return SYSC_sync_file_range((int) fd, offset, nbytes,
378 (unsigned int) flags);
380 SYSCALL_ALIAS(sys_sync_file_range, SyS_sync_file_range);
381 #endif
383 /* It would be nice if people remember that not all the world's an i386
384 when they introduce new system calls */
385 SYSCALL_DEFINE(sync_file_range2)(int fd, unsigned int flags,
386 loff_t offset, loff_t nbytes)
388 return sys_sync_file_range(fd, offset, nbytes, flags);
390 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
391 asmlinkage long SyS_sync_file_range2(long fd, long flags,
392 loff_t offset, loff_t nbytes)
394 return SYSC_sync_file_range2((int) fd, (unsigned int) flags,
395 offset, nbytes);
397 SYSCALL_ALIAS(sys_sync_file_range2, SyS_sync_file_range2);
398 #endif