fuse: prepare fuse_direct_io() for CUSE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / starfire.c
blobfcb943fca4f128716312257bbbb6e26a1cebc40e
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/mm.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
61 #endif
64 * Define this if using the driver with the zero-copy patch
66 #define ZEROCOPY
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69 #define VLAN_SUPPORT
70 #endif
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
81 static int mtu;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
105 #else
106 static int rx_copybreak /* = 0 */;
107 #endif
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110 #ifdef __sparc__
111 #define DMA_BURST_SIZE 64
112 #else
113 #define DMA_BURST_SIZE 128
114 #endif
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
125 /* Operational parameters that are set at compile time. */
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
139 #else
140 #define RX_Q_ENTRIES Rx256QEntries
141 #endif
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
148 * This SUCKS.
149 * We need a much better method to determine if dma_addr_t is 64-bit.
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
171 #endif
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
176 /* Firmware names */
177 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
178 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
180 /* These identify the driver base version and may not be removed. */
181 static const char version[] __devinitconst =
182 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
183 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
185 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187 MODULE_LICENSE("GPL");
188 MODULE_VERSION(DRV_VERSION);
189 MODULE_FIRMWARE(FIRMWARE_RX);
190 MODULE_FIRMWARE(FIRMWARE_TX);
192 module_param(max_interrupt_work, int, 0);
193 module_param(mtu, int, 0);
194 module_param(debug, int, 0);
195 module_param(rx_copybreak, int, 0);
196 module_param(intr_latency, int, 0);
197 module_param(small_frames, int, 0);
198 module_param_array(options, int, NULL, 0);
199 module_param_array(full_duplex, int, NULL, 0);
200 module_param(enable_hw_cksum, int, 0);
201 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202 MODULE_PARM_DESC(mtu, "MTU (all boards)");
203 MODULE_PARM_DESC(debug, "Debug level (0-6)");
204 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
212 Theory of Operation
214 I. Board Compatibility
216 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
218 II. Board-specific settings
220 III. Driver operation
222 IIIa. Ring buffers
224 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225 ring sizes are set fixed by the hardware, but may optionally be wrapped
226 earlier by the END bit in the descriptor.
227 This driver uses that hardware queue size for the Rx ring, where a large
228 number of entries has no ill effect beyond increases the potential backlog.
229 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230 disables the queue layer priority ordering and we have no mechanism to
231 utilize the hardware two-level priority queue. When modifying the
232 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
233 levels.
235 IIIb/c. Transmit/Receive Structure
237 See the Adaptec manual for the many possible structures, and options for
238 each structure. There are far too many to document all of them here.
240 For transmit this driver uses type 0/1 transmit descriptors (depending
241 on the 32/64 bitness of the architecture), and relies on automatic
242 minimum-length padding. It does not use the completion queue
243 consumer index, but instead checks for non-zero status entries.
245 For receive this driver uses type 2/3 receive descriptors. The driver
246 allocates full frame size skbuffs for the Rx ring buffers, so all frames
247 should fit in a single descriptor. The driver does not use the completion
248 queue consumer index, but instead checks for non-zero status entries.
250 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251 is allocated and the frame is copied to the new skbuff. When the incoming
252 frame is larger, the skbuff is passed directly up the protocol stack.
253 Buffers consumed this way are replaced by newly allocated skbuffs in a later
254 phase of receive.
256 A notable aspect of operation is that unaligned buffers are not permitted by
257 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258 isn't longword aligned, which may cause problems on some machine
259 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260 the frame into a new skbuff unconditionally. Copied frames are put into the
261 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
263 IIId. Synchronization
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and interrupt handling software.
270 The send packet thread has partial control over the Tx ring and the netif_queue
271 status. If the number of free Tx slots in the ring falls below a certain number
272 (currently hardcoded to 4), it signals the upper layer to stop the queue.
274 The interrupt handler has exclusive control over the Rx ring and records stats
275 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277 number of free Tx slow is above the threshold, it signals the upper layer to
278 restart the queue.
280 IV. Notes
282 IVb. References
284 The Adaptec Starfire manuals, available only from Adaptec.
285 http://www.scyld.com/expert/100mbps.html
286 http://www.scyld.com/expert/NWay.html
288 IVc. Errata
290 - StopOnPerr is broken, don't enable
291 - Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
298 enum chip_capability_flags {CanHaveMII=1, };
300 enum chipset {
301 CH_6915 = 0,
304 static struct pci_device_id starfire_pci_tbl[] = {
305 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
306 { 0, }
308 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
310 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
311 static const struct chip_info {
312 const char *name;
313 int drv_flags;
314 } netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
319 /* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
327 enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
335 TxThreshold=0x500B0,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
351 enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
366 /* not quite bits */
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
372 /* Bits in the RxFilterMode register. */
373 enum rx_mode_bits {
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
377 WakeupOnGFP=0x0800,
380 /* Bits in the TxMode register */
381 enum tx_mode_bits {
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
387 /* Bits in the TxDescCtrl register. */
388 enum tx_ctrl_bits {
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
399 /* Bits in the RxDescQCtrl register. */
400 enum rx_ctrl_bits {
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
409 RxConsumerWrEn=0x80,
412 /* Bits in the RxDMACtrl register. */
413 enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
425 RxBurstSizeShift=0,
428 /* Bits in the RxCompletionAddr register */
429 enum rx_compl_bits {
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
437 /* Bits in the TxCompletionAddr register */
438 enum tx_compl_bits {
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
446 /* Bits in the GenCtrl register */
447 enum gen_ctrl_bits {
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
452 /* Bits in the IntrTimerCtrl register */
453 enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
459 /* The Rx and Tx buffer descriptors. */
460 struct starfire_rx_desc {
461 netdrv_addr_t rxaddr;
463 enum rx_desc_bits {
464 RxDescValid=1, RxDescEndRing=2,
467 /* Completion queue entry. */
468 struct short_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
471 struct basic_rx_done_desc {
472 __le32 status; /* Low 16 bits is length. */
473 __le16 vlanid;
474 __le16 status2;
476 struct csum_rx_done_desc {
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
479 __le16 status2;
481 struct full_rx_done_desc {
482 __le32 status; /* Low 16 bits is length. */
483 __le16 status3;
484 __le16 status2;
485 __le16 vlanid;
486 __le16 csum; /* partial checksum */
487 __le32 timestamp;
489 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
490 #ifdef VLAN_SUPPORT
491 typedef struct full_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType3
493 #else /* not VLAN_SUPPORT */
494 typedef struct csum_rx_done_desc rx_done_desc;
495 #define RxComplType RxComplType2
496 #endif /* not VLAN_SUPPORT */
498 enum rx_done_bits {
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
502 /* Type 1 Tx descriptor. */
503 struct starfire_tx_desc_1 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
505 __le32 addr;
508 /* Type 2 Tx descriptor. */
509 struct starfire_tx_desc_2 {
510 __le32 status; /* Upper bits are status, lower 16 length. */
511 __le32 reserved;
512 __le64 addr;
515 #ifdef ADDR_64BITS
516 typedef struct starfire_tx_desc_2 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType2
518 #else /* not ADDR_64BITS */
519 typedef struct starfire_tx_desc_1 starfire_tx_desc;
520 #define TX_DESC_TYPE TxDescType1
521 #endif /* not ADDR_64BITS */
522 #define TX_DESC_SPACING TxDescSpaceUnlim
524 enum tx_desc_bits {
525 TxDescID=0xB0000000,
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
529 struct tx_done_desc {
530 __le32 status; /* timestamp, index. */
531 #if 0
532 __le32 intrstatus; /* interrupt status */
533 #endif
536 struct rx_ring_info {
537 struct sk_buff *skb;
538 dma_addr_t mapping;
540 struct tx_ring_info {
541 struct sk_buff *skb;
542 dma_addr_t mapping;
543 unsigned int used_slots;
546 #define PHY_CNT 2
547 struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
563 struct napi_struct napi;
564 struct net_device *dev;
565 struct net_device_stats stats;
566 struct pci_dev *pci_dev;
567 #ifdef VLAN_SUPPORT
568 struct vlan_group *vlgrp;
569 #endif
570 void *queue_mem;
571 dma_addr_t queue_mem_dma;
572 size_t queue_mem_size;
574 /* Frequently used values: keep some adjacent for cache effect. */
575 spinlock_t lock;
576 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
577 unsigned int cur_tx, dirty_tx, reap_tx;
578 unsigned int rx_buf_sz; /* Based on MTU+slack. */
579 /* These values keep track of the transceiver/media in use. */
580 int speed100; /* Set if speed == 100MBit. */
581 u32 tx_mode;
582 u32 intr_timer_ctrl;
583 u8 tx_threshold;
584 /* MII transceiver section. */
585 struct mii_if_info mii_if; /* MII lib hooks/info */
586 int phy_cnt; /* MII device addresses. */
587 unsigned char phys[PHY_CNT]; /* MII device addresses. */
588 void __iomem *base;
592 static int mdio_read(struct net_device *dev, int phy_id, int location);
593 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
594 static int netdev_open(struct net_device *dev);
595 static void check_duplex(struct net_device *dev);
596 static void tx_timeout(struct net_device *dev);
597 static void init_ring(struct net_device *dev);
598 static int start_tx(struct sk_buff *skb, struct net_device *dev);
599 static irqreturn_t intr_handler(int irq, void *dev_instance);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static int __netdev_rx(struct net_device *dev, int *quota);
602 static int netdev_poll(struct napi_struct *napi, int budget);
603 static void refill_rx_ring(struct net_device *dev);
604 static void netdev_error(struct net_device *dev, int intr_status);
605 static void set_rx_mode(struct net_device *dev);
606 static struct net_device_stats *get_stats(struct net_device *dev);
607 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
608 static int netdev_close(struct net_device *dev);
609 static void netdev_media_change(struct net_device *dev);
610 static const struct ethtool_ops ethtool_ops;
613 #ifdef VLAN_SUPPORT
614 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
616 struct netdev_private *np = netdev_priv(dev);
618 spin_lock(&np->lock);
619 if (debug > 2)
620 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
621 np->vlgrp = grp;
622 set_rx_mode(dev);
623 spin_unlock(&np->lock);
626 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
628 struct netdev_private *np = netdev_priv(dev);
630 spin_lock(&np->lock);
631 if (debug > 1)
632 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
633 set_rx_mode(dev);
634 spin_unlock(&np->lock);
637 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
639 struct netdev_private *np = netdev_priv(dev);
641 spin_lock(&np->lock);
642 if (debug > 1)
643 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
644 vlan_group_set_device(np->vlgrp, vid, NULL);
645 set_rx_mode(dev);
646 spin_unlock(&np->lock);
648 #endif /* VLAN_SUPPORT */
651 static const struct net_device_ops netdev_ops = {
652 .ndo_open = netdev_open,
653 .ndo_stop = netdev_close,
654 .ndo_start_xmit = start_tx,
655 .ndo_tx_timeout = tx_timeout,
656 .ndo_get_stats = get_stats,
657 .ndo_set_multicast_list = &set_rx_mode,
658 .ndo_do_ioctl = netdev_ioctl,
659 .ndo_change_mtu = eth_change_mtu,
660 .ndo_set_mac_address = eth_mac_addr,
661 .ndo_validate_addr = eth_validate_addr,
662 #ifdef VLAN_SUPPORT
663 .ndo_vlan_rx_register = netdev_vlan_rx_register,
664 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
665 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
666 #endif
669 static int __devinit starfire_init_one(struct pci_dev *pdev,
670 const struct pci_device_id *ent)
672 struct netdev_private *np;
673 int i, irq, option, chip_idx = ent->driver_data;
674 struct net_device *dev;
675 static int card_idx = -1;
676 long ioaddr;
677 void __iomem *base;
678 int drv_flags, io_size;
679 int boguscnt;
681 /* when built into the kernel, we only print version if device is found */
682 #ifndef MODULE
683 static int printed_version;
684 if (!printed_version++)
685 printk(version);
686 #endif
688 card_idx++;
690 if (pci_enable_device (pdev))
691 return -EIO;
693 ioaddr = pci_resource_start(pdev, 0);
694 io_size = pci_resource_len(pdev, 0);
695 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
696 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
697 return -ENODEV;
700 dev = alloc_etherdev(sizeof(*np));
701 if (!dev) {
702 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
703 return -ENOMEM;
705 SET_NETDEV_DEV(dev, &pdev->dev);
707 irq = pdev->irq;
709 if (pci_request_regions (pdev, DRV_NAME)) {
710 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
711 goto err_out_free_netdev;
714 base = ioremap(ioaddr, io_size);
715 if (!base) {
716 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
717 card_idx, io_size, ioaddr);
718 goto err_out_free_res;
721 pci_set_master(pdev);
723 /* enable MWI -- it vastly improves Rx performance on sparc64 */
724 pci_try_set_mwi(pdev);
726 #ifdef ZEROCOPY
727 /* Starfire can do TCP/UDP checksumming */
728 if (enable_hw_cksum)
729 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
730 #endif /* ZEROCOPY */
732 #ifdef VLAN_SUPPORT
733 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
734 #endif /* VLAN_RX_KILL_VID */
735 #ifdef ADDR_64BITS
736 dev->features |= NETIF_F_HIGHDMA;
737 #endif /* ADDR_64BITS */
739 /* Serial EEPROM reads are hidden by the hardware. */
740 for (i = 0; i < 6; i++)
741 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
743 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
744 if (debug > 4)
745 for (i = 0; i < 0x20; i++)
746 printk("%2.2x%s",
747 (unsigned int)readb(base + EEPROMCtrl + i),
748 i % 16 != 15 ? " " : "\n");
749 #endif
751 /* Issue soft reset */
752 writel(MiiSoftReset, base + TxMode);
753 udelay(1000);
754 writel(0, base + TxMode);
756 /* Reset the chip to erase previous misconfiguration. */
757 writel(1, base + PCIDeviceConfig);
758 boguscnt = 1000;
759 while (--boguscnt > 0) {
760 udelay(10);
761 if ((readl(base + PCIDeviceConfig) & 1) == 0)
762 break;
764 if (boguscnt == 0)
765 printk("%s: chipset reset never completed!\n", dev->name);
766 /* wait a little longer */
767 udelay(1000);
769 dev->base_addr = (unsigned long)base;
770 dev->irq = irq;
772 np = netdev_priv(dev);
773 np->dev = dev;
774 np->base = base;
775 spin_lock_init(&np->lock);
776 pci_set_drvdata(pdev, dev);
778 np->pci_dev = pdev;
780 np->mii_if.dev = dev;
781 np->mii_if.mdio_read = mdio_read;
782 np->mii_if.mdio_write = mdio_write;
783 np->mii_if.phy_id_mask = 0x1f;
784 np->mii_if.reg_num_mask = 0x1f;
786 drv_flags = netdrv_tbl[chip_idx].drv_flags;
788 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
789 if (dev->mem_start)
790 option = dev->mem_start;
792 /* The lower four bits are the media type. */
793 if (option & 0x200)
794 np->mii_if.full_duplex = 1;
796 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
797 np->mii_if.full_duplex = 1;
799 if (np->mii_if.full_duplex)
800 np->mii_if.force_media = 1;
801 else
802 np->mii_if.force_media = 0;
803 np->speed100 = 1;
805 /* timer resolution is 128 * 0.8us */
806 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
807 Timer10X | EnableIntrMasking;
809 if (small_frames > 0) {
810 np->intr_timer_ctrl |= SmallFrameBypass;
811 switch (small_frames) {
812 case 1 ... 64:
813 np->intr_timer_ctrl |= SmallFrame64;
814 break;
815 case 65 ... 128:
816 np->intr_timer_ctrl |= SmallFrame128;
817 break;
818 case 129 ... 256:
819 np->intr_timer_ctrl |= SmallFrame256;
820 break;
821 default:
822 np->intr_timer_ctrl |= SmallFrame512;
823 if (small_frames > 512)
824 printk("Adjusting small_frames down to 512\n");
825 break;
829 dev->netdev_ops = &netdev_ops;
830 dev->watchdog_timeo = TX_TIMEOUT;
831 SET_ETHTOOL_OPS(dev, &ethtool_ops);
833 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
835 if (mtu)
836 dev->mtu = mtu;
838 if (register_netdev(dev))
839 goto err_out_cleardev;
841 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
842 dev->name, netdrv_tbl[chip_idx].name, base,
843 dev->dev_addr, irq);
845 if (drv_flags & CanHaveMII) {
846 int phy, phy_idx = 0;
847 int mii_status;
848 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
849 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
850 mdelay(100);
851 boguscnt = 1000;
852 while (--boguscnt > 0)
853 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
854 break;
855 if (boguscnt == 0) {
856 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
857 continue;
859 mii_status = mdio_read(dev, phy, MII_BMSR);
860 if (mii_status != 0) {
861 np->phys[phy_idx++] = phy;
862 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
863 printk(KERN_INFO "%s: MII PHY found at address %d, status "
864 "%#4.4x advertising %#4.4x.\n",
865 dev->name, phy, mii_status, np->mii_if.advertising);
866 /* there can be only one PHY on-board */
867 break;
870 np->phy_cnt = phy_idx;
871 if (np->phy_cnt > 0)
872 np->mii_if.phy_id = np->phys[0];
873 else
874 memset(&np->mii_if, 0, sizeof(np->mii_if));
877 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
878 dev->name, enable_hw_cksum ? "enabled" : "disabled");
879 return 0;
881 err_out_cleardev:
882 pci_set_drvdata(pdev, NULL);
883 iounmap(base);
884 err_out_free_res:
885 pci_release_regions (pdev);
886 err_out_free_netdev:
887 free_netdev(dev);
888 return -ENODEV;
892 /* Read the MII Management Data I/O (MDIO) interfaces. */
893 static int mdio_read(struct net_device *dev, int phy_id, int location)
895 struct netdev_private *np = netdev_priv(dev);
896 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
897 int result, boguscnt=1000;
898 /* ??? Should we add a busy-wait here? */
899 do {
900 result = readl(mdio_addr);
901 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
902 if (boguscnt == 0)
903 return 0;
904 if ((result & 0xffff) == 0xffff)
905 return 0;
906 return result & 0xffff;
910 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
912 struct netdev_private *np = netdev_priv(dev);
913 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
914 writel(value, mdio_addr);
915 /* The busy-wait will occur before a read. */
919 static int netdev_open(struct net_device *dev)
921 const struct firmware *fw_rx, *fw_tx;
922 const __be32 *fw_rx_data, *fw_tx_data;
923 struct netdev_private *np = netdev_priv(dev);
924 void __iomem *ioaddr = np->base;
925 int i, retval;
926 size_t tx_size, rx_size;
927 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
929 /* Do we ever need to reset the chip??? */
931 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
932 if (retval)
933 return retval;
935 /* Disable the Rx and Tx, and reset the chip. */
936 writel(0, ioaddr + GenCtrl);
937 writel(1, ioaddr + PCIDeviceConfig);
938 if (debug > 1)
939 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
940 dev->name, dev->irq);
942 /* Allocate the various queues. */
943 if (!np->queue_mem) {
944 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
945 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
946 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
947 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
948 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
949 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
950 if (np->queue_mem == NULL) {
951 free_irq(dev->irq, dev);
952 return -ENOMEM;
955 np->tx_done_q = np->queue_mem;
956 np->tx_done_q_dma = np->queue_mem_dma;
957 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
958 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
959 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
960 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
961 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
962 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
965 /* Start with no carrier, it gets adjusted later */
966 netif_carrier_off(dev);
967 init_ring(dev);
968 /* Set the size of the Rx buffers. */
969 writel((np->rx_buf_sz << RxBufferLenShift) |
970 (0 << RxMinDescrThreshShift) |
971 RxPrefetchMode | RxVariableQ |
972 RX_Q_ENTRIES |
973 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
974 RxDescSpace4,
975 ioaddr + RxDescQCtrl);
977 /* Set up the Rx DMA controller. */
978 writel(RxChecksumIgnore |
979 (0 << RxEarlyIntThreshShift) |
980 (6 << RxHighPrioThreshShift) |
981 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
982 ioaddr + RxDMACtrl);
984 /* Set Tx descriptor */
985 writel((2 << TxHiPriFIFOThreshShift) |
986 (0 << TxPadLenShift) |
987 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
988 TX_DESC_Q_ADDR_SIZE |
989 TX_DESC_SPACING | TX_DESC_TYPE,
990 ioaddr + TxDescCtrl);
992 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
993 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
994 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
995 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
996 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
998 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
999 writel(np->rx_done_q_dma |
1000 RxComplType |
1001 (0 << RxComplThreshShift),
1002 ioaddr + RxCompletionAddr);
1004 if (debug > 1)
1005 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1007 /* Fill both the Tx SA register and the Rx perfect filter. */
1008 for (i = 0; i < 6; i++)
1009 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1010 /* The first entry is special because it bypasses the VLAN filter.
1011 Don't use it. */
1012 writew(0, ioaddr + PerfFilterTable);
1013 writew(0, ioaddr + PerfFilterTable + 4);
1014 writew(0, ioaddr + PerfFilterTable + 8);
1015 for (i = 1; i < 16; i++) {
1016 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1017 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1018 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1019 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1020 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1023 /* Initialize other registers. */
1024 /* Configure the PCI bus bursts and FIFO thresholds. */
1025 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1026 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1027 udelay(1000);
1028 writel(np->tx_mode, ioaddr + TxMode);
1029 np->tx_threshold = 4;
1030 writel(np->tx_threshold, ioaddr + TxThreshold);
1032 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1034 napi_enable(&np->napi);
1036 netif_start_queue(dev);
1038 if (debug > 1)
1039 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1040 set_rx_mode(dev);
1042 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1043 check_duplex(dev);
1045 /* Enable GPIO interrupts on link change */
1046 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1048 /* Set the interrupt mask */
1049 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1050 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1051 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1052 ioaddr + IntrEnable);
1053 /* Enable PCI interrupts. */
1054 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1055 ioaddr + PCIDeviceConfig);
1057 #ifdef VLAN_SUPPORT
1058 /* Set VLAN type to 802.1q */
1059 writel(ETH_P_8021Q, ioaddr + VlanType);
1060 #endif /* VLAN_SUPPORT */
1062 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1063 if (retval) {
1064 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1065 FIRMWARE_RX);
1066 return retval;
1068 if (fw_rx->size % 4) {
1069 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1070 fw_rx->size, FIRMWARE_RX);
1071 retval = -EINVAL;
1072 goto out_rx;
1074 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1075 if (retval) {
1076 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1077 FIRMWARE_TX);
1078 goto out_rx;
1080 if (fw_tx->size % 4) {
1081 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1082 fw_tx->size, FIRMWARE_TX);
1083 retval = -EINVAL;
1084 goto out_tx;
1086 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1087 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1088 rx_size = fw_rx->size / 4;
1089 tx_size = fw_tx->size / 4;
1091 /* Load Rx/Tx firmware into the frame processors */
1092 for (i = 0; i < rx_size; i++)
1093 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1094 for (i = 0; i < tx_size; i++)
1095 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1096 if (enable_hw_cksum)
1097 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1098 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1099 else
1100 /* Enable the Rx and Tx units only. */
1101 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1103 if (debug > 1)
1104 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1105 dev->name);
1107 out_tx:
1108 release_firmware(fw_tx);
1109 out_rx:
1110 release_firmware(fw_rx);
1111 return retval;
1115 static void check_duplex(struct net_device *dev)
1117 struct netdev_private *np = netdev_priv(dev);
1118 u16 reg0;
1119 int silly_count = 1000;
1121 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1122 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1123 udelay(500);
1124 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1125 /* do nothing */;
1126 if (!silly_count) {
1127 printk("%s: MII reset failed!\n", dev->name);
1128 return;
1131 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1133 if (!np->mii_if.force_media) {
1134 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1135 } else {
1136 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1137 if (np->speed100)
1138 reg0 |= BMCR_SPEED100;
1139 if (np->mii_if.full_duplex)
1140 reg0 |= BMCR_FULLDPLX;
1141 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1142 dev->name,
1143 np->speed100 ? "100" : "10",
1144 np->mii_if.full_duplex ? "full" : "half");
1146 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1150 static void tx_timeout(struct net_device *dev)
1152 struct netdev_private *np = netdev_priv(dev);
1153 void __iomem *ioaddr = np->base;
1154 int old_debug;
1156 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1157 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1159 /* Perhaps we should reinitialize the hardware here. */
1162 * Stop and restart the interface.
1163 * Cheat and increase the debug level temporarily.
1165 old_debug = debug;
1166 debug = 2;
1167 netdev_close(dev);
1168 netdev_open(dev);
1169 debug = old_debug;
1171 /* Trigger an immediate transmit demand. */
1173 dev->trans_start = jiffies;
1174 np->stats.tx_errors++;
1175 netif_wake_queue(dev);
1179 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1180 static void init_ring(struct net_device *dev)
1182 struct netdev_private *np = netdev_priv(dev);
1183 int i;
1185 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1186 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1188 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1190 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1192 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1193 np->rx_info[i].skb = skb;
1194 if (skb == NULL)
1195 break;
1196 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1197 skb->dev = dev; /* Mark as being used by this device. */
1198 /* Grrr, we cannot offset to correctly align the IP header. */
1199 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1201 writew(i - 1, np->base + RxDescQIdx);
1202 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1204 /* Clear the remainder of the Rx buffer ring. */
1205 for ( ; i < RX_RING_SIZE; i++) {
1206 np->rx_ring[i].rxaddr = 0;
1207 np->rx_info[i].skb = NULL;
1208 np->rx_info[i].mapping = 0;
1210 /* Mark the last entry as wrapping the ring. */
1211 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1213 /* Clear the completion rings. */
1214 for (i = 0; i < DONE_Q_SIZE; i++) {
1215 np->rx_done_q[i].status = 0;
1216 np->tx_done_q[i].status = 0;
1219 for (i = 0; i < TX_RING_SIZE; i++)
1220 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1222 return;
1226 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1228 struct netdev_private *np = netdev_priv(dev);
1229 unsigned int entry;
1230 u32 status;
1231 int i;
1234 * be cautious here, wrapping the queue has weird semantics
1235 * and we may not have enough slots even when it seems we do.
1237 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1238 netif_stop_queue(dev);
1239 return 1;
1242 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1243 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1244 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1245 return NETDEV_TX_OK;
1247 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1249 entry = np->cur_tx % TX_RING_SIZE;
1250 for (i = 0; i < skb_num_frags(skb); i++) {
1251 int wrap_ring = 0;
1252 status = TxDescID;
1254 if (i == 0) {
1255 np->tx_info[entry].skb = skb;
1256 status |= TxCRCEn;
1257 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1258 status |= TxRingWrap;
1259 wrap_ring = 1;
1261 if (np->reap_tx) {
1262 status |= TxDescIntr;
1263 np->reap_tx = 0;
1265 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1266 status |= TxCalTCP;
1267 np->stats.tx_compressed++;
1269 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1271 np->tx_info[entry].mapping =
1272 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1273 } else {
1274 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1275 status |= this_frag->size;
1276 np->tx_info[entry].mapping =
1277 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1280 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1281 np->tx_ring[entry].status = cpu_to_le32(status);
1282 if (debug > 3)
1283 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1284 dev->name, np->cur_tx, np->dirty_tx,
1285 entry, status);
1286 if (wrap_ring) {
1287 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1288 np->cur_tx += np->tx_info[entry].used_slots;
1289 entry = 0;
1290 } else {
1291 np->tx_info[entry].used_slots = 1;
1292 np->cur_tx += np->tx_info[entry].used_slots;
1293 entry++;
1295 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1296 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1297 np->reap_tx = 1;
1300 /* Non-x86: explicitly flush descriptor cache lines here. */
1301 /* Ensure all descriptors are written back before the transmit is
1302 initiated. - Jes */
1303 wmb();
1305 /* Update the producer index. */
1306 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1308 /* 4 is arbitrary, but should be ok */
1309 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1310 netif_stop_queue(dev);
1312 dev->trans_start = jiffies;
1314 return 0;
1318 /* The interrupt handler does all of the Rx thread work and cleans up
1319 after the Tx thread. */
1320 static irqreturn_t intr_handler(int irq, void *dev_instance)
1322 struct net_device *dev = dev_instance;
1323 struct netdev_private *np = netdev_priv(dev);
1324 void __iomem *ioaddr = np->base;
1325 int boguscnt = max_interrupt_work;
1326 int consumer;
1327 int tx_status;
1328 int handled = 0;
1330 do {
1331 u32 intr_status = readl(ioaddr + IntrClear);
1333 if (debug > 4)
1334 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1335 dev->name, intr_status);
1337 if (intr_status == 0 || intr_status == (u32) -1)
1338 break;
1340 handled = 1;
1342 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1343 u32 enable;
1345 if (likely(napi_schedule_prep(&np->napi))) {
1346 __napi_schedule(&np->napi);
1347 enable = readl(ioaddr + IntrEnable);
1348 enable &= ~(IntrRxDone | IntrRxEmpty);
1349 writel(enable, ioaddr + IntrEnable);
1350 /* flush PCI posting buffers */
1351 readl(ioaddr + IntrEnable);
1352 } else {
1353 /* Paranoia check */
1354 enable = readl(ioaddr + IntrEnable);
1355 if (enable & (IntrRxDone | IntrRxEmpty)) {
1356 printk(KERN_INFO
1357 "%s: interrupt while in poll!\n",
1358 dev->name);
1359 enable &= ~(IntrRxDone | IntrRxEmpty);
1360 writel(enable, ioaddr + IntrEnable);
1365 /* Scavenge the skbuff list based on the Tx-done queue.
1366 There are redundant checks here that may be cleaned up
1367 after the driver has proven to be reliable. */
1368 consumer = readl(ioaddr + TxConsumerIdx);
1369 if (debug > 3)
1370 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1371 dev->name, consumer);
1373 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1374 if (debug > 3)
1375 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1376 dev->name, np->dirty_tx, np->tx_done, tx_status);
1377 if ((tx_status & 0xe0000000) == 0xa0000000) {
1378 np->stats.tx_packets++;
1379 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1380 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1381 struct sk_buff *skb = np->tx_info[entry].skb;
1382 np->tx_info[entry].skb = NULL;
1383 pci_unmap_single(np->pci_dev,
1384 np->tx_info[entry].mapping,
1385 skb_first_frag_len(skb),
1386 PCI_DMA_TODEVICE);
1387 np->tx_info[entry].mapping = 0;
1388 np->dirty_tx += np->tx_info[entry].used_slots;
1389 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1391 int i;
1392 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1393 pci_unmap_single(np->pci_dev,
1394 np->tx_info[entry].mapping,
1395 skb_shinfo(skb)->frags[i].size,
1396 PCI_DMA_TODEVICE);
1397 np->dirty_tx++;
1398 entry++;
1402 dev_kfree_skb_irq(skb);
1404 np->tx_done_q[np->tx_done].status = 0;
1405 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1407 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1409 if (netif_queue_stopped(dev) &&
1410 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1411 /* The ring is no longer full, wake the queue. */
1412 netif_wake_queue(dev);
1415 /* Stats overflow */
1416 if (intr_status & IntrStatsMax)
1417 get_stats(dev);
1419 /* Media change interrupt. */
1420 if (intr_status & IntrLinkChange)
1421 netdev_media_change(dev);
1423 /* Abnormal error summary/uncommon events handlers. */
1424 if (intr_status & IntrAbnormalSummary)
1425 netdev_error(dev, intr_status);
1427 if (--boguscnt < 0) {
1428 if (debug > 1)
1429 printk(KERN_WARNING "%s: Too much work at interrupt, "
1430 "status=%#8.8x.\n",
1431 dev->name, intr_status);
1432 break;
1434 } while (1);
1436 if (debug > 4)
1437 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1438 dev->name, (int) readl(ioaddr + IntrStatus));
1439 return IRQ_RETVAL(handled);
1444 * This routine is logically part of the interrupt/poll handler, but separated
1445 * for clarity and better register allocation.
1447 static int __netdev_rx(struct net_device *dev, int *quota)
1449 struct netdev_private *np = netdev_priv(dev);
1450 u32 desc_status;
1451 int retcode = 0;
1453 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1454 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1455 struct sk_buff *skb;
1456 u16 pkt_len;
1457 int entry;
1458 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1460 if (debug > 4)
1461 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1462 if (!(desc_status & RxOK)) {
1463 /* There was an error. */
1464 if (debug > 2)
1465 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1466 np->stats.rx_errors++;
1467 if (desc_status & RxFIFOErr)
1468 np->stats.rx_fifo_errors++;
1469 goto next_rx;
1472 if (*quota <= 0) { /* out of rx quota */
1473 retcode = 1;
1474 goto out;
1476 (*quota)--;
1478 pkt_len = desc_status; /* Implicitly Truncate */
1479 entry = (desc_status >> 16) & 0x7ff;
1481 if (debug > 4)
1482 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1483 /* Check if the packet is long enough to accept without copying
1484 to a minimally-sized skbuff. */
1485 if (pkt_len < rx_copybreak
1486 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1487 skb_reserve(skb, 2); /* 16 byte align the IP header */
1488 pci_dma_sync_single_for_cpu(np->pci_dev,
1489 np->rx_info[entry].mapping,
1490 pkt_len, PCI_DMA_FROMDEVICE);
1491 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1492 pci_dma_sync_single_for_device(np->pci_dev,
1493 np->rx_info[entry].mapping,
1494 pkt_len, PCI_DMA_FROMDEVICE);
1495 skb_put(skb, pkt_len);
1496 } else {
1497 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1498 skb = np->rx_info[entry].skb;
1499 skb_put(skb, pkt_len);
1500 np->rx_info[entry].skb = NULL;
1501 np->rx_info[entry].mapping = 0;
1503 #ifndef final_version /* Remove after testing. */
1504 /* You will want this info for the initial debug. */
1505 if (debug > 5) {
1506 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1507 skb->data, skb->data + 6,
1508 skb->data[12], skb->data[13]);
1510 #endif
1512 skb->protocol = eth_type_trans(skb, dev);
1513 #ifdef VLAN_SUPPORT
1514 if (debug > 4)
1515 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1516 #endif
1517 if (le16_to_cpu(desc->status2) & 0x0100) {
1518 skb->ip_summed = CHECKSUM_UNNECESSARY;
1519 np->stats.rx_compressed++;
1522 * This feature doesn't seem to be working, at least
1523 * with the two firmware versions I have. If the GFP sees
1524 * an IP fragment, it either ignores it completely, or reports
1525 * "bad checksum" on it.
1527 * Maybe I missed something -- corrections are welcome.
1528 * Until then, the printk stays. :-) -Ion
1530 else if (le16_to_cpu(desc->status2) & 0x0040) {
1531 skb->ip_summed = CHECKSUM_COMPLETE;
1532 skb->csum = le16_to_cpu(desc->csum);
1533 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1535 #ifdef VLAN_SUPPORT
1536 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1537 u16 vlid = le16_to_cpu(desc->vlanid);
1539 if (debug > 4) {
1540 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1541 vlid);
1544 * vlan_hwaccel_rx expects a packet with the VLAN tag
1545 * stripped out.
1547 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1548 } else
1549 #endif /* VLAN_SUPPORT */
1550 netif_receive_skb(skb);
1551 np->stats.rx_packets++;
1553 next_rx:
1554 np->cur_rx++;
1555 desc->status = 0;
1556 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1559 if (*quota == 0) { /* out of rx quota */
1560 retcode = 1;
1561 goto out;
1563 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1565 out:
1566 refill_rx_ring(dev);
1567 if (debug > 5)
1568 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1569 retcode, np->rx_done, desc_status);
1570 return retcode;
1573 static int netdev_poll(struct napi_struct *napi, int budget)
1575 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1576 struct net_device *dev = np->dev;
1577 u32 intr_status;
1578 void __iomem *ioaddr = np->base;
1579 int quota = budget;
1581 do {
1582 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1584 if (__netdev_rx(dev, &quota))
1585 goto out;
1587 intr_status = readl(ioaddr + IntrStatus);
1588 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1590 napi_complete(napi);
1591 intr_status = readl(ioaddr + IntrEnable);
1592 intr_status |= IntrRxDone | IntrRxEmpty;
1593 writel(intr_status, ioaddr + IntrEnable);
1595 out:
1596 if (debug > 5)
1597 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1598 budget - quota);
1600 /* Restart Rx engine if stopped. */
1601 return budget - quota;
1604 static void refill_rx_ring(struct net_device *dev)
1606 struct netdev_private *np = netdev_priv(dev);
1607 struct sk_buff *skb;
1608 int entry = -1;
1610 /* Refill the Rx ring buffers. */
1611 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1612 entry = np->dirty_rx % RX_RING_SIZE;
1613 if (np->rx_info[entry].skb == NULL) {
1614 skb = dev_alloc_skb(np->rx_buf_sz);
1615 np->rx_info[entry].skb = skb;
1616 if (skb == NULL)
1617 break; /* Better luck next round. */
1618 np->rx_info[entry].mapping =
1619 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1620 skb->dev = dev; /* Mark as being used by this device. */
1621 np->rx_ring[entry].rxaddr =
1622 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1624 if (entry == RX_RING_SIZE - 1)
1625 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1627 if (entry >= 0)
1628 writew(entry, np->base + RxDescQIdx);
1632 static void netdev_media_change(struct net_device *dev)
1634 struct netdev_private *np = netdev_priv(dev);
1635 void __iomem *ioaddr = np->base;
1636 u16 reg0, reg1, reg4, reg5;
1637 u32 new_tx_mode;
1638 u32 new_intr_timer_ctrl;
1640 /* reset status first */
1641 mdio_read(dev, np->phys[0], MII_BMCR);
1642 mdio_read(dev, np->phys[0], MII_BMSR);
1644 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1645 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1647 if (reg1 & BMSR_LSTATUS) {
1648 /* link is up */
1649 if (reg0 & BMCR_ANENABLE) {
1650 /* autonegotiation is enabled */
1651 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1652 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1653 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1654 np->speed100 = 1;
1655 np->mii_if.full_duplex = 1;
1656 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1657 np->speed100 = 1;
1658 np->mii_if.full_duplex = 0;
1659 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1660 np->speed100 = 0;
1661 np->mii_if.full_duplex = 1;
1662 } else {
1663 np->speed100 = 0;
1664 np->mii_if.full_duplex = 0;
1666 } else {
1667 /* autonegotiation is disabled */
1668 if (reg0 & BMCR_SPEED100)
1669 np->speed100 = 1;
1670 else
1671 np->speed100 = 0;
1672 if (reg0 & BMCR_FULLDPLX)
1673 np->mii_if.full_duplex = 1;
1674 else
1675 np->mii_if.full_duplex = 0;
1677 netif_carrier_on(dev);
1678 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1679 dev->name,
1680 np->speed100 ? "100" : "10",
1681 np->mii_if.full_duplex ? "full" : "half");
1683 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1684 if (np->mii_if.full_duplex)
1685 new_tx_mode |= FullDuplex;
1686 if (np->tx_mode != new_tx_mode) {
1687 np->tx_mode = new_tx_mode;
1688 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1689 udelay(1000);
1690 writel(np->tx_mode, ioaddr + TxMode);
1693 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1694 if (np->speed100)
1695 new_intr_timer_ctrl |= Timer10X;
1696 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1697 np->intr_timer_ctrl = new_intr_timer_ctrl;
1698 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1700 } else {
1701 netif_carrier_off(dev);
1702 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1707 static void netdev_error(struct net_device *dev, int intr_status)
1709 struct netdev_private *np = netdev_priv(dev);
1711 /* Came close to underrunning the Tx FIFO, increase threshold. */
1712 if (intr_status & IntrTxDataLow) {
1713 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1714 writel(++np->tx_threshold, np->base + TxThreshold);
1715 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1716 dev->name, np->tx_threshold * 16);
1717 } else
1718 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1720 if (intr_status & IntrRxGFPDead) {
1721 np->stats.rx_fifo_errors++;
1722 np->stats.rx_errors++;
1724 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1725 np->stats.tx_fifo_errors++;
1726 np->stats.tx_errors++;
1728 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1729 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1730 dev->name, intr_status);
1734 static struct net_device_stats *get_stats(struct net_device *dev)
1736 struct netdev_private *np = netdev_priv(dev);
1737 void __iomem *ioaddr = np->base;
1739 /* This adapter architecture needs no SMP locks. */
1740 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1741 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1742 np->stats.tx_packets = readl(ioaddr + 0x57000);
1743 np->stats.tx_aborted_errors =
1744 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1745 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1746 np->stats.collisions =
1747 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1749 /* The chip only need report frame silently dropped. */
1750 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1751 writew(0, ioaddr + RxDMAStatus);
1752 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1753 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1754 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1755 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1757 return &np->stats;
1761 static void set_rx_mode(struct net_device *dev)
1763 struct netdev_private *np = netdev_priv(dev);
1764 void __iomem *ioaddr = np->base;
1765 u32 rx_mode = MinVLANPrio;
1766 struct dev_mc_list *mclist;
1767 int i;
1768 #ifdef VLAN_SUPPORT
1770 rx_mode |= VlanMode;
1771 if (np->vlgrp) {
1772 int vlan_count = 0;
1773 void __iomem *filter_addr = ioaddr + HashTable + 8;
1774 for (i = 0; i < VLAN_VID_MASK; i++) {
1775 if (vlan_group_get_device(np->vlgrp, i)) {
1776 if (vlan_count >= 32)
1777 break;
1778 writew(i, filter_addr);
1779 filter_addr += 16;
1780 vlan_count++;
1783 if (i == VLAN_VID_MASK) {
1784 rx_mode |= PerfectFilterVlan;
1785 while (vlan_count < 32) {
1786 writew(0, filter_addr);
1787 filter_addr += 16;
1788 vlan_count++;
1792 #endif /* VLAN_SUPPORT */
1794 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1795 rx_mode |= AcceptAll;
1796 } else if ((dev->mc_count > multicast_filter_limit)
1797 || (dev->flags & IFF_ALLMULTI)) {
1798 /* Too many to match, or accept all multicasts. */
1799 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1800 } else if (dev->mc_count <= 14) {
1801 /* Use the 16 element perfect filter, skip first two entries. */
1802 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1803 __be16 *eaddrs;
1804 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1805 i++, mclist = mclist->next) {
1806 eaddrs = (__be16 *)mclist->dmi_addr;
1807 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1808 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1809 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1811 eaddrs = (__be16 *)dev->dev_addr;
1812 while (i++ < 16) {
1813 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1814 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1815 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1817 rx_mode |= AcceptBroadcast|PerfectFilter;
1818 } else {
1819 /* Must use a multicast hash table. */
1820 void __iomem *filter_addr;
1821 __be16 *eaddrs;
1822 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1824 memset(mc_filter, 0, sizeof(mc_filter));
1825 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1826 i++, mclist = mclist->next) {
1827 /* The chip uses the upper 9 CRC bits
1828 as index into the hash table */
1829 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1830 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1832 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1834 /* Clear the perfect filter list, skip first two entries. */
1835 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1836 eaddrs = (__be16 *)dev->dev_addr;
1837 for (i = 2; i < 16; i++) {
1838 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1839 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1840 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1842 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1843 writew(mc_filter[i], filter_addr);
1844 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1846 writel(rx_mode, ioaddr + RxFilterMode);
1849 static int check_if_running(struct net_device *dev)
1851 if (!netif_running(dev))
1852 return -EINVAL;
1853 return 0;
1856 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1858 struct netdev_private *np = netdev_priv(dev);
1859 strcpy(info->driver, DRV_NAME);
1860 strcpy(info->version, DRV_VERSION);
1861 strcpy(info->bus_info, pci_name(np->pci_dev));
1864 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1866 struct netdev_private *np = netdev_priv(dev);
1867 spin_lock_irq(&np->lock);
1868 mii_ethtool_gset(&np->mii_if, ecmd);
1869 spin_unlock_irq(&np->lock);
1870 return 0;
1873 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1875 struct netdev_private *np = netdev_priv(dev);
1876 int res;
1877 spin_lock_irq(&np->lock);
1878 res = mii_ethtool_sset(&np->mii_if, ecmd);
1879 spin_unlock_irq(&np->lock);
1880 check_duplex(dev);
1881 return res;
1884 static int nway_reset(struct net_device *dev)
1886 struct netdev_private *np = netdev_priv(dev);
1887 return mii_nway_restart(&np->mii_if);
1890 static u32 get_link(struct net_device *dev)
1892 struct netdev_private *np = netdev_priv(dev);
1893 return mii_link_ok(&np->mii_if);
1896 static u32 get_msglevel(struct net_device *dev)
1898 return debug;
1901 static void set_msglevel(struct net_device *dev, u32 val)
1903 debug = val;
1906 static const struct ethtool_ops ethtool_ops = {
1907 .begin = check_if_running,
1908 .get_drvinfo = get_drvinfo,
1909 .get_settings = get_settings,
1910 .set_settings = set_settings,
1911 .nway_reset = nway_reset,
1912 .get_link = get_link,
1913 .get_msglevel = get_msglevel,
1914 .set_msglevel = set_msglevel,
1917 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1919 struct netdev_private *np = netdev_priv(dev);
1920 struct mii_ioctl_data *data = if_mii(rq);
1921 int rc;
1923 if (!netif_running(dev))
1924 return -EINVAL;
1926 spin_lock_irq(&np->lock);
1927 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1928 spin_unlock_irq(&np->lock);
1930 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1931 check_duplex(dev);
1933 return rc;
1936 static int netdev_close(struct net_device *dev)
1938 struct netdev_private *np = netdev_priv(dev);
1939 void __iomem *ioaddr = np->base;
1940 int i;
1942 netif_stop_queue(dev);
1944 napi_disable(&np->napi);
1946 if (debug > 1) {
1947 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1948 dev->name, (int) readl(ioaddr + IntrStatus));
1949 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1950 dev->name, np->cur_tx, np->dirty_tx,
1951 np->cur_rx, np->dirty_rx);
1954 /* Disable interrupts by clearing the interrupt mask. */
1955 writel(0, ioaddr + IntrEnable);
1957 /* Stop the chip's Tx and Rx processes. */
1958 writel(0, ioaddr + GenCtrl);
1959 readl(ioaddr + GenCtrl);
1961 if (debug > 5) {
1962 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1963 (long long) np->tx_ring_dma);
1964 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1965 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1966 i, le32_to_cpu(np->tx_ring[i].status),
1967 (long long) dma_to_cpu(np->tx_ring[i].addr),
1968 le32_to_cpu(np->tx_done_q[i].status));
1969 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1970 (long long) np->rx_ring_dma, np->rx_done_q);
1971 if (np->rx_done_q)
1972 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1973 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1974 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1978 free_irq(dev->irq, dev);
1980 /* Free all the skbuffs in the Rx queue. */
1981 for (i = 0; i < RX_RING_SIZE; i++) {
1982 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1983 if (np->rx_info[i].skb != NULL) {
1984 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1985 dev_kfree_skb(np->rx_info[i].skb);
1987 np->rx_info[i].skb = NULL;
1988 np->rx_info[i].mapping = 0;
1990 for (i = 0; i < TX_RING_SIZE; i++) {
1991 struct sk_buff *skb = np->tx_info[i].skb;
1992 if (skb == NULL)
1993 continue;
1994 pci_unmap_single(np->pci_dev,
1995 np->tx_info[i].mapping,
1996 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1997 np->tx_info[i].mapping = 0;
1998 dev_kfree_skb(skb);
1999 np->tx_info[i].skb = NULL;
2002 return 0;
2005 #ifdef CONFIG_PM
2006 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2008 struct net_device *dev = pci_get_drvdata(pdev);
2010 if (netif_running(dev)) {
2011 netif_device_detach(dev);
2012 netdev_close(dev);
2015 pci_save_state(pdev);
2016 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2018 return 0;
2021 static int starfire_resume(struct pci_dev *pdev)
2023 struct net_device *dev = pci_get_drvdata(pdev);
2025 pci_set_power_state(pdev, PCI_D0);
2026 pci_restore_state(pdev);
2028 if (netif_running(dev)) {
2029 netdev_open(dev);
2030 netif_device_attach(dev);
2033 return 0;
2035 #endif /* CONFIG_PM */
2038 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2040 struct net_device *dev = pci_get_drvdata(pdev);
2041 struct netdev_private *np = netdev_priv(dev);
2043 BUG_ON(!dev);
2045 unregister_netdev(dev);
2047 if (np->queue_mem)
2048 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2051 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2052 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2053 pci_disable_device(pdev);
2055 iounmap(np->base);
2056 pci_release_regions(pdev);
2058 pci_set_drvdata(pdev, NULL);
2059 free_netdev(dev); /* Will also free np!! */
2063 static struct pci_driver starfire_driver = {
2064 .name = DRV_NAME,
2065 .probe = starfire_init_one,
2066 .remove = __devexit_p(starfire_remove_one),
2067 #ifdef CONFIG_PM
2068 .suspend = starfire_suspend,
2069 .resume = starfire_resume,
2070 #endif /* CONFIG_PM */
2071 .id_table = starfire_pci_tbl,
2075 static int __init starfire_init (void)
2077 /* when a module, this is printed whether or not devices are found in probe */
2078 #ifdef MODULE
2079 printk(version);
2081 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2082 #endif
2084 /* we can do this test only at run-time... sigh */
2085 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2086 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2087 return -ENODEV;
2090 return pci_register_driver(&starfire_driver);
2094 static void __exit starfire_cleanup (void)
2096 pci_unregister_driver (&starfire_driver);
2100 module_init(starfire_init);
2101 module_exit(starfire_cleanup);
2105 * Local variables:
2106 * c-basic-offset: 8
2107 * tab-width: 8
2108 * End: