4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
126 static inline int rt_policy(int policy
)
128 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
133 static inline int task_has_rt_policy(struct task_struct
*p
)
135 return rt_policy(p
->policy
);
139 * This is the priority-queue data structure of the RT scheduling class:
141 struct rt_prio_array
{
142 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
143 struct list_head queue
[MAX_RT_PRIO
];
146 struct rt_bandwidth
{
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock
;
151 struct hrtimer rt_period_timer
;
154 static struct rt_bandwidth def_rt_bandwidth
;
156 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
158 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
160 struct rt_bandwidth
*rt_b
=
161 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
167 now
= hrtimer_cb_get_time(timer
);
168 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
173 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
176 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
180 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
182 rt_b
->rt_period
= ns_to_ktime(period
);
183 rt_b
->rt_runtime
= runtime
;
185 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
187 hrtimer_init(&rt_b
->rt_period_timer
,
188 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
189 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
192 static inline int rt_bandwidth_enabled(void)
194 return sysctl_sched_rt_runtime
>= 0;
197 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
201 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
204 if (hrtimer_active(&rt_b
->rt_period_timer
))
207 raw_spin_lock(&rt_b
->rt_runtime_lock
);
212 if (hrtimer_active(&rt_b
->rt_period_timer
))
215 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
216 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
218 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
219 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
220 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
221 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
222 HRTIMER_MODE_ABS_PINNED
, 0);
224 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
230 hrtimer_cancel(&rt_b
->rt_period_timer
);
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
238 static DEFINE_MUTEX(sched_domains_mutex
);
240 #ifdef CONFIG_CGROUP_SCHED
242 #include <linux/cgroup.h>
246 static LIST_HEAD(task_groups
);
248 /* task group related information */
250 struct cgroup_subsys_state css
;
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity
**se
;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq
**cfs_rq
;
257 unsigned long shares
;
259 atomic_t load_weight
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup
*autogroup
;
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock
);
284 #ifdef CONFIG_FAIR_GROUP_SCHED
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
297 #define MAX_SHARES (1UL << 18)
299 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
305 struct task_group root_task_group
;
307 #endif /* CONFIG_CGROUP_SCHED */
309 /* CFS-related fields in a runqueue */
311 struct load_weight load
;
312 unsigned long nr_running
;
317 struct rb_root tasks_timeline
;
318 struct rb_node
*rb_leftmost
;
320 struct list_head tasks
;
321 struct list_head
*balance_iterator
;
324 * 'curr' points to currently running entity on this cfs_rq.
325 * It is set to NULL otherwise (i.e when none are currently running).
327 struct sched_entity
*curr
, *next
, *last
;
329 unsigned int nr_spread_over
;
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
343 struct list_head leaf_cfs_rq_list
;
344 struct task_group
*tg
; /* group that "owns" this runqueue */
348 * the part of load.weight contributed by tasks
350 unsigned long task_weight
;
353 * h_load = weight * f(tg)
355 * Where f(tg) is the recursive weight fraction assigned to
358 unsigned long h_load
;
361 * Maintaining per-cpu shares distribution for group scheduling
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
369 u64 load_stamp
, load_last
, load_unacc_exec_time
;
371 unsigned long load_contribution
;
376 /* Real-Time classes' related field in a runqueue: */
378 struct rt_prio_array active
;
379 unsigned long rt_nr_running
;
380 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
382 int curr
; /* highest queued rt task prio */
384 int next
; /* next highest */
389 unsigned long rt_nr_migratory
;
390 unsigned long rt_nr_total
;
392 struct plist_head pushable_tasks
;
397 /* Nests inside the rq lock: */
398 raw_spinlock_t rt_runtime_lock
;
400 #ifdef CONFIG_RT_GROUP_SCHED
401 unsigned long rt_nr_boosted
;
404 struct list_head leaf_rt_rq_list
;
405 struct task_group
*tg
;
412 * We add the notion of a root-domain which will be used to define per-domain
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
415 * exclusive cpuset is created, we also create and attach a new root-domain
422 cpumask_var_t online
;
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
428 cpumask_var_t rto_mask
;
430 struct cpupri cpupri
;
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
437 static struct root_domain def_root_domain
;
439 #endif /* CONFIG_SMP */
442 * This is the main, per-CPU runqueue data structure.
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
456 unsigned long nr_running
;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
459 unsigned long last_load_update_tick
;
462 unsigned char nohz_balance_kick
;
464 unsigned int skip_clock_update
;
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load
;
468 unsigned long nr_load_updates
;
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list
;
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list
;
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
488 unsigned long nr_uninterruptible
;
490 struct task_struct
*curr
, *idle
, *stop
;
491 unsigned long next_balance
;
492 struct mm_struct
*prev_mm
;
500 struct root_domain
*rd
;
501 struct sched_domain
*sd
;
503 unsigned long cpu_power
;
505 unsigned char idle_at_tick
;
506 /* For active balancing */
510 struct cpu_stop_work active_balance_work
;
511 /* cpu of this runqueue: */
515 unsigned long avg_load_per_task
;
523 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
527 /* calc_load related fields */
528 unsigned long calc_load_update
;
529 long calc_load_active
;
531 #ifdef CONFIG_SCHED_HRTICK
533 int hrtick_csd_pending
;
534 struct call_single_data hrtick_csd
;
536 struct hrtimer hrtick_timer
;
539 #ifdef CONFIG_SCHEDSTATS
541 struct sched_info rq_sched_info
;
542 unsigned long long rq_cpu_time
;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
545 /* sys_sched_yield() stats */
546 unsigned int yld_count
;
548 /* schedule() stats */
549 unsigned int sched_switch
;
550 unsigned int sched_count
;
551 unsigned int sched_goidle
;
553 /* try_to_wake_up() stats */
554 unsigned int ttwu_count
;
555 unsigned int ttwu_local
;
559 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
562 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
564 static inline int cpu_of(struct rq
*rq
)
573 #define rcu_dereference_check_sched_domain(p) \
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
585 #define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
588 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589 #define this_rq() (&__get_cpu_var(runqueues))
590 #define task_rq(p) cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
592 #define raw_rq() (&__raw_get_cpu_var(runqueues))
594 #ifdef CONFIG_CGROUP_SCHED
597 * Return the group to which this tasks belongs.
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
604 static inline struct task_group
*task_group(struct task_struct
*p
)
606 struct task_group
*tg
;
607 struct cgroup_subsys_state
*css
;
609 if (p
->flags
& PF_EXITING
)
610 return &root_task_group
;
612 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
613 lockdep_is_held(&task_rq(p
)->lock
));
614 tg
= container_of(css
, struct task_group
, css
);
616 return autogroup_task_group(p
, tg
);
619 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
624 p
->se
.parent
= task_group(p
)->se
[cpu
];
627 #ifdef CONFIG_RT_GROUP_SCHED
628 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
629 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
633 #else /* CONFIG_CGROUP_SCHED */
635 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
636 static inline struct task_group
*task_group(struct task_struct
*p
)
641 #endif /* CONFIG_CGROUP_SCHED */
643 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
645 static void update_rq_clock(struct rq
*rq
)
649 if (rq
->skip_clock_update
)
652 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
654 update_rq_clock_task(rq
, delta
);
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
663 # define const_debug static const
668 * @cpu: the processor in question.
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
674 int runqueue_is_locked(int cpu
)
676 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
680 * Debugging: various feature bits
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
687 #include "sched_features.h"
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
695 const_debug
unsigned int sysctl_sched_features
=
696 #include "sched_features.h"
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
705 static __read_mostly
char *sched_feat_names
[] = {
706 #include "sched_features.h"
712 static int sched_feat_show(struct seq_file
*m
, void *v
)
716 for (i
= 0; sched_feat_names
[i
]; i
++) {
717 if (!(sysctl_sched_features
& (1UL << i
)))
719 seq_printf(m
, "%s ", sched_feat_names
[i
]);
727 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
728 size_t cnt
, loff_t
*ppos
)
738 if (copy_from_user(&buf
, ubuf
, cnt
))
744 if (strncmp(cmp
, "NO_", 3) == 0) {
749 for (i
= 0; sched_feat_names
[i
]; i
++) {
750 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
752 sysctl_sched_features
&= ~(1UL << i
);
754 sysctl_sched_features
|= (1UL << i
);
759 if (!sched_feat_names
[i
])
767 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
769 return single_open(filp
, sched_feat_show
, NULL
);
772 static const struct file_operations sched_feat_fops
= {
773 .open
= sched_feat_open
,
774 .write
= sched_feat_write
,
777 .release
= single_release
,
780 static __init
int sched_init_debug(void)
782 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
787 late_initcall(sched_init_debug
);
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
797 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
800 * period over which we average the RT time consumption, measured
805 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
808 * period over which we measure -rt task cpu usage in us.
811 unsigned int sysctl_sched_rt_period
= 1000000;
813 static __read_mostly
int scheduler_running
;
816 * part of the period that we allow rt tasks to run in us.
819 int sysctl_sched_rt_runtime
= 950000;
821 static inline u64
global_rt_period(void)
823 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
826 static inline u64
global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime
< 0)
831 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
841 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
843 return rq
->curr
== p
;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
849 return task_current(rq
, p
);
852 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
856 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq
->lock
.owner
= current
;
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
867 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
869 raw_spin_unlock_irq(&rq
->lock
);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
878 return task_current(rq
, p
);
882 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq
->lock
);
895 raw_spin_unlock(&rq
->lock
);
899 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
920 static inline int task_is_waking(struct task_struct
*p
)
922 return unlikely(p
->state
== TASK_WAKING
);
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
929 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
936 raw_spin_lock(&rq
->lock
);
937 if (likely(rq
== task_rq(p
)))
939 raw_spin_unlock(&rq
->lock
);
944 * task_rq_lock - lock the runqueue a given task resides on and disable
945 * interrupts. Note the ordering: we can safely lookup the task_rq without
946 * explicitly disabling preemption.
948 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
954 local_irq_save(*flags
);
956 raw_spin_lock(&rq
->lock
);
957 if (likely(rq
== task_rq(p
)))
959 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
963 static void __task_rq_unlock(struct rq
*rq
)
966 raw_spin_unlock(&rq
->lock
);
969 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
972 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
976 * this_rq_lock - lock this runqueue and disable interrupts.
978 static struct rq
*this_rq_lock(void)
985 raw_spin_lock(&rq
->lock
);
990 #ifdef CONFIG_SCHED_HRTICK
992 * Use HR-timers to deliver accurate preemption points.
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * - enabled by features
1005 * - hrtimer is actually high res
1007 static inline int hrtick_enabled(struct rq
*rq
)
1009 if (!sched_feat(HRTICK
))
1011 if (!cpu_active(cpu_of(rq
)))
1013 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1016 static void hrtick_clear(struct rq
*rq
)
1018 if (hrtimer_active(&rq
->hrtick_timer
))
1019 hrtimer_cancel(&rq
->hrtick_timer
);
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1026 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1028 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1030 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1032 raw_spin_lock(&rq
->lock
);
1033 update_rq_clock(rq
);
1034 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1035 raw_spin_unlock(&rq
->lock
);
1037 return HRTIMER_NORESTART
;
1042 * called from hardirq (IPI) context
1044 static void __hrtick_start(void *arg
)
1046 struct rq
*rq
= arg
;
1048 raw_spin_lock(&rq
->lock
);
1049 hrtimer_restart(&rq
->hrtick_timer
);
1050 rq
->hrtick_csd_pending
= 0;
1051 raw_spin_unlock(&rq
->lock
);
1055 * Called to set the hrtick timer state.
1057 * called with rq->lock held and irqs disabled
1059 static void hrtick_start(struct rq
*rq
, u64 delay
)
1061 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1062 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1064 hrtimer_set_expires(timer
, time
);
1066 if (rq
== this_rq()) {
1067 hrtimer_restart(timer
);
1068 } else if (!rq
->hrtick_csd_pending
) {
1069 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1070 rq
->hrtick_csd_pending
= 1;
1075 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1077 int cpu
= (int)(long)hcpu
;
1080 case CPU_UP_CANCELED
:
1081 case CPU_UP_CANCELED_FROZEN
:
1082 case CPU_DOWN_PREPARE
:
1083 case CPU_DOWN_PREPARE_FROZEN
:
1085 case CPU_DEAD_FROZEN
:
1086 hrtick_clear(cpu_rq(cpu
));
1093 static __init
void init_hrtick(void)
1095 hotcpu_notifier(hotplug_hrtick
, 0);
1099 * Called to set the hrtick timer state.
1101 * called with rq->lock held and irqs disabled
1103 static void hrtick_start(struct rq
*rq
, u64 delay
)
1105 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1106 HRTIMER_MODE_REL_PINNED
, 0);
1109 static inline void init_hrtick(void)
1112 #endif /* CONFIG_SMP */
1114 static void init_rq_hrtick(struct rq
*rq
)
1117 rq
->hrtick_csd_pending
= 0;
1119 rq
->hrtick_csd
.flags
= 0;
1120 rq
->hrtick_csd
.func
= __hrtick_start
;
1121 rq
->hrtick_csd
.info
= rq
;
1124 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1125 rq
->hrtick_timer
.function
= hrtick
;
1127 #else /* CONFIG_SCHED_HRTICK */
1128 static inline void hrtick_clear(struct rq
*rq
)
1132 static inline void init_rq_hrtick(struct rq
*rq
)
1136 static inline void init_hrtick(void)
1139 #endif /* CONFIG_SCHED_HRTICK */
1142 * resched_task - mark a task 'to be rescheduled now'.
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1150 #ifndef tsk_is_polling
1151 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1154 static void resched_task(struct task_struct
*p
)
1158 assert_raw_spin_locked(&task_rq(p
)->lock
);
1160 if (test_tsk_need_resched(p
))
1163 set_tsk_need_resched(p
);
1166 if (cpu
== smp_processor_id())
1169 /* NEED_RESCHED must be visible before we test polling */
1171 if (!tsk_is_polling(p
))
1172 smp_send_reschedule(cpu
);
1175 static void resched_cpu(int cpu
)
1177 struct rq
*rq
= cpu_rq(cpu
);
1178 unsigned long flags
;
1180 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1182 resched_task(cpu_curr(cpu
));
1183 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1195 int get_nohz_timer_target(void)
1197 int cpu
= smp_processor_id();
1199 struct sched_domain
*sd
;
1201 for_each_domain(cpu
, sd
) {
1202 for_each_cpu(i
, sched_domain_span(sd
))
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1218 void wake_up_idle_cpu(int cpu
)
1220 struct rq
*rq
= cpu_rq(cpu
);
1222 if (cpu
== smp_processor_id())
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1232 if (rq
->curr
!= rq
->idle
)
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1240 set_tsk_need_resched(rq
->idle
);
1242 /* NEED_RESCHED must be visible before we test polling */
1244 if (!tsk_is_polling(rq
->idle
))
1245 smp_send_reschedule(cpu
);
1248 #endif /* CONFIG_NO_HZ */
1250 static u64
sched_avg_period(void)
1252 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1255 static void sched_avg_update(struct rq
*rq
)
1257 s64 period
= sched_avg_period();
1259 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1265 asm("" : "+rm" (rq
->age_stamp
));
1266 rq
->age_stamp
+= period
;
1271 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1273 rq
->rt_avg
+= rt_delta
;
1274 sched_avg_update(rq
);
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct
*p
)
1280 assert_raw_spin_locked(&task_rq(p
)->lock
);
1281 set_tsk_need_resched(p
);
1284 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1288 static void sched_avg_update(struct rq
*rq
)
1291 #endif /* CONFIG_SMP */
1293 #if BITS_PER_LONG == 32
1294 # define WMULT_CONST (~0UL)
1296 # define WMULT_CONST (1UL << 32)
1299 #define WMULT_SHIFT 32
1302 * Shift right and round:
1304 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1307 * delta *= weight / lw
1309 static unsigned long
1310 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1311 struct load_weight
*lw
)
1315 if (!lw
->inv_weight
) {
1316 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1319 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1323 tmp
= (u64
)delta_exec
* weight
;
1325 * Check whether we'd overflow the 64-bit multiplication:
1327 if (unlikely(tmp
> WMULT_CONST
))
1328 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1331 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1333 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1336 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1342 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1348 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1363 #define WEIGHT_IDLEPRIO 3
1364 #define WMULT_IDLEPRIO 1431655765
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1378 static const int prio_to_weight
[40] = {
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1396 static const u32 prio_to_wmult
[40] = {
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index
{
1409 CPUACCT_STAT_USER
, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1412 CPUACCT_STAT_NSTATS
,
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1417 static void cpuacct_update_stats(struct task_struct
*tsk
,
1418 enum cpuacct_stat_index idx
, cputime_t val
);
1420 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1421 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1422 enum cpuacct_stat_index idx
, cputime_t val
) {}
1425 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1427 update_load_add(&rq
->load
, load
);
1430 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1432 update_load_sub(&rq
->load
, load
);
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor
)(struct task_group
*, void *);
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1442 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1444 struct task_group
*parent
, *child
;
1448 parent
= &root_task_group
;
1450 ret
= (*down
)(parent
, data
);
1453 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1460 ret
= (*up
)(parent
, data
);
1465 parent
= parent
->parent
;
1474 static int tg_nop(struct task_group
*tg
, void *data
)
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu
)
1484 return cpu_rq(cpu
)->load
.weight
;
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1494 static unsigned long source_load(int cpu
, int type
)
1496 struct rq
*rq
= cpu_rq(cpu
);
1497 unsigned long total
= weighted_cpuload(cpu
);
1499 if (type
== 0 || !sched_feat(LB_BIAS
))
1502 return min(rq
->cpu_load
[type
-1], total
);
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1509 static unsigned long target_load(int cpu
, int type
)
1511 struct rq
*rq
= cpu_rq(cpu
);
1512 unsigned long total
= weighted_cpuload(cpu
);
1514 if (type
== 0 || !sched_feat(LB_BIAS
))
1517 return max(rq
->cpu_load
[type
-1], total
);
1520 static unsigned long power_of(int cpu
)
1522 return cpu_rq(cpu
)->cpu_power
;
1525 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1527 static unsigned long cpu_avg_load_per_task(int cpu
)
1529 struct rq
*rq
= cpu_rq(cpu
);
1530 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1533 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1535 rq
->avg_load_per_task
= 0;
1537 return rq
->avg_load_per_task
;
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1547 static int tg_load_down(struct task_group
*tg
, void *data
)
1550 long cpu
= (long)data
;
1553 load
= cpu_rq(cpu
)->load
.weight
;
1555 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1556 load
*= tg
->se
[cpu
]->load
.weight
;
1557 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1560 tg
->cfs_rq
[cpu
]->h_load
= load
;
1565 static void update_h_load(long cpu
)
1567 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1572 #ifdef CONFIG_PREEMPT
1574 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
1584 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1585 __releases(this_rq
->lock
)
1586 __acquires(busiest
->lock
)
1587 __acquires(this_rq
->lock
)
1589 raw_spin_unlock(&this_rq
->lock
);
1590 double_rq_lock(this_rq
, busiest
);
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1603 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1604 __releases(this_rq
->lock
)
1605 __acquires(busiest
->lock
)
1606 __acquires(this_rq
->lock
)
1610 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1611 if (busiest
< this_rq
) {
1612 raw_spin_unlock(&this_rq
->lock
);
1613 raw_spin_lock(&busiest
->lock
);
1614 raw_spin_lock_nested(&this_rq
->lock
,
1615 SINGLE_DEPTH_NESTING
);
1618 raw_spin_lock_nested(&busiest
->lock
,
1619 SINGLE_DEPTH_NESTING
);
1624 #endif /* CONFIG_PREEMPT */
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1629 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
1633 raw_spin_unlock(&this_rq
->lock
);
1637 return _double_lock_balance(this_rq
, busiest
);
1640 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1641 __releases(busiest
->lock
)
1643 raw_spin_unlock(&busiest
->lock
);
1644 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1648 * double_rq_lock - safely lock two runqueues
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1653 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1654 __acquires(rq1
->lock
)
1655 __acquires(rq2
->lock
)
1657 BUG_ON(!irqs_disabled());
1659 raw_spin_lock(&rq1
->lock
);
1660 __acquire(rq2
->lock
); /* Fake it out ;) */
1663 raw_spin_lock(&rq1
->lock
);
1664 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1666 raw_spin_lock(&rq2
->lock
);
1667 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1673 * double_rq_unlock - safely unlock two runqueues
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1678 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1679 __releases(rq1
->lock
)
1680 __releases(rq2
->lock
)
1682 raw_spin_unlock(&rq1
->lock
);
1684 raw_spin_unlock(&rq2
->lock
);
1686 __release(rq2
->lock
);
1691 static void calc_load_account_idle(struct rq
*this_rq
);
1692 static void update_sysctl(void);
1693 static int get_update_sysctl_factor(void);
1694 static void update_cpu_load(struct rq
*this_rq
);
1696 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1698 set_task_rq(p
, cpu
);
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1706 task_thread_info(p
)->cpu
= cpu
;
1710 static const struct sched_class rt_sched_class
;
1712 #define sched_class_highest (&stop_sched_class)
1713 #define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
1716 #include "sched_stats.h"
1718 static void inc_nr_running(struct rq
*rq
)
1723 static void dec_nr_running(struct rq
*rq
)
1728 static void set_load_weight(struct task_struct
*p
)
1731 * SCHED_IDLE tasks get minimal weight:
1733 if (p
->policy
== SCHED_IDLE
) {
1734 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1735 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1739 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1740 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1743 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1745 update_rq_clock(rq
);
1746 sched_info_queued(p
);
1747 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1751 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1753 update_rq_clock(rq
);
1754 sched_info_dequeued(p
);
1755 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1760 * activate_task - move a task to the runqueue.
1762 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1764 if (task_contributes_to_load(p
))
1765 rq
->nr_uninterruptible
--;
1767 enqueue_task(rq
, p
, flags
);
1772 * deactivate_task - remove a task from the runqueue.
1774 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1776 if (task_contributes_to_load(p
))
1777 rq
->nr_uninterruptible
++;
1779 dequeue_task(rq
, p
, flags
);
1783 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
1796 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1797 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1799 static DEFINE_PER_CPU(u64
, irq_start_time
);
1800 static int sched_clock_irqtime
;
1802 void enable_sched_clock_irqtime(void)
1804 sched_clock_irqtime
= 1;
1807 void disable_sched_clock_irqtime(void)
1809 sched_clock_irqtime
= 0;
1812 #ifndef CONFIG_64BIT
1813 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1815 static inline void irq_time_write_begin(void)
1817 __this_cpu_inc(irq_time_seq
.sequence
);
1821 static inline void irq_time_write_end(void)
1824 __this_cpu_inc(irq_time_seq
.sequence
);
1827 static inline u64
irq_time_read(int cpu
)
1833 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1834 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1835 per_cpu(cpu_hardirq_time
, cpu
);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1840 #else /* CONFIG_64BIT */
1841 static inline void irq_time_write_begin(void)
1845 static inline void irq_time_write_end(void)
1849 static inline u64
irq_time_read(int cpu
)
1851 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1853 #endif /* CONFIG_64BIT */
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1859 void account_system_vtime(struct task_struct
*curr
)
1861 unsigned long flags
;
1865 if (!sched_clock_irqtime
)
1868 local_irq_save(flags
);
1870 cpu
= smp_processor_id();
1871 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1872 __this_cpu_add(irq_start_time
, delta
);
1874 irq_time_write_begin();
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1881 if (hardirq_count())
1882 __this_cpu_add(cpu_hardirq_time
, delta
);
1883 else if (in_serving_softirq() && !(curr
->flags
& PF_KSOFTIRQD
))
1884 __this_cpu_add(cpu_softirq_time
, delta
);
1886 irq_time_write_end();
1887 local_irq_restore(flags
);
1889 EXPORT_SYMBOL_GPL(account_system_vtime
);
1891 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1895 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1912 if (irq_delta
> delta
)
1915 rq
->prev_irq_time
+= irq_delta
;
1917 rq
->clock_task
+= delta
;
1919 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1920 sched_rt_avg_update(rq
, irq_delta
);
1923 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1925 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1927 rq
->clock_task
+= delta
;
1930 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #include "sched_autogroup.c"
1936 #include "sched_stoptask.c"
1937 #ifdef CONFIG_SCHED_DEBUG
1938 # include "sched_debug.c"
1941 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1943 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1944 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1948 * Make it appear like a SCHED_FIFO task, its something
1949 * userspace knows about and won't get confused about.
1951 * Also, it will make PI more or less work without too
1952 * much confusion -- but then, stop work should not
1953 * rely on PI working anyway.
1955 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1957 stop
->sched_class
= &stop_sched_class
;
1960 cpu_rq(cpu
)->stop
= stop
;
1964 * Reset it back to a normal scheduling class so that
1965 * it can die in pieces.
1967 old_stop
->sched_class
= &rt_sched_class
;
1972 * __normal_prio - return the priority that is based on the static prio
1974 static inline int __normal_prio(struct task_struct
*p
)
1976 return p
->static_prio
;
1980 * Calculate the expected normal priority: i.e. priority
1981 * without taking RT-inheritance into account. Might be
1982 * boosted by interactivity modifiers. Changes upon fork,
1983 * setprio syscalls, and whenever the interactivity
1984 * estimator recalculates.
1986 static inline int normal_prio(struct task_struct
*p
)
1990 if (task_has_rt_policy(p
))
1991 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1993 prio
= __normal_prio(p
);
1998 * Calculate the current priority, i.e. the priority
1999 * taken into account by the scheduler. This value might
2000 * be boosted by RT tasks, or might be boosted by
2001 * interactivity modifiers. Will be RT if the task got
2002 * RT-boosted. If not then it returns p->normal_prio.
2004 static int effective_prio(struct task_struct
*p
)
2006 p
->normal_prio
= normal_prio(p
);
2008 * If we are RT tasks or we were boosted to RT priority,
2009 * keep the priority unchanged. Otherwise, update priority
2010 * to the normal priority:
2012 if (!rt_prio(p
->prio
))
2013 return p
->normal_prio
;
2018 * task_curr - is this task currently executing on a CPU?
2019 * @p: the task in question.
2021 inline int task_curr(const struct task_struct
*p
)
2023 return cpu_curr(task_cpu(p
)) == p
;
2026 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2027 const struct sched_class
*prev_class
,
2028 int oldprio
, int running
)
2030 if (prev_class
!= p
->sched_class
) {
2031 if (prev_class
->switched_from
)
2032 prev_class
->switched_from(rq
, p
, running
);
2033 p
->sched_class
->switched_to(rq
, p
, running
);
2035 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2038 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2040 const struct sched_class
*class;
2042 if (p
->sched_class
== rq
->curr
->sched_class
) {
2043 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2045 for_each_class(class) {
2046 if (class == rq
->curr
->sched_class
)
2048 if (class == p
->sched_class
) {
2049 resched_task(rq
->curr
);
2056 * A queue event has occurred, and we're going to schedule. In
2057 * this case, we can save a useless back to back clock update.
2059 if (rq
->curr
->se
.on_rq
&& test_tsk_need_resched(rq
->curr
))
2060 rq
->skip_clock_update
= 1;
2065 * Is this task likely cache-hot:
2068 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2072 if (p
->sched_class
!= &fair_sched_class
)
2075 if (unlikely(p
->policy
== SCHED_IDLE
))
2079 * Buddy candidates are cache hot:
2081 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2082 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2083 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2086 if (sysctl_sched_migration_cost
== -1)
2088 if (sysctl_sched_migration_cost
== 0)
2091 delta
= now
- p
->se
.exec_start
;
2093 return delta
< (s64
)sysctl_sched_migration_cost
;
2096 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2098 #ifdef CONFIG_SCHED_DEBUG
2100 * We should never call set_task_cpu() on a blocked task,
2101 * ttwu() will sort out the placement.
2103 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2104 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2107 trace_sched_migrate_task(p
, new_cpu
);
2109 if (task_cpu(p
) != new_cpu
) {
2110 p
->se
.nr_migrations
++;
2111 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2114 __set_task_cpu(p
, new_cpu
);
2117 struct migration_arg
{
2118 struct task_struct
*task
;
2122 static int migration_cpu_stop(void *data
);
2125 * The task's runqueue lock must be held.
2126 * Returns true if you have to wait for migration thread.
2128 static bool migrate_task(struct task_struct
*p
, struct rq
*rq
)
2131 * If the task is not on a runqueue (and not running), then
2132 * the next wake-up will properly place the task.
2134 return p
->se
.on_rq
|| task_running(rq
, p
);
2138 * wait_task_inactive - wait for a thread to unschedule.
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2153 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2155 unsigned long flags
;
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2180 while (task_running(rq
, p
)) {
2181 if (match_state
&& unlikely(p
->state
!= match_state
))
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2191 rq
= task_rq_lock(p
, &flags
);
2192 trace_sched_wait_task(p
);
2193 running
= task_running(rq
, p
);
2194 on_rq
= p
->se
.on_rq
;
2196 if (!match_state
|| p
->state
== match_state
)
2197 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2198 task_rq_unlock(rq
, &flags
);
2201 * If it changed from the expected state, bail out now.
2203 if (unlikely(!ncsw
))
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2210 * Oops. Go back and try again..
2212 if (unlikely(running
)) {
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2222 * So if it was still runnable (but just not actively
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2226 if (unlikely(on_rq
)) {
2227 schedule_timeout_uninterruptible(1);
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2255 void kick_process(struct task_struct
*p
)
2261 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2262 smp_send_reschedule(cpu
);
2265 EXPORT_SYMBOL_GPL(kick_process
);
2266 #endif /* CONFIG_SMP */
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p: the task to evaluate
2271 * @func: the function to be called
2272 * @info: the function call argument
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2277 void task_oncpu_function_call(struct task_struct
*p
,
2278 void (*func
) (void *info
), void *info
)
2285 smp_call_function_single(cpu
, func
, info
, 1);
2291 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2293 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2296 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2298 /* Look for allowed, online CPU in same node. */
2299 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2300 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2303 /* Any allowed, online CPU? */
2304 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2305 if (dest_cpu
< nr_cpu_ids
)
2308 /* No more Mr. Nice Guy. */
2309 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2311 * Don't tell them about moving exiting tasks or
2312 * kernel threads (both mm NULL), since they never
2315 if (p
->mm
&& printk_ratelimit()) {
2316 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2317 task_pid_nr(p
), p
->comm
, cpu
);
2324 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2327 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2329 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2332 * In order not to call set_task_cpu() on a blocking task we need
2333 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2336 * Since this is common to all placement strategies, this lives here.
2338 * [ this allows ->select_task() to simply return task_cpu(p) and
2339 * not worry about this generic constraint ]
2341 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2343 cpu
= select_fallback_rq(task_cpu(p
), p
);
2348 static void update_avg(u64
*avg
, u64 sample
)
2350 s64 diff
= sample
- *avg
;
2355 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2356 bool is_sync
, bool is_migrate
, bool is_local
,
2357 unsigned long en_flags
)
2359 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2361 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2363 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2365 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2367 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2369 activate_task(rq
, p
, en_flags
);
2372 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2373 int wake_flags
, bool success
)
2375 trace_sched_wakeup(p
, success
);
2376 check_preempt_curr(rq
, p
, wake_flags
);
2378 p
->state
= TASK_RUNNING
;
2380 if (p
->sched_class
->task_woken
)
2381 p
->sched_class
->task_woken(rq
, p
);
2383 if (unlikely(rq
->idle_stamp
)) {
2384 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2385 u64 max
= 2*sysctl_sched_migration_cost
;
2390 update_avg(&rq
->avg_idle
, delta
);
2394 /* if a worker is waking up, notify workqueue */
2395 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2396 wq_worker_waking_up(p
, cpu_of(rq
));
2400 * try_to_wake_up - wake up a thread
2401 * @p: the thread to be awakened
2402 * @state: the mask of task states that can be woken
2403 * @wake_flags: wake modifier flags (WF_*)
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2411 * Returns %true if @p was woken up, %false if it was already running
2412 * or @state didn't match @p's state.
2414 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2417 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2418 unsigned long flags
;
2419 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2422 this_cpu
= get_cpu();
2425 rq
= task_rq_lock(p
, &flags
);
2426 if (!(p
->state
& state
))
2436 if (unlikely(task_running(rq
, p
)))
2440 * In order to handle concurrent wakeups and release the rq->lock
2441 * we put the task in TASK_WAKING state.
2443 * First fix up the nr_uninterruptible count:
2445 if (task_contributes_to_load(p
)) {
2446 if (likely(cpu_online(orig_cpu
)))
2447 rq
->nr_uninterruptible
--;
2449 this_rq()->nr_uninterruptible
--;
2451 p
->state
= TASK_WAKING
;
2453 if (p
->sched_class
->task_waking
) {
2454 p
->sched_class
->task_waking(rq
, p
);
2455 en_flags
|= ENQUEUE_WAKING
;
2458 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2459 if (cpu
!= orig_cpu
)
2460 set_task_cpu(p
, cpu
);
2461 __task_rq_unlock(rq
);
2464 raw_spin_lock(&rq
->lock
);
2467 * We migrated the task without holding either rq->lock, however
2468 * since the task is not on the task list itself, nobody else
2469 * will try and migrate the task, hence the rq should match the
2470 * cpu we just moved it to.
2472 WARN_ON(task_cpu(p
) != cpu
);
2473 WARN_ON(p
->state
!= TASK_WAKING
);
2475 #ifdef CONFIG_SCHEDSTATS
2476 schedstat_inc(rq
, ttwu_count
);
2477 if (cpu
== this_cpu
)
2478 schedstat_inc(rq
, ttwu_local
);
2480 struct sched_domain
*sd
;
2481 for_each_domain(this_cpu
, sd
) {
2482 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2483 schedstat_inc(sd
, ttwu_wake_remote
);
2488 #endif /* CONFIG_SCHEDSTATS */
2491 #endif /* CONFIG_SMP */
2492 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2493 cpu
== this_cpu
, en_flags
);
2496 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2498 task_rq_unlock(rq
, &flags
);
2505 * try_to_wake_up_local - try to wake up a local task with rq lock held
2506 * @p: the thread to be awakened
2508 * Put @p on the run-queue if it's not already there. The caller must
2509 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2510 * the current task. this_rq() stays locked over invocation.
2512 static void try_to_wake_up_local(struct task_struct
*p
)
2514 struct rq
*rq
= task_rq(p
);
2515 bool success
= false;
2517 BUG_ON(rq
!= this_rq());
2518 BUG_ON(p
== current
);
2519 lockdep_assert_held(&rq
->lock
);
2521 if (!(p
->state
& TASK_NORMAL
))
2525 if (likely(!task_running(rq
, p
))) {
2526 schedstat_inc(rq
, ttwu_count
);
2527 schedstat_inc(rq
, ttwu_local
);
2529 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2532 ttwu_post_activation(p
, rq
, 0, success
);
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes. Returns 1 if the process was woken up, 0 if it was already
2543 * It may be assumed that this function implies a write memory barrier before
2544 * changing the task state if and only if any tasks are woken up.
2546 int wake_up_process(struct task_struct
*p
)
2548 return try_to_wake_up(p
, TASK_ALL
, 0);
2550 EXPORT_SYMBOL(wake_up_process
);
2552 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2554 return try_to_wake_up(p
, state
, 0);
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
2561 * __sched_fork() is basic setup used by init_idle() too:
2563 static void __sched_fork(struct task_struct
*p
)
2565 p
->se
.exec_start
= 0;
2566 p
->se
.sum_exec_runtime
= 0;
2567 p
->se
.prev_sum_exec_runtime
= 0;
2568 p
->se
.nr_migrations
= 0;
2570 #ifdef CONFIG_SCHEDSTATS
2571 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2574 INIT_LIST_HEAD(&p
->rt
.run_list
);
2576 INIT_LIST_HEAD(&p
->se
.group_node
);
2578 #ifdef CONFIG_PREEMPT_NOTIFIERS
2579 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2584 * fork()/clone()-time setup:
2586 void sched_fork(struct task_struct
*p
, int clone_flags
)
2588 int cpu
= get_cpu();
2592 * We mark the process as running here. This guarantees that
2593 * nobody will actually run it, and a signal or other external
2594 * event cannot wake it up and insert it on the runqueue either.
2596 p
->state
= TASK_RUNNING
;
2599 * Revert to default priority/policy on fork if requested.
2601 if (unlikely(p
->sched_reset_on_fork
)) {
2602 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2603 p
->policy
= SCHED_NORMAL
;
2604 p
->normal_prio
= p
->static_prio
;
2607 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2608 p
->static_prio
= NICE_TO_PRIO(0);
2609 p
->normal_prio
= p
->static_prio
;
2614 * We don't need the reset flag anymore after the fork. It has
2615 * fulfilled its duty:
2617 p
->sched_reset_on_fork
= 0;
2621 * Make sure we do not leak PI boosting priority to the child.
2623 p
->prio
= current
->normal_prio
;
2625 if (!rt_prio(p
->prio
))
2626 p
->sched_class
= &fair_sched_class
;
2628 if (p
->sched_class
->task_fork
)
2629 p
->sched_class
->task_fork(p
);
2632 * The child is not yet in the pid-hash so no cgroup attach races,
2633 * and the cgroup is pinned to this child due to cgroup_fork()
2634 * is ran before sched_fork().
2636 * Silence PROVE_RCU.
2639 set_task_cpu(p
, cpu
);
2642 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2643 if (likely(sched_info_on()))
2644 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2646 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2649 #ifdef CONFIG_PREEMPT
2650 /* Want to start with kernel preemption disabled. */
2651 task_thread_info(p
)->preempt_count
= 1;
2654 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2661 * wake_up_new_task - wake up a newly created task for the first time.
2663 * This function will do some initial scheduler statistics housekeeping
2664 * that must be done for every newly created context, then puts the task
2665 * on the runqueue and wakes it.
2667 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2669 unsigned long flags
;
2671 int cpu __maybe_unused
= get_cpu();
2674 rq
= task_rq_lock(p
, &flags
);
2675 p
->state
= TASK_WAKING
;
2678 * Fork balancing, do it here and not earlier because:
2679 * - cpus_allowed can change in the fork path
2680 * - any previously selected cpu might disappear through hotplug
2682 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2683 * without people poking at ->cpus_allowed.
2685 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2686 set_task_cpu(p
, cpu
);
2688 p
->state
= TASK_RUNNING
;
2689 task_rq_unlock(rq
, &flags
);
2692 rq
= task_rq_lock(p
, &flags
);
2693 activate_task(rq
, p
, 0);
2694 trace_sched_wakeup_new(p
, 1);
2695 check_preempt_curr(rq
, p
, WF_FORK
);
2697 if (p
->sched_class
->task_woken
)
2698 p
->sched_class
->task_woken(rq
, p
);
2700 task_rq_unlock(rq
, &flags
);
2704 #ifdef CONFIG_PREEMPT_NOTIFIERS
2707 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2708 * @notifier: notifier struct to register
2710 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2712 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2714 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2717 * preempt_notifier_unregister - no longer interested in preemption notifications
2718 * @notifier: notifier struct to unregister
2720 * This is safe to call from within a preemption notifier.
2722 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2724 hlist_del(¬ifier
->link
);
2726 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2728 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2730 struct preempt_notifier
*notifier
;
2731 struct hlist_node
*node
;
2733 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2734 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2738 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2739 struct task_struct
*next
)
2741 struct preempt_notifier
*notifier
;
2742 struct hlist_node
*node
;
2744 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2745 notifier
->ops
->sched_out(notifier
, next
);
2748 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2750 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2755 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2756 struct task_struct
*next
)
2760 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2763 * prepare_task_switch - prepare to switch tasks
2764 * @rq: the runqueue preparing to switch
2765 * @prev: the current task that is being switched out
2766 * @next: the task we are going to switch to.
2768 * This is called with the rq lock held and interrupts off. It must
2769 * be paired with a subsequent finish_task_switch after the context
2772 * prepare_task_switch sets up locking and calls architecture specific
2776 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2777 struct task_struct
*next
)
2779 fire_sched_out_preempt_notifiers(prev
, next
);
2780 prepare_lock_switch(rq
, next
);
2781 prepare_arch_switch(next
);
2785 * finish_task_switch - clean up after a task-switch
2786 * @rq: runqueue associated with task-switch
2787 * @prev: the thread we just switched away from.
2789 * finish_task_switch must be called after the context switch, paired
2790 * with a prepare_task_switch call before the context switch.
2791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792 * and do any other architecture-specific cleanup actions.
2794 * Note that we may have delayed dropping an mm in context_switch(). If
2795 * so, we finish that here outside of the runqueue lock. (Doing it
2796 * with the lock held can cause deadlocks; see schedule() for
2799 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2800 __releases(rq
->lock
)
2802 struct mm_struct
*mm
= rq
->prev_mm
;
2808 * A task struct has one reference for the use as "current".
2809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2810 * schedule one last time. The schedule call will never return, and
2811 * the scheduled task must drop that reference.
2812 * The test for TASK_DEAD must occur while the runqueue locks are
2813 * still held, otherwise prev could be scheduled on another cpu, die
2814 * there before we look at prev->state, and then the reference would
2816 * Manfred Spraul <manfred@colorfullife.com>
2818 prev_state
= prev
->state
;
2819 finish_arch_switch(prev
);
2820 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821 local_irq_disable();
2822 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823 perf_event_task_sched_in(current
);
2824 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2826 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827 finish_lock_switch(rq
, prev
);
2829 fire_sched_in_preempt_notifiers(current
);
2832 if (unlikely(prev_state
== TASK_DEAD
)) {
2834 * Remove function-return probe instances associated with this
2835 * task and put them back on the free list.
2837 kprobe_flush_task(prev
);
2838 put_task_struct(prev
);
2844 /* assumes rq->lock is held */
2845 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2847 if (prev
->sched_class
->pre_schedule
)
2848 prev
->sched_class
->pre_schedule(rq
, prev
);
2851 /* rq->lock is NOT held, but preemption is disabled */
2852 static inline void post_schedule(struct rq
*rq
)
2854 if (rq
->post_schedule
) {
2855 unsigned long flags
;
2857 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2858 if (rq
->curr
->sched_class
->post_schedule
)
2859 rq
->curr
->sched_class
->post_schedule(rq
);
2860 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2862 rq
->post_schedule
= 0;
2868 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2872 static inline void post_schedule(struct rq
*rq
)
2879 * schedule_tail - first thing a freshly forked thread must call.
2880 * @prev: the thread we just switched away from.
2882 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2883 __releases(rq
->lock
)
2885 struct rq
*rq
= this_rq();
2887 finish_task_switch(rq
, prev
);
2890 * FIXME: do we need to worry about rq being invalidated by the
2895 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896 /* In this case, finish_task_switch does not reenable preemption */
2899 if (current
->set_child_tid
)
2900 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2904 * context_switch - switch to the new MM and the new
2905 * thread's register state.
2908 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2909 struct task_struct
*next
)
2911 struct mm_struct
*mm
, *oldmm
;
2913 prepare_task_switch(rq
, prev
, next
);
2914 trace_sched_switch(prev
, next
);
2916 oldmm
= prev
->active_mm
;
2918 * For paravirt, this is coupled with an exit in switch_to to
2919 * combine the page table reload and the switch backend into
2922 arch_start_context_switch(prev
);
2925 next
->active_mm
= oldmm
;
2926 atomic_inc(&oldmm
->mm_count
);
2927 enter_lazy_tlb(oldmm
, next
);
2929 switch_mm(oldmm
, mm
, next
);
2932 prev
->active_mm
= NULL
;
2933 rq
->prev_mm
= oldmm
;
2936 * Since the runqueue lock will be released by the next
2937 * task (which is an invalid locking op but in the case
2938 * of the scheduler it's an obvious special-case), so we
2939 * do an early lockdep release here:
2941 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2945 /* Here we just switch the register state and the stack. */
2946 switch_to(prev
, next
, prev
);
2950 * this_rq must be evaluated again because prev may have moved
2951 * CPUs since it called schedule(), thus the 'rq' on its stack
2952 * frame will be invalid.
2954 finish_task_switch(this_rq(), prev
);
2958 * nr_running, nr_uninterruptible and nr_context_switches:
2960 * externally visible scheduler statistics: current number of runnable
2961 * threads, current number of uninterruptible-sleeping threads, total
2962 * number of context switches performed since bootup.
2964 unsigned long nr_running(void)
2966 unsigned long i
, sum
= 0;
2968 for_each_online_cpu(i
)
2969 sum
+= cpu_rq(i
)->nr_running
;
2974 unsigned long nr_uninterruptible(void)
2976 unsigned long i
, sum
= 0;
2978 for_each_possible_cpu(i
)
2979 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2982 * Since we read the counters lockless, it might be slightly
2983 * inaccurate. Do not allow it to go below zero though:
2985 if (unlikely((long)sum
< 0))
2991 unsigned long long nr_context_switches(void)
2994 unsigned long long sum
= 0;
2996 for_each_possible_cpu(i
)
2997 sum
+= cpu_rq(i
)->nr_switches
;
3002 unsigned long nr_iowait(void)
3004 unsigned long i
, sum
= 0;
3006 for_each_possible_cpu(i
)
3007 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3012 unsigned long nr_iowait_cpu(int cpu
)
3014 struct rq
*this = cpu_rq(cpu
);
3015 return atomic_read(&this->nr_iowait
);
3018 unsigned long this_cpu_load(void)
3020 struct rq
*this = this_rq();
3021 return this->cpu_load
[0];
3025 /* Variables and functions for calc_load */
3026 static atomic_long_t calc_load_tasks
;
3027 static unsigned long calc_load_update
;
3028 unsigned long avenrun
[3];
3029 EXPORT_SYMBOL(avenrun
);
3031 static long calc_load_fold_active(struct rq
*this_rq
)
3033 long nr_active
, delta
= 0;
3035 nr_active
= this_rq
->nr_running
;
3036 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3038 if (nr_active
!= this_rq
->calc_load_active
) {
3039 delta
= nr_active
- this_rq
->calc_load_active
;
3040 this_rq
->calc_load_active
= nr_active
;
3046 static unsigned long
3047 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3050 load
+= active
* (FIXED_1
- exp
);
3051 load
+= 1UL << (FSHIFT
- 1);
3052 return load
>> FSHIFT
;
3057 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3059 * When making the ILB scale, we should try to pull this in as well.
3061 static atomic_long_t calc_load_tasks_idle
;
3063 static void calc_load_account_idle(struct rq
*this_rq
)
3067 delta
= calc_load_fold_active(this_rq
);
3069 atomic_long_add(delta
, &calc_load_tasks_idle
);
3072 static long calc_load_fold_idle(void)
3077 * Its got a race, we don't care...
3079 if (atomic_long_read(&calc_load_tasks_idle
))
3080 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3086 * fixed_power_int - compute: x^n, in O(log n) time
3088 * @x: base of the power
3089 * @frac_bits: fractional bits of @x
3090 * @n: power to raise @x to.
3092 * By exploiting the relation between the definition of the natural power
3093 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3094 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3095 * (where: n_i \elem {0, 1}, the binary vector representing n),
3096 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3097 * of course trivially computable in O(log_2 n), the length of our binary
3100 static unsigned long
3101 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3103 unsigned long result
= 1UL << frac_bits
;
3108 result
+= 1UL << (frac_bits
- 1);
3109 result
>>= frac_bits
;
3115 x
+= 1UL << (frac_bits
- 1);
3123 * a1 = a0 * e + a * (1 - e)
3125 * a2 = a1 * e + a * (1 - e)
3126 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3127 * = a0 * e^2 + a * (1 - e) * (1 + e)
3129 * a3 = a2 * e + a * (1 - e)
3130 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3131 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3135 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3136 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3137 * = a0 * e^n + a * (1 - e^n)
3139 * [1] application of the geometric series:
3142 * S_n := \Sum x^i = -------------
3145 static unsigned long
3146 calc_load_n(unsigned long load
, unsigned long exp
,
3147 unsigned long active
, unsigned int n
)
3150 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3154 * NO_HZ can leave us missing all per-cpu ticks calling
3155 * calc_load_account_active(), but since an idle CPU folds its delta into
3156 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3157 * in the pending idle delta if our idle period crossed a load cycle boundary.
3159 * Once we've updated the global active value, we need to apply the exponential
3160 * weights adjusted to the number of cycles missed.
3162 static void calc_global_nohz(unsigned long ticks
)
3164 long delta
, active
, n
;
3166 if (time_before(jiffies
, calc_load_update
))
3170 * If we crossed a calc_load_update boundary, make sure to fold
3171 * any pending idle changes, the respective CPUs might have
3172 * missed the tick driven calc_load_account_active() update
3175 delta
= calc_load_fold_idle();
3177 atomic_long_add(delta
, &calc_load_tasks
);
3180 * If we were idle for multiple load cycles, apply them.
3182 if (ticks
>= LOAD_FREQ
) {
3183 n
= ticks
/ LOAD_FREQ
;
3185 active
= atomic_long_read(&calc_load_tasks
);
3186 active
= active
> 0 ? active
* FIXED_1
: 0;
3188 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3189 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3190 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3192 calc_load_update
+= n
* LOAD_FREQ
;
3196 * Its possible the remainder of the above division also crosses
3197 * a LOAD_FREQ period, the regular check in calc_global_load()
3198 * which comes after this will take care of that.
3200 * Consider us being 11 ticks before a cycle completion, and us
3201 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3202 * age us 4 cycles, and the test in calc_global_load() will
3203 * pick up the final one.
3207 static void calc_load_account_idle(struct rq
*this_rq
)
3211 static inline long calc_load_fold_idle(void)
3216 static void calc_global_nohz(unsigned long ticks
)
3222 * get_avenrun - get the load average array
3223 * @loads: pointer to dest load array
3224 * @offset: offset to add
3225 * @shift: shift count to shift the result left
3227 * These values are estimates at best, so no need for locking.
3229 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3231 loads
[0] = (avenrun
[0] + offset
) << shift
;
3232 loads
[1] = (avenrun
[1] + offset
) << shift
;
3233 loads
[2] = (avenrun
[2] + offset
) << shift
;
3237 * calc_load - update the avenrun load estimates 10 ticks after the
3238 * CPUs have updated calc_load_tasks.
3240 void calc_global_load(unsigned long ticks
)
3244 calc_global_nohz(ticks
);
3246 if (time_before(jiffies
, calc_load_update
+ 10))
3249 active
= atomic_long_read(&calc_load_tasks
);
3250 active
= active
> 0 ? active
* FIXED_1
: 0;
3252 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3253 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3254 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3256 calc_load_update
+= LOAD_FREQ
;
3260 * Called from update_cpu_load() to periodically update this CPU's
3263 static void calc_load_account_active(struct rq
*this_rq
)
3267 if (time_before(jiffies
, this_rq
->calc_load_update
))
3270 delta
= calc_load_fold_active(this_rq
);
3271 delta
+= calc_load_fold_idle();
3273 atomic_long_add(delta
, &calc_load_tasks
);
3275 this_rq
->calc_load_update
+= LOAD_FREQ
;
3279 * The exact cpuload at various idx values, calculated at every tick would be
3280 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3282 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3283 * on nth tick when cpu may be busy, then we have:
3284 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3285 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3287 * decay_load_missed() below does efficient calculation of
3288 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3289 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3291 * The calculation is approximated on a 128 point scale.
3292 * degrade_zero_ticks is the number of ticks after which load at any
3293 * particular idx is approximated to be zero.
3294 * degrade_factor is a precomputed table, a row for each load idx.
3295 * Each column corresponds to degradation factor for a power of two ticks,
3296 * based on 128 point scale.
3298 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3299 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3301 * With this power of 2 load factors, we can degrade the load n times
3302 * by looking at 1 bits in n and doing as many mult/shift instead of
3303 * n mult/shifts needed by the exact degradation.
3305 #define DEGRADE_SHIFT 7
3306 static const unsigned char
3307 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3308 static const unsigned char
3309 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3310 {0, 0, 0, 0, 0, 0, 0, 0},
3311 {64, 32, 8, 0, 0, 0, 0, 0},
3312 {96, 72, 40, 12, 1, 0, 0},
3313 {112, 98, 75, 43, 15, 1, 0},
3314 {120, 112, 98, 76, 45, 16, 2} };
3317 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3318 * would be when CPU is idle and so we just decay the old load without
3319 * adding any new load.
3321 static unsigned long
3322 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3326 if (!missed_updates
)
3329 if (missed_updates
>= degrade_zero_ticks
[idx
])
3333 return load
>> missed_updates
;
3335 while (missed_updates
) {
3336 if (missed_updates
% 2)
3337 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3339 missed_updates
>>= 1;
3346 * Update rq->cpu_load[] statistics. This function is usually called every
3347 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3348 * every tick. We fix it up based on jiffies.
3350 static void update_cpu_load(struct rq
*this_rq
)
3352 unsigned long this_load
= this_rq
->load
.weight
;
3353 unsigned long curr_jiffies
= jiffies
;
3354 unsigned long pending_updates
;
3357 this_rq
->nr_load_updates
++;
3359 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3360 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3363 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3364 this_rq
->last_load_update_tick
= curr_jiffies
;
3366 /* Update our load: */
3367 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3368 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3369 unsigned long old_load
, new_load
;
3371 /* scale is effectively 1 << i now, and >> i divides by scale */
3373 old_load
= this_rq
->cpu_load
[i
];
3374 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3375 new_load
= this_load
;
3377 * Round up the averaging division if load is increasing. This
3378 * prevents us from getting stuck on 9 if the load is 10, for
3381 if (new_load
> old_load
)
3382 new_load
+= scale
- 1;
3384 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3387 sched_avg_update(this_rq
);
3390 static void update_cpu_load_active(struct rq
*this_rq
)
3392 update_cpu_load(this_rq
);
3394 calc_load_account_active(this_rq
);
3400 * sched_exec - execve() is a valuable balancing opportunity, because at
3401 * this point the task has the smallest effective memory and cache footprint.
3403 void sched_exec(void)
3405 struct task_struct
*p
= current
;
3406 unsigned long flags
;
3410 rq
= task_rq_lock(p
, &flags
);
3411 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3412 if (dest_cpu
== smp_processor_id())
3416 * select_task_rq() can race against ->cpus_allowed
3418 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3419 likely(cpu_active(dest_cpu
)) && migrate_task(p
, rq
)) {
3420 struct migration_arg arg
= { p
, dest_cpu
};
3422 task_rq_unlock(rq
, &flags
);
3423 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3427 task_rq_unlock(rq
, &flags
);
3432 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3434 EXPORT_PER_CPU_SYMBOL(kstat
);
3437 * Return any ns on the sched_clock that have not yet been accounted in
3438 * @p in case that task is currently running.
3440 * Called with task_rq_lock() held on @rq.
3442 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3446 if (task_current(rq
, p
)) {
3447 update_rq_clock(rq
);
3448 ns
= rq
->clock_task
- p
->se
.exec_start
;
3456 unsigned long long task_delta_exec(struct task_struct
*p
)
3458 unsigned long flags
;
3462 rq
= task_rq_lock(p
, &flags
);
3463 ns
= do_task_delta_exec(p
, rq
);
3464 task_rq_unlock(rq
, &flags
);
3470 * Return accounted runtime for the task.
3471 * In case the task is currently running, return the runtime plus current's
3472 * pending runtime that have not been accounted yet.
3474 unsigned long long task_sched_runtime(struct task_struct
*p
)
3476 unsigned long flags
;
3480 rq
= task_rq_lock(p
, &flags
);
3481 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3482 task_rq_unlock(rq
, &flags
);
3488 * Return sum_exec_runtime for the thread group.
3489 * In case the task is currently running, return the sum plus current's
3490 * pending runtime that have not been accounted yet.
3492 * Note that the thread group might have other running tasks as well,
3493 * so the return value not includes other pending runtime that other
3494 * running tasks might have.
3496 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3498 struct task_cputime totals
;
3499 unsigned long flags
;
3503 rq
= task_rq_lock(p
, &flags
);
3504 thread_group_cputime(p
, &totals
);
3505 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3506 task_rq_unlock(rq
, &flags
);
3512 * Account user cpu time to a process.
3513 * @p: the process that the cpu time gets accounted to
3514 * @cputime: the cpu time spent in user space since the last update
3515 * @cputime_scaled: cputime scaled by cpu frequency
3517 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3518 cputime_t cputime_scaled
)
3520 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3523 /* Add user time to process. */
3524 p
->utime
= cputime_add(p
->utime
, cputime
);
3525 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3526 account_group_user_time(p
, cputime
);
3528 /* Add user time to cpustat. */
3529 tmp
= cputime_to_cputime64(cputime
);
3530 if (TASK_NICE(p
) > 0)
3531 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3533 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3535 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3536 /* Account for user time used */
3537 acct_update_integrals(p
);
3541 * Account guest cpu time to a process.
3542 * @p: the process that the cpu time gets accounted to
3543 * @cputime: the cpu time spent in virtual machine since the last update
3544 * @cputime_scaled: cputime scaled by cpu frequency
3546 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3547 cputime_t cputime_scaled
)
3550 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3552 tmp
= cputime_to_cputime64(cputime
);
3554 /* Add guest time to process. */
3555 p
->utime
= cputime_add(p
->utime
, cputime
);
3556 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3557 account_group_user_time(p
, cputime
);
3558 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3560 /* Add guest time to cpustat. */
3561 if (TASK_NICE(p
) > 0) {
3562 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3563 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3565 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3566 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3571 * Account system cpu time to a process.
3572 * @p: the process that the cpu time gets accounted to
3573 * @hardirq_offset: the offset to subtract from hardirq_count()
3574 * @cputime: the cpu time spent in kernel space since the last update
3575 * @cputime_scaled: cputime scaled by cpu frequency
3577 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3578 cputime_t cputime
, cputime_t cputime_scaled
)
3580 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3583 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3584 account_guest_time(p
, cputime
, cputime_scaled
);
3588 /* Add system time to process. */
3589 p
->stime
= cputime_add(p
->stime
, cputime
);
3590 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3591 account_group_system_time(p
, cputime
);
3593 /* Add system time to cpustat. */
3594 tmp
= cputime_to_cputime64(cputime
);
3595 if (hardirq_count() - hardirq_offset
)
3596 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3597 else if (in_serving_softirq())
3598 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3600 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3602 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3604 /* Account for system time used */
3605 acct_update_integrals(p
);
3609 * Account for involuntary wait time.
3610 * @steal: the cpu time spent in involuntary wait
3612 void account_steal_time(cputime_t cputime
)
3614 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3615 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3617 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3621 * Account for idle time.
3622 * @cputime: the cpu time spent in idle wait
3624 void account_idle_time(cputime_t cputime
)
3626 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3627 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3628 struct rq
*rq
= this_rq();
3630 if (atomic_read(&rq
->nr_iowait
) > 0)
3631 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3633 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3639 * Account a single tick of cpu time.
3640 * @p: the process that the cpu time gets accounted to
3641 * @user_tick: indicates if the tick is a user or a system tick
3643 void account_process_tick(struct task_struct
*p
, int user_tick
)
3645 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3646 struct rq
*rq
= this_rq();
3649 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3650 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3651 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3654 account_idle_time(cputime_one_jiffy
);
3658 * Account multiple ticks of steal time.
3659 * @p: the process from which the cpu time has been stolen
3660 * @ticks: number of stolen ticks
3662 void account_steal_ticks(unsigned long ticks
)
3664 account_steal_time(jiffies_to_cputime(ticks
));
3668 * Account multiple ticks of idle time.
3669 * @ticks: number of stolen ticks
3671 void account_idle_ticks(unsigned long ticks
)
3673 account_idle_time(jiffies_to_cputime(ticks
));
3679 * Use precise platform statistics if available:
3681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3682 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3688 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3690 struct task_cputime cputime
;
3692 thread_group_cputime(p
, &cputime
);
3694 *ut
= cputime
.utime
;
3695 *st
= cputime
.stime
;
3699 #ifndef nsecs_to_cputime
3700 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3703 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3705 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3708 * Use CFS's precise accounting:
3710 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3716 do_div(temp
, total
);
3717 utime
= (cputime_t
)temp
;
3722 * Compare with previous values, to keep monotonicity:
3724 p
->prev_utime
= max(p
->prev_utime
, utime
);
3725 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3727 *ut
= p
->prev_utime
;
3728 *st
= p
->prev_stime
;
3732 * Must be called with siglock held.
3734 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3736 struct signal_struct
*sig
= p
->signal
;
3737 struct task_cputime cputime
;
3738 cputime_t rtime
, utime
, total
;
3740 thread_group_cputime(p
, &cputime
);
3742 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3743 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3748 temp
*= cputime
.utime
;
3749 do_div(temp
, total
);
3750 utime
= (cputime_t
)temp
;
3754 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3755 sig
->prev_stime
= max(sig
->prev_stime
,
3756 cputime_sub(rtime
, sig
->prev_utime
));
3758 *ut
= sig
->prev_utime
;
3759 *st
= sig
->prev_stime
;
3764 * This function gets called by the timer code, with HZ frequency.
3765 * We call it with interrupts disabled.
3767 * It also gets called by the fork code, when changing the parent's
3770 void scheduler_tick(void)
3772 int cpu
= smp_processor_id();
3773 struct rq
*rq
= cpu_rq(cpu
);
3774 struct task_struct
*curr
= rq
->curr
;
3778 raw_spin_lock(&rq
->lock
);
3779 update_rq_clock(rq
);
3780 update_cpu_load_active(rq
);
3781 curr
->sched_class
->task_tick(rq
, curr
, 0);
3782 raw_spin_unlock(&rq
->lock
);
3784 perf_event_task_tick();
3787 rq
->idle_at_tick
= idle_cpu(cpu
);
3788 trigger_load_balance(rq
, cpu
);
3792 notrace
unsigned long get_parent_ip(unsigned long addr
)
3794 if (in_lock_functions(addr
)) {
3795 addr
= CALLER_ADDR2
;
3796 if (in_lock_functions(addr
))
3797 addr
= CALLER_ADDR3
;
3802 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3803 defined(CONFIG_PREEMPT_TRACER))
3805 void __kprobes
add_preempt_count(int val
)
3807 #ifdef CONFIG_DEBUG_PREEMPT
3811 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3814 preempt_count() += val
;
3815 #ifdef CONFIG_DEBUG_PREEMPT
3817 * Spinlock count overflowing soon?
3819 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3822 if (preempt_count() == val
)
3823 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3825 EXPORT_SYMBOL(add_preempt_count
);
3827 void __kprobes
sub_preempt_count(int val
)
3829 #ifdef CONFIG_DEBUG_PREEMPT
3833 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3836 * Is the spinlock portion underflowing?
3838 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3839 !(preempt_count() & PREEMPT_MASK
)))
3843 if (preempt_count() == val
)
3844 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3845 preempt_count() -= val
;
3847 EXPORT_SYMBOL(sub_preempt_count
);
3852 * Print scheduling while atomic bug:
3854 static noinline
void __schedule_bug(struct task_struct
*prev
)
3856 struct pt_regs
*regs
= get_irq_regs();
3858 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3859 prev
->comm
, prev
->pid
, preempt_count());
3861 debug_show_held_locks(prev
);
3863 if (irqs_disabled())
3864 print_irqtrace_events(prev
);
3873 * Various schedule()-time debugging checks and statistics:
3875 static inline void schedule_debug(struct task_struct
*prev
)
3878 * Test if we are atomic. Since do_exit() needs to call into
3879 * schedule() atomically, we ignore that path for now.
3880 * Otherwise, whine if we are scheduling when we should not be.
3882 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3883 __schedule_bug(prev
);
3885 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3887 schedstat_inc(this_rq(), sched_count
);
3888 #ifdef CONFIG_SCHEDSTATS
3889 if (unlikely(prev
->lock_depth
>= 0)) {
3890 schedstat_inc(this_rq(), rq_sched_info
.bkl_count
);
3891 schedstat_inc(prev
, sched_info
.bkl_count
);
3896 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3899 update_rq_clock(rq
);
3900 prev
->sched_class
->put_prev_task(rq
, prev
);
3904 * Pick up the highest-prio task:
3906 static inline struct task_struct
*
3907 pick_next_task(struct rq
*rq
)
3909 const struct sched_class
*class;
3910 struct task_struct
*p
;
3913 * Optimization: we know that if all tasks are in
3914 * the fair class we can call that function directly:
3916 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3917 p
= fair_sched_class
.pick_next_task(rq
);
3922 for_each_class(class) {
3923 p
= class->pick_next_task(rq
);
3928 BUG(); /* the idle class will always have a runnable task */
3932 * schedule() is the main scheduler function.
3934 asmlinkage
void __sched
schedule(void)
3936 struct task_struct
*prev
, *next
;
3937 unsigned long *switch_count
;
3943 cpu
= smp_processor_id();
3945 rcu_note_context_switch(cpu
);
3948 release_kernel_lock(prev
);
3949 need_resched_nonpreemptible
:
3951 schedule_debug(prev
);
3953 if (sched_feat(HRTICK
))
3956 raw_spin_lock_irq(&rq
->lock
);
3958 switch_count
= &prev
->nivcsw
;
3959 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3960 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3961 prev
->state
= TASK_RUNNING
;
3964 * If a worker is going to sleep, notify and
3965 * ask workqueue whether it wants to wake up a
3966 * task to maintain concurrency. If so, wake
3969 if (prev
->flags
& PF_WQ_WORKER
) {
3970 struct task_struct
*to_wakeup
;
3972 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3974 try_to_wake_up_local(to_wakeup
);
3976 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3978 switch_count
= &prev
->nvcsw
;
3981 pre_schedule(rq
, prev
);
3983 if (unlikely(!rq
->nr_running
))
3984 idle_balance(cpu
, rq
);
3986 put_prev_task(rq
, prev
);
3987 next
= pick_next_task(rq
);
3988 clear_tsk_need_resched(prev
);
3989 rq
->skip_clock_update
= 0;
3991 if (likely(prev
!= next
)) {
3992 sched_info_switch(prev
, next
);
3993 perf_event_task_sched_out(prev
, next
);
3999 context_switch(rq
, prev
, next
); /* unlocks the rq */
4001 * The context switch have flipped the stack from under us
4002 * and restored the local variables which were saved when
4003 * this task called schedule() in the past. prev == current
4004 * is still correct, but it can be moved to another cpu/rq.
4006 cpu
= smp_processor_id();
4009 raw_spin_unlock_irq(&rq
->lock
);
4013 if (unlikely(reacquire_kernel_lock(prev
)))
4014 goto need_resched_nonpreemptible
;
4016 preempt_enable_no_resched();
4020 EXPORT_SYMBOL(schedule
);
4022 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4024 * Look out! "owner" is an entirely speculative pointer
4025 * access and not reliable.
4027 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
4032 if (!sched_feat(OWNER_SPIN
))
4035 #ifdef CONFIG_DEBUG_PAGEALLOC
4037 * Need to access the cpu field knowing that
4038 * DEBUG_PAGEALLOC could have unmapped it if
4039 * the mutex owner just released it and exited.
4041 if (probe_kernel_address(&owner
->cpu
, cpu
))
4048 * Even if the access succeeded (likely case),
4049 * the cpu field may no longer be valid.
4051 if (cpu
>= nr_cpumask_bits
)
4055 * We need to validate that we can do a
4056 * get_cpu() and that we have the percpu area.
4058 if (!cpu_online(cpu
))
4065 * Owner changed, break to re-assess state.
4067 if (lock
->owner
!= owner
) {
4069 * If the lock has switched to a different owner,
4070 * we likely have heavy contention. Return 0 to quit
4071 * optimistic spinning and not contend further:
4079 * Is that owner really running on that cpu?
4081 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4084 arch_mutex_cpu_relax();
4091 #ifdef CONFIG_PREEMPT
4093 * this is the entry point to schedule() from in-kernel preemption
4094 * off of preempt_enable. Kernel preemptions off return from interrupt
4095 * occur there and call schedule directly.
4097 asmlinkage
void __sched notrace
preempt_schedule(void)
4099 struct thread_info
*ti
= current_thread_info();
4102 * If there is a non-zero preempt_count or interrupts are disabled,
4103 * we do not want to preempt the current task. Just return..
4105 if (likely(ti
->preempt_count
|| irqs_disabled()))
4109 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4111 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4114 * Check again in case we missed a preemption opportunity
4115 * between schedule and now.
4118 } while (need_resched());
4120 EXPORT_SYMBOL(preempt_schedule
);
4123 * this is the entry point to schedule() from kernel preemption
4124 * off of irq context.
4125 * Note, that this is called and return with irqs disabled. This will
4126 * protect us against recursive calling from irq.
4128 asmlinkage
void __sched
preempt_schedule_irq(void)
4130 struct thread_info
*ti
= current_thread_info();
4132 /* Catch callers which need to be fixed */
4133 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4136 add_preempt_count(PREEMPT_ACTIVE
);
4139 local_irq_disable();
4140 sub_preempt_count(PREEMPT_ACTIVE
);
4143 * Check again in case we missed a preemption opportunity
4144 * between schedule and now.
4147 } while (need_resched());
4150 #endif /* CONFIG_PREEMPT */
4152 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4155 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4157 EXPORT_SYMBOL(default_wake_function
);
4160 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4161 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4162 * number) then we wake all the non-exclusive tasks and one exclusive task.
4164 * There are circumstances in which we can try to wake a task which has already
4165 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4166 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4168 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4169 int nr_exclusive
, int wake_flags
, void *key
)
4171 wait_queue_t
*curr
, *next
;
4173 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4174 unsigned flags
= curr
->flags
;
4176 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4177 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4183 * __wake_up - wake up threads blocked on a waitqueue.
4185 * @mode: which threads
4186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4187 * @key: is directly passed to the wakeup function
4189 * It may be assumed that this function implies a write memory barrier before
4190 * changing the task state if and only if any tasks are woken up.
4192 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4193 int nr_exclusive
, void *key
)
4195 unsigned long flags
;
4197 spin_lock_irqsave(&q
->lock
, flags
);
4198 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4199 spin_unlock_irqrestore(&q
->lock
, flags
);
4201 EXPORT_SYMBOL(__wake_up
);
4204 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4206 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4208 __wake_up_common(q
, mode
, 1, 0, NULL
);
4210 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4212 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4214 __wake_up_common(q
, mode
, 1, 0, key
);
4216 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4219 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4221 * @mode: which threads
4222 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4223 * @key: opaque value to be passed to wakeup targets
4225 * The sync wakeup differs that the waker knows that it will schedule
4226 * away soon, so while the target thread will be woken up, it will not
4227 * be migrated to another CPU - ie. the two threads are 'synchronized'
4228 * with each other. This can prevent needless bouncing between CPUs.
4230 * On UP it can prevent extra preemption.
4232 * It may be assumed that this function implies a write memory barrier before
4233 * changing the task state if and only if any tasks are woken up.
4235 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4236 int nr_exclusive
, void *key
)
4238 unsigned long flags
;
4239 int wake_flags
= WF_SYNC
;
4244 if (unlikely(!nr_exclusive
))
4247 spin_lock_irqsave(&q
->lock
, flags
);
4248 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4249 spin_unlock_irqrestore(&q
->lock
, flags
);
4251 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4254 * __wake_up_sync - see __wake_up_sync_key()
4256 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4258 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4260 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4263 * complete: - signals a single thread waiting on this completion
4264 * @x: holds the state of this particular completion
4266 * This will wake up a single thread waiting on this completion. Threads will be
4267 * awakened in the same order in which they were queued.
4269 * See also complete_all(), wait_for_completion() and related routines.
4271 * It may be assumed that this function implies a write memory barrier before
4272 * changing the task state if and only if any tasks are woken up.
4274 void complete(struct completion
*x
)
4276 unsigned long flags
;
4278 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4280 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4281 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4283 EXPORT_SYMBOL(complete
);
4286 * complete_all: - signals all threads waiting on this completion
4287 * @x: holds the state of this particular completion
4289 * This will wake up all threads waiting on this particular completion event.
4291 * It may be assumed that this function implies a write memory barrier before
4292 * changing the task state if and only if any tasks are woken up.
4294 void complete_all(struct completion
*x
)
4296 unsigned long flags
;
4298 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4299 x
->done
+= UINT_MAX
/2;
4300 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4301 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4303 EXPORT_SYMBOL(complete_all
);
4305 static inline long __sched
4306 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4309 DECLARE_WAITQUEUE(wait
, current
);
4311 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4313 if (signal_pending_state(state
, current
)) {
4314 timeout
= -ERESTARTSYS
;
4317 __set_current_state(state
);
4318 spin_unlock_irq(&x
->wait
.lock
);
4319 timeout
= schedule_timeout(timeout
);
4320 spin_lock_irq(&x
->wait
.lock
);
4321 } while (!x
->done
&& timeout
);
4322 __remove_wait_queue(&x
->wait
, &wait
);
4327 return timeout
?: 1;
4331 wait_for_common(struct completion
*x
, long timeout
, int state
)
4335 spin_lock_irq(&x
->wait
.lock
);
4336 timeout
= do_wait_for_common(x
, timeout
, state
);
4337 spin_unlock_irq(&x
->wait
.lock
);
4342 * wait_for_completion: - waits for completion of a task
4343 * @x: holds the state of this particular completion
4345 * This waits to be signaled for completion of a specific task. It is NOT
4346 * interruptible and there is no timeout.
4348 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4349 * and interrupt capability. Also see complete().
4351 void __sched
wait_for_completion(struct completion
*x
)
4353 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4355 EXPORT_SYMBOL(wait_for_completion
);
4358 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4359 * @x: holds the state of this particular completion
4360 * @timeout: timeout value in jiffies
4362 * This waits for either a completion of a specific task to be signaled or for a
4363 * specified timeout to expire. The timeout is in jiffies. It is not
4366 unsigned long __sched
4367 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4369 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4371 EXPORT_SYMBOL(wait_for_completion_timeout
);
4374 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4375 * @x: holds the state of this particular completion
4377 * This waits for completion of a specific task to be signaled. It is
4380 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4382 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4383 if (t
== -ERESTARTSYS
)
4387 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4390 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4391 * @x: holds the state of this particular completion
4392 * @timeout: timeout value in jiffies
4394 * This waits for either a completion of a specific task to be signaled or for a
4395 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4398 wait_for_completion_interruptible_timeout(struct completion
*x
,
4399 unsigned long timeout
)
4401 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4403 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4406 * wait_for_completion_killable: - waits for completion of a task (killable)
4407 * @x: holds the state of this particular completion
4409 * This waits to be signaled for completion of a specific task. It can be
4410 * interrupted by a kill signal.
4412 int __sched
wait_for_completion_killable(struct completion
*x
)
4414 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4415 if (t
== -ERESTARTSYS
)
4419 EXPORT_SYMBOL(wait_for_completion_killable
);
4422 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4423 * @x: holds the state of this particular completion
4424 * @timeout: timeout value in jiffies
4426 * This waits for either a completion of a specific task to be
4427 * signaled or for a specified timeout to expire. It can be
4428 * interrupted by a kill signal. The timeout is in jiffies.
4431 wait_for_completion_killable_timeout(struct completion
*x
,
4432 unsigned long timeout
)
4434 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4436 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4439 * try_wait_for_completion - try to decrement a completion without blocking
4440 * @x: completion structure
4442 * Returns: 0 if a decrement cannot be done without blocking
4443 * 1 if a decrement succeeded.
4445 * If a completion is being used as a counting completion,
4446 * attempt to decrement the counter without blocking. This
4447 * enables us to avoid waiting if the resource the completion
4448 * is protecting is not available.
4450 bool try_wait_for_completion(struct completion
*x
)
4452 unsigned long flags
;
4455 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4460 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4463 EXPORT_SYMBOL(try_wait_for_completion
);
4466 * completion_done - Test to see if a completion has any waiters
4467 * @x: completion structure
4469 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4470 * 1 if there are no waiters.
4473 bool completion_done(struct completion
*x
)
4475 unsigned long flags
;
4478 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4481 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4484 EXPORT_SYMBOL(completion_done
);
4487 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4489 unsigned long flags
;
4492 init_waitqueue_entry(&wait
, current
);
4494 __set_current_state(state
);
4496 spin_lock_irqsave(&q
->lock
, flags
);
4497 __add_wait_queue(q
, &wait
);
4498 spin_unlock(&q
->lock
);
4499 timeout
= schedule_timeout(timeout
);
4500 spin_lock_irq(&q
->lock
);
4501 __remove_wait_queue(q
, &wait
);
4502 spin_unlock_irqrestore(&q
->lock
, flags
);
4507 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4509 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4511 EXPORT_SYMBOL(interruptible_sleep_on
);
4514 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4516 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4518 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4520 void __sched
sleep_on(wait_queue_head_t
*q
)
4522 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4524 EXPORT_SYMBOL(sleep_on
);
4526 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4528 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4530 EXPORT_SYMBOL(sleep_on_timeout
);
4532 #ifdef CONFIG_RT_MUTEXES
4535 * rt_mutex_setprio - set the current priority of a task
4537 * @prio: prio value (kernel-internal form)
4539 * This function changes the 'effective' priority of a task. It does
4540 * not touch ->normal_prio like __setscheduler().
4542 * Used by the rt_mutex code to implement priority inheritance logic.
4544 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4546 unsigned long flags
;
4547 int oldprio
, on_rq
, running
;
4549 const struct sched_class
*prev_class
;
4551 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4553 rq
= task_rq_lock(p
, &flags
);
4555 trace_sched_pi_setprio(p
, prio
);
4557 prev_class
= p
->sched_class
;
4558 on_rq
= p
->se
.on_rq
;
4559 running
= task_current(rq
, p
);
4561 dequeue_task(rq
, p
, 0);
4563 p
->sched_class
->put_prev_task(rq
, p
);
4566 p
->sched_class
= &rt_sched_class
;
4568 p
->sched_class
= &fair_sched_class
;
4573 p
->sched_class
->set_curr_task(rq
);
4575 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4577 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4579 task_rq_unlock(rq
, &flags
);
4584 void set_user_nice(struct task_struct
*p
, long nice
)
4586 int old_prio
, delta
, on_rq
;
4587 unsigned long flags
;
4590 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4593 * We have to be careful, if called from sys_setpriority(),
4594 * the task might be in the middle of scheduling on another CPU.
4596 rq
= task_rq_lock(p
, &flags
);
4598 * The RT priorities are set via sched_setscheduler(), but we still
4599 * allow the 'normal' nice value to be set - but as expected
4600 * it wont have any effect on scheduling until the task is
4601 * SCHED_FIFO/SCHED_RR:
4603 if (task_has_rt_policy(p
)) {
4604 p
->static_prio
= NICE_TO_PRIO(nice
);
4607 on_rq
= p
->se
.on_rq
;
4609 dequeue_task(rq
, p
, 0);
4611 p
->static_prio
= NICE_TO_PRIO(nice
);
4614 p
->prio
= effective_prio(p
);
4615 delta
= p
->prio
- old_prio
;
4618 enqueue_task(rq
, p
, 0);
4620 * If the task increased its priority or is running and
4621 * lowered its priority, then reschedule its CPU:
4623 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4624 resched_task(rq
->curr
);
4627 task_rq_unlock(rq
, &flags
);
4629 EXPORT_SYMBOL(set_user_nice
);
4632 * can_nice - check if a task can reduce its nice value
4636 int can_nice(const struct task_struct
*p
, const int nice
)
4638 /* convert nice value [19,-20] to rlimit style value [1,40] */
4639 int nice_rlim
= 20 - nice
;
4641 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4642 capable(CAP_SYS_NICE
));
4645 #ifdef __ARCH_WANT_SYS_NICE
4648 * sys_nice - change the priority of the current process.
4649 * @increment: priority increment
4651 * sys_setpriority is a more generic, but much slower function that
4652 * does similar things.
4654 SYSCALL_DEFINE1(nice
, int, increment
)
4659 * Setpriority might change our priority at the same moment.
4660 * We don't have to worry. Conceptually one call occurs first
4661 * and we have a single winner.
4663 if (increment
< -40)
4668 nice
= TASK_NICE(current
) + increment
;
4674 if (increment
< 0 && !can_nice(current
, nice
))
4677 retval
= security_task_setnice(current
, nice
);
4681 set_user_nice(current
, nice
);
4688 * task_prio - return the priority value of a given task.
4689 * @p: the task in question.
4691 * This is the priority value as seen by users in /proc.
4692 * RT tasks are offset by -200. Normal tasks are centered
4693 * around 0, value goes from -16 to +15.
4695 int task_prio(const struct task_struct
*p
)
4697 return p
->prio
- MAX_RT_PRIO
;
4701 * task_nice - return the nice value of a given task.
4702 * @p: the task in question.
4704 int task_nice(const struct task_struct
*p
)
4706 return TASK_NICE(p
);
4708 EXPORT_SYMBOL(task_nice
);
4711 * idle_cpu - is a given cpu idle currently?
4712 * @cpu: the processor in question.
4714 int idle_cpu(int cpu
)
4716 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4720 * idle_task - return the idle task for a given cpu.
4721 * @cpu: the processor in question.
4723 struct task_struct
*idle_task(int cpu
)
4725 return cpu_rq(cpu
)->idle
;
4729 * find_process_by_pid - find a process with a matching PID value.
4730 * @pid: the pid in question.
4732 static struct task_struct
*find_process_by_pid(pid_t pid
)
4734 return pid
? find_task_by_vpid(pid
) : current
;
4737 /* Actually do priority change: must hold rq lock. */
4739 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4741 BUG_ON(p
->se
.on_rq
);
4744 p
->rt_priority
= prio
;
4745 p
->normal_prio
= normal_prio(p
);
4746 /* we are holding p->pi_lock already */
4747 p
->prio
= rt_mutex_getprio(p
);
4748 if (rt_prio(p
->prio
))
4749 p
->sched_class
= &rt_sched_class
;
4751 p
->sched_class
= &fair_sched_class
;
4756 * check the target process has a UID that matches the current process's
4758 static bool check_same_owner(struct task_struct
*p
)
4760 const struct cred
*cred
= current_cred(), *pcred
;
4764 pcred
= __task_cred(p
);
4765 match
= (cred
->euid
== pcred
->euid
||
4766 cred
->euid
== pcred
->uid
);
4771 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4772 const struct sched_param
*param
, bool user
)
4774 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4775 unsigned long flags
;
4776 const struct sched_class
*prev_class
;
4780 /* may grab non-irq protected spin_locks */
4781 BUG_ON(in_interrupt());
4783 /* double check policy once rq lock held */
4785 reset_on_fork
= p
->sched_reset_on_fork
;
4786 policy
= oldpolicy
= p
->policy
;
4788 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4789 policy
&= ~SCHED_RESET_ON_FORK
;
4791 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4792 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4793 policy
!= SCHED_IDLE
)
4798 * Valid priorities for SCHED_FIFO and SCHED_RR are
4799 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4800 * SCHED_BATCH and SCHED_IDLE is 0.
4802 if (param
->sched_priority
< 0 ||
4803 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4804 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4806 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4810 * Allow unprivileged RT tasks to decrease priority:
4812 if (user
&& !capable(CAP_SYS_NICE
)) {
4813 if (rt_policy(policy
)) {
4814 unsigned long rlim_rtprio
=
4815 task_rlimit(p
, RLIMIT_RTPRIO
);
4817 /* can't set/change the rt policy */
4818 if (policy
!= p
->policy
&& !rlim_rtprio
)
4821 /* can't increase priority */
4822 if (param
->sched_priority
> p
->rt_priority
&&
4823 param
->sched_priority
> rlim_rtprio
)
4827 * Like positive nice levels, dont allow tasks to
4828 * move out of SCHED_IDLE either:
4830 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4833 /* can't change other user's priorities */
4834 if (!check_same_owner(p
))
4837 /* Normal users shall not reset the sched_reset_on_fork flag */
4838 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4843 retval
= security_task_setscheduler(p
);
4849 * make sure no PI-waiters arrive (or leave) while we are
4850 * changing the priority of the task:
4852 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4854 * To be able to change p->policy safely, the apropriate
4855 * runqueue lock must be held.
4857 rq
= __task_rq_lock(p
);
4860 * Changing the policy of the stop threads its a very bad idea
4862 if (p
== rq
->stop
) {
4863 __task_rq_unlock(rq
);
4864 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4868 #ifdef CONFIG_RT_GROUP_SCHED
4871 * Do not allow realtime tasks into groups that have no runtime
4874 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4875 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4876 !task_group_is_autogroup(task_group(p
))) {
4877 __task_rq_unlock(rq
);
4878 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4884 /* recheck policy now with rq lock held */
4885 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4886 policy
= oldpolicy
= -1;
4887 __task_rq_unlock(rq
);
4888 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4891 on_rq
= p
->se
.on_rq
;
4892 running
= task_current(rq
, p
);
4894 deactivate_task(rq
, p
, 0);
4896 p
->sched_class
->put_prev_task(rq
, p
);
4898 p
->sched_reset_on_fork
= reset_on_fork
;
4901 prev_class
= p
->sched_class
;
4902 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4905 p
->sched_class
->set_curr_task(rq
);
4907 activate_task(rq
, p
, 0);
4909 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4911 __task_rq_unlock(rq
);
4912 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4914 rt_mutex_adjust_pi(p
);
4920 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4921 * @p: the task in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4925 * NOTE that the task may be already dead.
4927 int sched_setscheduler(struct task_struct
*p
, int policy
,
4928 const struct sched_param
*param
)
4930 return __sched_setscheduler(p
, policy
, param
, true);
4932 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4935 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4936 * @p: the task in question.
4937 * @policy: new policy.
4938 * @param: structure containing the new RT priority.
4940 * Just like sched_setscheduler, only don't bother checking if the
4941 * current context has permission. For example, this is needed in
4942 * stop_machine(): we create temporary high priority worker threads,
4943 * but our caller might not have that capability.
4945 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4946 const struct sched_param
*param
)
4948 return __sched_setscheduler(p
, policy
, param
, false);
4952 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4954 struct sched_param lparam
;
4955 struct task_struct
*p
;
4958 if (!param
|| pid
< 0)
4960 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4965 p
= find_process_by_pid(pid
);
4967 retval
= sched_setscheduler(p
, policy
, &lparam
);
4974 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4975 * @pid: the pid in question.
4976 * @policy: new policy.
4977 * @param: structure containing the new RT priority.
4979 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4980 struct sched_param __user
*, param
)
4982 /* negative values for policy are not valid */
4986 return do_sched_setscheduler(pid
, policy
, param
);
4990 * sys_sched_setparam - set/change the RT priority of a thread
4991 * @pid: the pid in question.
4992 * @param: structure containing the new RT priority.
4994 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4996 return do_sched_setscheduler(pid
, -1, param
);
5000 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5001 * @pid: the pid in question.
5003 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5005 struct task_struct
*p
;
5013 p
= find_process_by_pid(pid
);
5015 retval
= security_task_getscheduler(p
);
5018 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5025 * sys_sched_getparam - get the RT priority of a thread
5026 * @pid: the pid in question.
5027 * @param: structure containing the RT priority.
5029 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5031 struct sched_param lp
;
5032 struct task_struct
*p
;
5035 if (!param
|| pid
< 0)
5039 p
= find_process_by_pid(pid
);
5044 retval
= security_task_getscheduler(p
);
5048 lp
.sched_priority
= p
->rt_priority
;
5052 * This one might sleep, we cannot do it with a spinlock held ...
5054 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5063 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5065 cpumask_var_t cpus_allowed
, new_mask
;
5066 struct task_struct
*p
;
5072 p
= find_process_by_pid(pid
);
5079 /* Prevent p going away */
5083 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5087 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5089 goto out_free_cpus_allowed
;
5092 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5095 retval
= security_task_setscheduler(p
);
5099 cpuset_cpus_allowed(p
, cpus_allowed
);
5100 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5102 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5105 cpuset_cpus_allowed(p
, cpus_allowed
);
5106 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5108 * We must have raced with a concurrent cpuset
5109 * update. Just reset the cpus_allowed to the
5110 * cpuset's cpus_allowed
5112 cpumask_copy(new_mask
, cpus_allowed
);
5117 free_cpumask_var(new_mask
);
5118 out_free_cpus_allowed
:
5119 free_cpumask_var(cpus_allowed
);
5126 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5127 struct cpumask
*new_mask
)
5129 if (len
< cpumask_size())
5130 cpumask_clear(new_mask
);
5131 else if (len
> cpumask_size())
5132 len
= cpumask_size();
5134 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5138 * sys_sched_setaffinity - set the cpu affinity of a process
5139 * @pid: pid of the process
5140 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5141 * @user_mask_ptr: user-space pointer to the new cpu mask
5143 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5144 unsigned long __user
*, user_mask_ptr
)
5146 cpumask_var_t new_mask
;
5149 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5152 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5154 retval
= sched_setaffinity(pid
, new_mask
);
5155 free_cpumask_var(new_mask
);
5159 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5161 struct task_struct
*p
;
5162 unsigned long flags
;
5170 p
= find_process_by_pid(pid
);
5174 retval
= security_task_getscheduler(p
);
5178 rq
= task_rq_lock(p
, &flags
);
5179 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5180 task_rq_unlock(rq
, &flags
);
5190 * sys_sched_getaffinity - get the cpu affinity of a process
5191 * @pid: pid of the process
5192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5193 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5195 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5196 unsigned long __user
*, user_mask_ptr
)
5201 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5203 if (len
& (sizeof(unsigned long)-1))
5206 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5209 ret
= sched_getaffinity(pid
, mask
);
5211 size_t retlen
= min_t(size_t, len
, cpumask_size());
5213 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5218 free_cpumask_var(mask
);
5224 * sys_sched_yield - yield the current processor to other threads.
5226 * This function yields the current CPU to other tasks. If there are no
5227 * other threads running on this CPU then this function will return.
5229 SYSCALL_DEFINE0(sched_yield
)
5231 struct rq
*rq
= this_rq_lock();
5233 schedstat_inc(rq
, yld_count
);
5234 current
->sched_class
->yield_task(rq
);
5237 * Since we are going to call schedule() anyway, there's
5238 * no need to preempt or enable interrupts:
5240 __release(rq
->lock
);
5241 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5242 do_raw_spin_unlock(&rq
->lock
);
5243 preempt_enable_no_resched();
5250 static inline int should_resched(void)
5252 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5255 static void __cond_resched(void)
5257 add_preempt_count(PREEMPT_ACTIVE
);
5259 sub_preempt_count(PREEMPT_ACTIVE
);
5262 int __sched
_cond_resched(void)
5264 if (should_resched()) {
5270 EXPORT_SYMBOL(_cond_resched
);
5273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5274 * call schedule, and on return reacquire the lock.
5276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5277 * operations here to prevent schedule() from being called twice (once via
5278 * spin_unlock(), once by hand).
5280 int __cond_resched_lock(spinlock_t
*lock
)
5282 int resched
= should_resched();
5285 lockdep_assert_held(lock
);
5287 if (spin_needbreak(lock
) || resched
) {
5298 EXPORT_SYMBOL(__cond_resched_lock
);
5300 int __sched
__cond_resched_softirq(void)
5302 BUG_ON(!in_softirq());
5304 if (should_resched()) {
5312 EXPORT_SYMBOL(__cond_resched_softirq
);
5315 * yield - yield the current processor to other threads.
5317 * This is a shortcut for kernel-space yielding - it marks the
5318 * thread runnable and calls sys_sched_yield().
5320 void __sched
yield(void)
5322 set_current_state(TASK_RUNNING
);
5325 EXPORT_SYMBOL(yield
);
5328 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5329 * that process accounting knows that this is a task in IO wait state.
5331 void __sched
io_schedule(void)
5333 struct rq
*rq
= raw_rq();
5335 delayacct_blkio_start();
5336 atomic_inc(&rq
->nr_iowait
);
5337 current
->in_iowait
= 1;
5339 current
->in_iowait
= 0;
5340 atomic_dec(&rq
->nr_iowait
);
5341 delayacct_blkio_end();
5343 EXPORT_SYMBOL(io_schedule
);
5345 long __sched
io_schedule_timeout(long timeout
)
5347 struct rq
*rq
= raw_rq();
5350 delayacct_blkio_start();
5351 atomic_inc(&rq
->nr_iowait
);
5352 current
->in_iowait
= 1;
5353 ret
= schedule_timeout(timeout
);
5354 current
->in_iowait
= 0;
5355 atomic_dec(&rq
->nr_iowait
);
5356 delayacct_blkio_end();
5361 * sys_sched_get_priority_max - return maximum RT priority.
5362 * @policy: scheduling class.
5364 * this syscall returns the maximum rt_priority that can be used
5365 * by a given scheduling class.
5367 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5374 ret
= MAX_USER_RT_PRIO
-1;
5386 * sys_sched_get_priority_min - return minimum RT priority.
5387 * @policy: scheduling class.
5389 * this syscall returns the minimum rt_priority that can be used
5390 * by a given scheduling class.
5392 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5410 * sys_sched_rr_get_interval - return the default timeslice of a process.
5411 * @pid: pid of the process.
5412 * @interval: userspace pointer to the timeslice value.
5414 * this syscall writes the default timeslice value of a given process
5415 * into the user-space timespec buffer. A value of '0' means infinity.
5417 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5418 struct timespec __user
*, interval
)
5420 struct task_struct
*p
;
5421 unsigned int time_slice
;
5422 unsigned long flags
;
5432 p
= find_process_by_pid(pid
);
5436 retval
= security_task_getscheduler(p
);
5440 rq
= task_rq_lock(p
, &flags
);
5441 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5442 task_rq_unlock(rq
, &flags
);
5445 jiffies_to_timespec(time_slice
, &t
);
5446 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5454 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5456 void sched_show_task(struct task_struct
*p
)
5458 unsigned long free
= 0;
5461 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5462 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5463 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5464 #if BITS_PER_LONG == 32
5465 if (state
== TASK_RUNNING
)
5466 printk(KERN_CONT
" running ");
5468 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5470 if (state
== TASK_RUNNING
)
5471 printk(KERN_CONT
" running task ");
5473 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5475 #ifdef CONFIG_DEBUG_STACK_USAGE
5476 free
= stack_not_used(p
);
5478 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5479 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5480 (unsigned long)task_thread_info(p
)->flags
);
5482 show_stack(p
, NULL
);
5485 void show_state_filter(unsigned long state_filter
)
5487 struct task_struct
*g
, *p
;
5489 #if BITS_PER_LONG == 32
5491 " task PC stack pid father\n");
5494 " task PC stack pid father\n");
5496 read_lock(&tasklist_lock
);
5497 do_each_thread(g
, p
) {
5499 * reset the NMI-timeout, listing all files on a slow
5500 * console might take alot of time:
5502 touch_nmi_watchdog();
5503 if (!state_filter
|| (p
->state
& state_filter
))
5505 } while_each_thread(g
, p
);
5507 touch_all_softlockup_watchdogs();
5509 #ifdef CONFIG_SCHED_DEBUG
5510 sysrq_sched_debug_show();
5512 read_unlock(&tasklist_lock
);
5514 * Only show locks if all tasks are dumped:
5517 debug_show_all_locks();
5520 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5522 idle
->sched_class
= &idle_sched_class
;
5526 * init_idle - set up an idle thread for a given CPU
5527 * @idle: task in question
5528 * @cpu: cpu the idle task belongs to
5530 * NOTE: this function does not set the idle thread's NEED_RESCHED
5531 * flag, to make booting more robust.
5533 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5535 struct rq
*rq
= cpu_rq(cpu
);
5536 unsigned long flags
;
5538 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5541 idle
->state
= TASK_RUNNING
;
5542 idle
->se
.exec_start
= sched_clock();
5544 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5546 * We're having a chicken and egg problem, even though we are
5547 * holding rq->lock, the cpu isn't yet set to this cpu so the
5548 * lockdep check in task_group() will fail.
5550 * Similar case to sched_fork(). / Alternatively we could
5551 * use task_rq_lock() here and obtain the other rq->lock.
5556 __set_task_cpu(idle
, cpu
);
5559 rq
->curr
= rq
->idle
= idle
;
5560 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5563 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5565 /* Set the preempt count _outside_ the spinlocks! */
5566 #if defined(CONFIG_PREEMPT)
5567 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5569 task_thread_info(idle
)->preempt_count
= 0;
5572 * The idle tasks have their own, simple scheduling class:
5574 idle
->sched_class
= &idle_sched_class
;
5575 ftrace_graph_init_task(idle
);
5579 * In a system that switches off the HZ timer nohz_cpu_mask
5580 * indicates which cpus entered this state. This is used
5581 * in the rcu update to wait only for active cpus. For system
5582 * which do not switch off the HZ timer nohz_cpu_mask should
5583 * always be CPU_BITS_NONE.
5585 cpumask_var_t nohz_cpu_mask
;
5588 * Increase the granularity value when there are more CPUs,
5589 * because with more CPUs the 'effective latency' as visible
5590 * to users decreases. But the relationship is not linear,
5591 * so pick a second-best guess by going with the log2 of the
5594 * This idea comes from the SD scheduler of Con Kolivas:
5596 static int get_update_sysctl_factor(void)
5598 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5599 unsigned int factor
;
5601 switch (sysctl_sched_tunable_scaling
) {
5602 case SCHED_TUNABLESCALING_NONE
:
5605 case SCHED_TUNABLESCALING_LINEAR
:
5608 case SCHED_TUNABLESCALING_LOG
:
5610 factor
= 1 + ilog2(cpus
);
5617 static void update_sysctl(void)
5619 unsigned int factor
= get_update_sysctl_factor();
5621 #define SET_SYSCTL(name) \
5622 (sysctl_##name = (factor) * normalized_sysctl_##name)
5623 SET_SYSCTL(sched_min_granularity
);
5624 SET_SYSCTL(sched_latency
);
5625 SET_SYSCTL(sched_wakeup_granularity
);
5629 static inline void sched_init_granularity(void)
5636 * This is how migration works:
5638 * 1) we invoke migration_cpu_stop() on the target CPU using
5640 * 2) stopper starts to run (implicitly forcing the migrated thread
5642 * 3) it checks whether the migrated task is still in the wrong runqueue.
5643 * 4) if it's in the wrong runqueue then the migration thread removes
5644 * it and puts it into the right queue.
5645 * 5) stopper completes and stop_one_cpu() returns and the migration
5650 * Change a given task's CPU affinity. Migrate the thread to a
5651 * proper CPU and schedule it away if the CPU it's executing on
5652 * is removed from the allowed bitmask.
5654 * NOTE: the caller must have a valid reference to the task, the
5655 * task must not exit() & deallocate itself prematurely. The
5656 * call is not atomic; no spinlocks may be held.
5658 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5660 unsigned long flags
;
5662 unsigned int dest_cpu
;
5666 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5667 * drop the rq->lock and still rely on ->cpus_allowed.
5670 while (task_is_waking(p
))
5672 rq
= task_rq_lock(p
, &flags
);
5673 if (task_is_waking(p
)) {
5674 task_rq_unlock(rq
, &flags
);
5678 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5683 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5684 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5689 if (p
->sched_class
->set_cpus_allowed
)
5690 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5692 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5693 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5696 /* Can the task run on the task's current CPU? If so, we're done */
5697 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5700 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5701 if (migrate_task(p
, rq
)) {
5702 struct migration_arg arg
= { p
, dest_cpu
};
5703 /* Need help from migration thread: drop lock and wait. */
5704 task_rq_unlock(rq
, &flags
);
5705 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5706 tlb_migrate_finish(p
->mm
);
5710 task_rq_unlock(rq
, &flags
);
5714 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5717 * Move (not current) task off this cpu, onto dest cpu. We're doing
5718 * this because either it can't run here any more (set_cpus_allowed()
5719 * away from this CPU, or CPU going down), or because we're
5720 * attempting to rebalance this task on exec (sched_exec).
5722 * So we race with normal scheduler movements, but that's OK, as long
5723 * as the task is no longer on this CPU.
5725 * Returns non-zero if task was successfully migrated.
5727 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5729 struct rq
*rq_dest
, *rq_src
;
5732 if (unlikely(!cpu_active(dest_cpu
)))
5735 rq_src
= cpu_rq(src_cpu
);
5736 rq_dest
= cpu_rq(dest_cpu
);
5738 double_rq_lock(rq_src
, rq_dest
);
5739 /* Already moved. */
5740 if (task_cpu(p
) != src_cpu
)
5742 /* Affinity changed (again). */
5743 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5747 * If we're not on a rq, the next wake-up will ensure we're
5751 deactivate_task(rq_src
, p
, 0);
5752 set_task_cpu(p
, dest_cpu
);
5753 activate_task(rq_dest
, p
, 0);
5754 check_preempt_curr(rq_dest
, p
, 0);
5759 double_rq_unlock(rq_src
, rq_dest
);
5764 * migration_cpu_stop - this will be executed by a highprio stopper thread
5765 * and performs thread migration by bumping thread off CPU then
5766 * 'pushing' onto another runqueue.
5768 static int migration_cpu_stop(void *data
)
5770 struct migration_arg
*arg
= data
;
5773 * The original target cpu might have gone down and we might
5774 * be on another cpu but it doesn't matter.
5776 local_irq_disable();
5777 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5782 #ifdef CONFIG_HOTPLUG_CPU
5785 * Ensures that the idle task is using init_mm right before its cpu goes
5788 void idle_task_exit(void)
5790 struct mm_struct
*mm
= current
->active_mm
;
5792 BUG_ON(cpu_online(smp_processor_id()));
5795 switch_mm(mm
, &init_mm
, current
);
5800 * While a dead CPU has no uninterruptible tasks queued at this point,
5801 * it might still have a nonzero ->nr_uninterruptible counter, because
5802 * for performance reasons the counter is not stricly tracking tasks to
5803 * their home CPUs. So we just add the counter to another CPU's counter,
5804 * to keep the global sum constant after CPU-down:
5806 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5808 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5810 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5811 rq_src
->nr_uninterruptible
= 0;
5815 * remove the tasks which were accounted by rq from calc_load_tasks.
5817 static void calc_global_load_remove(struct rq
*rq
)
5819 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5820 rq
->calc_load_active
= 0;
5824 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5825 * try_to_wake_up()->select_task_rq().
5827 * Called with rq->lock held even though we'er in stop_machine() and
5828 * there's no concurrency possible, we hold the required locks anyway
5829 * because of lock validation efforts.
5831 static void migrate_tasks(unsigned int dead_cpu
)
5833 struct rq
*rq
= cpu_rq(dead_cpu
);
5834 struct task_struct
*next
, *stop
= rq
->stop
;
5838 * Fudge the rq selection such that the below task selection loop
5839 * doesn't get stuck on the currently eligible stop task.
5841 * We're currently inside stop_machine() and the rq is either stuck
5842 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5843 * either way we should never end up calling schedule() until we're
5850 * There's this thread running, bail when that's the only
5853 if (rq
->nr_running
== 1)
5856 next
= pick_next_task(rq
);
5858 next
->sched_class
->put_prev_task(rq
, next
);
5860 /* Find suitable destination for @next, with force if needed. */
5861 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
5862 raw_spin_unlock(&rq
->lock
);
5864 __migrate_task(next
, dead_cpu
, dest_cpu
);
5866 raw_spin_lock(&rq
->lock
);
5872 #endif /* CONFIG_HOTPLUG_CPU */
5874 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5876 static struct ctl_table sd_ctl_dir
[] = {
5878 .procname
= "sched_domain",
5884 static struct ctl_table sd_ctl_root
[] = {
5886 .procname
= "kernel",
5888 .child
= sd_ctl_dir
,
5893 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5895 struct ctl_table
*entry
=
5896 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5901 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5903 struct ctl_table
*entry
;
5906 * In the intermediate directories, both the child directory and
5907 * procname are dynamically allocated and could fail but the mode
5908 * will always be set. In the lowest directory the names are
5909 * static strings and all have proc handlers.
5911 for (entry
= *tablep
; entry
->mode
; entry
++) {
5913 sd_free_ctl_entry(&entry
->child
);
5914 if (entry
->proc_handler
== NULL
)
5915 kfree(entry
->procname
);
5923 set_table_entry(struct ctl_table
*entry
,
5924 const char *procname
, void *data
, int maxlen
,
5925 mode_t mode
, proc_handler
*proc_handler
)
5927 entry
->procname
= procname
;
5929 entry
->maxlen
= maxlen
;
5931 entry
->proc_handler
= proc_handler
;
5934 static struct ctl_table
*
5935 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5937 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5942 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5943 sizeof(long), 0644, proc_doulongvec_minmax
);
5944 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5945 sizeof(long), 0644, proc_doulongvec_minmax
);
5946 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5947 sizeof(int), 0644, proc_dointvec_minmax
);
5948 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5949 sizeof(int), 0644, proc_dointvec_minmax
);
5950 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5951 sizeof(int), 0644, proc_dointvec_minmax
);
5952 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5953 sizeof(int), 0644, proc_dointvec_minmax
);
5954 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5955 sizeof(int), 0644, proc_dointvec_minmax
);
5956 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5957 sizeof(int), 0644, proc_dointvec_minmax
);
5958 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5959 sizeof(int), 0644, proc_dointvec_minmax
);
5960 set_table_entry(&table
[9], "cache_nice_tries",
5961 &sd
->cache_nice_tries
,
5962 sizeof(int), 0644, proc_dointvec_minmax
);
5963 set_table_entry(&table
[10], "flags", &sd
->flags
,
5964 sizeof(int), 0644, proc_dointvec_minmax
);
5965 set_table_entry(&table
[11], "name", sd
->name
,
5966 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5967 /* &table[12] is terminator */
5972 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5974 struct ctl_table
*entry
, *table
;
5975 struct sched_domain
*sd
;
5976 int domain_num
= 0, i
;
5979 for_each_domain(cpu
, sd
)
5981 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5986 for_each_domain(cpu
, sd
) {
5987 snprintf(buf
, 32, "domain%d", i
);
5988 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5990 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5997 static struct ctl_table_header
*sd_sysctl_header
;
5998 static void register_sched_domain_sysctl(void)
6000 int i
, cpu_num
= num_possible_cpus();
6001 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6004 WARN_ON(sd_ctl_dir
[0].child
);
6005 sd_ctl_dir
[0].child
= entry
;
6010 for_each_possible_cpu(i
) {
6011 snprintf(buf
, 32, "cpu%d", i
);
6012 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6014 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6018 WARN_ON(sd_sysctl_header
);
6019 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6022 /* may be called multiple times per register */
6023 static void unregister_sched_domain_sysctl(void)
6025 if (sd_sysctl_header
)
6026 unregister_sysctl_table(sd_sysctl_header
);
6027 sd_sysctl_header
= NULL
;
6028 if (sd_ctl_dir
[0].child
)
6029 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6032 static void register_sched_domain_sysctl(void)
6035 static void unregister_sched_domain_sysctl(void)
6040 static void set_rq_online(struct rq
*rq
)
6043 const struct sched_class
*class;
6045 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6048 for_each_class(class) {
6049 if (class->rq_online
)
6050 class->rq_online(rq
);
6055 static void set_rq_offline(struct rq
*rq
)
6058 const struct sched_class
*class;
6060 for_each_class(class) {
6061 if (class->rq_offline
)
6062 class->rq_offline(rq
);
6065 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6071 * migration_call - callback that gets triggered when a CPU is added.
6072 * Here we can start up the necessary migration thread for the new CPU.
6074 static int __cpuinit
6075 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6077 int cpu
= (long)hcpu
;
6078 unsigned long flags
;
6079 struct rq
*rq
= cpu_rq(cpu
);
6081 switch (action
& ~CPU_TASKS_FROZEN
) {
6083 case CPU_UP_PREPARE
:
6084 rq
->calc_load_update
= calc_load_update
;
6088 /* Update our root-domain */
6089 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6091 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6095 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6098 #ifdef CONFIG_HOTPLUG_CPU
6100 /* Update our root-domain */
6101 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6103 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6107 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6108 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6110 migrate_nr_uninterruptible(rq
);
6111 calc_global_load_remove(rq
);
6119 * Register at high priority so that task migration (migrate_all_tasks)
6120 * happens before everything else. This has to be lower priority than
6121 * the notifier in the perf_event subsystem, though.
6123 static struct notifier_block __cpuinitdata migration_notifier
= {
6124 .notifier_call
= migration_call
,
6125 .priority
= CPU_PRI_MIGRATION
,
6128 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6129 unsigned long action
, void *hcpu
)
6131 switch (action
& ~CPU_TASKS_FROZEN
) {
6133 case CPU_DOWN_FAILED
:
6134 set_cpu_active((long)hcpu
, true);
6141 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6142 unsigned long action
, void *hcpu
)
6144 switch (action
& ~CPU_TASKS_FROZEN
) {
6145 case CPU_DOWN_PREPARE
:
6146 set_cpu_active((long)hcpu
, false);
6153 static int __init
migration_init(void)
6155 void *cpu
= (void *)(long)smp_processor_id();
6158 /* Initialize migration for the boot CPU */
6159 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6160 BUG_ON(err
== NOTIFY_BAD
);
6161 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6162 register_cpu_notifier(&migration_notifier
);
6164 /* Register cpu active notifiers */
6165 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6166 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6170 early_initcall(migration_init
);
6175 #ifdef CONFIG_SCHED_DEBUG
6177 static __read_mostly
int sched_domain_debug_enabled
;
6179 static int __init
sched_domain_debug_setup(char *str
)
6181 sched_domain_debug_enabled
= 1;
6185 early_param("sched_debug", sched_domain_debug_setup
);
6187 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6188 struct cpumask
*groupmask
)
6190 struct sched_group
*group
= sd
->groups
;
6193 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6194 cpumask_clear(groupmask
);
6196 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6198 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6199 printk("does not load-balance\n");
6201 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6206 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6208 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6209 printk(KERN_ERR
"ERROR: domain->span does not contain "
6212 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6213 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6217 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6221 printk(KERN_ERR
"ERROR: group is NULL\n");
6225 if (!group
->cpu_power
) {
6226 printk(KERN_CONT
"\n");
6227 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6232 if (!cpumask_weight(sched_group_cpus(group
))) {
6233 printk(KERN_CONT
"\n");
6234 printk(KERN_ERR
"ERROR: empty group\n");
6238 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6239 printk(KERN_CONT
"\n");
6240 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6244 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6246 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6248 printk(KERN_CONT
" %s", str
);
6249 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6250 printk(KERN_CONT
" (cpu_power = %d)",
6254 group
= group
->next
;
6255 } while (group
!= sd
->groups
);
6256 printk(KERN_CONT
"\n");
6258 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6259 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6262 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6263 printk(KERN_ERR
"ERROR: parent span is not a superset "
6264 "of domain->span\n");
6268 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6270 cpumask_var_t groupmask
;
6273 if (!sched_domain_debug_enabled
)
6277 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6281 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6283 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6284 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6289 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6296 free_cpumask_var(groupmask
);
6298 #else /* !CONFIG_SCHED_DEBUG */
6299 # define sched_domain_debug(sd, cpu) do { } while (0)
6300 #endif /* CONFIG_SCHED_DEBUG */
6302 static int sd_degenerate(struct sched_domain
*sd
)
6304 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6307 /* Following flags need at least 2 groups */
6308 if (sd
->flags
& (SD_LOAD_BALANCE
|
6309 SD_BALANCE_NEWIDLE
|
6313 SD_SHARE_PKG_RESOURCES
)) {
6314 if (sd
->groups
!= sd
->groups
->next
)
6318 /* Following flags don't use groups */
6319 if (sd
->flags
& (SD_WAKE_AFFINE
))
6326 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6328 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6330 if (sd_degenerate(parent
))
6333 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6336 /* Flags needing groups don't count if only 1 group in parent */
6337 if (parent
->groups
== parent
->groups
->next
) {
6338 pflags
&= ~(SD_LOAD_BALANCE
|
6339 SD_BALANCE_NEWIDLE
|
6343 SD_SHARE_PKG_RESOURCES
);
6344 if (nr_node_ids
== 1)
6345 pflags
&= ~SD_SERIALIZE
;
6347 if (~cflags
& pflags
)
6353 static void free_rootdomain(struct root_domain
*rd
)
6355 synchronize_sched();
6357 cpupri_cleanup(&rd
->cpupri
);
6359 free_cpumask_var(rd
->rto_mask
);
6360 free_cpumask_var(rd
->online
);
6361 free_cpumask_var(rd
->span
);
6365 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6367 struct root_domain
*old_rd
= NULL
;
6368 unsigned long flags
;
6370 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6375 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6378 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6381 * If we dont want to free the old_rt yet then
6382 * set old_rd to NULL to skip the freeing later
6385 if (!atomic_dec_and_test(&old_rd
->refcount
))
6389 atomic_inc(&rd
->refcount
);
6392 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6393 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6396 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6399 free_rootdomain(old_rd
);
6402 static int init_rootdomain(struct root_domain
*rd
)
6404 memset(rd
, 0, sizeof(*rd
));
6406 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6408 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6410 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6413 if (cpupri_init(&rd
->cpupri
) != 0)
6418 free_cpumask_var(rd
->rto_mask
);
6420 free_cpumask_var(rd
->online
);
6422 free_cpumask_var(rd
->span
);
6427 static void init_defrootdomain(void)
6429 init_rootdomain(&def_root_domain
);
6431 atomic_set(&def_root_domain
.refcount
, 1);
6434 static struct root_domain
*alloc_rootdomain(void)
6436 struct root_domain
*rd
;
6438 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6442 if (init_rootdomain(rd
) != 0) {
6451 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6452 * hold the hotplug lock.
6455 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6457 struct rq
*rq
= cpu_rq(cpu
);
6458 struct sched_domain
*tmp
;
6460 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6461 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6463 /* Remove the sched domains which do not contribute to scheduling. */
6464 for (tmp
= sd
; tmp
; ) {
6465 struct sched_domain
*parent
= tmp
->parent
;
6469 if (sd_parent_degenerate(tmp
, parent
)) {
6470 tmp
->parent
= parent
->parent
;
6472 parent
->parent
->child
= tmp
;
6477 if (sd
&& sd_degenerate(sd
)) {
6483 sched_domain_debug(sd
, cpu
);
6485 rq_attach_root(rq
, rd
);
6486 rcu_assign_pointer(rq
->sd
, sd
);
6489 /* cpus with isolated domains */
6490 static cpumask_var_t cpu_isolated_map
;
6492 /* Setup the mask of cpus configured for isolated domains */
6493 static int __init
isolated_cpu_setup(char *str
)
6495 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6496 cpulist_parse(str
, cpu_isolated_map
);
6500 __setup("isolcpus=", isolated_cpu_setup
);
6503 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6504 * to a function which identifies what group(along with sched group) a CPU
6505 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6506 * (due to the fact that we keep track of groups covered with a struct cpumask).
6508 * init_sched_build_groups will build a circular linked list of the groups
6509 * covered by the given span, and will set each group's ->cpumask correctly,
6510 * and ->cpu_power to 0.
6513 init_sched_build_groups(const struct cpumask
*span
,
6514 const struct cpumask
*cpu_map
,
6515 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6516 struct sched_group
**sg
,
6517 struct cpumask
*tmpmask
),
6518 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6520 struct sched_group
*first
= NULL
, *last
= NULL
;
6523 cpumask_clear(covered
);
6525 for_each_cpu(i
, span
) {
6526 struct sched_group
*sg
;
6527 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6530 if (cpumask_test_cpu(i
, covered
))
6533 cpumask_clear(sched_group_cpus(sg
));
6536 for_each_cpu(j
, span
) {
6537 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6540 cpumask_set_cpu(j
, covered
);
6541 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6552 #define SD_NODES_PER_DOMAIN 16
6557 * find_next_best_node - find the next node to include in a sched_domain
6558 * @node: node whose sched_domain we're building
6559 * @used_nodes: nodes already in the sched_domain
6561 * Find the next node to include in a given scheduling domain. Simply
6562 * finds the closest node not already in the @used_nodes map.
6564 * Should use nodemask_t.
6566 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6568 int i
, n
, val
, min_val
, best_node
= 0;
6572 for (i
= 0; i
< nr_node_ids
; i
++) {
6573 /* Start at @node */
6574 n
= (node
+ i
) % nr_node_ids
;
6576 if (!nr_cpus_node(n
))
6579 /* Skip already used nodes */
6580 if (node_isset(n
, *used_nodes
))
6583 /* Simple min distance search */
6584 val
= node_distance(node
, n
);
6586 if (val
< min_val
) {
6592 node_set(best_node
, *used_nodes
);
6597 * sched_domain_node_span - get a cpumask for a node's sched_domain
6598 * @node: node whose cpumask we're constructing
6599 * @span: resulting cpumask
6601 * Given a node, construct a good cpumask for its sched_domain to span. It
6602 * should be one that prevents unnecessary balancing, but also spreads tasks
6605 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6607 nodemask_t used_nodes
;
6610 cpumask_clear(span
);
6611 nodes_clear(used_nodes
);
6613 cpumask_or(span
, span
, cpumask_of_node(node
));
6614 node_set(node
, used_nodes
);
6616 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6617 int next_node
= find_next_best_node(node
, &used_nodes
);
6619 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6622 #endif /* CONFIG_NUMA */
6624 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6627 * The cpus mask in sched_group and sched_domain hangs off the end.
6629 * ( See the the comments in include/linux/sched.h:struct sched_group
6630 * and struct sched_domain. )
6632 struct static_sched_group
{
6633 struct sched_group sg
;
6634 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6637 struct static_sched_domain
{
6638 struct sched_domain sd
;
6639 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6645 cpumask_var_t domainspan
;
6646 cpumask_var_t covered
;
6647 cpumask_var_t notcovered
;
6649 cpumask_var_t nodemask
;
6650 cpumask_var_t this_sibling_map
;
6651 cpumask_var_t this_core_map
;
6652 cpumask_var_t this_book_map
;
6653 cpumask_var_t send_covered
;
6654 cpumask_var_t tmpmask
;
6655 struct sched_group
**sched_group_nodes
;
6656 struct root_domain
*rd
;
6660 sa_sched_groups
= 0,
6666 sa_this_sibling_map
,
6668 sa_sched_group_nodes
,
6678 * SMT sched-domains:
6680 #ifdef CONFIG_SCHED_SMT
6681 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6682 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6685 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6686 struct sched_group
**sg
, struct cpumask
*unused
)
6689 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6692 #endif /* CONFIG_SCHED_SMT */
6695 * multi-core sched-domains:
6697 #ifdef CONFIG_SCHED_MC
6698 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6699 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6702 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6703 struct sched_group
**sg
, struct cpumask
*mask
)
6706 #ifdef CONFIG_SCHED_SMT
6707 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6708 group
= cpumask_first(mask
);
6713 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6716 #endif /* CONFIG_SCHED_MC */
6719 * book sched-domains:
6721 #ifdef CONFIG_SCHED_BOOK
6722 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6723 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6726 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6727 struct sched_group
**sg
, struct cpumask
*mask
)
6730 #ifdef CONFIG_SCHED_MC
6731 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6732 group
= cpumask_first(mask
);
6733 #elif defined(CONFIG_SCHED_SMT)
6734 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6735 group
= cpumask_first(mask
);
6738 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6741 #endif /* CONFIG_SCHED_BOOK */
6743 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6744 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6747 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6748 struct sched_group
**sg
, struct cpumask
*mask
)
6751 #ifdef CONFIG_SCHED_BOOK
6752 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6753 group
= cpumask_first(mask
);
6754 #elif defined(CONFIG_SCHED_MC)
6755 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6756 group
= cpumask_first(mask
);
6757 #elif defined(CONFIG_SCHED_SMT)
6758 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6759 group
= cpumask_first(mask
);
6764 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6770 * The init_sched_build_groups can't handle what we want to do with node
6771 * groups, so roll our own. Now each node has its own list of groups which
6772 * gets dynamically allocated.
6774 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6775 static struct sched_group
***sched_group_nodes_bycpu
;
6777 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6778 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6780 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6781 struct sched_group
**sg
,
6782 struct cpumask
*nodemask
)
6786 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6787 group
= cpumask_first(nodemask
);
6790 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6794 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6796 struct sched_group
*sg
= group_head
;
6802 for_each_cpu(j
, sched_group_cpus(sg
)) {
6803 struct sched_domain
*sd
;
6805 sd
= &per_cpu(phys_domains
, j
).sd
;
6806 if (j
!= group_first_cpu(sd
->groups
)) {
6808 * Only add "power" once for each
6814 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6817 } while (sg
!= group_head
);
6820 static int build_numa_sched_groups(struct s_data
*d
,
6821 const struct cpumask
*cpu_map
, int num
)
6823 struct sched_domain
*sd
;
6824 struct sched_group
*sg
, *prev
;
6827 cpumask_clear(d
->covered
);
6828 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6829 if (cpumask_empty(d
->nodemask
)) {
6830 d
->sched_group_nodes
[num
] = NULL
;
6834 sched_domain_node_span(num
, d
->domainspan
);
6835 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6837 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6840 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6844 d
->sched_group_nodes
[num
] = sg
;
6846 for_each_cpu(j
, d
->nodemask
) {
6847 sd
= &per_cpu(node_domains
, j
).sd
;
6852 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6854 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6857 for (j
= 0; j
< nr_node_ids
; j
++) {
6858 n
= (num
+ j
) % nr_node_ids
;
6859 cpumask_complement(d
->notcovered
, d
->covered
);
6860 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6861 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6862 if (cpumask_empty(d
->tmpmask
))
6864 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6865 if (cpumask_empty(d
->tmpmask
))
6867 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6871 "Can not alloc domain group for node %d\n", j
);
6875 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6876 sg
->next
= prev
->next
;
6877 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6884 #endif /* CONFIG_NUMA */
6887 /* Free memory allocated for various sched_group structures */
6888 static void free_sched_groups(const struct cpumask
*cpu_map
,
6889 struct cpumask
*nodemask
)
6893 for_each_cpu(cpu
, cpu_map
) {
6894 struct sched_group
**sched_group_nodes
6895 = sched_group_nodes_bycpu
[cpu
];
6897 if (!sched_group_nodes
)
6900 for (i
= 0; i
< nr_node_ids
; i
++) {
6901 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6903 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6904 if (cpumask_empty(nodemask
))
6914 if (oldsg
!= sched_group_nodes
[i
])
6917 kfree(sched_group_nodes
);
6918 sched_group_nodes_bycpu
[cpu
] = NULL
;
6921 #else /* !CONFIG_NUMA */
6922 static void free_sched_groups(const struct cpumask
*cpu_map
,
6923 struct cpumask
*nodemask
)
6926 #endif /* CONFIG_NUMA */
6929 * Initialize sched groups cpu_power.
6931 * cpu_power indicates the capacity of sched group, which is used while
6932 * distributing the load between different sched groups in a sched domain.
6933 * Typically cpu_power for all the groups in a sched domain will be same unless
6934 * there are asymmetries in the topology. If there are asymmetries, group
6935 * having more cpu_power will pickup more load compared to the group having
6938 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6940 struct sched_domain
*child
;
6941 struct sched_group
*group
;
6945 WARN_ON(!sd
|| !sd
->groups
);
6947 if (cpu
!= group_first_cpu(sd
->groups
))
6950 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
6954 sd
->groups
->cpu_power
= 0;
6957 power
= SCHED_LOAD_SCALE
;
6958 weight
= cpumask_weight(sched_domain_span(sd
));
6960 * SMT siblings share the power of a single core.
6961 * Usually multiple threads get a better yield out of
6962 * that one core than a single thread would have,
6963 * reflect that in sd->smt_gain.
6965 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6966 power
*= sd
->smt_gain
;
6968 power
>>= SCHED_LOAD_SHIFT
;
6970 sd
->groups
->cpu_power
+= power
;
6975 * Add cpu_power of each child group to this groups cpu_power.
6977 group
= child
->groups
;
6979 sd
->groups
->cpu_power
+= group
->cpu_power
;
6980 group
= group
->next
;
6981 } while (group
!= child
->groups
);
6985 * Initializers for schedule domains
6986 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6989 #ifdef CONFIG_SCHED_DEBUG
6990 # define SD_INIT_NAME(sd, type) sd->name = #type
6992 # define SD_INIT_NAME(sd, type) do { } while (0)
6995 #define SD_INIT(sd, type) sd_init_##type(sd)
6997 #define SD_INIT_FUNC(type) \
6998 static noinline void sd_init_##type(struct sched_domain *sd) \
7000 memset(sd, 0, sizeof(*sd)); \
7001 *sd = SD_##type##_INIT; \
7002 sd->level = SD_LV_##type; \
7003 SD_INIT_NAME(sd, type); \
7008 SD_INIT_FUNC(ALLNODES
)
7011 #ifdef CONFIG_SCHED_SMT
7012 SD_INIT_FUNC(SIBLING
)
7014 #ifdef CONFIG_SCHED_MC
7017 #ifdef CONFIG_SCHED_BOOK
7021 static int default_relax_domain_level
= -1;
7023 static int __init
setup_relax_domain_level(char *str
)
7027 val
= simple_strtoul(str
, NULL
, 0);
7028 if (val
< SD_LV_MAX
)
7029 default_relax_domain_level
= val
;
7033 __setup("relax_domain_level=", setup_relax_domain_level
);
7035 static void set_domain_attribute(struct sched_domain
*sd
,
7036 struct sched_domain_attr
*attr
)
7040 if (!attr
|| attr
->relax_domain_level
< 0) {
7041 if (default_relax_domain_level
< 0)
7044 request
= default_relax_domain_level
;
7046 request
= attr
->relax_domain_level
;
7047 if (request
< sd
->level
) {
7048 /* turn off idle balance on this domain */
7049 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7051 /* turn on idle balance on this domain */
7052 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7056 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7057 const struct cpumask
*cpu_map
)
7060 case sa_sched_groups
:
7061 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7062 d
->sched_group_nodes
= NULL
;
7064 free_rootdomain(d
->rd
); /* fall through */
7066 free_cpumask_var(d
->tmpmask
); /* fall through */
7067 case sa_send_covered
:
7068 free_cpumask_var(d
->send_covered
); /* fall through */
7069 case sa_this_book_map
:
7070 free_cpumask_var(d
->this_book_map
); /* fall through */
7071 case sa_this_core_map
:
7072 free_cpumask_var(d
->this_core_map
); /* fall through */
7073 case sa_this_sibling_map
:
7074 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7076 free_cpumask_var(d
->nodemask
); /* fall through */
7077 case sa_sched_group_nodes
:
7079 kfree(d
->sched_group_nodes
); /* fall through */
7081 free_cpumask_var(d
->notcovered
); /* fall through */
7083 free_cpumask_var(d
->covered
); /* fall through */
7085 free_cpumask_var(d
->domainspan
); /* fall through */
7092 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7093 const struct cpumask
*cpu_map
)
7096 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7098 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7099 return sa_domainspan
;
7100 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7102 /* Allocate the per-node list of sched groups */
7103 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7104 sizeof(struct sched_group
*), GFP_KERNEL
);
7105 if (!d
->sched_group_nodes
) {
7106 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7107 return sa_notcovered
;
7109 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7111 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7112 return sa_sched_group_nodes
;
7113 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7115 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7116 return sa_this_sibling_map
;
7117 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7118 return sa_this_core_map
;
7119 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7120 return sa_this_book_map
;
7121 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7122 return sa_send_covered
;
7123 d
->rd
= alloc_rootdomain();
7125 printk(KERN_WARNING
"Cannot alloc root domain\n");
7128 return sa_rootdomain
;
7131 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7132 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7134 struct sched_domain
*sd
= NULL
;
7136 struct sched_domain
*parent
;
7139 if (cpumask_weight(cpu_map
) >
7140 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7141 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7142 SD_INIT(sd
, ALLNODES
);
7143 set_domain_attribute(sd
, attr
);
7144 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7145 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7150 sd
= &per_cpu(node_domains
, i
).sd
;
7152 set_domain_attribute(sd
, attr
);
7153 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7154 sd
->parent
= parent
;
7157 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7162 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7163 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7164 struct sched_domain
*parent
, int i
)
7166 struct sched_domain
*sd
;
7167 sd
= &per_cpu(phys_domains
, i
).sd
;
7169 set_domain_attribute(sd
, attr
);
7170 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7171 sd
->parent
= parent
;
7174 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7178 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7179 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7180 struct sched_domain
*parent
, int i
)
7182 struct sched_domain
*sd
= parent
;
7183 #ifdef CONFIG_SCHED_BOOK
7184 sd
= &per_cpu(book_domains
, i
).sd
;
7186 set_domain_attribute(sd
, attr
);
7187 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7188 sd
->parent
= parent
;
7190 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7195 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7196 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7197 struct sched_domain
*parent
, int i
)
7199 struct sched_domain
*sd
= parent
;
7200 #ifdef CONFIG_SCHED_MC
7201 sd
= &per_cpu(core_domains
, i
).sd
;
7203 set_domain_attribute(sd
, attr
);
7204 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7205 sd
->parent
= parent
;
7207 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7212 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7213 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7214 struct sched_domain
*parent
, int i
)
7216 struct sched_domain
*sd
= parent
;
7217 #ifdef CONFIG_SCHED_SMT
7218 sd
= &per_cpu(cpu_domains
, i
).sd
;
7219 SD_INIT(sd
, SIBLING
);
7220 set_domain_attribute(sd
, attr
);
7221 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7222 sd
->parent
= parent
;
7224 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7229 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7230 const struct cpumask
*cpu_map
, int cpu
)
7233 #ifdef CONFIG_SCHED_SMT
7234 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7235 cpumask_and(d
->this_sibling_map
, cpu_map
,
7236 topology_thread_cpumask(cpu
));
7237 if (cpu
== cpumask_first(d
->this_sibling_map
))
7238 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7240 d
->send_covered
, d
->tmpmask
);
7243 #ifdef CONFIG_SCHED_MC
7244 case SD_LV_MC
: /* set up multi-core groups */
7245 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7246 if (cpu
== cpumask_first(d
->this_core_map
))
7247 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7249 d
->send_covered
, d
->tmpmask
);
7252 #ifdef CONFIG_SCHED_BOOK
7253 case SD_LV_BOOK
: /* set up book groups */
7254 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7255 if (cpu
== cpumask_first(d
->this_book_map
))
7256 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7258 d
->send_covered
, d
->tmpmask
);
7261 case SD_LV_CPU
: /* set up physical groups */
7262 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7263 if (!cpumask_empty(d
->nodemask
))
7264 init_sched_build_groups(d
->nodemask
, cpu_map
,
7266 d
->send_covered
, d
->tmpmask
);
7269 case SD_LV_ALLNODES
:
7270 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7271 d
->send_covered
, d
->tmpmask
);
7280 * Build sched domains for a given set of cpus and attach the sched domains
7281 * to the individual cpus
7283 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7284 struct sched_domain_attr
*attr
)
7286 enum s_alloc alloc_state
= sa_none
;
7288 struct sched_domain
*sd
;
7294 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7295 if (alloc_state
!= sa_rootdomain
)
7297 alloc_state
= sa_sched_groups
;
7300 * Set up domains for cpus specified by the cpu_map.
7302 for_each_cpu(i
, cpu_map
) {
7303 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7306 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7307 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7308 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7309 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7310 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7313 for_each_cpu(i
, cpu_map
) {
7314 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7315 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7316 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7319 /* Set up physical groups */
7320 for (i
= 0; i
< nr_node_ids
; i
++)
7321 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7324 /* Set up node groups */
7326 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7328 for (i
= 0; i
< nr_node_ids
; i
++)
7329 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7333 /* Calculate CPU power for physical packages and nodes */
7334 #ifdef CONFIG_SCHED_SMT
7335 for_each_cpu(i
, cpu_map
) {
7336 sd
= &per_cpu(cpu_domains
, i
).sd
;
7337 init_sched_groups_power(i
, sd
);
7340 #ifdef CONFIG_SCHED_MC
7341 for_each_cpu(i
, cpu_map
) {
7342 sd
= &per_cpu(core_domains
, i
).sd
;
7343 init_sched_groups_power(i
, sd
);
7346 #ifdef CONFIG_SCHED_BOOK
7347 for_each_cpu(i
, cpu_map
) {
7348 sd
= &per_cpu(book_domains
, i
).sd
;
7349 init_sched_groups_power(i
, sd
);
7353 for_each_cpu(i
, cpu_map
) {
7354 sd
= &per_cpu(phys_domains
, i
).sd
;
7355 init_sched_groups_power(i
, sd
);
7359 for (i
= 0; i
< nr_node_ids
; i
++)
7360 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7362 if (d
.sd_allnodes
) {
7363 struct sched_group
*sg
;
7365 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7367 init_numa_sched_groups_power(sg
);
7371 /* Attach the domains */
7372 for_each_cpu(i
, cpu_map
) {
7373 #ifdef CONFIG_SCHED_SMT
7374 sd
= &per_cpu(cpu_domains
, i
).sd
;
7375 #elif defined(CONFIG_SCHED_MC)
7376 sd
= &per_cpu(core_domains
, i
).sd
;
7377 #elif defined(CONFIG_SCHED_BOOK)
7378 sd
= &per_cpu(book_domains
, i
).sd
;
7380 sd
= &per_cpu(phys_domains
, i
).sd
;
7382 cpu_attach_domain(sd
, d
.rd
, i
);
7385 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7386 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7390 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7394 static int build_sched_domains(const struct cpumask
*cpu_map
)
7396 return __build_sched_domains(cpu_map
, NULL
);
7399 static cpumask_var_t
*doms_cur
; /* current sched domains */
7400 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7401 static struct sched_domain_attr
*dattr_cur
;
7402 /* attribues of custom domains in 'doms_cur' */
7405 * Special case: If a kmalloc of a doms_cur partition (array of
7406 * cpumask) fails, then fallback to a single sched domain,
7407 * as determined by the single cpumask fallback_doms.
7409 static cpumask_var_t fallback_doms
;
7412 * arch_update_cpu_topology lets virtualized architectures update the
7413 * cpu core maps. It is supposed to return 1 if the topology changed
7414 * or 0 if it stayed the same.
7416 int __attribute__((weak
)) arch_update_cpu_topology(void)
7421 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7424 cpumask_var_t
*doms
;
7426 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7429 for (i
= 0; i
< ndoms
; i
++) {
7430 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7431 free_sched_domains(doms
, i
);
7438 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7441 for (i
= 0; i
< ndoms
; i
++)
7442 free_cpumask_var(doms
[i
]);
7447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7448 * For now this just excludes isolated cpus, but could be used to
7449 * exclude other special cases in the future.
7451 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7455 arch_update_cpu_topology();
7457 doms_cur
= alloc_sched_domains(ndoms_cur
);
7459 doms_cur
= &fallback_doms
;
7460 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7462 err
= build_sched_domains(doms_cur
[0]);
7463 register_sched_domain_sysctl();
7468 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7469 struct cpumask
*tmpmask
)
7471 free_sched_groups(cpu_map
, tmpmask
);
7475 * Detach sched domains from a group of cpus specified in cpu_map
7476 * These cpus will now be attached to the NULL domain
7478 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7480 /* Save because hotplug lock held. */
7481 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7484 for_each_cpu(i
, cpu_map
)
7485 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7486 synchronize_sched();
7487 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7490 /* handle null as "default" */
7491 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7492 struct sched_domain_attr
*new, int idx_new
)
7494 struct sched_domain_attr tmp
;
7501 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7502 new ? (new + idx_new
) : &tmp
,
7503 sizeof(struct sched_domain_attr
));
7507 * Partition sched domains as specified by the 'ndoms_new'
7508 * cpumasks in the array doms_new[] of cpumasks. This compares
7509 * doms_new[] to the current sched domain partitioning, doms_cur[].
7510 * It destroys each deleted domain and builds each new domain.
7512 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7513 * The masks don't intersect (don't overlap.) We should setup one
7514 * sched domain for each mask. CPUs not in any of the cpumasks will
7515 * not be load balanced. If the same cpumask appears both in the
7516 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7519 * The passed in 'doms_new' should be allocated using
7520 * alloc_sched_domains. This routine takes ownership of it and will
7521 * free_sched_domains it when done with it. If the caller failed the
7522 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7523 * and partition_sched_domains() will fallback to the single partition
7524 * 'fallback_doms', it also forces the domains to be rebuilt.
7526 * If doms_new == NULL it will be replaced with cpu_online_mask.
7527 * ndoms_new == 0 is a special case for destroying existing domains,
7528 * and it will not create the default domain.
7530 * Call with hotplug lock held
7532 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7533 struct sched_domain_attr
*dattr_new
)
7538 mutex_lock(&sched_domains_mutex
);
7540 /* always unregister in case we don't destroy any domains */
7541 unregister_sched_domain_sysctl();
7543 /* Let architecture update cpu core mappings. */
7544 new_topology
= arch_update_cpu_topology();
7546 n
= doms_new
? ndoms_new
: 0;
7548 /* Destroy deleted domains */
7549 for (i
= 0; i
< ndoms_cur
; i
++) {
7550 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7551 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7552 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7555 /* no match - a current sched domain not in new doms_new[] */
7556 detach_destroy_domains(doms_cur
[i
]);
7561 if (doms_new
== NULL
) {
7563 doms_new
= &fallback_doms
;
7564 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7565 WARN_ON_ONCE(dattr_new
);
7568 /* Build new domains */
7569 for (i
= 0; i
< ndoms_new
; i
++) {
7570 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7571 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7572 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7575 /* no match - add a new doms_new */
7576 __build_sched_domains(doms_new
[i
],
7577 dattr_new
? dattr_new
+ i
: NULL
);
7582 /* Remember the new sched domains */
7583 if (doms_cur
!= &fallback_doms
)
7584 free_sched_domains(doms_cur
, ndoms_cur
);
7585 kfree(dattr_cur
); /* kfree(NULL) is safe */
7586 doms_cur
= doms_new
;
7587 dattr_cur
= dattr_new
;
7588 ndoms_cur
= ndoms_new
;
7590 register_sched_domain_sysctl();
7592 mutex_unlock(&sched_domains_mutex
);
7595 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7596 static void arch_reinit_sched_domains(void)
7600 /* Destroy domains first to force the rebuild */
7601 partition_sched_domains(0, NULL
, NULL
);
7603 rebuild_sched_domains();
7607 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7609 unsigned int level
= 0;
7611 if (sscanf(buf
, "%u", &level
) != 1)
7615 * level is always be positive so don't check for
7616 * level < POWERSAVINGS_BALANCE_NONE which is 0
7617 * What happens on 0 or 1 byte write,
7618 * need to check for count as well?
7621 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7625 sched_smt_power_savings
= level
;
7627 sched_mc_power_savings
= level
;
7629 arch_reinit_sched_domains();
7634 #ifdef CONFIG_SCHED_MC
7635 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7636 struct sysdev_class_attribute
*attr
,
7639 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7641 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7642 struct sysdev_class_attribute
*attr
,
7643 const char *buf
, size_t count
)
7645 return sched_power_savings_store(buf
, count
, 0);
7647 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7648 sched_mc_power_savings_show
,
7649 sched_mc_power_savings_store
);
7652 #ifdef CONFIG_SCHED_SMT
7653 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7654 struct sysdev_class_attribute
*attr
,
7657 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7659 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7660 struct sysdev_class_attribute
*attr
,
7661 const char *buf
, size_t count
)
7663 return sched_power_savings_store(buf
, count
, 1);
7665 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7666 sched_smt_power_savings_show
,
7667 sched_smt_power_savings_store
);
7670 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7674 #ifdef CONFIG_SCHED_SMT
7676 err
= sysfs_create_file(&cls
->kset
.kobj
,
7677 &attr_sched_smt_power_savings
.attr
);
7679 #ifdef CONFIG_SCHED_MC
7680 if (!err
&& mc_capable())
7681 err
= sysfs_create_file(&cls
->kset
.kobj
,
7682 &attr_sched_mc_power_savings
.attr
);
7686 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7689 * Update cpusets according to cpu_active mask. If cpusets are
7690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7691 * around partition_sched_domains().
7693 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7696 switch (action
& ~CPU_TASKS_FROZEN
) {
7698 case CPU_DOWN_FAILED
:
7699 cpuset_update_active_cpus();
7706 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7709 switch (action
& ~CPU_TASKS_FROZEN
) {
7710 case CPU_DOWN_PREPARE
:
7711 cpuset_update_active_cpus();
7718 static int update_runtime(struct notifier_block
*nfb
,
7719 unsigned long action
, void *hcpu
)
7721 int cpu
= (int)(long)hcpu
;
7724 case CPU_DOWN_PREPARE
:
7725 case CPU_DOWN_PREPARE_FROZEN
:
7726 disable_runtime(cpu_rq(cpu
));
7729 case CPU_DOWN_FAILED
:
7730 case CPU_DOWN_FAILED_FROZEN
:
7732 case CPU_ONLINE_FROZEN
:
7733 enable_runtime(cpu_rq(cpu
));
7741 void __init
sched_init_smp(void)
7743 cpumask_var_t non_isolated_cpus
;
7745 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7746 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7748 #if defined(CONFIG_NUMA)
7749 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7751 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7754 mutex_lock(&sched_domains_mutex
);
7755 arch_init_sched_domains(cpu_active_mask
);
7756 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7757 if (cpumask_empty(non_isolated_cpus
))
7758 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7759 mutex_unlock(&sched_domains_mutex
);
7762 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7763 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7765 /* RT runtime code needs to handle some hotplug events */
7766 hotcpu_notifier(update_runtime
, 0);
7770 /* Move init over to a non-isolated CPU */
7771 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7773 sched_init_granularity();
7774 free_cpumask_var(non_isolated_cpus
);
7776 init_sched_rt_class();
7779 void __init
sched_init_smp(void)
7781 sched_init_granularity();
7783 #endif /* CONFIG_SMP */
7785 const_debug
unsigned int sysctl_timer_migration
= 1;
7787 int in_sched_functions(unsigned long addr
)
7789 return in_lock_functions(addr
) ||
7790 (addr
>= (unsigned long)__sched_text_start
7791 && addr
< (unsigned long)__sched_text_end
);
7794 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7796 cfs_rq
->tasks_timeline
= RB_ROOT
;
7797 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7798 #ifdef CONFIG_FAIR_GROUP_SCHED
7801 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7804 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7806 struct rt_prio_array
*array
;
7809 array
= &rt_rq
->active
;
7810 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7811 INIT_LIST_HEAD(array
->queue
+ i
);
7812 __clear_bit(i
, array
->bitmap
);
7814 /* delimiter for bitsearch: */
7815 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7817 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7818 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7820 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7824 rt_rq
->rt_nr_migratory
= 0;
7825 rt_rq
->overloaded
= 0;
7826 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7830 rt_rq
->rt_throttled
= 0;
7831 rt_rq
->rt_runtime
= 0;
7832 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7834 #ifdef CONFIG_RT_GROUP_SCHED
7835 rt_rq
->rt_nr_boosted
= 0;
7840 #ifdef CONFIG_FAIR_GROUP_SCHED
7841 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7842 struct sched_entity
*se
, int cpu
,
7843 struct sched_entity
*parent
)
7845 struct rq
*rq
= cpu_rq(cpu
);
7846 tg
->cfs_rq
[cpu
] = cfs_rq
;
7847 init_cfs_rq(cfs_rq
, rq
);
7851 /* se could be NULL for root_task_group */
7856 se
->cfs_rq
= &rq
->cfs
;
7858 se
->cfs_rq
= parent
->my_q
;
7861 update_load_set(&se
->load
, 0);
7862 se
->parent
= parent
;
7866 #ifdef CONFIG_RT_GROUP_SCHED
7867 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7868 struct sched_rt_entity
*rt_se
, int cpu
,
7869 struct sched_rt_entity
*parent
)
7871 struct rq
*rq
= cpu_rq(cpu
);
7873 tg
->rt_rq
[cpu
] = rt_rq
;
7874 init_rt_rq(rt_rq
, rq
);
7876 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7878 tg
->rt_se
[cpu
] = rt_se
;
7883 rt_se
->rt_rq
= &rq
->rt
;
7885 rt_se
->rt_rq
= parent
->my_q
;
7887 rt_se
->my_q
= rt_rq
;
7888 rt_se
->parent
= parent
;
7889 INIT_LIST_HEAD(&rt_se
->run_list
);
7893 void __init
sched_init(void)
7896 unsigned long alloc_size
= 0, ptr
;
7898 #ifdef CONFIG_FAIR_GROUP_SCHED
7899 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7904 #ifdef CONFIG_CPUMASK_OFFSTACK
7905 alloc_size
+= num_possible_cpus() * cpumask_size();
7908 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7910 #ifdef CONFIG_FAIR_GROUP_SCHED
7911 root_task_group
.se
= (struct sched_entity
**)ptr
;
7912 ptr
+= nr_cpu_ids
* sizeof(void **);
7914 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7915 ptr
+= nr_cpu_ids
* sizeof(void **);
7917 #endif /* CONFIG_FAIR_GROUP_SCHED */
7918 #ifdef CONFIG_RT_GROUP_SCHED
7919 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7920 ptr
+= nr_cpu_ids
* sizeof(void **);
7922 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7923 ptr
+= nr_cpu_ids
* sizeof(void **);
7925 #endif /* CONFIG_RT_GROUP_SCHED */
7926 #ifdef CONFIG_CPUMASK_OFFSTACK
7927 for_each_possible_cpu(i
) {
7928 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7929 ptr
+= cpumask_size();
7931 #endif /* CONFIG_CPUMASK_OFFSTACK */
7935 init_defrootdomain();
7938 init_rt_bandwidth(&def_rt_bandwidth
,
7939 global_rt_period(), global_rt_runtime());
7941 #ifdef CONFIG_RT_GROUP_SCHED
7942 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7943 global_rt_period(), global_rt_runtime());
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7946 #ifdef CONFIG_CGROUP_SCHED
7947 list_add(&root_task_group
.list
, &task_groups
);
7948 INIT_LIST_HEAD(&root_task_group
.children
);
7949 autogroup_init(&init_task
);
7950 #endif /* CONFIG_CGROUP_SCHED */
7952 for_each_possible_cpu(i
) {
7956 raw_spin_lock_init(&rq
->lock
);
7958 rq
->calc_load_active
= 0;
7959 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7960 init_cfs_rq(&rq
->cfs
, rq
);
7961 init_rt_rq(&rq
->rt
, rq
);
7962 #ifdef CONFIG_FAIR_GROUP_SCHED
7963 root_task_group
.shares
= root_task_group_load
;
7964 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7966 * How much cpu bandwidth does root_task_group get?
7968 * In case of task-groups formed thr' the cgroup filesystem, it
7969 * gets 100% of the cpu resources in the system. This overall
7970 * system cpu resource is divided among the tasks of
7971 * root_task_group and its child task-groups in a fair manner,
7972 * based on each entity's (task or task-group's) weight
7973 * (se->load.weight).
7975 * In other words, if root_task_group has 10 tasks of weight
7976 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7977 * then A0's share of the cpu resource is:
7979 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7981 * We achieve this by letting root_task_group's tasks sit
7982 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7984 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7985 #endif /* CONFIG_FAIR_GROUP_SCHED */
7987 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7988 #ifdef CONFIG_RT_GROUP_SCHED
7989 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7990 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7993 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7994 rq
->cpu_load
[j
] = 0;
7996 rq
->last_load_update_tick
= jiffies
;
8001 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8002 rq
->post_schedule
= 0;
8003 rq
->active_balance
= 0;
8004 rq
->next_balance
= jiffies
;
8009 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8010 rq_attach_root(rq
, &def_root_domain
);
8012 rq
->nohz_balance_kick
= 0;
8013 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8017 atomic_set(&rq
->nr_iowait
, 0);
8020 set_load_weight(&init_task
);
8022 #ifdef CONFIG_PREEMPT_NOTIFIERS
8023 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8027 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8030 #ifdef CONFIG_RT_MUTEXES
8031 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8035 * The boot idle thread does lazy MMU switching as well:
8037 atomic_inc(&init_mm
.mm_count
);
8038 enter_lazy_tlb(&init_mm
, current
);
8041 * Make us the idle thread. Technically, schedule() should not be
8042 * called from this thread, however somewhere below it might be,
8043 * but because we are the idle thread, we just pick up running again
8044 * when this runqueue becomes "idle".
8046 init_idle(current
, smp_processor_id());
8048 calc_load_update
= jiffies
+ LOAD_FREQ
;
8051 * During early bootup we pretend to be a normal task:
8053 current
->sched_class
= &fair_sched_class
;
8055 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8056 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8059 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8060 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8061 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8062 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8063 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8065 /* May be allocated at isolcpus cmdline parse time */
8066 if (cpu_isolated_map
== NULL
)
8067 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8070 scheduler_running
= 1;
8073 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8074 static inline int preempt_count_equals(int preempt_offset
)
8076 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8078 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
8081 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8084 static unsigned long prev_jiffy
; /* ratelimiting */
8086 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8087 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8089 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8091 prev_jiffy
= jiffies
;
8094 "BUG: sleeping function called from invalid context at %s:%d\n",
8097 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8098 in_atomic(), irqs_disabled(),
8099 current
->pid
, current
->comm
);
8101 debug_show_held_locks(current
);
8102 if (irqs_disabled())
8103 print_irqtrace_events(current
);
8107 EXPORT_SYMBOL(__might_sleep
);
8110 #ifdef CONFIG_MAGIC_SYSRQ
8111 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8115 on_rq
= p
->se
.on_rq
;
8117 deactivate_task(rq
, p
, 0);
8118 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8120 activate_task(rq
, p
, 0);
8121 resched_task(rq
->curr
);
8125 void normalize_rt_tasks(void)
8127 struct task_struct
*g
, *p
;
8128 unsigned long flags
;
8131 read_lock_irqsave(&tasklist_lock
, flags
);
8132 do_each_thread(g
, p
) {
8134 * Only normalize user tasks:
8139 p
->se
.exec_start
= 0;
8140 #ifdef CONFIG_SCHEDSTATS
8141 p
->se
.statistics
.wait_start
= 0;
8142 p
->se
.statistics
.sleep_start
= 0;
8143 p
->se
.statistics
.block_start
= 0;
8148 * Renice negative nice level userspace
8151 if (TASK_NICE(p
) < 0 && p
->mm
)
8152 set_user_nice(p
, 0);
8156 raw_spin_lock(&p
->pi_lock
);
8157 rq
= __task_rq_lock(p
);
8159 normalize_task(rq
, p
);
8161 __task_rq_unlock(rq
);
8162 raw_spin_unlock(&p
->pi_lock
);
8163 } while_each_thread(g
, p
);
8165 read_unlock_irqrestore(&tasklist_lock
, flags
);
8168 #endif /* CONFIG_MAGIC_SYSRQ */
8170 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8172 * These functions are only useful for the IA64 MCA handling, or kdb.
8174 * They can only be called when the whole system has been
8175 * stopped - every CPU needs to be quiescent, and no scheduling
8176 * activity can take place. Using them for anything else would
8177 * be a serious bug, and as a result, they aren't even visible
8178 * under any other configuration.
8182 * curr_task - return the current task for a given cpu.
8183 * @cpu: the processor in question.
8185 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8187 struct task_struct
*curr_task(int cpu
)
8189 return cpu_curr(cpu
);
8192 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8196 * set_curr_task - set the current task for a given cpu.
8197 * @cpu: the processor in question.
8198 * @p: the task pointer to set.
8200 * Description: This function must only be used when non-maskable interrupts
8201 * are serviced on a separate stack. It allows the architecture to switch the
8202 * notion of the current task on a cpu in a non-blocking manner. This function
8203 * must be called with all CPU's synchronized, and interrupts disabled, the
8204 * and caller must save the original value of the current task (see
8205 * curr_task() above) and restore that value before reenabling interrupts and
8206 * re-starting the system.
8208 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8210 void set_curr_task(int cpu
, struct task_struct
*p
)
8217 #ifdef CONFIG_FAIR_GROUP_SCHED
8218 static void free_fair_sched_group(struct task_group
*tg
)
8222 for_each_possible_cpu(i
) {
8224 kfree(tg
->cfs_rq
[i
]);
8234 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8236 struct cfs_rq
*cfs_rq
;
8237 struct sched_entity
*se
;
8241 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8244 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8248 tg
->shares
= NICE_0_LOAD
;
8250 for_each_possible_cpu(i
) {
8253 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8254 GFP_KERNEL
, cpu_to_node(i
));
8258 se
= kzalloc_node(sizeof(struct sched_entity
),
8259 GFP_KERNEL
, cpu_to_node(i
));
8263 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8274 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8276 struct rq
*rq
= cpu_rq(cpu
);
8277 unsigned long flags
;
8280 * Only empty task groups can be destroyed; so we can speculatively
8281 * check on_list without danger of it being re-added.
8283 if (!tg
->cfs_rq
[cpu
]->on_list
)
8286 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8287 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8288 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8290 #else /* !CONFG_FAIR_GROUP_SCHED */
8291 static inline void free_fair_sched_group(struct task_group
*tg
)
8296 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8301 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8304 #endif /* CONFIG_FAIR_GROUP_SCHED */
8306 #ifdef CONFIG_RT_GROUP_SCHED
8307 static void free_rt_sched_group(struct task_group
*tg
)
8311 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8313 for_each_possible_cpu(i
) {
8315 kfree(tg
->rt_rq
[i
]);
8317 kfree(tg
->rt_se
[i
]);
8325 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8327 struct rt_rq
*rt_rq
;
8328 struct sched_rt_entity
*rt_se
;
8332 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8335 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8339 init_rt_bandwidth(&tg
->rt_bandwidth
,
8340 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8342 for_each_possible_cpu(i
) {
8345 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8346 GFP_KERNEL
, cpu_to_node(i
));
8350 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8351 GFP_KERNEL
, cpu_to_node(i
));
8355 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8365 #else /* !CONFIG_RT_GROUP_SCHED */
8366 static inline void free_rt_sched_group(struct task_group
*tg
)
8371 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8375 #endif /* CONFIG_RT_GROUP_SCHED */
8377 #ifdef CONFIG_CGROUP_SCHED
8378 static void free_sched_group(struct task_group
*tg
)
8380 free_fair_sched_group(tg
);
8381 free_rt_sched_group(tg
);
8386 /* allocate runqueue etc for a new task group */
8387 struct task_group
*sched_create_group(struct task_group
*parent
)
8389 struct task_group
*tg
;
8390 unsigned long flags
;
8392 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8394 return ERR_PTR(-ENOMEM
);
8396 if (!alloc_fair_sched_group(tg
, parent
))
8399 if (!alloc_rt_sched_group(tg
, parent
))
8402 spin_lock_irqsave(&task_group_lock
, flags
);
8403 list_add_rcu(&tg
->list
, &task_groups
);
8405 WARN_ON(!parent
); /* root should already exist */
8407 tg
->parent
= parent
;
8408 INIT_LIST_HEAD(&tg
->children
);
8409 list_add_rcu(&tg
->siblings
, &parent
->children
);
8410 spin_unlock_irqrestore(&task_group_lock
, flags
);
8415 free_sched_group(tg
);
8416 return ERR_PTR(-ENOMEM
);
8419 /* rcu callback to free various structures associated with a task group */
8420 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8422 /* now it should be safe to free those cfs_rqs */
8423 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8426 /* Destroy runqueue etc associated with a task group */
8427 void sched_destroy_group(struct task_group
*tg
)
8429 unsigned long flags
;
8432 /* end participation in shares distribution */
8433 for_each_possible_cpu(i
)
8434 unregister_fair_sched_group(tg
, i
);
8436 spin_lock_irqsave(&task_group_lock
, flags
);
8437 list_del_rcu(&tg
->list
);
8438 list_del_rcu(&tg
->siblings
);
8439 spin_unlock_irqrestore(&task_group_lock
, flags
);
8441 /* wait for possible concurrent references to cfs_rqs complete */
8442 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8445 /* change task's runqueue when it moves between groups.
8446 * The caller of this function should have put the task in its new group
8447 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8448 * reflect its new group.
8450 void sched_move_task(struct task_struct
*tsk
)
8453 unsigned long flags
;
8456 rq
= task_rq_lock(tsk
, &flags
);
8458 running
= task_current(rq
, tsk
);
8459 on_rq
= tsk
->se
.on_rq
;
8462 dequeue_task(rq
, tsk
, 0);
8463 if (unlikely(running
))
8464 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8466 #ifdef CONFIG_FAIR_GROUP_SCHED
8467 if (tsk
->sched_class
->task_move_group
)
8468 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8471 set_task_rq(tsk
, task_cpu(tsk
));
8473 if (unlikely(running
))
8474 tsk
->sched_class
->set_curr_task(rq
);
8476 enqueue_task(rq
, tsk
, 0);
8478 task_rq_unlock(rq
, &flags
);
8480 #endif /* CONFIG_CGROUP_SCHED */
8482 #ifdef CONFIG_FAIR_GROUP_SCHED
8483 static DEFINE_MUTEX(shares_mutex
);
8485 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8488 unsigned long flags
;
8491 * We can't change the weight of the root cgroup.
8496 if (shares
< MIN_SHARES
)
8497 shares
= MIN_SHARES
;
8498 else if (shares
> MAX_SHARES
)
8499 shares
= MAX_SHARES
;
8501 mutex_lock(&shares_mutex
);
8502 if (tg
->shares
== shares
)
8505 tg
->shares
= shares
;
8506 for_each_possible_cpu(i
) {
8507 struct rq
*rq
= cpu_rq(i
);
8508 struct sched_entity
*se
;
8511 /* Propagate contribution to hierarchy */
8512 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8513 for_each_sched_entity(se
)
8514 update_cfs_shares(group_cfs_rq(se
), 0);
8515 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8519 mutex_unlock(&shares_mutex
);
8523 unsigned long sched_group_shares(struct task_group
*tg
)
8529 #ifdef CONFIG_RT_GROUP_SCHED
8531 * Ensure that the real time constraints are schedulable.
8533 static DEFINE_MUTEX(rt_constraints_mutex
);
8535 static unsigned long to_ratio(u64 period
, u64 runtime
)
8537 if (runtime
== RUNTIME_INF
)
8540 return div64_u64(runtime
<< 20, period
);
8543 /* Must be called with tasklist_lock held */
8544 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8546 struct task_struct
*g
, *p
;
8548 do_each_thread(g
, p
) {
8549 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8551 } while_each_thread(g
, p
);
8556 struct rt_schedulable_data
{
8557 struct task_group
*tg
;
8562 static int tg_schedulable(struct task_group
*tg
, void *data
)
8564 struct rt_schedulable_data
*d
= data
;
8565 struct task_group
*child
;
8566 unsigned long total
, sum
= 0;
8567 u64 period
, runtime
;
8569 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8570 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8573 period
= d
->rt_period
;
8574 runtime
= d
->rt_runtime
;
8578 * Cannot have more runtime than the period.
8580 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8584 * Ensure we don't starve existing RT tasks.
8586 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8589 total
= to_ratio(period
, runtime
);
8592 * Nobody can have more than the global setting allows.
8594 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8598 * The sum of our children's runtime should not exceed our own.
8600 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8601 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8602 runtime
= child
->rt_bandwidth
.rt_runtime
;
8604 if (child
== d
->tg
) {
8605 period
= d
->rt_period
;
8606 runtime
= d
->rt_runtime
;
8609 sum
+= to_ratio(period
, runtime
);
8618 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8620 struct rt_schedulable_data data
= {
8622 .rt_period
= period
,
8623 .rt_runtime
= runtime
,
8626 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8629 static int tg_set_bandwidth(struct task_group
*tg
,
8630 u64 rt_period
, u64 rt_runtime
)
8634 mutex_lock(&rt_constraints_mutex
);
8635 read_lock(&tasklist_lock
);
8636 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8640 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8641 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8642 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8644 for_each_possible_cpu(i
) {
8645 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8647 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8648 rt_rq
->rt_runtime
= rt_runtime
;
8649 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8651 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8653 read_unlock(&tasklist_lock
);
8654 mutex_unlock(&rt_constraints_mutex
);
8659 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8661 u64 rt_runtime
, rt_period
;
8663 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8664 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8665 if (rt_runtime_us
< 0)
8666 rt_runtime
= RUNTIME_INF
;
8668 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8671 long sched_group_rt_runtime(struct task_group
*tg
)
8675 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8678 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8679 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8680 return rt_runtime_us
;
8683 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8685 u64 rt_runtime
, rt_period
;
8687 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8688 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8693 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8696 long sched_group_rt_period(struct task_group
*tg
)
8700 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8701 do_div(rt_period_us
, NSEC_PER_USEC
);
8702 return rt_period_us
;
8705 static int sched_rt_global_constraints(void)
8707 u64 runtime
, period
;
8710 if (sysctl_sched_rt_period
<= 0)
8713 runtime
= global_rt_runtime();
8714 period
= global_rt_period();
8717 * Sanity check on the sysctl variables.
8719 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8722 mutex_lock(&rt_constraints_mutex
);
8723 read_lock(&tasklist_lock
);
8724 ret
= __rt_schedulable(NULL
, 0, 0);
8725 read_unlock(&tasklist_lock
);
8726 mutex_unlock(&rt_constraints_mutex
);
8731 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8733 /* Don't accept realtime tasks when there is no way for them to run */
8734 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8740 #else /* !CONFIG_RT_GROUP_SCHED */
8741 static int sched_rt_global_constraints(void)
8743 unsigned long flags
;
8746 if (sysctl_sched_rt_period
<= 0)
8750 * There's always some RT tasks in the root group
8751 * -- migration, kstopmachine etc..
8753 if (sysctl_sched_rt_runtime
== 0)
8756 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8757 for_each_possible_cpu(i
) {
8758 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8760 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8761 rt_rq
->rt_runtime
= global_rt_runtime();
8762 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8764 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8768 #endif /* CONFIG_RT_GROUP_SCHED */
8770 int sched_rt_handler(struct ctl_table
*table
, int write
,
8771 void __user
*buffer
, size_t *lenp
,
8775 int old_period
, old_runtime
;
8776 static DEFINE_MUTEX(mutex
);
8779 old_period
= sysctl_sched_rt_period
;
8780 old_runtime
= sysctl_sched_rt_runtime
;
8782 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8784 if (!ret
&& write
) {
8785 ret
= sched_rt_global_constraints();
8787 sysctl_sched_rt_period
= old_period
;
8788 sysctl_sched_rt_runtime
= old_runtime
;
8790 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8791 def_rt_bandwidth
.rt_period
=
8792 ns_to_ktime(global_rt_period());
8795 mutex_unlock(&mutex
);
8800 #ifdef CONFIG_CGROUP_SCHED
8802 /* return corresponding task_group object of a cgroup */
8803 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8805 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8806 struct task_group
, css
);
8809 static struct cgroup_subsys_state
*
8810 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8812 struct task_group
*tg
, *parent
;
8814 if (!cgrp
->parent
) {
8815 /* This is early initialization for the top cgroup */
8816 return &root_task_group
.css
;
8819 parent
= cgroup_tg(cgrp
->parent
);
8820 tg
= sched_create_group(parent
);
8822 return ERR_PTR(-ENOMEM
);
8828 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8830 struct task_group
*tg
= cgroup_tg(cgrp
);
8832 sched_destroy_group(tg
);
8836 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8838 #ifdef CONFIG_RT_GROUP_SCHED
8839 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8842 /* We don't support RT-tasks being in separate groups */
8843 if (tsk
->sched_class
!= &fair_sched_class
)
8850 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8851 struct task_struct
*tsk
, bool threadgroup
)
8853 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8857 struct task_struct
*c
;
8859 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8860 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8872 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8873 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8876 sched_move_task(tsk
);
8878 struct task_struct
*c
;
8880 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8888 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct task_struct
*task
)
8891 * cgroup_exit() is called in the copy_process() failure path.
8892 * Ignore this case since the task hasn't ran yet, this avoids
8893 * trying to poke a half freed task state from generic code.
8895 if (!(task
->flags
& PF_EXITING
))
8898 sched_move_task(task
);
8901 #ifdef CONFIG_FAIR_GROUP_SCHED
8902 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8905 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8908 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8910 struct task_group
*tg
= cgroup_tg(cgrp
);
8912 return (u64
) tg
->shares
;
8914 #endif /* CONFIG_FAIR_GROUP_SCHED */
8916 #ifdef CONFIG_RT_GROUP_SCHED
8917 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8920 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8923 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8925 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8928 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8931 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8934 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8936 return sched_group_rt_period(cgroup_tg(cgrp
));
8938 #endif /* CONFIG_RT_GROUP_SCHED */
8940 static struct cftype cpu_files
[] = {
8941 #ifdef CONFIG_FAIR_GROUP_SCHED
8944 .read_u64
= cpu_shares_read_u64
,
8945 .write_u64
= cpu_shares_write_u64
,
8948 #ifdef CONFIG_RT_GROUP_SCHED
8950 .name
= "rt_runtime_us",
8951 .read_s64
= cpu_rt_runtime_read
,
8952 .write_s64
= cpu_rt_runtime_write
,
8955 .name
= "rt_period_us",
8956 .read_u64
= cpu_rt_period_read_uint
,
8957 .write_u64
= cpu_rt_period_write_uint
,
8962 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8964 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8967 struct cgroup_subsys cpu_cgroup_subsys
= {
8969 .create
= cpu_cgroup_create
,
8970 .destroy
= cpu_cgroup_destroy
,
8971 .can_attach
= cpu_cgroup_can_attach
,
8972 .attach
= cpu_cgroup_attach
,
8973 .exit
= cpu_cgroup_exit
,
8974 .populate
= cpu_cgroup_populate
,
8975 .subsys_id
= cpu_cgroup_subsys_id
,
8979 #endif /* CONFIG_CGROUP_SCHED */
8981 #ifdef CONFIG_CGROUP_CPUACCT
8984 * CPU accounting code for task groups.
8986 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8987 * (balbir@in.ibm.com).
8990 /* track cpu usage of a group of tasks and its child groups */
8992 struct cgroup_subsys_state css
;
8993 /* cpuusage holds pointer to a u64-type object on every cpu */
8994 u64 __percpu
*cpuusage
;
8995 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8996 struct cpuacct
*parent
;
8999 struct cgroup_subsys cpuacct_subsys
;
9001 /* return cpu accounting group corresponding to this container */
9002 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9004 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9005 struct cpuacct
, css
);
9008 /* return cpu accounting group to which this task belongs */
9009 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9011 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9012 struct cpuacct
, css
);
9015 /* create a new cpu accounting group */
9016 static struct cgroup_subsys_state
*cpuacct_create(
9017 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9019 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9025 ca
->cpuusage
= alloc_percpu(u64
);
9029 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9030 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9031 goto out_free_counters
;
9034 ca
->parent
= cgroup_ca(cgrp
->parent
);
9040 percpu_counter_destroy(&ca
->cpustat
[i
]);
9041 free_percpu(ca
->cpuusage
);
9045 return ERR_PTR(-ENOMEM
);
9048 /* destroy an existing cpu accounting group */
9050 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9052 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9055 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9056 percpu_counter_destroy(&ca
->cpustat
[i
]);
9057 free_percpu(ca
->cpuusage
);
9061 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9063 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9066 #ifndef CONFIG_64BIT
9068 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9070 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9072 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9080 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9082 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9084 #ifndef CONFIG_64BIT
9086 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9088 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9090 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9096 /* return total cpu usage (in nanoseconds) of a group */
9097 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9099 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9100 u64 totalcpuusage
= 0;
9103 for_each_present_cpu(i
)
9104 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9106 return totalcpuusage
;
9109 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9112 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9121 for_each_present_cpu(i
)
9122 cpuacct_cpuusage_write(ca
, i
, 0);
9128 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9131 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9135 for_each_present_cpu(i
) {
9136 percpu
= cpuacct_cpuusage_read(ca
, i
);
9137 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9139 seq_printf(m
, "\n");
9143 static const char *cpuacct_stat_desc
[] = {
9144 [CPUACCT_STAT_USER
] = "user",
9145 [CPUACCT_STAT_SYSTEM
] = "system",
9148 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9149 struct cgroup_map_cb
*cb
)
9151 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9154 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9155 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9156 val
= cputime64_to_clock_t(val
);
9157 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9162 static struct cftype files
[] = {
9165 .read_u64
= cpuusage_read
,
9166 .write_u64
= cpuusage_write
,
9169 .name
= "usage_percpu",
9170 .read_seq_string
= cpuacct_percpu_seq_read
,
9174 .read_map
= cpuacct_stats_show
,
9178 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9180 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9184 * charge this task's execution time to its accounting group.
9186 * called with rq->lock held.
9188 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9193 if (unlikely(!cpuacct_subsys
.active
))
9196 cpu
= task_cpu(tsk
);
9202 for (; ca
; ca
= ca
->parent
) {
9203 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9204 *cpuusage
+= cputime
;
9211 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9212 * in cputime_t units. As a result, cpuacct_update_stats calls
9213 * percpu_counter_add with values large enough to always overflow the
9214 * per cpu batch limit causing bad SMP scalability.
9216 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9217 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9218 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9221 #define CPUACCT_BATCH \
9222 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9224 #define CPUACCT_BATCH 0
9228 * Charge the system/user time to the task's accounting group.
9230 static void cpuacct_update_stats(struct task_struct
*tsk
,
9231 enum cpuacct_stat_index idx
, cputime_t val
)
9234 int batch
= CPUACCT_BATCH
;
9236 if (unlikely(!cpuacct_subsys
.active
))
9243 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9249 struct cgroup_subsys cpuacct_subsys
= {
9251 .create
= cpuacct_create
,
9252 .destroy
= cpuacct_destroy
,
9253 .populate
= cpuacct_populate
,
9254 .subsys_id
= cpuacct_subsys_id
,
9256 #endif /* CONFIG_CGROUP_CPUACCT */