2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
41 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
46 #include <asm/coldfire.h>
47 #include <asm/mcfsim.h>
50 #if defined(CONFIG_FEC2)
51 #define FEC_MAX_PORTS 2
53 #define FEC_MAX_PORTS 1
56 #if defined(CONFIG_M5272)
57 #define HAVE_mii_link_interrupt
61 * Define the fixed address of the FEC hardware.
63 static unsigned int fec_hw
[] = {
64 #if defined(CONFIG_M5272)
66 #elif defined(CONFIG_M527x)
69 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
71 #elif defined(CONFIG_M520x)
73 #elif defined(CONFIG_M532x)
74 (MCF_MBAR
+0xfc030000),
76 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
80 static unsigned char fec_mac_default
[] = {
81 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
85 * Some hardware gets it MAC address out of local flash memory.
86 * if this is non-zero then assume it is the address to get MAC from.
88 #if defined(CONFIG_NETtel)
89 #define FEC_FLASHMAC 0xf0006006
90 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
91 #define FEC_FLASHMAC 0xf0006000
92 #elif defined(CONFIG_CANCam)
93 #define FEC_FLASHMAC 0xf0020000
94 #elif defined (CONFIG_M5272C3)
95 #define FEC_FLASHMAC (0xffe04000 + 4)
96 #elif defined(CONFIG_MOD5272)
97 #define FEC_FLASHMAC 0xffc0406b
99 #define FEC_FLASHMAC 0
102 /* Forward declarations of some structures to support different PHYs
107 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
114 const phy_cmd_t
*config
;
115 const phy_cmd_t
*startup
;
116 const phy_cmd_t
*ack_int
;
117 const phy_cmd_t
*shutdown
;
120 /* The number of Tx and Rx buffers. These are allocated from the page
121 * pool. The code may assume these are power of two, so it it best
122 * to keep them that size.
123 * We don't need to allocate pages for the transmitter. We just use
124 * the skbuffer directly.
126 #define FEC_ENET_RX_PAGES 8
127 #define FEC_ENET_RX_FRSIZE 2048
128 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
129 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
130 #define FEC_ENET_TX_FRSIZE 2048
131 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
132 #define TX_RING_SIZE 16 /* Must be power of two */
133 #define TX_RING_MOD_MASK 15 /* for this to work */
135 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
136 #error "FEC: descriptor ring size constants too large"
139 /* Interrupt events/masks.
141 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
142 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
143 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
144 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
145 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
146 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
147 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
148 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
149 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
150 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
152 /* The FEC stores dest/src/type, data, and checksum for receive packets.
154 #define PKT_MAXBUF_SIZE 1518
155 #define PKT_MINBUF_SIZE 64
156 #define PKT_MAXBLR_SIZE 1520
160 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
161 * size bits. Other FEC hardware does not, so we need to take that into
162 * account when setting it.
164 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
165 defined(CONFIG_M520x) || defined(CONFIG_M532x)
166 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
168 #define OPT_FRAME_SIZE 0
171 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
172 * tx_bd_base always point to the base of the buffer descriptors. The
173 * cur_rx and cur_tx point to the currently available buffer.
174 * The dirty_tx tracks the current buffer that is being sent by the
175 * controller. The cur_tx and dirty_tx are equal under both completely
176 * empty and completely full conditions. The empty/ready indicator in
177 * the buffer descriptor determines the actual condition.
179 struct fec_enet_private
{
180 /* Hardware registers of the FEC device */
183 struct net_device
*netdev
;
185 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 unsigned char *tx_bounce
[TX_RING_SIZE
];
187 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
191 /* CPM dual port RAM relative addresses.
193 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
195 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
196 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
198 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
200 /* hold while accessing the mii_list_t() elements */
207 phy_info_t
const *phy
;
208 struct work_struct phy_task
;
211 uint mii_phy_task_queued
;
222 static int fec_enet_open(struct net_device
*dev
);
223 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
224 static void fec_enet_mii(struct net_device
*dev
);
225 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
226 static void fec_enet_tx(struct net_device
*dev
);
227 static void fec_enet_rx(struct net_device
*dev
);
228 static int fec_enet_close(struct net_device
*dev
);
229 static void set_multicast_list(struct net_device
*dev
);
230 static void fec_restart(struct net_device
*dev
, int duplex
);
231 static void fec_stop(struct net_device
*dev
);
232 static void fec_set_mac_address(struct net_device
*dev
);
235 /* MII processing. We keep this as simple as possible. Requests are
236 * placed on the list (if there is room). When the request is finished
237 * by the MII, an optional function may be called.
239 typedef struct mii_list
{
241 void (*mii_func
)(uint val
, struct net_device
*dev
);
242 struct mii_list
*mii_next
;
246 static mii_list_t mii_cmds
[NMII
];
247 static mii_list_t
*mii_free
;
248 static mii_list_t
*mii_head
;
249 static mii_list_t
*mii_tail
;
251 static int mii_queue(struct net_device
*dev
, int request
,
252 void (*func
)(uint
, struct net_device
*));
254 /* Make MII read/write commands for the FEC.
256 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
257 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
261 /* Transmitter timeout.
263 #define TX_TIMEOUT (2*HZ)
265 /* Register definitions for the PHY.
268 #define MII_REG_CR 0 /* Control Register */
269 #define MII_REG_SR 1 /* Status Register */
270 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
271 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
272 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
273 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
274 #define MII_REG_ANER 6 /* A-N Expansion Register */
275 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
276 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
278 /* values for phy_status */
280 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
281 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
282 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
283 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
284 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
285 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
286 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
288 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
289 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
290 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
291 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
292 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
293 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
294 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
295 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
299 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
301 struct fec_enet_private
*fep
;
302 volatile fec_t
*fecp
;
304 unsigned short status
;
307 fep
= netdev_priv(dev
);
308 fecp
= (volatile fec_t
*)dev
->base_addr
;
311 /* Link is down or autonegotiation is in progress. */
315 spin_lock_irqsave(&fep
->hw_lock
, flags
);
316 /* Fill in a Tx ring entry */
319 status
= bdp
->cbd_sc
;
320 #ifndef final_version
321 if (status
& BD_ENET_TX_READY
) {
322 /* Ooops. All transmit buffers are full. Bail out.
323 * This should not happen, since dev->tbusy should be set.
325 printk("%s: tx queue full!.\n", dev
->name
);
326 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
331 /* Clear all of the status flags.
333 status
&= ~BD_ENET_TX_STATS
;
335 /* Set buffer length and buffer pointer.
337 bdp
->cbd_bufaddr
= __pa(skb
->data
);
338 bdp
->cbd_datlen
= skb
->len
;
341 * On some FEC implementations data must be aligned on
342 * 4-byte boundaries. Use bounce buffers to copy data
343 * and get it aligned. Ugh.
345 if (bdp
->cbd_bufaddr
& 0x3) {
347 index
= bdp
- fep
->tx_bd_base
;
348 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
349 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
354 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
356 dev
->stats
.tx_bytes
+= skb
->len
;
357 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
359 /* Push the data cache so the CPM does not get stale memory
362 flush_dcache_range((unsigned long)skb
->data
,
363 (unsigned long)skb
->data
+ skb
->len
);
365 /* Send it on its way. Tell FEC it's ready, interrupt when done,
366 * it's the last BD of the frame, and to put the CRC on the end.
369 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
370 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
371 bdp
->cbd_sc
= status
;
373 dev
->trans_start
= jiffies
;
375 /* Trigger transmission start */
376 fecp
->fec_x_des_active
= 0;
378 /* If this was the last BD in the ring, start at the beginning again.
380 if (status
& BD_ENET_TX_WRAP
) {
381 bdp
= fep
->tx_bd_base
;
386 if (bdp
== fep
->dirty_tx
) {
388 netif_stop_queue(dev
);
391 fep
->cur_tx
= (cbd_t
*)bdp
;
393 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
399 fec_timeout(struct net_device
*dev
)
401 struct fec_enet_private
*fep
= netdev_priv(dev
);
403 printk("%s: transmit timed out.\n", dev
->name
);
404 dev
->stats
.tx_errors
++;
405 #ifndef final_version
410 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
411 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
412 (unsigned long)fep
->dirty_tx
,
413 (unsigned long)fep
->cur_rx
);
415 bdp
= fep
->tx_bd_base
;
416 printk(" tx: %u buffers\n", TX_RING_SIZE
);
417 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
418 printk(" %08x: %04x %04x %08x\n",
422 (int) bdp
->cbd_bufaddr
);
426 bdp
= fep
->rx_bd_base
;
427 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
428 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
429 printk(" %08x: %04x %04x %08x\n",
433 (int) bdp
->cbd_bufaddr
);
438 fec_restart(dev
, fep
->full_duplex
);
439 netif_wake_queue(dev
);
442 /* The interrupt handler.
443 * This is called from the MPC core interrupt.
446 fec_enet_interrupt(int irq
, void * dev_id
)
448 struct net_device
*dev
= dev_id
;
449 volatile fec_t
*fecp
;
451 irqreturn_t ret
= IRQ_NONE
;
453 fecp
= (volatile fec_t
*)dev
->base_addr
;
455 /* Get the interrupt events that caused us to be here.
458 int_events
= fecp
->fec_ievent
;
459 fecp
->fec_ievent
= int_events
;
461 /* Handle receive event in its own function.
463 if (int_events
& FEC_ENET_RXF
) {
468 /* Transmit OK, or non-fatal error. Update the buffer
469 descriptors. FEC handles all errors, we just discover
470 them as part of the transmit process.
472 if (int_events
& FEC_ENET_TXF
) {
477 if (int_events
& FEC_ENET_MII
) {
482 } while (int_events
);
489 fec_enet_tx(struct net_device
*dev
)
491 struct fec_enet_private
*fep
;
493 unsigned short status
;
496 fep
= netdev_priv(dev
);
497 spin_lock_irq(&fep
->hw_lock
);
500 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
501 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
503 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
504 /* Check for errors. */
505 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
506 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
508 dev
->stats
.tx_errors
++;
509 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
510 dev
->stats
.tx_heartbeat_errors
++;
511 if (status
& BD_ENET_TX_LC
) /* Late collision */
512 dev
->stats
.tx_window_errors
++;
513 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
514 dev
->stats
.tx_aborted_errors
++;
515 if (status
& BD_ENET_TX_UN
) /* Underrun */
516 dev
->stats
.tx_fifo_errors
++;
517 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
518 dev
->stats
.tx_carrier_errors
++;
520 dev
->stats
.tx_packets
++;
523 #ifndef final_version
524 if (status
& BD_ENET_TX_READY
)
525 printk("HEY! Enet xmit interrupt and TX_READY.\n");
527 /* Deferred means some collisions occurred during transmit,
528 * but we eventually sent the packet OK.
530 if (status
& BD_ENET_TX_DEF
)
531 dev
->stats
.collisions
++;
533 /* Free the sk buffer associated with this last transmit.
535 dev_kfree_skb_any(skb
);
536 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
537 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
539 /* Update pointer to next buffer descriptor to be transmitted.
541 if (status
& BD_ENET_TX_WRAP
)
542 bdp
= fep
->tx_bd_base
;
546 /* Since we have freed up a buffer, the ring is no longer
551 if (netif_queue_stopped(dev
))
552 netif_wake_queue(dev
);
555 fep
->dirty_tx
= (cbd_t
*)bdp
;
556 spin_unlock_irq(&fep
->hw_lock
);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
566 fec_enet_rx(struct net_device
*dev
)
568 struct fec_enet_private
*fep
;
569 volatile fec_t
*fecp
;
571 unsigned short status
;
580 fep
= netdev_priv(dev
);
581 fecp
= (volatile fec_t
*)dev
->base_addr
;
583 spin_lock_irq(&fep
->hw_lock
);
585 /* First, grab all of the stats for the incoming packet.
586 * These get messed up if we get called due to a busy condition.
590 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
592 #ifndef final_version
593 /* Since we have allocated space to hold a complete frame,
594 * the last indicator should be set.
596 if ((status
& BD_ENET_RX_LAST
) == 0)
597 printk("FEC ENET: rcv is not +last\n");
601 goto rx_processing_done
;
603 /* Check for errors. */
604 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
605 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
606 dev
->stats
.rx_errors
++;
607 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
608 /* Frame too long or too short. */
609 dev
->stats
.rx_length_errors
++;
611 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
612 dev
->stats
.rx_frame_errors
++;
613 if (status
& BD_ENET_RX_CR
) /* CRC Error */
614 dev
->stats
.rx_crc_errors
++;
615 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
616 dev
->stats
.rx_fifo_errors
++;
619 /* Report late collisions as a frame error.
620 * On this error, the BD is closed, but we don't know what we
621 * have in the buffer. So, just drop this frame on the floor.
623 if (status
& BD_ENET_RX_CL
) {
624 dev
->stats
.rx_errors
++;
625 dev
->stats
.rx_frame_errors
++;
626 goto rx_processing_done
;
629 /* Process the incoming frame.
631 dev
->stats
.rx_packets
++;
632 pkt_len
= bdp
->cbd_datlen
;
633 dev
->stats
.rx_bytes
+= pkt_len
;
634 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
636 /* This does 16 byte alignment, exactly what we need.
637 * The packet length includes FCS, but we don't want to
638 * include that when passing upstream as it messes up
639 * bridging applications.
641 skb
= dev_alloc_skb(pkt_len
-4);
644 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
645 dev
->stats
.rx_dropped
++;
647 skb_put(skb
,pkt_len
-4); /* Make room */
648 skb_copy_to_linear_data(skb
, data
, pkt_len
-4);
649 skb
->protocol
=eth_type_trans(skb
,dev
);
654 /* Clear the status flags for this buffer.
656 status
&= ~BD_ENET_RX_STATS
;
658 /* Mark the buffer empty.
660 status
|= BD_ENET_RX_EMPTY
;
661 bdp
->cbd_sc
= status
;
663 /* Update BD pointer to next entry.
665 if (status
& BD_ENET_RX_WRAP
)
666 bdp
= fep
->rx_bd_base
;
671 /* Doing this here will keep the FEC running while we process
672 * incoming frames. On a heavily loaded network, we should be
673 * able to keep up at the expense of system resources.
675 fecp
->fec_r_des_active
= 0;
677 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
678 fep
->cur_rx
= (cbd_t
*)bdp
;
681 /* Doing this here will allow us to process all frames in the
682 * ring before the FEC is allowed to put more there. On a heavily
683 * loaded network, some frames may be lost. Unfortunately, this
684 * increases the interrupt overhead since we can potentially work
685 * our way back to the interrupt return only to come right back
688 fecp
->fec_r_des_active
= 0;
691 spin_unlock_irq(&fep
->hw_lock
);
695 /* called from interrupt context */
697 fec_enet_mii(struct net_device
*dev
)
699 struct fec_enet_private
*fep
;
704 fep
= netdev_priv(dev
);
705 spin_lock_irq(&fep
->mii_lock
);
708 mii_reg
= ep
->fec_mii_data
;
710 if ((mip
= mii_head
) == NULL
) {
711 printk("MII and no head!\n");
715 if (mip
->mii_func
!= NULL
)
716 (*(mip
->mii_func
))(mii_reg
, dev
);
718 mii_head
= mip
->mii_next
;
719 mip
->mii_next
= mii_free
;
722 if ((mip
= mii_head
) != NULL
)
723 ep
->fec_mii_data
= mip
->mii_regval
;
726 spin_unlock_irq(&fep
->mii_lock
);
730 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
732 struct fec_enet_private
*fep
;
737 /* Add PHY address to register command.
739 fep
= netdev_priv(dev
);
740 spin_lock_irqsave(&fep
->mii_lock
, flags
);
742 regval
|= fep
->phy_addr
<< 23;
745 if ((mip
= mii_free
) != NULL
) {
746 mii_free
= mip
->mii_next
;
747 mip
->mii_regval
= regval
;
748 mip
->mii_func
= func
;
749 mip
->mii_next
= NULL
;
751 mii_tail
->mii_next
= mip
;
754 mii_head
= mii_tail
= mip
;
755 fep
->hwp
->fec_mii_data
= regval
;
761 spin_unlock_irqrestore(&fep
->mii_lock
, flags
);
765 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
770 for (; c
->mii_data
!= mk_mii_end
; c
++)
771 mii_queue(dev
, c
->mii_data
, c
->funct
);
774 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
776 struct fec_enet_private
*fep
= netdev_priv(dev
);
777 volatile uint
*s
= &(fep
->phy_status
);
780 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
782 if (mii_reg
& 0x0004)
783 status
|= PHY_STAT_LINK
;
784 if (mii_reg
& 0x0010)
785 status
|= PHY_STAT_FAULT
;
786 if (mii_reg
& 0x0020)
787 status
|= PHY_STAT_ANC
;
791 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
793 struct fec_enet_private
*fep
= netdev_priv(dev
);
794 volatile uint
*s
= &(fep
->phy_status
);
797 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
799 if (mii_reg
& 0x1000)
800 status
|= PHY_CONF_ANE
;
801 if (mii_reg
& 0x4000)
802 status
|= PHY_CONF_LOOP
;
806 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
808 struct fec_enet_private
*fep
= netdev_priv(dev
);
809 volatile uint
*s
= &(fep
->phy_status
);
812 status
= *s
& ~(PHY_CONF_SPMASK
);
814 if (mii_reg
& 0x0020)
815 status
|= PHY_CONF_10HDX
;
816 if (mii_reg
& 0x0040)
817 status
|= PHY_CONF_10FDX
;
818 if (mii_reg
& 0x0080)
819 status
|= PHY_CONF_100HDX
;
820 if (mii_reg
& 0x00100)
821 status
|= PHY_CONF_100FDX
;
825 /* ------------------------------------------------------------------------- */
826 /* The Level one LXT970 is used by many boards */
828 #define MII_LXT970_MIRROR 16 /* Mirror register */
829 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
830 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
831 #define MII_LXT970_CONFIG 19 /* Configuration Register */
832 #define MII_LXT970_CSR 20 /* Chip Status Register */
834 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
836 struct fec_enet_private
*fep
= netdev_priv(dev
);
837 volatile uint
*s
= &(fep
->phy_status
);
840 status
= *s
& ~(PHY_STAT_SPMASK
);
841 if (mii_reg
& 0x0800) {
842 if (mii_reg
& 0x1000)
843 status
|= PHY_STAT_100FDX
;
845 status
|= PHY_STAT_100HDX
;
847 if (mii_reg
& 0x1000)
848 status
|= PHY_STAT_10FDX
;
850 status
|= PHY_STAT_10HDX
;
855 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
856 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
857 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
860 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
861 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
862 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
865 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
866 /* read SR and ISR to acknowledge */
867 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
868 { mk_mii_read(MII_LXT970_ISR
), NULL
},
870 /* find out the current status */
871 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
874 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
875 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
878 static phy_info_t
const phy_info_lxt970
= {
881 .config
= phy_cmd_lxt970_config
,
882 .startup
= phy_cmd_lxt970_startup
,
883 .ack_int
= phy_cmd_lxt970_ack_int
,
884 .shutdown
= phy_cmd_lxt970_shutdown
887 /* ------------------------------------------------------------------------- */
888 /* The Level one LXT971 is used on some of my custom boards */
890 /* register definitions for the 971 */
892 #define MII_LXT971_PCR 16 /* Port Control Register */
893 #define MII_LXT971_SR2 17 /* Status Register 2 */
894 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
895 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
896 #define MII_LXT971_LCR 20 /* LED Control Register */
897 #define MII_LXT971_TCR 30 /* Transmit Control Register */
900 * I had some nice ideas of running the MDIO faster...
901 * The 971 should support 8MHz and I tried it, but things acted really
902 * weird, so 2.5 MHz ought to be enough for anyone...
905 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
907 struct fec_enet_private
*fep
= netdev_priv(dev
);
908 volatile uint
*s
= &(fep
->phy_status
);
911 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
913 if (mii_reg
& 0x0400) {
915 status
|= PHY_STAT_LINK
;
919 if (mii_reg
& 0x0080)
920 status
|= PHY_STAT_ANC
;
921 if (mii_reg
& 0x4000) {
922 if (mii_reg
& 0x0200)
923 status
|= PHY_STAT_100FDX
;
925 status
|= PHY_STAT_100HDX
;
927 if (mii_reg
& 0x0200)
928 status
|= PHY_STAT_10FDX
;
930 status
|= PHY_STAT_10HDX
;
932 if (mii_reg
& 0x0008)
933 status
|= PHY_STAT_FAULT
;
938 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
939 /* limit to 10MBit because my prototype board
940 * doesn't work with 100. */
941 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
942 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
943 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
946 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
947 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
948 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
949 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
950 /* Somehow does the 971 tell me that the link is down
951 * the first read after power-up.
952 * read here to get a valid value in ack_int */
953 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
956 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
957 /* acknowledge the int before reading status ! */
958 { mk_mii_read(MII_LXT971_ISR
), NULL
},
959 /* find out the current status */
960 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
961 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
964 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
965 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
968 static phy_info_t
const phy_info_lxt971
= {
971 .config
= phy_cmd_lxt971_config
,
972 .startup
= phy_cmd_lxt971_startup
,
973 .ack_int
= phy_cmd_lxt971_ack_int
,
974 .shutdown
= phy_cmd_lxt971_shutdown
977 /* ------------------------------------------------------------------------- */
978 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
980 /* register definitions */
982 #define MII_QS6612_MCR 17 /* Mode Control Register */
983 #define MII_QS6612_FTR 27 /* Factory Test Register */
984 #define MII_QS6612_MCO 28 /* Misc. Control Register */
985 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
986 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
987 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
989 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
991 struct fec_enet_private
*fep
= netdev_priv(dev
);
992 volatile uint
*s
= &(fep
->phy_status
);
995 status
= *s
& ~(PHY_STAT_SPMASK
);
997 switch((mii_reg
>> 2) & 7) {
998 case 1: status
|= PHY_STAT_10HDX
; break;
999 case 2: status
|= PHY_STAT_100HDX
; break;
1000 case 5: status
|= PHY_STAT_10FDX
; break;
1001 case 6: status
|= PHY_STAT_100FDX
; break;
1007 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1008 /* The PHY powers up isolated on the RPX,
1009 * so send a command to allow operation.
1011 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1013 /* parse cr and anar to get some info */
1014 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1015 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1018 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1019 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1020 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1023 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1024 /* we need to read ISR, SR and ANER to acknowledge */
1025 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1026 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1027 { mk_mii_read(MII_REG_ANER
), NULL
},
1029 /* read pcr to get info */
1030 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1033 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1034 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1037 static phy_info_t
const phy_info_qs6612
= {
1040 .config
= phy_cmd_qs6612_config
,
1041 .startup
= phy_cmd_qs6612_startup
,
1042 .ack_int
= phy_cmd_qs6612_ack_int
,
1043 .shutdown
= phy_cmd_qs6612_shutdown
1046 /* ------------------------------------------------------------------------- */
1047 /* AMD AM79C874 phy */
1049 /* register definitions for the 874 */
1051 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1052 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1053 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1054 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1055 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1056 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1057 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1059 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1061 struct fec_enet_private
*fep
= netdev_priv(dev
);
1062 volatile uint
*s
= &(fep
->phy_status
);
1065 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1067 if (mii_reg
& 0x0080)
1068 status
|= PHY_STAT_ANC
;
1069 if (mii_reg
& 0x0400)
1070 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1072 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1077 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1078 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1079 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1080 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1083 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1084 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1085 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1086 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1089 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1090 /* find out the current status */
1091 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1092 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1093 /* we only need to read ISR to acknowledge */
1094 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1097 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1098 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1101 static phy_info_t
const phy_info_am79c874
= {
1104 .config
= phy_cmd_am79c874_config
,
1105 .startup
= phy_cmd_am79c874_startup
,
1106 .ack_int
= phy_cmd_am79c874_ack_int
,
1107 .shutdown
= phy_cmd_am79c874_shutdown
1111 /* ------------------------------------------------------------------------- */
1112 /* Kendin KS8721BL phy */
1114 /* register definitions for the 8721 */
1116 #define MII_KS8721BL_RXERCR 21
1117 #define MII_KS8721BL_ICSR 22
1118 #define MII_KS8721BL_PHYCR 31
1120 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1121 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1122 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1125 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1126 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1127 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1128 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1131 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1132 /* find out the current status */
1133 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1134 /* we only need to read ISR to acknowledge */
1135 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1138 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1139 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1142 static phy_info_t
const phy_info_ks8721bl
= {
1145 .config
= phy_cmd_ks8721bl_config
,
1146 .startup
= phy_cmd_ks8721bl_startup
,
1147 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1148 .shutdown
= phy_cmd_ks8721bl_shutdown
1151 /* ------------------------------------------------------------------------- */
1152 /* register definitions for the DP83848 */
1154 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1156 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1158 struct fec_enet_private
*fep
= dev
->priv
;
1159 volatile uint
*s
= &(fep
->phy_status
);
1161 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1164 if (mii_reg
& 0x0001) {
1166 *s
|= PHY_STAT_LINK
;
1169 /* Status of link */
1170 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1172 if (mii_reg
& 0x0002) { /* 10MBps? */
1173 if (mii_reg
& 0x0004) /* Full Duplex? */
1174 *s
|= PHY_STAT_10FDX
;
1176 *s
|= PHY_STAT_10HDX
;
1177 } else { /* 100 Mbps? */
1178 if (mii_reg
& 0x0004) /* Full Duplex? */
1179 *s
|= PHY_STAT_100FDX
;
1181 *s
|= PHY_STAT_100HDX
;
1183 if (mii_reg
& 0x0008)
1184 *s
|= PHY_STAT_FAULT
;
1187 static phy_info_t phy_info_dp83848
= {
1191 (const phy_cmd_t
[]) { /* config */
1192 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1193 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1194 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1197 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1198 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1199 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1202 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1205 (const phy_cmd_t
[]) { /* shutdown */
1210 /* ------------------------------------------------------------------------- */
1212 static phy_info_t
const * const phy_info
[] = {
1222 /* ------------------------------------------------------------------------- */
1223 #ifdef HAVE_mii_link_interrupt
1225 mii_link_interrupt(int irq
, void * dev_id
);
1228 #if defined(CONFIG_M5272)
1230 * Code specific to Coldfire 5272 setup.
1232 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1234 volatile unsigned long *icrp
;
1235 static const struct idesc
{
1238 irq_handler_t handler
;
1240 { "fec(RX)", 86, fec_enet_interrupt
},
1241 { "fec(TX)", 87, fec_enet_interrupt
},
1242 { "fec(OTHER)", 88, fec_enet_interrupt
},
1243 { "fec(MII)", 66, mii_link_interrupt
},
1247 /* Setup interrupt handlers. */
1248 for (idp
= id
; idp
->name
; idp
++) {
1249 if (request_irq(idp
->irq
, idp
->handler
, IRQF_DISABLED
, idp
->name
, dev
) != 0)
1250 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1253 /* Unmask interrupt at ColdFire 5272 SIM */
1254 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1256 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1260 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1262 volatile fec_t
*fecp
;
1265 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1266 fecp
->fec_x_cntrl
= 0x00;
1269 * Set MII speed to 2.5 MHz
1270 * See 5272 manual section 11.5.8: MSCR
1272 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1273 fecp
->fec_mii_speed
= fep
->phy_speed
;
1275 fec_restart(dev
, 0);
1278 static void __inline__
fec_get_mac(struct net_device
*dev
)
1280 struct fec_enet_private
*fep
= netdev_priv(dev
);
1281 volatile fec_t
*fecp
;
1282 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1288 * Get MAC address from FLASH.
1289 * If it is all 1's or 0's, use the default.
1291 iap
= (unsigned char *)FEC_FLASHMAC
;
1292 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1293 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1294 iap
= fec_mac_default
;
1295 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1296 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1297 iap
= fec_mac_default
;
1299 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1300 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1304 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1306 /* Adjust MAC if using default MAC address */
1307 if (iap
== fec_mac_default
)
1308 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1311 static void __inline__
fec_enable_phy_intr(void)
1315 static void __inline__
fec_disable_phy_intr(void)
1317 volatile unsigned long *icrp
;
1318 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1322 static void __inline__
fec_phy_ack_intr(void)
1324 volatile unsigned long *icrp
;
1325 /* Acknowledge the interrupt */
1326 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1330 static void __inline__
fec_localhw_setup(void)
1335 * Do not need to make region uncached on 5272.
1337 static void __inline__
fec_uncache(unsigned long addr
)
1341 /* ------------------------------------------------------------------------- */
1343 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1346 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1347 * the 5270/5271/5274/5275 and 5280/5282 setups.
1349 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1351 struct fec_enet_private
*fep
;
1353 static const struct idesc
{
1363 fep
= netdev_priv(dev
);
1364 b
= (fep
->index
) ? 128 : 64;
1366 /* Setup interrupt handlers. */
1367 for (idp
= id
; idp
->name
; idp
++) {
1368 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
, dev
) != 0)
1369 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1372 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1374 volatile unsigned char *icrp
;
1375 volatile unsigned long *imrp
;
1378 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1379 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1381 for (i
= 23, ilip
= 0x28; (i
< 36); i
++)
1384 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1386 *imrp
&= ~0x0000000f;
1387 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1389 *imrp
&= ~0xff800001;
1392 #if defined(CONFIG_M528x)
1393 /* Set up gpio outputs for MII lines */
1395 volatile u16
*gpio_paspar
;
1396 volatile u8
*gpio_pehlpar
;
1398 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1399 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1400 *gpio_paspar
|= 0x0f00;
1401 *gpio_pehlpar
= 0xc0;
1405 #if defined(CONFIG_M527x)
1406 /* Set up gpio outputs for MII lines */
1408 volatile u8
*gpio_par_fec
;
1409 volatile u16
*gpio_par_feci2c
;
1411 gpio_par_feci2c
= (volatile u16
*)(MCF_IPSBAR
+ 0x100082);
1412 /* Set up gpio outputs for FEC0 MII lines */
1413 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100078);
1415 *gpio_par_feci2c
|= 0x0f00;
1416 *gpio_par_fec
|= 0xc0;
1418 #if defined(CONFIG_FEC2)
1419 /* Set up gpio outputs for FEC1 MII lines */
1420 gpio_par_fec
= (volatile u8
*)(MCF_IPSBAR
+ 0x100079);
1422 *gpio_par_feci2c
|= 0x00a0;
1423 *gpio_par_fec
|= 0xc0;
1424 #endif /* CONFIG_FEC2 */
1426 #endif /* CONFIG_M527x */
1429 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1431 volatile fec_t
*fecp
;
1434 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1435 fecp
->fec_x_cntrl
= 0x00;
1438 * Set MII speed to 2.5 MHz
1439 * See 5282 manual section 17.5.4.7: MSCR
1441 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1442 fecp
->fec_mii_speed
= fep
->phy_speed
;
1444 fec_restart(dev
, 0);
1447 static void __inline__
fec_get_mac(struct net_device
*dev
)
1449 struct fec_enet_private
*fep
= netdev_priv(dev
);
1450 volatile fec_t
*fecp
;
1451 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1457 * Get MAC address from FLASH.
1458 * If it is all 1's or 0's, use the default.
1461 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1462 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1463 iap
= fec_mac_default
;
1464 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1465 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1466 iap
= fec_mac_default
;
1468 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1469 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1473 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1475 /* Adjust MAC if using default MAC address */
1476 if (iap
== fec_mac_default
)
1477 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1480 static void __inline__
fec_enable_phy_intr(void)
1484 static void __inline__
fec_disable_phy_intr(void)
1488 static void __inline__
fec_phy_ack_intr(void)
1492 static void __inline__
fec_localhw_setup(void)
1497 * Do not need to make region uncached on 5272.
1499 static void __inline__
fec_uncache(unsigned long addr
)
1503 /* ------------------------------------------------------------------------- */
1505 #elif defined(CONFIG_M520x)
1508 * Code specific to Coldfire 520x
1510 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1512 struct fec_enet_private
*fep
;
1514 static const struct idesc
{
1524 fep
= netdev_priv(dev
);
1527 /* Setup interrupt handlers. */
1528 for (idp
= id
; idp
->name
; idp
++) {
1529 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
,dev
) != 0)
1530 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1533 /* Unmask interrupts at ColdFire interrupt controller */
1535 volatile unsigned char *icrp
;
1536 volatile unsigned long *imrp
;
1538 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1540 for (b
= 36; (b
< 49); b
++)
1542 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1544 *imrp
&= ~0x0001FFF0;
1546 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1547 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1550 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1552 volatile fec_t
*fecp
;
1555 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1556 fecp
->fec_x_cntrl
= 0x00;
1559 * Set MII speed to 2.5 MHz
1560 * See 5282 manual section 17.5.4.7: MSCR
1562 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1563 fecp
->fec_mii_speed
= fep
->phy_speed
;
1565 fec_restart(dev
, 0);
1568 static void __inline__
fec_get_mac(struct net_device
*dev
)
1570 struct fec_enet_private
*fep
= netdev_priv(dev
);
1571 volatile fec_t
*fecp
;
1572 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1578 * Get MAC address from FLASH.
1579 * If it is all 1's or 0's, use the default.
1582 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1583 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1584 iap
= fec_mac_default
;
1585 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1586 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1587 iap
= fec_mac_default
;
1589 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1590 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1594 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1596 /* Adjust MAC if using default MAC address */
1597 if (iap
== fec_mac_default
)
1598 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1601 static void __inline__
fec_enable_phy_intr(void)
1605 static void __inline__
fec_disable_phy_intr(void)
1609 static void __inline__
fec_phy_ack_intr(void)
1613 static void __inline__
fec_localhw_setup(void)
1617 static void __inline__
fec_uncache(unsigned long addr
)
1621 /* ------------------------------------------------------------------------- */
1623 #elif defined(CONFIG_M532x)
1625 * Code specific for M532x
1627 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1629 struct fec_enet_private
*fep
;
1631 static const struct idesc
{
1641 fep
= netdev_priv(dev
);
1642 b
= (fep
->index
) ? 128 : 64;
1644 /* Setup interrupt handlers. */
1645 for (idp
= id
; idp
->name
; idp
++) {
1646 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, IRQF_DISABLED
, idp
->name
,dev
) != 0)
1647 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1648 idp
->name
, b
+idp
->irq
);
1651 /* Unmask interrupts */
1652 MCF_INTC0_ICR36
= 0x2;
1653 MCF_INTC0_ICR37
= 0x2;
1654 MCF_INTC0_ICR38
= 0x2;
1655 MCF_INTC0_ICR39
= 0x2;
1656 MCF_INTC0_ICR40
= 0x2;
1657 MCF_INTC0_ICR41
= 0x2;
1658 MCF_INTC0_ICR42
= 0x2;
1659 MCF_INTC0_ICR43
= 0x2;
1660 MCF_INTC0_ICR44
= 0x2;
1661 MCF_INTC0_ICR45
= 0x2;
1662 MCF_INTC0_ICR46
= 0x2;
1663 MCF_INTC0_ICR47
= 0x2;
1664 MCF_INTC0_ICR48
= 0x2;
1666 MCF_INTC0_IMRH
&= ~(
1667 MCF_INTC_IMRH_INT_MASK36
|
1668 MCF_INTC_IMRH_INT_MASK37
|
1669 MCF_INTC_IMRH_INT_MASK38
|
1670 MCF_INTC_IMRH_INT_MASK39
|
1671 MCF_INTC_IMRH_INT_MASK40
|
1672 MCF_INTC_IMRH_INT_MASK41
|
1673 MCF_INTC_IMRH_INT_MASK42
|
1674 MCF_INTC_IMRH_INT_MASK43
|
1675 MCF_INTC_IMRH_INT_MASK44
|
1676 MCF_INTC_IMRH_INT_MASK45
|
1677 MCF_INTC_IMRH_INT_MASK46
|
1678 MCF_INTC_IMRH_INT_MASK47
|
1679 MCF_INTC_IMRH_INT_MASK48
);
1681 /* Set up gpio outputs for MII lines */
1682 MCF_GPIO_PAR_FECI2C
|= (0 |
1683 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC
|
1684 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO
);
1685 MCF_GPIO_PAR_FEC
= (0 |
1686 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC
|
1687 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC
);
1690 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1692 volatile fec_t
*fecp
;
1695 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1696 fecp
->fec_x_cntrl
= 0x00;
1699 * Set MII speed to 2.5 MHz
1701 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1702 fecp
->fec_mii_speed
= fep
->phy_speed
;
1704 fec_restart(dev
, 0);
1707 static void __inline__
fec_get_mac(struct net_device
*dev
)
1709 struct fec_enet_private
*fep
= netdev_priv(dev
);
1710 volatile fec_t
*fecp
;
1711 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1717 * Get MAC address from FLASH.
1718 * If it is all 1's or 0's, use the default.
1721 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1722 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1723 iap
= fec_mac_default
;
1724 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1725 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1726 iap
= fec_mac_default
;
1728 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1729 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1733 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1735 /* Adjust MAC if using default MAC address */
1736 if (iap
== fec_mac_default
)
1737 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1740 static void __inline__
fec_enable_phy_intr(void)
1744 static void __inline__
fec_disable_phy_intr(void)
1748 static void __inline__
fec_phy_ack_intr(void)
1752 static void __inline__
fec_localhw_setup(void)
1757 * Do not need to make region uncached on 532x.
1759 static void __inline__
fec_uncache(unsigned long addr
)
1763 /* ------------------------------------------------------------------------- */
1769 * Code specific to the MPC860T setup.
1771 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1773 volatile immap_t
*immap
;
1775 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1777 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1778 panic("Could not allocate FEC IRQ!");
1781 static void __inline__
fec_get_mac(struct net_device
*dev
)
1786 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1789 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1791 extern uint
_get_IMMR(void);
1792 volatile immap_t
*immap
;
1793 volatile fec_t
*fecp
;
1796 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1798 /* Configure all of port D for MII.
1800 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1802 /* Bits moved from Rev. D onward.
1804 if ((_get_IMMR() & 0xffff) < 0x0501)
1805 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1807 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1809 /* Set MII speed to 2.5 MHz
1811 fecp
->fec_mii_speed
= fep
->phy_speed
=
1812 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1815 static void __inline__
fec_enable_phy_intr(void)
1817 volatile fec_t
*fecp
;
1821 /* Enable MII command finished interrupt
1823 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1826 static void __inline__
fec_disable_phy_intr(void)
1830 static void __inline__
fec_phy_ack_intr(void)
1834 static void __inline__
fec_localhw_setup(void)
1836 volatile fec_t
*fecp
;
1839 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1840 /* Enable big endian and don't care about SDMA FC.
1842 fecp
->fec_fun_code
= 0x78000000;
1845 static void __inline__
fec_uncache(unsigned long addr
)
1848 pte
= va_to_pte(mem_addr
);
1849 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1850 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1855 /* ------------------------------------------------------------------------- */
1857 static void mii_display_status(struct net_device
*dev
)
1859 struct fec_enet_private
*fep
= netdev_priv(dev
);
1860 volatile uint
*s
= &(fep
->phy_status
);
1862 if (!fep
->link
&& !fep
->old_link
) {
1863 /* Link is still down - don't print anything */
1867 printk("%s: status: ", dev
->name
);
1870 printk("link down");
1874 switch(*s
& PHY_STAT_SPMASK
) {
1875 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1876 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1877 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1878 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1880 printk(", Unknown speed/duplex");
1883 if (*s
& PHY_STAT_ANC
)
1884 printk(", auto-negotiation complete");
1887 if (*s
& PHY_STAT_FAULT
)
1888 printk(", remote fault");
1893 static void mii_display_config(struct work_struct
*work
)
1895 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1896 struct net_device
*dev
= fep
->netdev
;
1897 uint status
= fep
->phy_status
;
1900 ** When we get here, phy_task is already removed from
1901 ** the workqueue. It is thus safe to allow to reuse it.
1903 fep
->mii_phy_task_queued
= 0;
1904 printk("%s: config: auto-negotiation ", dev
->name
);
1906 if (status
& PHY_CONF_ANE
)
1911 if (status
& PHY_CONF_100FDX
)
1913 if (status
& PHY_CONF_100HDX
)
1915 if (status
& PHY_CONF_10FDX
)
1917 if (status
& PHY_CONF_10HDX
)
1919 if (!(status
& PHY_CONF_SPMASK
))
1920 printk(", No speed/duplex selected?");
1922 if (status
& PHY_CONF_LOOP
)
1923 printk(", loopback enabled");
1927 fep
->sequence_done
= 1;
1930 static void mii_relink(struct work_struct
*work
)
1932 struct fec_enet_private
*fep
= container_of(work
, struct fec_enet_private
, phy_task
);
1933 struct net_device
*dev
= fep
->netdev
;
1937 ** When we get here, phy_task is already removed from
1938 ** the workqueue. It is thus safe to allow to reuse it.
1940 fep
->mii_phy_task_queued
= 0;
1941 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1942 mii_display_status(dev
);
1943 fep
->old_link
= fep
->link
;
1948 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1950 fec_restart(dev
, duplex
);
1955 enable_irq(fep
->mii_irq
);
1960 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1961 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1963 struct fec_enet_private
*fep
= netdev_priv(dev
);
1966 ** We cannot queue phy_task twice in the workqueue. It
1967 ** would cause an endless loop in the workqueue.
1968 ** Fortunately, if the last mii_relink entry has not yet been
1969 ** executed now, it will do the job for the current interrupt,
1970 ** which is just what we want.
1972 if (fep
->mii_phy_task_queued
)
1975 fep
->mii_phy_task_queued
= 1;
1976 INIT_WORK(&fep
->phy_task
, mii_relink
);
1977 schedule_work(&fep
->phy_task
);
1980 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1981 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1983 struct fec_enet_private
*fep
= netdev_priv(dev
);
1985 if (fep
->mii_phy_task_queued
)
1988 fep
->mii_phy_task_queued
= 1;
1989 INIT_WORK(&fep
->phy_task
, mii_display_config
);
1990 schedule_work(&fep
->phy_task
);
1993 phy_cmd_t
const phy_cmd_relink
[] = {
1994 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
1997 phy_cmd_t
const phy_cmd_config
[] = {
1998 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
2002 /* Read remainder of PHY ID.
2005 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
2007 struct fec_enet_private
*fep
;
2010 fep
= netdev_priv(dev
);
2011 fep
->phy_id
|= (mii_reg
& 0xffff);
2012 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
2014 for(i
= 0; phy_info
[i
]; i
++) {
2015 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
2020 printk(" -- %s\n", phy_info
[i
]->name
);
2022 printk(" -- unknown PHY!\n");
2024 fep
->phy
= phy_info
[i
];
2025 fep
->phy_id_done
= 1;
2028 /* Scan all of the MII PHY addresses looking for someone to respond
2029 * with a valid ID. This usually happens quickly.
2032 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
2034 struct fec_enet_private
*fep
;
2035 volatile fec_t
*fecp
;
2038 fep
= netdev_priv(dev
);
2041 if (fep
->phy_addr
< 32) {
2042 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
2044 /* Got first part of ID, now get remainder.
2046 fep
->phy_id
= phytype
<< 16;
2047 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
2051 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
2055 printk("FEC: No PHY device found.\n");
2056 /* Disable external MII interface */
2057 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
2058 fec_disable_phy_intr();
2062 /* This interrupt occurs when the PHY detects a link change.
2064 #ifdef HAVE_mii_link_interrupt
2066 mii_link_interrupt(int irq
, void * dev_id
)
2068 struct net_device
*dev
= dev_id
;
2069 struct fec_enet_private
*fep
= netdev_priv(dev
);
2074 disable_irq(fep
->mii_irq
); /* disable now, enable later */
2077 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2078 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
2085 fec_enet_open(struct net_device
*dev
)
2087 struct fec_enet_private
*fep
= netdev_priv(dev
);
2089 /* I should reset the ring buffers here, but I don't yet know
2090 * a simple way to do that.
2092 fec_set_mac_address(dev
);
2094 fep
->sequence_done
= 0;
2098 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2099 mii_do_cmd(dev
, fep
->phy
->config
);
2100 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2102 /* Poll until the PHY tells us its configuration
2104 * Request is initiated by mii_do_cmd above, but answer
2105 * comes by interrupt.
2106 * This should take about 25 usec per register at 2.5 MHz,
2107 * and we read approximately 5 registers.
2109 while(!fep
->sequence_done
)
2112 mii_do_cmd(dev
, fep
->phy
->startup
);
2114 /* Set the initial link state to true. A lot of hardware
2115 * based on this device does not implement a PHY interrupt,
2116 * so we are never notified of link change.
2120 fep
->link
= 1; /* lets just try it and see */
2121 /* no phy, go full duplex, it's most likely a hub chip */
2122 fec_restart(dev
, 1);
2125 netif_start_queue(dev
);
2127 return 0; /* Success */
2131 fec_enet_close(struct net_device
*dev
)
2133 struct fec_enet_private
*fep
= netdev_priv(dev
);
2135 /* Don't know what to do yet.
2138 netif_stop_queue(dev
);
2144 /* Set or clear the multicast filter for this adaptor.
2145 * Skeleton taken from sunlance driver.
2146 * The CPM Ethernet implementation allows Multicast as well as individual
2147 * MAC address filtering. Some of the drivers check to make sure it is
2148 * a group multicast address, and discard those that are not. I guess I
2149 * will do the same for now, but just remove the test if you want
2150 * individual filtering as well (do the upper net layers want or support
2151 * this kind of feature?).
2154 #define HASH_BITS 6 /* #bits in hash */
2155 #define CRC32_POLY 0xEDB88320
2157 static void set_multicast_list(struct net_device
*dev
)
2159 struct fec_enet_private
*fep
;
2161 struct dev_mc_list
*dmi
;
2162 unsigned int i
, j
, bit
, data
, crc
;
2165 fep
= netdev_priv(dev
);
2168 if (dev
->flags
&IFF_PROMISC
) {
2169 ep
->fec_r_cntrl
|= 0x0008;
2172 ep
->fec_r_cntrl
&= ~0x0008;
2174 if (dev
->flags
& IFF_ALLMULTI
) {
2175 /* Catch all multicast addresses, so set the
2176 * filter to all 1's.
2178 ep
->fec_grp_hash_table_high
= 0xffffffff;
2179 ep
->fec_grp_hash_table_low
= 0xffffffff;
2181 /* Clear filter and add the addresses in hash register.
2183 ep
->fec_grp_hash_table_high
= 0;
2184 ep
->fec_grp_hash_table_low
= 0;
2188 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2190 /* Only support group multicast for now.
2192 if (!(dmi
->dmi_addr
[0] & 1))
2195 /* calculate crc32 value of mac address
2199 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2201 data
= dmi
->dmi_addr
[i
];
2202 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2205 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2209 /* only upper 6 bits (HASH_BITS) are used
2210 which point to specific bit in he hash registers
2212 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2215 ep
->fec_grp_hash_table_high
|= 1 << (hash
- 32);
2217 ep
->fec_grp_hash_table_low
|= 1 << hash
;
2223 /* Set a MAC change in hardware.
2226 fec_set_mac_address(struct net_device
*dev
)
2228 volatile fec_t
*fecp
;
2230 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2232 /* Set station address. */
2233 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2234 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2235 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2236 (dev
->dev_addr
[4] << 24);
2240 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2243 * XXX: We need to clean up on failure exits here.
2245 int __init
fec_enet_init(struct net_device
*dev
)
2247 struct fec_enet_private
*fep
= netdev_priv(dev
);
2248 unsigned long mem_addr
;
2249 volatile cbd_t
*bdp
;
2251 volatile fec_t
*fecp
;
2253 static int index
= 0;
2255 /* Only allow us to be probed once. */
2256 if (index
>= FEC_MAX_PORTS
)
2259 /* Allocate memory for buffer descriptors.
2261 mem_addr
= __get_free_page(GFP_KERNEL
);
2262 if (mem_addr
== 0) {
2263 printk("FEC: allocate descriptor memory failed?\n");
2267 spin_lock_init(&fep
->hw_lock
);
2268 spin_lock_init(&fep
->mii_lock
);
2270 /* Create an Ethernet device instance.
2272 fecp
= (volatile fec_t
*) fec_hw
[index
];
2278 /* Whack a reset. We should wait for this.
2280 fecp
->fec_ecntrl
= 1;
2283 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2284 * this needs some work to get unique addresses.
2286 * This is our default MAC address unless the user changes
2287 * it via eth_mac_addr (our dev->set_mac_addr handler).
2291 cbd_base
= (cbd_t
*)mem_addr
;
2292 /* XXX: missing check for allocation failure */
2294 fec_uncache(mem_addr
);
2296 /* Set receive and transmit descriptor base.
2298 fep
->rx_bd_base
= cbd_base
;
2299 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2301 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2302 fep
->cur_rx
= fep
->rx_bd_base
;
2304 fep
->skb_cur
= fep
->skb_dirty
= 0;
2306 /* Initialize the receive buffer descriptors.
2308 bdp
= fep
->rx_bd_base
;
2309 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2313 mem_addr
= __get_free_page(GFP_KERNEL
);
2314 /* XXX: missing check for allocation failure */
2316 fec_uncache(mem_addr
);
2318 /* Initialize the BD for every fragment in the page.
2320 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2321 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2322 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2323 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2328 /* Set the last buffer to wrap.
2331 bdp
->cbd_sc
|= BD_SC_WRAP
;
2333 /* ...and the same for transmmit.
2335 bdp
= fep
->tx_bd_base
;
2336 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2337 if (j
>= FEC_ENET_TX_FRPPG
) {
2338 mem_addr
= __get_free_page(GFP_KERNEL
);
2341 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2344 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2346 /* Initialize the BD for every fragment in the page.
2349 bdp
->cbd_bufaddr
= 0;
2353 /* Set the last buffer to wrap.
2356 bdp
->cbd_sc
|= BD_SC_WRAP
;
2358 /* Set receive and transmit descriptor base.
2360 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2361 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2363 /* Install our interrupt handlers. This varies depending on
2366 fec_request_intrs(dev
);
2368 fecp
->fec_grp_hash_table_high
= 0;
2369 fecp
->fec_grp_hash_table_low
= 0;
2370 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2371 fecp
->fec_ecntrl
= 2;
2372 fecp
->fec_r_des_active
= 0;
2373 #ifndef CONFIG_M5272
2374 fecp
->fec_hash_table_high
= 0;
2375 fecp
->fec_hash_table_low
= 0;
2378 dev
->base_addr
= (unsigned long)fecp
;
2380 /* The FEC Ethernet specific entries in the device structure. */
2381 dev
->open
= fec_enet_open
;
2382 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2383 dev
->tx_timeout
= fec_timeout
;
2384 dev
->watchdog_timeo
= TX_TIMEOUT
;
2385 dev
->stop
= fec_enet_close
;
2386 dev
->set_multicast_list
= set_multicast_list
;
2388 for (i
=0; i
<NMII
-1; i
++)
2389 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2390 mii_free
= mii_cmds
;
2392 /* setup MII interface */
2393 fec_set_mii(dev
, fep
);
2395 /* Clear and enable interrupts */
2396 fecp
->fec_ievent
= 0xffc00000;
2397 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_RXF
| FEC_ENET_MII
);
2399 /* Queue up command to detect the PHY and initialize the
2400 * remainder of the interface.
2402 fep
->phy_id_done
= 0;
2404 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2410 /* This function is called to start or restart the FEC during a link
2411 * change. This only happens when switching between half and full
2415 fec_restart(struct net_device
*dev
, int duplex
)
2417 struct fec_enet_private
*fep
;
2418 volatile cbd_t
*bdp
;
2419 volatile fec_t
*fecp
;
2422 fep
= netdev_priv(dev
);
2425 /* Whack a reset. We should wait for this.
2427 fecp
->fec_ecntrl
= 1;
2430 /* Clear any outstanding interrupt.
2432 fecp
->fec_ievent
= 0xffc00000;
2433 fec_enable_phy_intr();
2435 /* Set station address.
2437 fec_set_mac_address(dev
);
2439 /* Reset all multicast.
2441 fecp
->fec_grp_hash_table_high
= 0;
2442 fecp
->fec_grp_hash_table_low
= 0;
2444 /* Set maximum receive buffer size.
2446 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2448 fec_localhw_setup();
2450 /* Set receive and transmit descriptor base.
2452 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2453 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2455 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2456 fep
->cur_rx
= fep
->rx_bd_base
;
2458 /* Reset SKB transmit buffers.
2460 fep
->skb_cur
= fep
->skb_dirty
= 0;
2461 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2462 if (fep
->tx_skbuff
[i
] != NULL
) {
2463 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2464 fep
->tx_skbuff
[i
] = NULL
;
2468 /* Initialize the receive buffer descriptors.
2470 bdp
= fep
->rx_bd_base
;
2471 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2473 /* Initialize the BD for every fragment in the page.
2475 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2479 /* Set the last buffer to wrap.
2482 bdp
->cbd_sc
|= BD_SC_WRAP
;
2484 /* ...and the same for transmmit.
2486 bdp
= fep
->tx_bd_base
;
2487 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2489 /* Initialize the BD for every fragment in the page.
2492 bdp
->cbd_bufaddr
= 0;
2496 /* Set the last buffer to wrap.
2499 bdp
->cbd_sc
|= BD_SC_WRAP
;
2504 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2505 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2507 /* MII enable|No Rcv on Xmit */
2508 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2509 fecp
->fec_x_cntrl
= 0x00;
2511 fep
->full_duplex
= duplex
;
2515 fecp
->fec_mii_speed
= fep
->phy_speed
;
2517 /* And last, enable the transmit and receive processing.
2519 fecp
->fec_ecntrl
= 2;
2520 fecp
->fec_r_des_active
= 0;
2522 /* Enable interrupts we wish to service.
2524 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_RXF
| FEC_ENET_MII
);
2528 fec_stop(struct net_device
*dev
)
2530 volatile fec_t
*fecp
;
2531 struct fec_enet_private
*fep
;
2533 fep
= netdev_priv(dev
);
2537 ** We cannot expect a graceful transmit stop without link !!!
2541 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2543 if (!(fecp
->fec_ievent
& FEC_ENET_GRA
))
2544 printk("fec_stop : Graceful transmit stop did not complete !\n");
2547 /* Whack a reset. We should wait for this.
2549 fecp
->fec_ecntrl
= 1;
2552 /* Clear outstanding MII command interrupts.
2554 fecp
->fec_ievent
= FEC_ENET_MII
;
2555 fec_enable_phy_intr();
2557 fecp
->fec_imask
= FEC_ENET_MII
;
2558 fecp
->fec_mii_speed
= fep
->phy_speed
;
2561 static int __init
fec_enet_module_init(void)
2563 struct net_device
*dev
;
2565 DECLARE_MAC_BUF(mac
);
2567 printk("FEC ENET Version 0.2\n");
2569 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2570 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2573 err
= fec_enet_init(dev
);
2578 if (register_netdev(dev
) != 0) {
2579 /* XXX: missing cleanup here */
2584 printk("%s: ethernet %s\n",
2585 dev
->name
, print_mac(mac
, dev
->dev_addr
));
2590 module_init(fec_enet_module_init
);
2592 MODULE_LICENSE("GPL");