1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2010 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
18 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
);
21 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
26 for (i
= 0; i
< len
; i
++)
27 REG_WR(bp
, addr
+ i
*4, data
[i
]);
30 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
35 for (i
= 0; i
< len
; i
++)
36 REG_WR_IND(bp
, addr
+ i
*4, data
[i
]);
39 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
)
42 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
44 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
47 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
49 u32 buf_len
= (((len
*4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
*4));
50 u32 buf_len32
= buf_len
/4;
53 memset(GUNZIP_BUF(bp
), (u8
)fill
, buf_len
);
55 for (i
= 0; i
< len
; i
+= buf_len32
) {
56 u32 cur_len
= min(buf_len32
, len
- i
);
58 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
);
62 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
65 u32 buf_len32
= FW_BUF_SIZE
/4;
70 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
71 data64
= HILO_U64((*(data
+ 1)), (*data
));
73 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
74 for (i
= 0; i
< len64
; i
++) {
75 u64
*pdata
= ((u64
*)(GUNZIP_BUF(bp
))) + i
;
80 for (i
= 0; i
< len
; i
+= buf_len32
) {
81 u32 cur_len
= min(buf_len32
, len
- i
);
83 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
);
87 /*********************************************************
88 There are different blobs for each PRAM section.
89 In addition, each blob write operation is divided into a few operations
90 in order to decrease the amount of phys. contiguous buffer needed.
91 Thus, when we select a blob the address may be with some offset
92 from the beginning of PRAM section.
93 The same holds for the INT_TABLE sections.
94 **********************************************************/
95 #define IF_IS_INT_TABLE_ADDR(base, addr) \
96 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
98 #define IF_IS_PRAM_ADDR(base, addr) \
99 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
101 static const u8
*bnx2x_sel_blob(struct bnx2x
*bp
, u32 addr
, const u8
*data
)
103 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
104 data
= INIT_TSEM_INT_TABLE_DATA(bp
);
106 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
107 data
= INIT_CSEM_INT_TABLE_DATA(bp
);
109 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
110 data
= INIT_USEM_INT_TABLE_DATA(bp
);
112 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
113 data
= INIT_XSEM_INT_TABLE_DATA(bp
);
115 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
116 data
= INIT_TSEM_PRAM_DATA(bp
);
118 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
119 data
= INIT_CSEM_PRAM_DATA(bp
);
121 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
122 data
= INIT_USEM_PRAM_DATA(bp
);
124 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
125 data
= INIT_XSEM_PRAM_DATA(bp
);
130 static void bnx2x_write_big_buf_wb(struct bnx2x
*bp
, u32 addr
, u32 len
)
133 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
135 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
138 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
141 const u32
*old_data
= data
;
143 data
= (const u32
*)bnx2x_sel_blob(bp
, addr
, (const u8
*)data
);
145 if (bp
->dmae_ready
) {
146 if (old_data
!= data
)
147 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 1);
149 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 0);
151 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
154 static void bnx2x_init_wr_zp(struct bnx2x
*bp
, u32 addr
, u32 len
, u32 blob_off
)
156 const u8
*data
= NULL
;
160 data
= bnx2x_sel_blob(bp
, addr
, data
) + blob_off
*4;
162 rc
= bnx2x_gunzip(bp
, data
, len
);
166 /* gunzip_outlen is in dwords */
167 len
= GUNZIP_OUTLEN(bp
);
168 for (i
= 0; i
< len
; i
++)
169 ((u32
*)GUNZIP_BUF(bp
))[i
] =
170 cpu_to_le32(((u32
*)GUNZIP_BUF(bp
))[i
]);
172 bnx2x_write_big_buf_wb(bp
, addr
, len
);
175 static void bnx2x_init_block(struct bnx2x
*bp
, u32 block
, u32 stage
)
178 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
, STAGE_START
)];
180 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
, STAGE_END
)];
183 u32 i
, op_type
, addr
, len
;
184 const u32
*data
, *data_base
;
187 if (op_start
== op_end
)
190 if (CHIP_REV_IS_FPGA(bp
))
192 else if (CHIP_REV_IS_EMUL(bp
))
197 data_base
= INIT_DATA(bp
);
199 for (i
= op_start
; i
< op_end
; i
++) {
201 op
= (union init_op
*)&(INIT_OPS(bp
)[i
]);
203 op_type
= op
->str_wr
.op
;
204 addr
= op
->str_wr
.offset
;
205 len
= op
->str_wr
.data_len
;
206 data
= data_base
+ op
->str_wr
.data_off
;
208 /* HW/EMUL specific */
209 if ((op_type
> OP_WB
) && (op_type
== hw_wr
))
217 REG_WR(bp
, addr
, op
->write
.val
);
220 bnx2x_init_str_wr(bp
, addr
, data
, len
);
223 bnx2x_init_wr_wb(bp
, addr
, data
, len
);
226 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
229 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
);
232 bnx2x_init_wr_zp(bp
, addr
, len
,
233 op
->str_wr
.data_off
);
236 bnx2x_init_wr_64(bp
, addr
, data
, len
);
239 /* happens whenever an op is of a diff HW */
246 /****************************************************************************
248 ****************************************************************************/
250 * This code configures the PCI read/write arbiter
251 * which implements a weighted round robin
252 * between the virtual queues in the chip.
254 * The values were derived for each PCI max payload and max request size.
255 * since max payload and max request size are only known at run time,
256 * this is done as a separate init stage.
264 /* configuration for one arbiter queue */
271 /* derived configuration for each read queue for each max request size */
272 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
273 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
274 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
275 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
276 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
277 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
278 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
279 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
280 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
281 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
282 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
283 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
284 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
285 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
286 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
287 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
288 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
289 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
290 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
291 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
292 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
293 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
294 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
295 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
296 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
297 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
298 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
299 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
300 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
301 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
304 /* derived configuration for each write queue for each max request size */
305 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
306 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
307 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
308 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
309 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
310 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
311 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
312 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
313 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
314 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
315 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
316 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
317 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
318 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
321 /* register addresses for read queues */
322 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
323 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
324 PXP2_REG_RQ_BW_RD_UBOUND0
},
325 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
326 PXP2_REG_PSWRQ_BW_UB1
},
327 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
328 PXP2_REG_PSWRQ_BW_UB2
},
329 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
330 PXP2_REG_PSWRQ_BW_UB3
},
331 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
332 PXP2_REG_RQ_BW_RD_UBOUND4
},
333 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
334 PXP2_REG_RQ_BW_RD_UBOUND5
},
335 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
336 PXP2_REG_PSWRQ_BW_UB6
},
337 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
338 PXP2_REG_PSWRQ_BW_UB7
},
339 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
340 PXP2_REG_PSWRQ_BW_UB8
},
341 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
342 PXP2_REG_PSWRQ_BW_UB9
},
343 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
344 PXP2_REG_PSWRQ_BW_UB10
},
345 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
346 PXP2_REG_PSWRQ_BW_UB11
},
347 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
348 PXP2_REG_RQ_BW_RD_UBOUND12
},
349 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
350 PXP2_REG_RQ_BW_RD_UBOUND13
},
351 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
352 PXP2_REG_RQ_BW_RD_UBOUND14
},
353 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
354 PXP2_REG_RQ_BW_RD_UBOUND15
},
355 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
356 PXP2_REG_RQ_BW_RD_UBOUND16
},
357 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
358 PXP2_REG_RQ_BW_RD_UBOUND17
},
359 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
360 PXP2_REG_RQ_BW_RD_UBOUND18
},
361 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
362 PXP2_REG_RQ_BW_RD_UBOUND19
},
363 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
364 PXP2_REG_RQ_BW_RD_UBOUND20
},
365 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
366 PXP2_REG_RQ_BW_RD_UBOUND22
},
367 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
368 PXP2_REG_RQ_BW_RD_UBOUND23
},
369 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
370 PXP2_REG_RQ_BW_RD_UBOUND24
},
371 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
372 PXP2_REG_RQ_BW_RD_UBOUND25
},
373 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
374 PXP2_REG_RQ_BW_RD_UBOUND26
},
375 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
376 PXP2_REG_RQ_BW_RD_UBOUND27
},
377 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
378 PXP2_REG_PSWRQ_BW_UB28
}
381 /* register addresses for write queues */
382 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
383 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
384 PXP2_REG_PSWRQ_BW_UB1
},
385 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
386 PXP2_REG_PSWRQ_BW_UB2
},
387 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
388 PXP2_REG_PSWRQ_BW_UB3
},
389 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
390 PXP2_REG_PSWRQ_BW_UB6
},
391 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
392 PXP2_REG_PSWRQ_BW_UB7
},
393 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
394 PXP2_REG_PSWRQ_BW_UB8
},
395 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
396 PXP2_REG_PSWRQ_BW_UB9
},
397 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
398 PXP2_REG_PSWRQ_BW_UB10
},
399 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
400 PXP2_REG_PSWRQ_BW_UB11
},
401 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
402 PXP2_REG_PSWRQ_BW_UB28
},
403 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
404 PXP2_REG_RQ_BW_WR_UBOUND29
},
405 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
406 PXP2_REG_RQ_BW_WR_UBOUND30
}
409 static void bnx2x_init_pxp_arb(struct bnx2x
*bp
, int r_order
, int w_order
)
413 if (r_order
> MAX_RD_ORD
) {
414 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
415 r_order
, MAX_RD_ORD
);
416 r_order
= MAX_RD_ORD
;
418 if (w_order
> MAX_WR_ORD
) {
419 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
420 w_order
, MAX_WR_ORD
);
421 w_order
= MAX_WR_ORD
;
423 if (CHIP_REV_IS_FPGA(bp
)) {
424 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
427 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
429 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
430 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
431 REG_WR(bp
, read_arb_addr
[i
].add
,
432 read_arb_data
[i
][r_order
].add
);
433 REG_WR(bp
, read_arb_addr
[i
].ubound
,
434 read_arb_data
[i
][r_order
].ubound
);
437 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
438 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
439 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
441 REG_WR(bp
, write_arb_addr
[i
].l
,
442 write_arb_data
[i
][w_order
].l
);
444 REG_WR(bp
, write_arb_addr
[i
].add
,
445 write_arb_data
[i
][w_order
].add
);
447 REG_WR(bp
, write_arb_addr
[i
].ubound
,
448 write_arb_data
[i
][w_order
].ubound
);
451 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
452 REG_WR(bp
, write_arb_addr
[i
].l
,
453 val
| (write_arb_data
[i
][w_order
].l
<< 10));
455 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
456 REG_WR(bp
, write_arb_addr
[i
].add
,
457 val
| (write_arb_data
[i
][w_order
].add
<< 10));
459 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
460 REG_WR(bp
, write_arb_addr
[i
].ubound
,
461 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
465 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
466 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
467 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
468 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
470 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
471 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
472 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
473 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
475 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
476 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
477 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
478 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
480 if (r_order
== MAX_RD_ORD
)
481 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
483 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
485 if (CHIP_IS_E1H(bp
)) {
486 /* MPS w_order optimal TH presently TH
491 val
= ((w_order
== 0) ? 2 : 3);
492 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
493 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
494 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
495 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
496 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
497 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
498 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
499 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
500 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
501 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2); /* DMAE is special */
502 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
506 #endif /* BNX2X_INIT_OPS_H */