2 * Generic address resolution entity
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
26 #include <linux/sysctl.h>
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
56 #define PNEIGH_HASHMASK 0xF
58 static void neigh_timer_handler(unsigned long arg
);
59 static void __neigh_notify(struct neighbour
*n
, int type
, int flags
);
60 static void neigh_update_notify(struct neighbour
*neigh
);
61 static int pneigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
);
63 static struct neigh_table
*neigh_tables
;
65 static const struct file_operations neigh_stat_seq_fops
;
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
83 Reference count prevents destruction.
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
99 static DEFINE_RWLOCK(neigh_tbl_lock
);
101 static int neigh_blackhole(struct sk_buff
*skb
)
107 static void neigh_cleanup_and_release(struct neighbour
*neigh
)
109 if (neigh
->parms
->neigh_cleanup
)
110 neigh
->parms
->neigh_cleanup(neigh
);
112 __neigh_notify(neigh
, RTM_DELNEIGH
, 0);
113 neigh_release(neigh
);
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
122 unsigned long neigh_rand_reach_time(unsigned long base
)
124 return base
? (net_random() % base
) + (base
>> 1) : 0;
126 EXPORT_SYMBOL(neigh_rand_reach_time
);
129 static int neigh_forced_gc(struct neigh_table
*tbl
)
133 struct neigh_hash_table
*nht
;
135 NEIGH_CACHE_STAT_INC(tbl
, forced_gc_runs
);
137 write_lock_bh(&tbl
->lock
);
138 nht
= rcu_dereference_protected(tbl
->nht
,
139 lockdep_is_held(&tbl
->lock
));
140 for (i
= 0; i
<= nht
->hash_mask
; i
++) {
142 struct neighbour __rcu
**np
;
144 np
= &nht
->hash_buckets
[i
];
145 while ((n
= rcu_dereference_protected(*np
,
146 lockdep_is_held(&tbl
->lock
))) != NULL
) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
151 write_lock(&n
->lock
);
152 if (atomic_read(&n
->refcnt
) == 1 &&
153 !(n
->nud_state
& NUD_PERMANENT
)) {
154 rcu_assign_pointer(*np
,
155 rcu_dereference_protected(n
->next
,
156 lockdep_is_held(&tbl
->lock
)));
159 write_unlock(&n
->lock
);
160 neigh_cleanup_and_release(n
);
163 write_unlock(&n
->lock
);
168 tbl
->last_flush
= jiffies
;
170 write_unlock_bh(&tbl
->lock
);
175 static void neigh_add_timer(struct neighbour
*n
, unsigned long when
)
178 if (unlikely(mod_timer(&n
->timer
, when
))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
185 static int neigh_del_timer(struct neighbour
*n
)
187 if ((n
->nud_state
& NUD_IN_TIMER
) &&
188 del_timer(&n
->timer
)) {
195 static void pneigh_queue_purge(struct sk_buff_head
*list
)
199 while ((skb
= skb_dequeue(list
)) != NULL
) {
205 static void neigh_flush_dev(struct neigh_table
*tbl
, struct net_device
*dev
)
208 struct neigh_hash_table
*nht
;
210 nht
= rcu_dereference_protected(tbl
->nht
,
211 lockdep_is_held(&tbl
->lock
));
213 for (i
= 0; i
<= nht
->hash_mask
; i
++) {
215 struct neighbour __rcu
**np
= &nht
->hash_buckets
[i
];
217 while ((n
= rcu_dereference_protected(*np
,
218 lockdep_is_held(&tbl
->lock
))) != NULL
) {
219 if (dev
&& n
->dev
!= dev
) {
223 rcu_assign_pointer(*np
,
224 rcu_dereference_protected(n
->next
,
225 lockdep_is_held(&tbl
->lock
)));
226 write_lock(&n
->lock
);
230 if (atomic_read(&n
->refcnt
) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
240 skb_queue_purge(&n
->arp_queue
);
241 n
->output
= neigh_blackhole
;
242 if (n
->nud_state
& NUD_VALID
)
243 n
->nud_state
= NUD_NOARP
;
245 n
->nud_state
= NUD_NONE
;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n
);
248 write_unlock(&n
->lock
);
249 neigh_cleanup_and_release(n
);
254 void neigh_changeaddr(struct neigh_table
*tbl
, struct net_device
*dev
)
256 write_lock_bh(&tbl
->lock
);
257 neigh_flush_dev(tbl
, dev
);
258 write_unlock_bh(&tbl
->lock
);
260 EXPORT_SYMBOL(neigh_changeaddr
);
262 int neigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
)
264 write_lock_bh(&tbl
->lock
);
265 neigh_flush_dev(tbl
, dev
);
266 pneigh_ifdown(tbl
, dev
);
267 write_unlock_bh(&tbl
->lock
);
269 del_timer_sync(&tbl
->proxy_timer
);
270 pneigh_queue_purge(&tbl
->proxy_queue
);
273 EXPORT_SYMBOL(neigh_ifdown
);
275 static struct neighbour
*neigh_alloc(struct neigh_table
*tbl
)
277 struct neighbour
*n
= NULL
;
278 unsigned long now
= jiffies
;
281 entries
= atomic_inc_return(&tbl
->entries
) - 1;
282 if (entries
>= tbl
->gc_thresh3
||
283 (entries
>= tbl
->gc_thresh2
&&
284 time_after(now
, tbl
->last_flush
+ 5 * HZ
))) {
285 if (!neigh_forced_gc(tbl
) &&
286 entries
>= tbl
->gc_thresh3
)
290 n
= kmem_cache_zalloc(tbl
->kmem_cachep
, GFP_ATOMIC
);
294 skb_queue_head_init(&n
->arp_queue
);
295 rwlock_init(&n
->lock
);
296 seqlock_init(&n
->ha_lock
);
297 n
->updated
= n
->used
= now
;
298 n
->nud_state
= NUD_NONE
;
299 n
->output
= neigh_blackhole
;
300 n
->parms
= neigh_parms_clone(&tbl
->parms
);
301 setup_timer(&n
->timer
, neigh_timer_handler
, (unsigned long)n
);
303 NEIGH_CACHE_STAT_INC(tbl
, allocs
);
305 atomic_set(&n
->refcnt
, 1);
311 atomic_dec(&tbl
->entries
);
315 static struct neigh_hash_table
*neigh_hash_alloc(unsigned int entries
)
317 size_t size
= entries
* sizeof(struct neighbour
*);
318 struct neigh_hash_table
*ret
;
319 struct neighbour
**buckets
;
321 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
324 if (size
<= PAGE_SIZE
)
325 buckets
= kzalloc(size
, GFP_ATOMIC
);
327 buckets
= (struct neighbour
**)
328 __get_free_pages(GFP_ATOMIC
| __GFP_ZERO
,
334 rcu_assign_pointer(ret
->hash_buckets
, buckets
);
335 ret
->hash_mask
= entries
- 1;
336 get_random_bytes(&ret
->hash_rnd
, sizeof(ret
->hash_rnd
));
340 static void neigh_hash_free_rcu(struct rcu_head
*head
)
342 struct neigh_hash_table
*nht
= container_of(head
,
343 struct neigh_hash_table
,
345 size_t size
= (nht
->hash_mask
+ 1) * sizeof(struct neighbour
*);
346 struct neighbour
**buckets
= nht
->hash_buckets
;
348 if (size
<= PAGE_SIZE
)
351 free_pages((unsigned long)buckets
, get_order(size
));
355 static struct neigh_hash_table
*neigh_hash_grow(struct neigh_table
*tbl
,
356 unsigned long new_entries
)
358 unsigned int i
, hash
;
359 struct neigh_hash_table
*new_nht
, *old_nht
;
361 NEIGH_CACHE_STAT_INC(tbl
, hash_grows
);
363 BUG_ON(!is_power_of_2(new_entries
));
364 old_nht
= rcu_dereference_protected(tbl
->nht
,
365 lockdep_is_held(&tbl
->lock
));
366 new_nht
= neigh_hash_alloc(new_entries
);
370 for (i
= 0; i
<= old_nht
->hash_mask
; i
++) {
371 struct neighbour
*n
, *next
;
373 for (n
= rcu_dereference_protected(old_nht
->hash_buckets
[i
],
374 lockdep_is_held(&tbl
->lock
));
377 hash
= tbl
->hash(n
->primary_key
, n
->dev
,
380 hash
&= new_nht
->hash_mask
;
381 next
= rcu_dereference_protected(n
->next
,
382 lockdep_is_held(&tbl
->lock
));
384 rcu_assign_pointer(n
->next
,
385 rcu_dereference_protected(
386 new_nht
->hash_buckets
[hash
],
387 lockdep_is_held(&tbl
->lock
)));
388 rcu_assign_pointer(new_nht
->hash_buckets
[hash
], n
);
392 rcu_assign_pointer(tbl
->nht
, new_nht
);
393 call_rcu(&old_nht
->rcu
, neigh_hash_free_rcu
);
397 struct neighbour
*neigh_lookup(struct neigh_table
*tbl
, const void *pkey
,
398 struct net_device
*dev
)
401 int key_len
= tbl
->key_len
;
403 struct neigh_hash_table
*nht
;
405 NEIGH_CACHE_STAT_INC(tbl
, lookups
);
408 nht
= rcu_dereference_bh(tbl
->nht
);
409 hash_val
= tbl
->hash(pkey
, dev
, nht
->hash_rnd
) & nht
->hash_mask
;
411 for (n
= rcu_dereference_bh(nht
->hash_buckets
[hash_val
]);
413 n
= rcu_dereference_bh(n
->next
)) {
414 if (dev
== n
->dev
&& !memcmp(n
->primary_key
, pkey
, key_len
)) {
415 if (!atomic_inc_not_zero(&n
->refcnt
))
417 NEIGH_CACHE_STAT_INC(tbl
, hits
);
422 rcu_read_unlock_bh();
425 EXPORT_SYMBOL(neigh_lookup
);
427 struct neighbour
*neigh_lookup_nodev(struct neigh_table
*tbl
, struct net
*net
,
431 int key_len
= tbl
->key_len
;
433 struct neigh_hash_table
*nht
;
435 NEIGH_CACHE_STAT_INC(tbl
, lookups
);
438 nht
= rcu_dereference_bh(tbl
->nht
);
439 hash_val
= tbl
->hash(pkey
, NULL
, nht
->hash_rnd
) & nht
->hash_mask
;
441 for (n
= rcu_dereference_bh(nht
->hash_buckets
[hash_val
]);
443 n
= rcu_dereference_bh(n
->next
)) {
444 if (!memcmp(n
->primary_key
, pkey
, key_len
) &&
445 net_eq(dev_net(n
->dev
), net
)) {
446 if (!atomic_inc_not_zero(&n
->refcnt
))
448 NEIGH_CACHE_STAT_INC(tbl
, hits
);
453 rcu_read_unlock_bh();
456 EXPORT_SYMBOL(neigh_lookup_nodev
);
458 struct neighbour
*neigh_create(struct neigh_table
*tbl
, const void *pkey
,
459 struct net_device
*dev
)
462 int key_len
= tbl
->key_len
;
464 struct neighbour
*n1
, *rc
, *n
= neigh_alloc(tbl
);
465 struct neigh_hash_table
*nht
;
468 rc
= ERR_PTR(-ENOBUFS
);
472 memcpy(n
->primary_key
, pkey
, key_len
);
476 /* Protocol specific setup. */
477 if (tbl
->constructor
&& (error
= tbl
->constructor(n
)) < 0) {
479 goto out_neigh_release
;
482 /* Device specific setup. */
483 if (n
->parms
->neigh_setup
&&
484 (error
= n
->parms
->neigh_setup(n
)) < 0) {
486 goto out_neigh_release
;
489 n
->confirmed
= jiffies
- (n
->parms
->base_reachable_time
<< 1);
491 write_lock_bh(&tbl
->lock
);
492 nht
= rcu_dereference_protected(tbl
->nht
,
493 lockdep_is_held(&tbl
->lock
));
495 if (atomic_read(&tbl
->entries
) > (nht
->hash_mask
+ 1))
496 nht
= neigh_hash_grow(tbl
, (nht
->hash_mask
+ 1) << 1);
498 hash_val
= tbl
->hash(pkey
, dev
, nht
->hash_rnd
) & nht
->hash_mask
;
500 if (n
->parms
->dead
) {
501 rc
= ERR_PTR(-EINVAL
);
505 for (n1
= rcu_dereference_protected(nht
->hash_buckets
[hash_val
],
506 lockdep_is_held(&tbl
->lock
));
508 n1
= rcu_dereference_protected(n1
->next
,
509 lockdep_is_held(&tbl
->lock
))) {
510 if (dev
== n1
->dev
&& !memcmp(n1
->primary_key
, pkey
, key_len
)) {
519 rcu_assign_pointer(n
->next
,
520 rcu_dereference_protected(nht
->hash_buckets
[hash_val
],
521 lockdep_is_held(&tbl
->lock
)));
522 rcu_assign_pointer(nht
->hash_buckets
[hash_val
], n
);
523 write_unlock_bh(&tbl
->lock
);
524 NEIGH_PRINTK2("neigh %p is created.\n", n
);
529 write_unlock_bh(&tbl
->lock
);
534 EXPORT_SYMBOL(neigh_create
);
536 static u32
pneigh_hash(const void *pkey
, int key_len
)
538 u32 hash_val
= *(u32
*)(pkey
+ key_len
- 4);
539 hash_val
^= (hash_val
>> 16);
540 hash_val
^= hash_val
>> 8;
541 hash_val
^= hash_val
>> 4;
542 hash_val
&= PNEIGH_HASHMASK
;
546 static struct pneigh_entry
*__pneigh_lookup_1(struct pneigh_entry
*n
,
550 struct net_device
*dev
)
553 if (!memcmp(n
->key
, pkey
, key_len
) &&
554 net_eq(pneigh_net(n
), net
) &&
555 (n
->dev
== dev
|| !n
->dev
))
562 struct pneigh_entry
*__pneigh_lookup(struct neigh_table
*tbl
,
563 struct net
*net
, const void *pkey
, struct net_device
*dev
)
565 int key_len
= tbl
->key_len
;
566 u32 hash_val
= pneigh_hash(pkey
, key_len
);
568 return __pneigh_lookup_1(tbl
->phash_buckets
[hash_val
],
569 net
, pkey
, key_len
, dev
);
571 EXPORT_SYMBOL_GPL(__pneigh_lookup
);
573 struct pneigh_entry
* pneigh_lookup(struct neigh_table
*tbl
,
574 struct net
*net
, const void *pkey
,
575 struct net_device
*dev
, int creat
)
577 struct pneigh_entry
*n
;
578 int key_len
= tbl
->key_len
;
579 u32 hash_val
= pneigh_hash(pkey
, key_len
);
581 read_lock_bh(&tbl
->lock
);
582 n
= __pneigh_lookup_1(tbl
->phash_buckets
[hash_val
],
583 net
, pkey
, key_len
, dev
);
584 read_unlock_bh(&tbl
->lock
);
591 n
= kmalloc(sizeof(*n
) + key_len
, GFP_KERNEL
);
595 write_pnet(&n
->net
, hold_net(net
));
596 memcpy(n
->key
, pkey
, key_len
);
601 if (tbl
->pconstructor
&& tbl
->pconstructor(n
)) {
610 write_lock_bh(&tbl
->lock
);
611 n
->next
= tbl
->phash_buckets
[hash_val
];
612 tbl
->phash_buckets
[hash_val
] = n
;
613 write_unlock_bh(&tbl
->lock
);
617 EXPORT_SYMBOL(pneigh_lookup
);
620 int pneigh_delete(struct neigh_table
*tbl
, struct net
*net
, const void *pkey
,
621 struct net_device
*dev
)
623 struct pneigh_entry
*n
, **np
;
624 int key_len
= tbl
->key_len
;
625 u32 hash_val
= pneigh_hash(pkey
, key_len
);
627 write_lock_bh(&tbl
->lock
);
628 for (np
= &tbl
->phash_buckets
[hash_val
]; (n
= *np
) != NULL
;
630 if (!memcmp(n
->key
, pkey
, key_len
) && n
->dev
== dev
&&
631 net_eq(pneigh_net(n
), net
)) {
633 write_unlock_bh(&tbl
->lock
);
634 if (tbl
->pdestructor
)
638 release_net(pneigh_net(n
));
643 write_unlock_bh(&tbl
->lock
);
647 static int pneigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
)
649 struct pneigh_entry
*n
, **np
;
652 for (h
= 0; h
<= PNEIGH_HASHMASK
; h
++) {
653 np
= &tbl
->phash_buckets
[h
];
654 while ((n
= *np
) != NULL
) {
655 if (!dev
|| n
->dev
== dev
) {
657 if (tbl
->pdestructor
)
661 release_net(pneigh_net(n
));
671 static void neigh_parms_destroy(struct neigh_parms
*parms
);
673 static inline void neigh_parms_put(struct neigh_parms
*parms
)
675 if (atomic_dec_and_test(&parms
->refcnt
))
676 neigh_parms_destroy(parms
);
679 static void neigh_destroy_rcu(struct rcu_head
*head
)
681 struct neighbour
*neigh
= container_of(head
, struct neighbour
, rcu
);
683 kmem_cache_free(neigh
->tbl
->kmem_cachep
, neigh
);
686 * neighbour must already be out of the table;
689 void neigh_destroy(struct neighbour
*neigh
)
693 NEIGH_CACHE_STAT_INC(neigh
->tbl
, destroys
);
697 "Destroying alive neighbour %p\n", neigh
);
702 if (neigh_del_timer(neigh
))
703 printk(KERN_WARNING
"Impossible event.\n");
705 while ((hh
= neigh
->hh
) != NULL
) {
706 neigh
->hh
= hh
->hh_next
;
709 write_seqlock_bh(&hh
->hh_lock
);
710 hh
->hh_output
= neigh_blackhole
;
711 write_sequnlock_bh(&hh
->hh_lock
);
715 skb_queue_purge(&neigh
->arp_queue
);
718 neigh_parms_put(neigh
->parms
);
720 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh
);
722 atomic_dec(&neigh
->tbl
->entries
);
723 call_rcu(&neigh
->rcu
, neigh_destroy_rcu
);
725 EXPORT_SYMBOL(neigh_destroy
);
727 /* Neighbour state is suspicious;
730 Called with write_locked neigh.
732 static void neigh_suspect(struct neighbour
*neigh
)
736 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh
);
738 neigh
->output
= neigh
->ops
->output
;
740 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
)
741 hh
->hh_output
= neigh
->ops
->output
;
744 /* Neighbour state is OK;
747 Called with write_locked neigh.
749 static void neigh_connect(struct neighbour
*neigh
)
753 NEIGH_PRINTK2("neigh %p is connected.\n", neigh
);
755 neigh
->output
= neigh
->ops
->connected_output
;
757 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
)
758 hh
->hh_output
= neigh
->ops
->hh_output
;
761 static void neigh_periodic_work(struct work_struct
*work
)
763 struct neigh_table
*tbl
= container_of(work
, struct neigh_table
, gc_work
.work
);
765 struct neighbour __rcu
**np
;
767 struct neigh_hash_table
*nht
;
769 NEIGH_CACHE_STAT_INC(tbl
, periodic_gc_runs
);
771 write_lock_bh(&tbl
->lock
);
772 nht
= rcu_dereference_protected(tbl
->nht
,
773 lockdep_is_held(&tbl
->lock
));
776 * periodically recompute ReachableTime from random function
779 if (time_after(jiffies
, tbl
->last_rand
+ 300 * HZ
)) {
780 struct neigh_parms
*p
;
781 tbl
->last_rand
= jiffies
;
782 for (p
= &tbl
->parms
; p
; p
= p
->next
)
784 neigh_rand_reach_time(p
->base_reachable_time
);
787 for (i
= 0 ; i
<= nht
->hash_mask
; i
++) {
788 np
= &nht
->hash_buckets
[i
];
790 while ((n
= rcu_dereference_protected(*np
,
791 lockdep_is_held(&tbl
->lock
))) != NULL
) {
794 write_lock(&n
->lock
);
796 state
= n
->nud_state
;
797 if (state
& (NUD_PERMANENT
| NUD_IN_TIMER
)) {
798 write_unlock(&n
->lock
);
802 if (time_before(n
->used
, n
->confirmed
))
803 n
->used
= n
->confirmed
;
805 if (atomic_read(&n
->refcnt
) == 1 &&
806 (state
== NUD_FAILED
||
807 time_after(jiffies
, n
->used
+ n
->parms
->gc_staletime
))) {
810 write_unlock(&n
->lock
);
811 neigh_cleanup_and_release(n
);
814 write_unlock(&n
->lock
);
820 * It's fine to release lock here, even if hash table
821 * grows while we are preempted.
823 write_unlock_bh(&tbl
->lock
);
825 write_lock_bh(&tbl
->lock
);
827 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
828 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
829 * base_reachable_time.
831 schedule_delayed_work(&tbl
->gc_work
,
832 tbl
->parms
.base_reachable_time
>> 1);
833 write_unlock_bh(&tbl
->lock
);
836 static __inline__
int neigh_max_probes(struct neighbour
*n
)
838 struct neigh_parms
*p
= n
->parms
;
839 return (n
->nud_state
& NUD_PROBE
) ?
841 p
->ucast_probes
+ p
->app_probes
+ p
->mcast_probes
;
844 static void neigh_invalidate(struct neighbour
*neigh
)
845 __releases(neigh
->lock
)
846 __acquires(neigh
->lock
)
850 NEIGH_CACHE_STAT_INC(neigh
->tbl
, res_failed
);
851 NEIGH_PRINTK2("neigh %p is failed.\n", neigh
);
852 neigh
->updated
= jiffies
;
854 /* It is very thin place. report_unreachable is very complicated
855 routine. Particularly, it can hit the same neighbour entry!
857 So that, we try to be accurate and avoid dead loop. --ANK
859 while (neigh
->nud_state
== NUD_FAILED
&&
860 (skb
= __skb_dequeue(&neigh
->arp_queue
)) != NULL
) {
861 write_unlock(&neigh
->lock
);
862 neigh
->ops
->error_report(neigh
, skb
);
863 write_lock(&neigh
->lock
);
865 skb_queue_purge(&neigh
->arp_queue
);
868 /* Called when a timer expires for a neighbour entry. */
870 static void neigh_timer_handler(unsigned long arg
)
872 unsigned long now
, next
;
873 struct neighbour
*neigh
= (struct neighbour
*)arg
;
877 write_lock(&neigh
->lock
);
879 state
= neigh
->nud_state
;
883 if (!(state
& NUD_IN_TIMER
)) {
885 printk(KERN_WARNING
"neigh: timer & !nud_in_timer\n");
890 if (state
& NUD_REACHABLE
) {
891 if (time_before_eq(now
,
892 neigh
->confirmed
+ neigh
->parms
->reachable_time
)) {
893 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh
);
894 next
= neigh
->confirmed
+ neigh
->parms
->reachable_time
;
895 } else if (time_before_eq(now
,
896 neigh
->used
+ neigh
->parms
->delay_probe_time
)) {
897 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh
);
898 neigh
->nud_state
= NUD_DELAY
;
899 neigh
->updated
= jiffies
;
900 neigh_suspect(neigh
);
901 next
= now
+ neigh
->parms
->delay_probe_time
;
903 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh
);
904 neigh
->nud_state
= NUD_STALE
;
905 neigh
->updated
= jiffies
;
906 neigh_suspect(neigh
);
909 } else if (state
& NUD_DELAY
) {
910 if (time_before_eq(now
,
911 neigh
->confirmed
+ neigh
->parms
->delay_probe_time
)) {
912 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh
);
913 neigh
->nud_state
= NUD_REACHABLE
;
914 neigh
->updated
= jiffies
;
915 neigh_connect(neigh
);
917 next
= neigh
->confirmed
+ neigh
->parms
->reachable_time
;
919 NEIGH_PRINTK2("neigh %p is probed.\n", neigh
);
920 neigh
->nud_state
= NUD_PROBE
;
921 neigh
->updated
= jiffies
;
922 atomic_set(&neigh
->probes
, 0);
923 next
= now
+ neigh
->parms
->retrans_time
;
926 /* NUD_PROBE|NUD_INCOMPLETE */
927 next
= now
+ neigh
->parms
->retrans_time
;
930 if ((neigh
->nud_state
& (NUD_INCOMPLETE
| NUD_PROBE
)) &&
931 atomic_read(&neigh
->probes
) >= neigh_max_probes(neigh
)) {
932 neigh
->nud_state
= NUD_FAILED
;
934 neigh_invalidate(neigh
);
937 if (neigh
->nud_state
& NUD_IN_TIMER
) {
938 if (time_before(next
, jiffies
+ HZ
/2))
939 next
= jiffies
+ HZ
/2;
940 if (!mod_timer(&neigh
->timer
, next
))
943 if (neigh
->nud_state
& (NUD_INCOMPLETE
| NUD_PROBE
)) {
944 struct sk_buff
*skb
= skb_peek(&neigh
->arp_queue
);
945 /* keep skb alive even if arp_queue overflows */
947 skb
= skb_copy(skb
, GFP_ATOMIC
);
948 write_unlock(&neigh
->lock
);
949 neigh
->ops
->solicit(neigh
, skb
);
950 atomic_inc(&neigh
->probes
);
954 write_unlock(&neigh
->lock
);
958 neigh_update_notify(neigh
);
960 neigh_release(neigh
);
963 int __neigh_event_send(struct neighbour
*neigh
, struct sk_buff
*skb
)
968 write_lock_bh(&neigh
->lock
);
971 if (neigh
->nud_state
& (NUD_CONNECTED
| NUD_DELAY
| NUD_PROBE
))
976 if (!(neigh
->nud_state
& (NUD_STALE
| NUD_INCOMPLETE
))) {
977 if (neigh
->parms
->mcast_probes
+ neigh
->parms
->app_probes
) {
978 atomic_set(&neigh
->probes
, neigh
->parms
->ucast_probes
);
979 neigh
->nud_state
= NUD_INCOMPLETE
;
980 neigh
->updated
= jiffies
;
981 neigh_add_timer(neigh
, now
+ 1);
983 neigh
->nud_state
= NUD_FAILED
;
984 neigh
->updated
= jiffies
;
985 write_unlock_bh(&neigh
->lock
);
990 } else if (neigh
->nud_state
& NUD_STALE
) {
991 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh
);
992 neigh
->nud_state
= NUD_DELAY
;
993 neigh
->updated
= jiffies
;
994 neigh_add_timer(neigh
,
995 jiffies
+ neigh
->parms
->delay_probe_time
);
998 if (neigh
->nud_state
== NUD_INCOMPLETE
) {
1000 if (skb_queue_len(&neigh
->arp_queue
) >=
1001 neigh
->parms
->queue_len
) {
1002 struct sk_buff
*buff
;
1003 buff
= __skb_dequeue(&neigh
->arp_queue
);
1005 NEIGH_CACHE_STAT_INC(neigh
->tbl
, unres_discards
);
1008 __skb_queue_tail(&neigh
->arp_queue
, skb
);
1013 write_unlock_bh(&neigh
->lock
);
1016 EXPORT_SYMBOL(__neigh_event_send
);
1018 static void neigh_update_hhs(const struct neighbour
*neigh
)
1020 struct hh_cache
*hh
;
1021 void (*update
)(struct hh_cache
*, const struct net_device
*, const unsigned char *)
1024 if (neigh
->dev
->header_ops
)
1025 update
= neigh
->dev
->header_ops
->cache_update
;
1028 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
) {
1029 write_seqlock_bh(&hh
->hh_lock
);
1030 update(hh
, neigh
->dev
, neigh
->ha
);
1031 write_sequnlock_bh(&hh
->hh_lock
);
1038 /* Generic update routine.
1039 -- lladdr is new lladdr or NULL, if it is not supplied.
1040 -- new is new state.
1042 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1044 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1045 lladdr instead of overriding it
1047 It also allows to retain current state
1048 if lladdr is unchanged.
1049 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1051 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1053 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1056 Caller MUST hold reference count on the entry.
1059 int neigh_update(struct neighbour
*neigh
, const u8
*lladdr
, u8
new,
1065 struct net_device
*dev
;
1066 int update_isrouter
= 0;
1068 write_lock_bh(&neigh
->lock
);
1071 old
= neigh
->nud_state
;
1074 if (!(flags
& NEIGH_UPDATE_F_ADMIN
) &&
1075 (old
& (NUD_NOARP
| NUD_PERMANENT
)))
1078 if (!(new & NUD_VALID
)) {
1079 neigh_del_timer(neigh
);
1080 if (old
& NUD_CONNECTED
)
1081 neigh_suspect(neigh
);
1082 neigh
->nud_state
= new;
1084 notify
= old
& NUD_VALID
;
1085 if ((old
& (NUD_INCOMPLETE
| NUD_PROBE
)) &&
1086 (new & NUD_FAILED
)) {
1087 neigh_invalidate(neigh
);
1093 /* Compare new lladdr with cached one */
1094 if (!dev
->addr_len
) {
1095 /* First case: device needs no address. */
1097 } else if (lladdr
) {
1098 /* The second case: if something is already cached
1099 and a new address is proposed:
1101 - if they are different, check override flag
1103 if ((old
& NUD_VALID
) &&
1104 !memcmp(lladdr
, neigh
->ha
, dev
->addr_len
))
1107 /* No address is supplied; if we know something,
1108 use it, otherwise discard the request.
1111 if (!(old
& NUD_VALID
))
1116 if (new & NUD_CONNECTED
)
1117 neigh
->confirmed
= jiffies
;
1118 neigh
->updated
= jiffies
;
1120 /* If entry was valid and address is not changed,
1121 do not change entry state, if new one is STALE.
1124 update_isrouter
= flags
& NEIGH_UPDATE_F_OVERRIDE_ISROUTER
;
1125 if (old
& NUD_VALID
) {
1126 if (lladdr
!= neigh
->ha
&& !(flags
& NEIGH_UPDATE_F_OVERRIDE
)) {
1127 update_isrouter
= 0;
1128 if ((flags
& NEIGH_UPDATE_F_WEAK_OVERRIDE
) &&
1129 (old
& NUD_CONNECTED
)) {
1135 if (lladdr
== neigh
->ha
&& new == NUD_STALE
&&
1136 ((flags
& NEIGH_UPDATE_F_WEAK_OVERRIDE
) ||
1137 (old
& NUD_CONNECTED
))
1144 neigh_del_timer(neigh
);
1145 if (new & NUD_IN_TIMER
)
1146 neigh_add_timer(neigh
, (jiffies
+
1147 ((new & NUD_REACHABLE
) ?
1148 neigh
->parms
->reachable_time
:
1150 neigh
->nud_state
= new;
1153 if (lladdr
!= neigh
->ha
) {
1154 write_seqlock(&neigh
->ha_lock
);
1155 memcpy(&neigh
->ha
, lladdr
, dev
->addr_len
);
1156 write_sequnlock(&neigh
->ha_lock
);
1157 neigh_update_hhs(neigh
);
1158 if (!(new & NUD_CONNECTED
))
1159 neigh
->confirmed
= jiffies
-
1160 (neigh
->parms
->base_reachable_time
<< 1);
1165 if (new & NUD_CONNECTED
)
1166 neigh_connect(neigh
);
1168 neigh_suspect(neigh
);
1169 if (!(old
& NUD_VALID
)) {
1170 struct sk_buff
*skb
;
1172 /* Again: avoid dead loop if something went wrong */
1174 while (neigh
->nud_state
& NUD_VALID
&&
1175 (skb
= __skb_dequeue(&neigh
->arp_queue
)) != NULL
) {
1176 struct neighbour
*n1
= neigh
;
1177 write_unlock_bh(&neigh
->lock
);
1178 /* On shaper/eql skb->dst->neighbour != neigh :( */
1179 if (skb_dst(skb
) && skb_dst(skb
)->neighbour
)
1180 n1
= skb_dst(skb
)->neighbour
;
1182 write_lock_bh(&neigh
->lock
);
1184 skb_queue_purge(&neigh
->arp_queue
);
1187 if (update_isrouter
) {
1188 neigh
->flags
= (flags
& NEIGH_UPDATE_F_ISROUTER
) ?
1189 (neigh
->flags
| NTF_ROUTER
) :
1190 (neigh
->flags
& ~NTF_ROUTER
);
1192 write_unlock_bh(&neigh
->lock
);
1195 neigh_update_notify(neigh
);
1199 EXPORT_SYMBOL(neigh_update
);
1201 struct neighbour
*neigh_event_ns(struct neigh_table
*tbl
,
1202 u8
*lladdr
, void *saddr
,
1203 struct net_device
*dev
)
1205 struct neighbour
*neigh
= __neigh_lookup(tbl
, saddr
, dev
,
1206 lladdr
|| !dev
->addr_len
);
1208 neigh_update(neigh
, lladdr
, NUD_STALE
,
1209 NEIGH_UPDATE_F_OVERRIDE
);
1212 EXPORT_SYMBOL(neigh_event_ns
);
1214 static inline bool neigh_hh_lookup(struct neighbour
*n
, struct dst_entry
*dst
,
1217 struct hh_cache
*hh
;
1219 smp_rmb(); /* paired with smp_wmb() in neigh_hh_init() */
1220 for (hh
= n
->hh
; hh
; hh
= hh
->hh_next
) {
1221 if (hh
->hh_type
== protocol
) {
1222 atomic_inc(&hh
->hh_refcnt
);
1223 if (unlikely(cmpxchg(&dst
->hh
, NULL
, hh
) != NULL
))
1231 /* called with read_lock_bh(&n->lock); */
1232 static void neigh_hh_init(struct neighbour
*n
, struct dst_entry
*dst
,
1235 struct hh_cache
*hh
;
1236 struct net_device
*dev
= dst
->dev
;
1238 if (likely(neigh_hh_lookup(n
, dst
, protocol
)))
1242 hh
= kzalloc(sizeof(*hh
), GFP_ATOMIC
);
1246 seqlock_init(&hh
->hh_lock
);
1247 hh
->hh_type
= protocol
;
1248 atomic_set(&hh
->hh_refcnt
, 2);
1250 if (dev
->header_ops
->cache(n
, hh
)) {
1255 write_lock_bh(&n
->lock
);
1257 /* must check if another thread already did the insert */
1258 if (neigh_hh_lookup(n
, dst
, protocol
)) {
1263 if (n
->nud_state
& NUD_CONNECTED
)
1264 hh
->hh_output
= n
->ops
->hh_output
;
1266 hh
->hh_output
= n
->ops
->output
;
1268 hh
->hh_next
= n
->hh
;
1269 smp_wmb(); /* paired with smp_rmb() in neigh_hh_lookup() */
1272 if (unlikely(cmpxchg(&dst
->hh
, NULL
, hh
) != NULL
))
1275 write_unlock_bh(&n
->lock
);
1278 /* This function can be used in contexts, where only old dev_queue_xmit
1279 * worked, f.e. if you want to override normal output path (eql, shaper),
1280 * but resolution is not made yet.
1283 int neigh_compat_output(struct sk_buff
*skb
)
1285 struct net_device
*dev
= skb
->dev
;
1287 __skb_pull(skb
, skb_network_offset(skb
));
1289 if (dev_hard_header(skb
, dev
, ntohs(skb
->protocol
), NULL
, NULL
,
1291 dev
->header_ops
->rebuild(skb
))
1294 return dev_queue_xmit(skb
);
1296 EXPORT_SYMBOL(neigh_compat_output
);
1298 /* Slow and careful. */
1300 int neigh_resolve_output(struct sk_buff
*skb
)
1302 struct dst_entry
*dst
= skb_dst(skb
);
1303 struct neighbour
*neigh
;
1306 if (!dst
|| !(neigh
= dst
->neighbour
))
1309 __skb_pull(skb
, skb_network_offset(skb
));
1311 if (!neigh_event_send(neigh
, skb
)) {
1313 struct net_device
*dev
= neigh
->dev
;
1316 if (dev
->header_ops
->cache
&&
1318 !(dst
->flags
& DST_NOCACHE
))
1319 neigh_hh_init(neigh
, dst
, dst
->ops
->protocol
);
1322 seq
= read_seqbegin(&neigh
->ha_lock
);
1323 err
= dev_hard_header(skb
, dev
, ntohs(skb
->protocol
),
1324 neigh
->ha
, NULL
, skb
->len
);
1325 } while (read_seqretry(&neigh
->ha_lock
, seq
));
1328 rc
= neigh
->ops
->queue_xmit(skb
);
1335 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1336 dst
, dst
? dst
->neighbour
: NULL
);
1342 EXPORT_SYMBOL(neigh_resolve_output
);
1344 /* As fast as possible without hh cache */
1346 int neigh_connected_output(struct sk_buff
*skb
)
1349 struct dst_entry
*dst
= skb_dst(skb
);
1350 struct neighbour
*neigh
= dst
->neighbour
;
1351 struct net_device
*dev
= neigh
->dev
;
1354 __skb_pull(skb
, skb_network_offset(skb
));
1357 seq
= read_seqbegin(&neigh
->ha_lock
);
1358 err
= dev_hard_header(skb
, dev
, ntohs(skb
->protocol
),
1359 neigh
->ha
, NULL
, skb
->len
);
1360 } while (read_seqretry(&neigh
->ha_lock
, seq
));
1363 err
= neigh
->ops
->queue_xmit(skb
);
1370 EXPORT_SYMBOL(neigh_connected_output
);
1372 static void neigh_proxy_process(unsigned long arg
)
1374 struct neigh_table
*tbl
= (struct neigh_table
*)arg
;
1375 long sched_next
= 0;
1376 unsigned long now
= jiffies
;
1377 struct sk_buff
*skb
, *n
;
1379 spin_lock(&tbl
->proxy_queue
.lock
);
1381 skb_queue_walk_safe(&tbl
->proxy_queue
, skb
, n
) {
1382 long tdif
= NEIGH_CB(skb
)->sched_next
- now
;
1385 struct net_device
*dev
= skb
->dev
;
1386 __skb_unlink(skb
, &tbl
->proxy_queue
);
1387 if (tbl
->proxy_redo
&& netif_running(dev
))
1388 tbl
->proxy_redo(skb
);
1393 } else if (!sched_next
|| tdif
< sched_next
)
1396 del_timer(&tbl
->proxy_timer
);
1398 mod_timer(&tbl
->proxy_timer
, jiffies
+ sched_next
);
1399 spin_unlock(&tbl
->proxy_queue
.lock
);
1402 void pneigh_enqueue(struct neigh_table
*tbl
, struct neigh_parms
*p
,
1403 struct sk_buff
*skb
)
1405 unsigned long now
= jiffies
;
1406 unsigned long sched_next
= now
+ (net_random() % p
->proxy_delay
);
1408 if (tbl
->proxy_queue
.qlen
> p
->proxy_qlen
) {
1413 NEIGH_CB(skb
)->sched_next
= sched_next
;
1414 NEIGH_CB(skb
)->flags
|= LOCALLY_ENQUEUED
;
1416 spin_lock(&tbl
->proxy_queue
.lock
);
1417 if (del_timer(&tbl
->proxy_timer
)) {
1418 if (time_before(tbl
->proxy_timer
.expires
, sched_next
))
1419 sched_next
= tbl
->proxy_timer
.expires
;
1423 __skb_queue_tail(&tbl
->proxy_queue
, skb
);
1424 mod_timer(&tbl
->proxy_timer
, sched_next
);
1425 spin_unlock(&tbl
->proxy_queue
.lock
);
1427 EXPORT_SYMBOL(pneigh_enqueue
);
1429 static inline struct neigh_parms
*lookup_neigh_parms(struct neigh_table
*tbl
,
1430 struct net
*net
, int ifindex
)
1432 struct neigh_parms
*p
;
1434 for (p
= &tbl
->parms
; p
; p
= p
->next
) {
1435 if ((p
->dev
&& p
->dev
->ifindex
== ifindex
&& net_eq(neigh_parms_net(p
), net
)) ||
1436 (!p
->dev
&& !ifindex
))
1443 struct neigh_parms
*neigh_parms_alloc(struct net_device
*dev
,
1444 struct neigh_table
*tbl
)
1446 struct neigh_parms
*p
, *ref
;
1447 struct net
*net
= dev_net(dev
);
1448 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1450 ref
= lookup_neigh_parms(tbl
, net
, 0);
1454 p
= kmemdup(ref
, sizeof(*p
), GFP_KERNEL
);
1457 atomic_set(&p
->refcnt
, 1);
1459 neigh_rand_reach_time(p
->base_reachable_time
);
1461 if (ops
->ndo_neigh_setup
&& ops
->ndo_neigh_setup(dev
, p
)) {
1468 write_pnet(&p
->net
, hold_net(net
));
1469 p
->sysctl_table
= NULL
;
1470 write_lock_bh(&tbl
->lock
);
1471 p
->next
= tbl
->parms
.next
;
1472 tbl
->parms
.next
= p
;
1473 write_unlock_bh(&tbl
->lock
);
1477 EXPORT_SYMBOL(neigh_parms_alloc
);
1479 static void neigh_rcu_free_parms(struct rcu_head
*head
)
1481 struct neigh_parms
*parms
=
1482 container_of(head
, struct neigh_parms
, rcu_head
);
1484 neigh_parms_put(parms
);
1487 void neigh_parms_release(struct neigh_table
*tbl
, struct neigh_parms
*parms
)
1489 struct neigh_parms
**p
;
1491 if (!parms
|| parms
== &tbl
->parms
)
1493 write_lock_bh(&tbl
->lock
);
1494 for (p
= &tbl
->parms
.next
; *p
; p
= &(*p
)->next
) {
1498 write_unlock_bh(&tbl
->lock
);
1500 dev_put(parms
->dev
);
1501 call_rcu(&parms
->rcu_head
, neigh_rcu_free_parms
);
1505 write_unlock_bh(&tbl
->lock
);
1506 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1508 EXPORT_SYMBOL(neigh_parms_release
);
1510 static void neigh_parms_destroy(struct neigh_parms
*parms
)
1512 release_net(neigh_parms_net(parms
));
1516 static struct lock_class_key neigh_table_proxy_queue_class
;
1518 void neigh_table_init_no_netlink(struct neigh_table
*tbl
)
1520 unsigned long now
= jiffies
;
1521 unsigned long phsize
;
1523 write_pnet(&tbl
->parms
.net
, &init_net
);
1524 atomic_set(&tbl
->parms
.refcnt
, 1);
1525 tbl
->parms
.reachable_time
=
1526 neigh_rand_reach_time(tbl
->parms
.base_reachable_time
);
1528 if (!tbl
->kmem_cachep
)
1530 kmem_cache_create(tbl
->id
, tbl
->entry_size
, 0,
1531 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1533 tbl
->stats
= alloc_percpu(struct neigh_statistics
);
1535 panic("cannot create neighbour cache statistics");
1537 #ifdef CONFIG_PROC_FS
1538 if (!proc_create_data(tbl
->id
, 0, init_net
.proc_net_stat
,
1539 &neigh_stat_seq_fops
, tbl
))
1540 panic("cannot create neighbour proc dir entry");
1543 tbl
->nht
= neigh_hash_alloc(8);
1545 phsize
= (PNEIGH_HASHMASK
+ 1) * sizeof(struct pneigh_entry
*);
1546 tbl
->phash_buckets
= kzalloc(phsize
, GFP_KERNEL
);
1548 if (!tbl
->nht
|| !tbl
->phash_buckets
)
1549 panic("cannot allocate neighbour cache hashes");
1551 rwlock_init(&tbl
->lock
);
1552 INIT_DELAYED_WORK_DEFERRABLE(&tbl
->gc_work
, neigh_periodic_work
);
1553 schedule_delayed_work(&tbl
->gc_work
, tbl
->parms
.reachable_time
);
1554 setup_timer(&tbl
->proxy_timer
, neigh_proxy_process
, (unsigned long)tbl
);
1555 skb_queue_head_init_class(&tbl
->proxy_queue
,
1556 &neigh_table_proxy_queue_class
);
1558 tbl
->last_flush
= now
;
1559 tbl
->last_rand
= now
+ tbl
->parms
.reachable_time
* 20;
1561 EXPORT_SYMBOL(neigh_table_init_no_netlink
);
1563 void neigh_table_init(struct neigh_table
*tbl
)
1565 struct neigh_table
*tmp
;
1567 neigh_table_init_no_netlink(tbl
);
1568 write_lock(&neigh_tbl_lock
);
1569 for (tmp
= neigh_tables
; tmp
; tmp
= tmp
->next
) {
1570 if (tmp
->family
== tbl
->family
)
1573 tbl
->next
= neigh_tables
;
1575 write_unlock(&neigh_tbl_lock
);
1577 if (unlikely(tmp
)) {
1578 printk(KERN_ERR
"NEIGH: Registering multiple tables for "
1579 "family %d\n", tbl
->family
);
1583 EXPORT_SYMBOL(neigh_table_init
);
1585 int neigh_table_clear(struct neigh_table
*tbl
)
1587 struct neigh_table
**tp
;
1589 /* It is not clean... Fix it to unload IPv6 module safely */
1590 cancel_delayed_work_sync(&tbl
->gc_work
);
1591 del_timer_sync(&tbl
->proxy_timer
);
1592 pneigh_queue_purge(&tbl
->proxy_queue
);
1593 neigh_ifdown(tbl
, NULL
);
1594 if (atomic_read(&tbl
->entries
))
1595 printk(KERN_CRIT
"neighbour leakage\n");
1596 write_lock(&neigh_tbl_lock
);
1597 for (tp
= &neigh_tables
; *tp
; tp
= &(*tp
)->next
) {
1603 write_unlock(&neigh_tbl_lock
);
1605 call_rcu(&tbl
->nht
->rcu
, neigh_hash_free_rcu
);
1608 kfree(tbl
->phash_buckets
);
1609 tbl
->phash_buckets
= NULL
;
1611 remove_proc_entry(tbl
->id
, init_net
.proc_net_stat
);
1613 free_percpu(tbl
->stats
);
1616 kmem_cache_destroy(tbl
->kmem_cachep
);
1617 tbl
->kmem_cachep
= NULL
;
1621 EXPORT_SYMBOL(neigh_table_clear
);
1623 static int neigh_delete(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1625 struct net
*net
= sock_net(skb
->sk
);
1627 struct nlattr
*dst_attr
;
1628 struct neigh_table
*tbl
;
1629 struct net_device
*dev
= NULL
;
1633 if (nlmsg_len(nlh
) < sizeof(*ndm
))
1636 dst_attr
= nlmsg_find_attr(nlh
, sizeof(*ndm
), NDA_DST
);
1637 if (dst_attr
== NULL
)
1640 ndm
= nlmsg_data(nlh
);
1641 if (ndm
->ndm_ifindex
) {
1642 dev
= __dev_get_by_index(net
, ndm
->ndm_ifindex
);
1649 read_lock(&neigh_tbl_lock
);
1650 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1651 struct neighbour
*neigh
;
1653 if (tbl
->family
!= ndm
->ndm_family
)
1655 read_unlock(&neigh_tbl_lock
);
1657 if (nla_len(dst_attr
) < tbl
->key_len
)
1660 if (ndm
->ndm_flags
& NTF_PROXY
) {
1661 err
= pneigh_delete(tbl
, net
, nla_data(dst_attr
), dev
);
1668 neigh
= neigh_lookup(tbl
, nla_data(dst_attr
), dev
);
1669 if (neigh
== NULL
) {
1674 err
= neigh_update(neigh
, NULL
, NUD_FAILED
,
1675 NEIGH_UPDATE_F_OVERRIDE
|
1676 NEIGH_UPDATE_F_ADMIN
);
1677 neigh_release(neigh
);
1680 read_unlock(&neigh_tbl_lock
);
1681 err
= -EAFNOSUPPORT
;
1687 static int neigh_add(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1689 struct net
*net
= sock_net(skb
->sk
);
1691 struct nlattr
*tb
[NDA_MAX
+1];
1692 struct neigh_table
*tbl
;
1693 struct net_device
*dev
= NULL
;
1697 err
= nlmsg_parse(nlh
, sizeof(*ndm
), tb
, NDA_MAX
, NULL
);
1702 if (tb
[NDA_DST
] == NULL
)
1705 ndm
= nlmsg_data(nlh
);
1706 if (ndm
->ndm_ifindex
) {
1707 dev
= __dev_get_by_index(net
, ndm
->ndm_ifindex
);
1713 if (tb
[NDA_LLADDR
] && nla_len(tb
[NDA_LLADDR
]) < dev
->addr_len
)
1717 read_lock(&neigh_tbl_lock
);
1718 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1719 int flags
= NEIGH_UPDATE_F_ADMIN
| NEIGH_UPDATE_F_OVERRIDE
;
1720 struct neighbour
*neigh
;
1723 if (tbl
->family
!= ndm
->ndm_family
)
1725 read_unlock(&neigh_tbl_lock
);
1727 if (nla_len(tb
[NDA_DST
]) < tbl
->key_len
)
1729 dst
= nla_data(tb
[NDA_DST
]);
1730 lladdr
= tb
[NDA_LLADDR
] ? nla_data(tb
[NDA_LLADDR
]) : NULL
;
1732 if (ndm
->ndm_flags
& NTF_PROXY
) {
1733 struct pneigh_entry
*pn
;
1736 pn
= pneigh_lookup(tbl
, net
, dst
, dev
, 1);
1738 pn
->flags
= ndm
->ndm_flags
;
1747 neigh
= neigh_lookup(tbl
, dst
, dev
);
1748 if (neigh
== NULL
) {
1749 if (!(nlh
->nlmsg_flags
& NLM_F_CREATE
)) {
1754 neigh
= __neigh_lookup_errno(tbl
, dst
, dev
);
1755 if (IS_ERR(neigh
)) {
1756 err
= PTR_ERR(neigh
);
1760 if (nlh
->nlmsg_flags
& NLM_F_EXCL
) {
1762 neigh_release(neigh
);
1766 if (!(nlh
->nlmsg_flags
& NLM_F_REPLACE
))
1767 flags
&= ~NEIGH_UPDATE_F_OVERRIDE
;
1770 if (ndm
->ndm_flags
& NTF_USE
) {
1771 neigh_event_send(neigh
, NULL
);
1774 err
= neigh_update(neigh
, lladdr
, ndm
->ndm_state
, flags
);
1775 neigh_release(neigh
);
1779 read_unlock(&neigh_tbl_lock
);
1780 err
= -EAFNOSUPPORT
;
1785 static int neightbl_fill_parms(struct sk_buff
*skb
, struct neigh_parms
*parms
)
1787 struct nlattr
*nest
;
1789 nest
= nla_nest_start(skb
, NDTA_PARMS
);
1794 NLA_PUT_U32(skb
, NDTPA_IFINDEX
, parms
->dev
->ifindex
);
1796 NLA_PUT_U32(skb
, NDTPA_REFCNT
, atomic_read(&parms
->refcnt
));
1797 NLA_PUT_U32(skb
, NDTPA_QUEUE_LEN
, parms
->queue_len
);
1798 NLA_PUT_U32(skb
, NDTPA_PROXY_QLEN
, parms
->proxy_qlen
);
1799 NLA_PUT_U32(skb
, NDTPA_APP_PROBES
, parms
->app_probes
);
1800 NLA_PUT_U32(skb
, NDTPA_UCAST_PROBES
, parms
->ucast_probes
);
1801 NLA_PUT_U32(skb
, NDTPA_MCAST_PROBES
, parms
->mcast_probes
);
1802 NLA_PUT_MSECS(skb
, NDTPA_REACHABLE_TIME
, parms
->reachable_time
);
1803 NLA_PUT_MSECS(skb
, NDTPA_BASE_REACHABLE_TIME
,
1804 parms
->base_reachable_time
);
1805 NLA_PUT_MSECS(skb
, NDTPA_GC_STALETIME
, parms
->gc_staletime
);
1806 NLA_PUT_MSECS(skb
, NDTPA_DELAY_PROBE_TIME
, parms
->delay_probe_time
);
1807 NLA_PUT_MSECS(skb
, NDTPA_RETRANS_TIME
, parms
->retrans_time
);
1808 NLA_PUT_MSECS(skb
, NDTPA_ANYCAST_DELAY
, parms
->anycast_delay
);
1809 NLA_PUT_MSECS(skb
, NDTPA_PROXY_DELAY
, parms
->proxy_delay
);
1810 NLA_PUT_MSECS(skb
, NDTPA_LOCKTIME
, parms
->locktime
);
1812 return nla_nest_end(skb
, nest
);
1815 nla_nest_cancel(skb
, nest
);
1819 static int neightbl_fill_info(struct sk_buff
*skb
, struct neigh_table
*tbl
,
1820 u32 pid
, u32 seq
, int type
, int flags
)
1822 struct nlmsghdr
*nlh
;
1823 struct ndtmsg
*ndtmsg
;
1825 nlh
= nlmsg_put(skb
, pid
, seq
, type
, sizeof(*ndtmsg
), flags
);
1829 ndtmsg
= nlmsg_data(nlh
);
1831 read_lock_bh(&tbl
->lock
);
1832 ndtmsg
->ndtm_family
= tbl
->family
;
1833 ndtmsg
->ndtm_pad1
= 0;
1834 ndtmsg
->ndtm_pad2
= 0;
1836 NLA_PUT_STRING(skb
, NDTA_NAME
, tbl
->id
);
1837 NLA_PUT_MSECS(skb
, NDTA_GC_INTERVAL
, tbl
->gc_interval
);
1838 NLA_PUT_U32(skb
, NDTA_THRESH1
, tbl
->gc_thresh1
);
1839 NLA_PUT_U32(skb
, NDTA_THRESH2
, tbl
->gc_thresh2
);
1840 NLA_PUT_U32(skb
, NDTA_THRESH3
, tbl
->gc_thresh3
);
1843 unsigned long now
= jiffies
;
1844 unsigned int flush_delta
= now
- tbl
->last_flush
;
1845 unsigned int rand_delta
= now
- tbl
->last_rand
;
1846 struct neigh_hash_table
*nht
;
1847 struct ndt_config ndc
= {
1848 .ndtc_key_len
= tbl
->key_len
,
1849 .ndtc_entry_size
= tbl
->entry_size
,
1850 .ndtc_entries
= atomic_read(&tbl
->entries
),
1851 .ndtc_last_flush
= jiffies_to_msecs(flush_delta
),
1852 .ndtc_last_rand
= jiffies_to_msecs(rand_delta
),
1853 .ndtc_proxy_qlen
= tbl
->proxy_queue
.qlen
,
1857 nht
= rcu_dereference_bh(tbl
->nht
);
1858 ndc
.ndtc_hash_rnd
= nht
->hash_rnd
;
1859 ndc
.ndtc_hash_mask
= nht
->hash_mask
;
1860 rcu_read_unlock_bh();
1862 NLA_PUT(skb
, NDTA_CONFIG
, sizeof(ndc
), &ndc
);
1867 struct ndt_stats ndst
;
1869 memset(&ndst
, 0, sizeof(ndst
));
1871 for_each_possible_cpu(cpu
) {
1872 struct neigh_statistics
*st
;
1874 st
= per_cpu_ptr(tbl
->stats
, cpu
);
1875 ndst
.ndts_allocs
+= st
->allocs
;
1876 ndst
.ndts_destroys
+= st
->destroys
;
1877 ndst
.ndts_hash_grows
+= st
->hash_grows
;
1878 ndst
.ndts_res_failed
+= st
->res_failed
;
1879 ndst
.ndts_lookups
+= st
->lookups
;
1880 ndst
.ndts_hits
+= st
->hits
;
1881 ndst
.ndts_rcv_probes_mcast
+= st
->rcv_probes_mcast
;
1882 ndst
.ndts_rcv_probes_ucast
+= st
->rcv_probes_ucast
;
1883 ndst
.ndts_periodic_gc_runs
+= st
->periodic_gc_runs
;
1884 ndst
.ndts_forced_gc_runs
+= st
->forced_gc_runs
;
1887 NLA_PUT(skb
, NDTA_STATS
, sizeof(ndst
), &ndst
);
1890 BUG_ON(tbl
->parms
.dev
);
1891 if (neightbl_fill_parms(skb
, &tbl
->parms
) < 0)
1892 goto nla_put_failure
;
1894 read_unlock_bh(&tbl
->lock
);
1895 return nlmsg_end(skb
, nlh
);
1898 read_unlock_bh(&tbl
->lock
);
1899 nlmsg_cancel(skb
, nlh
);
1903 static int neightbl_fill_param_info(struct sk_buff
*skb
,
1904 struct neigh_table
*tbl
,
1905 struct neigh_parms
*parms
,
1906 u32 pid
, u32 seq
, int type
,
1909 struct ndtmsg
*ndtmsg
;
1910 struct nlmsghdr
*nlh
;
1912 nlh
= nlmsg_put(skb
, pid
, seq
, type
, sizeof(*ndtmsg
), flags
);
1916 ndtmsg
= nlmsg_data(nlh
);
1918 read_lock_bh(&tbl
->lock
);
1919 ndtmsg
->ndtm_family
= tbl
->family
;
1920 ndtmsg
->ndtm_pad1
= 0;
1921 ndtmsg
->ndtm_pad2
= 0;
1923 if (nla_put_string(skb
, NDTA_NAME
, tbl
->id
) < 0 ||
1924 neightbl_fill_parms(skb
, parms
) < 0)
1927 read_unlock_bh(&tbl
->lock
);
1928 return nlmsg_end(skb
, nlh
);
1930 read_unlock_bh(&tbl
->lock
);
1931 nlmsg_cancel(skb
, nlh
);
1935 static const struct nla_policy nl_neightbl_policy
[NDTA_MAX
+1] = {
1936 [NDTA_NAME
] = { .type
= NLA_STRING
},
1937 [NDTA_THRESH1
] = { .type
= NLA_U32
},
1938 [NDTA_THRESH2
] = { .type
= NLA_U32
},
1939 [NDTA_THRESH3
] = { .type
= NLA_U32
},
1940 [NDTA_GC_INTERVAL
] = { .type
= NLA_U64
},
1941 [NDTA_PARMS
] = { .type
= NLA_NESTED
},
1944 static const struct nla_policy nl_ntbl_parm_policy
[NDTPA_MAX
+1] = {
1945 [NDTPA_IFINDEX
] = { .type
= NLA_U32
},
1946 [NDTPA_QUEUE_LEN
] = { .type
= NLA_U32
},
1947 [NDTPA_PROXY_QLEN
] = { .type
= NLA_U32
},
1948 [NDTPA_APP_PROBES
] = { .type
= NLA_U32
},
1949 [NDTPA_UCAST_PROBES
] = { .type
= NLA_U32
},
1950 [NDTPA_MCAST_PROBES
] = { .type
= NLA_U32
},
1951 [NDTPA_BASE_REACHABLE_TIME
] = { .type
= NLA_U64
},
1952 [NDTPA_GC_STALETIME
] = { .type
= NLA_U64
},
1953 [NDTPA_DELAY_PROBE_TIME
] = { .type
= NLA_U64
},
1954 [NDTPA_RETRANS_TIME
] = { .type
= NLA_U64
},
1955 [NDTPA_ANYCAST_DELAY
] = { .type
= NLA_U64
},
1956 [NDTPA_PROXY_DELAY
] = { .type
= NLA_U64
},
1957 [NDTPA_LOCKTIME
] = { .type
= NLA_U64
},
1960 static int neightbl_set(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1962 struct net
*net
= sock_net(skb
->sk
);
1963 struct neigh_table
*tbl
;
1964 struct ndtmsg
*ndtmsg
;
1965 struct nlattr
*tb
[NDTA_MAX
+1];
1968 err
= nlmsg_parse(nlh
, sizeof(*ndtmsg
), tb
, NDTA_MAX
,
1969 nl_neightbl_policy
);
1973 if (tb
[NDTA_NAME
] == NULL
) {
1978 ndtmsg
= nlmsg_data(nlh
);
1979 read_lock(&neigh_tbl_lock
);
1980 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1981 if (ndtmsg
->ndtm_family
&& tbl
->family
!= ndtmsg
->ndtm_family
)
1984 if (nla_strcmp(tb
[NDTA_NAME
], tbl
->id
) == 0)
1994 * We acquire tbl->lock to be nice to the periodic timers and
1995 * make sure they always see a consistent set of values.
1997 write_lock_bh(&tbl
->lock
);
1999 if (tb
[NDTA_PARMS
]) {
2000 struct nlattr
*tbp
[NDTPA_MAX
+1];
2001 struct neigh_parms
*p
;
2004 err
= nla_parse_nested(tbp
, NDTPA_MAX
, tb
[NDTA_PARMS
],
2005 nl_ntbl_parm_policy
);
2007 goto errout_tbl_lock
;
2009 if (tbp
[NDTPA_IFINDEX
])
2010 ifindex
= nla_get_u32(tbp
[NDTPA_IFINDEX
]);
2012 p
= lookup_neigh_parms(tbl
, net
, ifindex
);
2015 goto errout_tbl_lock
;
2018 for (i
= 1; i
<= NDTPA_MAX
; i
++) {
2023 case NDTPA_QUEUE_LEN
:
2024 p
->queue_len
= nla_get_u32(tbp
[i
]);
2026 case NDTPA_PROXY_QLEN
:
2027 p
->proxy_qlen
= nla_get_u32(tbp
[i
]);
2029 case NDTPA_APP_PROBES
:
2030 p
->app_probes
= nla_get_u32(tbp
[i
]);
2032 case NDTPA_UCAST_PROBES
:
2033 p
->ucast_probes
= nla_get_u32(tbp
[i
]);
2035 case NDTPA_MCAST_PROBES
:
2036 p
->mcast_probes
= nla_get_u32(tbp
[i
]);
2038 case NDTPA_BASE_REACHABLE_TIME
:
2039 p
->base_reachable_time
= nla_get_msecs(tbp
[i
]);
2041 case NDTPA_GC_STALETIME
:
2042 p
->gc_staletime
= nla_get_msecs(tbp
[i
]);
2044 case NDTPA_DELAY_PROBE_TIME
:
2045 p
->delay_probe_time
= nla_get_msecs(tbp
[i
]);
2047 case NDTPA_RETRANS_TIME
:
2048 p
->retrans_time
= nla_get_msecs(tbp
[i
]);
2050 case NDTPA_ANYCAST_DELAY
:
2051 p
->anycast_delay
= nla_get_msecs(tbp
[i
]);
2053 case NDTPA_PROXY_DELAY
:
2054 p
->proxy_delay
= nla_get_msecs(tbp
[i
]);
2056 case NDTPA_LOCKTIME
:
2057 p
->locktime
= nla_get_msecs(tbp
[i
]);
2063 if (tb
[NDTA_THRESH1
])
2064 tbl
->gc_thresh1
= nla_get_u32(tb
[NDTA_THRESH1
]);
2066 if (tb
[NDTA_THRESH2
])
2067 tbl
->gc_thresh2
= nla_get_u32(tb
[NDTA_THRESH2
]);
2069 if (tb
[NDTA_THRESH3
])
2070 tbl
->gc_thresh3
= nla_get_u32(tb
[NDTA_THRESH3
]);
2072 if (tb
[NDTA_GC_INTERVAL
])
2073 tbl
->gc_interval
= nla_get_msecs(tb
[NDTA_GC_INTERVAL
]);
2078 write_unlock_bh(&tbl
->lock
);
2080 read_unlock(&neigh_tbl_lock
);
2085 static int neightbl_dump_info(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2087 struct net
*net
= sock_net(skb
->sk
);
2088 int family
, tidx
, nidx
= 0;
2089 int tbl_skip
= cb
->args
[0];
2090 int neigh_skip
= cb
->args
[1];
2091 struct neigh_table
*tbl
;
2093 family
= ((struct rtgenmsg
*) nlmsg_data(cb
->nlh
))->rtgen_family
;
2095 read_lock(&neigh_tbl_lock
);
2096 for (tbl
= neigh_tables
, tidx
= 0; tbl
; tbl
= tbl
->next
, tidx
++) {
2097 struct neigh_parms
*p
;
2099 if (tidx
< tbl_skip
|| (family
&& tbl
->family
!= family
))
2102 if (neightbl_fill_info(skb
, tbl
, NETLINK_CB(cb
->skb
).pid
,
2103 cb
->nlh
->nlmsg_seq
, RTM_NEWNEIGHTBL
,
2107 for (nidx
= 0, p
= tbl
->parms
.next
; p
; p
= p
->next
) {
2108 if (!net_eq(neigh_parms_net(p
), net
))
2111 if (nidx
< neigh_skip
)
2114 if (neightbl_fill_param_info(skb
, tbl
, p
,
2115 NETLINK_CB(cb
->skb
).pid
,
2127 read_unlock(&neigh_tbl_lock
);
2134 static int neigh_fill_info(struct sk_buff
*skb
, struct neighbour
*neigh
,
2135 u32 pid
, u32 seq
, int type
, unsigned int flags
)
2137 unsigned long now
= jiffies
;
2138 struct nda_cacheinfo ci
;
2139 struct nlmsghdr
*nlh
;
2142 nlh
= nlmsg_put(skb
, pid
, seq
, type
, sizeof(*ndm
), flags
);
2146 ndm
= nlmsg_data(nlh
);
2147 ndm
->ndm_family
= neigh
->ops
->family
;
2150 ndm
->ndm_flags
= neigh
->flags
;
2151 ndm
->ndm_type
= neigh
->type
;
2152 ndm
->ndm_ifindex
= neigh
->dev
->ifindex
;
2154 NLA_PUT(skb
, NDA_DST
, neigh
->tbl
->key_len
, neigh
->primary_key
);
2156 read_lock_bh(&neigh
->lock
);
2157 ndm
->ndm_state
= neigh
->nud_state
;
2158 if (neigh
->nud_state
& NUD_VALID
) {
2159 char haddr
[MAX_ADDR_LEN
];
2161 neigh_ha_snapshot(haddr
, neigh
, neigh
->dev
);
2162 if (nla_put(skb
, NDA_LLADDR
, neigh
->dev
->addr_len
, haddr
) < 0) {
2163 read_unlock_bh(&neigh
->lock
);
2164 goto nla_put_failure
;
2168 ci
.ndm_used
= jiffies_to_clock_t(now
- neigh
->used
);
2169 ci
.ndm_confirmed
= jiffies_to_clock_t(now
- neigh
->confirmed
);
2170 ci
.ndm_updated
= jiffies_to_clock_t(now
- neigh
->updated
);
2171 ci
.ndm_refcnt
= atomic_read(&neigh
->refcnt
) - 1;
2172 read_unlock_bh(&neigh
->lock
);
2174 NLA_PUT_U32(skb
, NDA_PROBES
, atomic_read(&neigh
->probes
));
2175 NLA_PUT(skb
, NDA_CACHEINFO
, sizeof(ci
), &ci
);
2177 return nlmsg_end(skb
, nlh
);
2180 nlmsg_cancel(skb
, nlh
);
2184 static void neigh_update_notify(struct neighbour
*neigh
)
2186 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE
, neigh
);
2187 __neigh_notify(neigh
, RTM_NEWNEIGH
, 0);
2190 static int neigh_dump_table(struct neigh_table
*tbl
, struct sk_buff
*skb
,
2191 struct netlink_callback
*cb
)
2193 struct net
*net
= sock_net(skb
->sk
);
2194 struct neighbour
*n
;
2195 int rc
, h
, s_h
= cb
->args
[1];
2196 int idx
, s_idx
= idx
= cb
->args
[2];
2197 struct neigh_hash_table
*nht
;
2200 nht
= rcu_dereference_bh(tbl
->nht
);
2202 for (h
= 0; h
<= nht
->hash_mask
; h
++) {
2207 for (n
= rcu_dereference_bh(nht
->hash_buckets
[h
]), idx
= 0;
2209 n
= rcu_dereference_bh(n
->next
)) {
2210 if (!net_eq(dev_net(n
->dev
), net
))
2214 if (neigh_fill_info(skb
, n
, NETLINK_CB(cb
->skb
).pid
,
2217 NLM_F_MULTI
) <= 0) {
2227 rcu_read_unlock_bh();
2233 static int neigh_dump_info(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2235 struct neigh_table
*tbl
;
2238 read_lock(&neigh_tbl_lock
);
2239 family
= ((struct rtgenmsg
*) nlmsg_data(cb
->nlh
))->rtgen_family
;
2242 for (tbl
= neigh_tables
, t
= 0; tbl
; tbl
= tbl
->next
, t
++) {
2243 if (t
< s_t
|| (family
&& tbl
->family
!= family
))
2246 memset(&cb
->args
[1], 0, sizeof(cb
->args
) -
2247 sizeof(cb
->args
[0]));
2248 if (neigh_dump_table(tbl
, skb
, cb
) < 0)
2251 read_unlock(&neigh_tbl_lock
);
2257 void neigh_for_each(struct neigh_table
*tbl
, void (*cb
)(struct neighbour
*, void *), void *cookie
)
2260 struct neigh_hash_table
*nht
;
2263 nht
= rcu_dereference_bh(tbl
->nht
);
2265 read_lock(&tbl
->lock
); /* avoid resizes */
2266 for (chain
= 0; chain
<= nht
->hash_mask
; chain
++) {
2267 struct neighbour
*n
;
2269 for (n
= rcu_dereference_bh(nht
->hash_buckets
[chain
]);
2271 n
= rcu_dereference_bh(n
->next
))
2274 read_unlock(&tbl
->lock
);
2275 rcu_read_unlock_bh();
2277 EXPORT_SYMBOL(neigh_for_each
);
2279 /* The tbl->lock must be held as a writer and BH disabled. */
2280 void __neigh_for_each_release(struct neigh_table
*tbl
,
2281 int (*cb
)(struct neighbour
*))
2284 struct neigh_hash_table
*nht
;
2286 nht
= rcu_dereference_protected(tbl
->nht
,
2287 lockdep_is_held(&tbl
->lock
));
2288 for (chain
= 0; chain
<= nht
->hash_mask
; chain
++) {
2289 struct neighbour
*n
;
2290 struct neighbour __rcu
**np
;
2292 np
= &nht
->hash_buckets
[chain
];
2293 while ((n
= rcu_dereference_protected(*np
,
2294 lockdep_is_held(&tbl
->lock
))) != NULL
) {
2297 write_lock(&n
->lock
);
2300 rcu_assign_pointer(*np
,
2301 rcu_dereference_protected(n
->next
,
2302 lockdep_is_held(&tbl
->lock
)));
2306 write_unlock(&n
->lock
);
2308 neigh_cleanup_and_release(n
);
2312 EXPORT_SYMBOL(__neigh_for_each_release
);
2314 #ifdef CONFIG_PROC_FS
2316 static struct neighbour
*neigh_get_first(struct seq_file
*seq
)
2318 struct neigh_seq_state
*state
= seq
->private;
2319 struct net
*net
= seq_file_net(seq
);
2320 struct neigh_hash_table
*nht
= state
->nht
;
2321 struct neighbour
*n
= NULL
;
2322 int bucket
= state
->bucket
;
2324 state
->flags
&= ~NEIGH_SEQ_IS_PNEIGH
;
2325 for (bucket
= 0; bucket
<= nht
->hash_mask
; bucket
++) {
2326 n
= rcu_dereference_bh(nht
->hash_buckets
[bucket
]);
2329 if (!net_eq(dev_net(n
->dev
), net
))
2331 if (state
->neigh_sub_iter
) {
2335 v
= state
->neigh_sub_iter(state
, n
, &fakep
);
2339 if (!(state
->flags
& NEIGH_SEQ_SKIP_NOARP
))
2341 if (n
->nud_state
& ~NUD_NOARP
)
2344 n
= rcu_dereference_bh(n
->next
);
2350 state
->bucket
= bucket
;
2355 static struct neighbour
*neigh_get_next(struct seq_file
*seq
,
2356 struct neighbour
*n
,
2359 struct neigh_seq_state
*state
= seq
->private;
2360 struct net
*net
= seq_file_net(seq
);
2361 struct neigh_hash_table
*nht
= state
->nht
;
2363 if (state
->neigh_sub_iter
) {
2364 void *v
= state
->neigh_sub_iter(state
, n
, pos
);
2368 n
= rcu_dereference_bh(n
->next
);
2372 if (!net_eq(dev_net(n
->dev
), net
))
2374 if (state
->neigh_sub_iter
) {
2375 void *v
= state
->neigh_sub_iter(state
, n
, pos
);
2380 if (!(state
->flags
& NEIGH_SEQ_SKIP_NOARP
))
2383 if (n
->nud_state
& ~NUD_NOARP
)
2386 n
= rcu_dereference_bh(n
->next
);
2392 if (++state
->bucket
> nht
->hash_mask
)
2395 n
= rcu_dereference_bh(nht
->hash_buckets
[state
->bucket
]);
2403 static struct neighbour
*neigh_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2405 struct neighbour
*n
= neigh_get_first(seq
);
2410 n
= neigh_get_next(seq
, n
, pos
);
2415 return *pos
? NULL
: n
;
2418 static struct pneigh_entry
*pneigh_get_first(struct seq_file
*seq
)
2420 struct neigh_seq_state
*state
= seq
->private;
2421 struct net
*net
= seq_file_net(seq
);
2422 struct neigh_table
*tbl
= state
->tbl
;
2423 struct pneigh_entry
*pn
= NULL
;
2424 int bucket
= state
->bucket
;
2426 state
->flags
|= NEIGH_SEQ_IS_PNEIGH
;
2427 for (bucket
= 0; bucket
<= PNEIGH_HASHMASK
; bucket
++) {
2428 pn
= tbl
->phash_buckets
[bucket
];
2429 while (pn
&& !net_eq(pneigh_net(pn
), net
))
2434 state
->bucket
= bucket
;
2439 static struct pneigh_entry
*pneigh_get_next(struct seq_file
*seq
,
2440 struct pneigh_entry
*pn
,
2443 struct neigh_seq_state
*state
= seq
->private;
2444 struct net
*net
= seq_file_net(seq
);
2445 struct neigh_table
*tbl
= state
->tbl
;
2449 if (++state
->bucket
> PNEIGH_HASHMASK
)
2451 pn
= tbl
->phash_buckets
[state
->bucket
];
2452 while (pn
&& !net_eq(pneigh_net(pn
), net
))
2464 static struct pneigh_entry
*pneigh_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2466 struct pneigh_entry
*pn
= pneigh_get_first(seq
);
2471 pn
= pneigh_get_next(seq
, pn
, pos
);
2476 return *pos
? NULL
: pn
;
2479 static void *neigh_get_idx_any(struct seq_file
*seq
, loff_t
*pos
)
2481 struct neigh_seq_state
*state
= seq
->private;
2483 loff_t idxpos
= *pos
;
2485 rc
= neigh_get_idx(seq
, &idxpos
);
2486 if (!rc
&& !(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
))
2487 rc
= pneigh_get_idx(seq
, &idxpos
);
2492 void *neigh_seq_start(struct seq_file
*seq
, loff_t
*pos
, struct neigh_table
*tbl
, unsigned int neigh_seq_flags
)
2495 struct neigh_seq_state
*state
= seq
->private;
2499 state
->flags
= (neigh_seq_flags
& ~NEIGH_SEQ_IS_PNEIGH
);
2502 state
->nht
= rcu_dereference_bh(tbl
->nht
);
2504 return *pos
? neigh_get_idx_any(seq
, pos
) : SEQ_START_TOKEN
;
2506 EXPORT_SYMBOL(neigh_seq_start
);
2508 void *neigh_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2510 struct neigh_seq_state
*state
;
2513 if (v
== SEQ_START_TOKEN
) {
2514 rc
= neigh_get_first(seq
);
2518 state
= seq
->private;
2519 if (!(state
->flags
& NEIGH_SEQ_IS_PNEIGH
)) {
2520 rc
= neigh_get_next(seq
, v
, NULL
);
2523 if (!(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
))
2524 rc
= pneigh_get_first(seq
);
2526 BUG_ON(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
);
2527 rc
= pneigh_get_next(seq
, v
, NULL
);
2533 EXPORT_SYMBOL(neigh_seq_next
);
2535 void neigh_seq_stop(struct seq_file
*seq
, void *v
)
2538 rcu_read_unlock_bh();
2540 EXPORT_SYMBOL(neigh_seq_stop
);
2542 /* statistics via seq_file */
2544 static void *neigh_stat_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2546 struct neigh_table
*tbl
= seq
->private;
2550 return SEQ_START_TOKEN
;
2552 for (cpu
= *pos
-1; cpu
< nr_cpu_ids
; ++cpu
) {
2553 if (!cpu_possible(cpu
))
2556 return per_cpu_ptr(tbl
->stats
, cpu
);
2561 static void *neigh_stat_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2563 struct neigh_table
*tbl
= seq
->private;
2566 for (cpu
= *pos
; cpu
< nr_cpu_ids
; ++cpu
) {
2567 if (!cpu_possible(cpu
))
2570 return per_cpu_ptr(tbl
->stats
, cpu
);
2575 static void neigh_stat_seq_stop(struct seq_file
*seq
, void *v
)
2580 static int neigh_stat_seq_show(struct seq_file
*seq
, void *v
)
2582 struct neigh_table
*tbl
= seq
->private;
2583 struct neigh_statistics
*st
= v
;
2585 if (v
== SEQ_START_TOKEN
) {
2586 seq_printf(seq
, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2590 seq_printf(seq
, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2591 "%08lx %08lx %08lx %08lx %08lx\n",
2592 atomic_read(&tbl
->entries
),
2603 st
->rcv_probes_mcast
,
2604 st
->rcv_probes_ucast
,
2606 st
->periodic_gc_runs
,
2614 static const struct seq_operations neigh_stat_seq_ops
= {
2615 .start
= neigh_stat_seq_start
,
2616 .next
= neigh_stat_seq_next
,
2617 .stop
= neigh_stat_seq_stop
,
2618 .show
= neigh_stat_seq_show
,
2621 static int neigh_stat_seq_open(struct inode
*inode
, struct file
*file
)
2623 int ret
= seq_open(file
, &neigh_stat_seq_ops
);
2626 struct seq_file
*sf
= file
->private_data
;
2627 sf
->private = PDE(inode
)->data
;
2632 static const struct file_operations neigh_stat_seq_fops
= {
2633 .owner
= THIS_MODULE
,
2634 .open
= neigh_stat_seq_open
,
2636 .llseek
= seq_lseek
,
2637 .release
= seq_release
,
2640 #endif /* CONFIG_PROC_FS */
2642 static inline size_t neigh_nlmsg_size(void)
2644 return NLMSG_ALIGN(sizeof(struct ndmsg
))
2645 + nla_total_size(MAX_ADDR_LEN
) /* NDA_DST */
2646 + nla_total_size(MAX_ADDR_LEN
) /* NDA_LLADDR */
2647 + nla_total_size(sizeof(struct nda_cacheinfo
))
2648 + nla_total_size(4); /* NDA_PROBES */
2651 static void __neigh_notify(struct neighbour
*n
, int type
, int flags
)
2653 struct net
*net
= dev_net(n
->dev
);
2654 struct sk_buff
*skb
;
2657 skb
= nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC
);
2661 err
= neigh_fill_info(skb
, n
, 0, 0, type
, flags
);
2663 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2664 WARN_ON(err
== -EMSGSIZE
);
2668 rtnl_notify(skb
, net
, 0, RTNLGRP_NEIGH
, NULL
, GFP_ATOMIC
);
2672 rtnl_set_sk_err(net
, RTNLGRP_NEIGH
, err
);
2676 void neigh_app_ns(struct neighbour
*n
)
2678 __neigh_notify(n
, RTM_GETNEIGH
, NLM_F_REQUEST
);
2680 EXPORT_SYMBOL(neigh_app_ns
);
2681 #endif /* CONFIG_ARPD */
2683 #ifdef CONFIG_SYSCTL
2685 #define NEIGH_VARS_MAX 19
2687 static struct neigh_sysctl_table
{
2688 struct ctl_table_header
*sysctl_header
;
2689 struct ctl_table neigh_vars
[NEIGH_VARS_MAX
];
2691 } neigh_sysctl_template __read_mostly
= {
2694 .procname
= "mcast_solicit",
2695 .maxlen
= sizeof(int),
2697 .proc_handler
= proc_dointvec
,
2700 .procname
= "ucast_solicit",
2701 .maxlen
= sizeof(int),
2703 .proc_handler
= proc_dointvec
,
2706 .procname
= "app_solicit",
2707 .maxlen
= sizeof(int),
2709 .proc_handler
= proc_dointvec
,
2712 .procname
= "retrans_time",
2713 .maxlen
= sizeof(int),
2715 .proc_handler
= proc_dointvec_userhz_jiffies
,
2718 .procname
= "base_reachable_time",
2719 .maxlen
= sizeof(int),
2721 .proc_handler
= proc_dointvec_jiffies
,
2724 .procname
= "delay_first_probe_time",
2725 .maxlen
= sizeof(int),
2727 .proc_handler
= proc_dointvec_jiffies
,
2730 .procname
= "gc_stale_time",
2731 .maxlen
= sizeof(int),
2733 .proc_handler
= proc_dointvec_jiffies
,
2736 .procname
= "unres_qlen",
2737 .maxlen
= sizeof(int),
2739 .proc_handler
= proc_dointvec
,
2742 .procname
= "proxy_qlen",
2743 .maxlen
= sizeof(int),
2745 .proc_handler
= proc_dointvec
,
2748 .procname
= "anycast_delay",
2749 .maxlen
= sizeof(int),
2751 .proc_handler
= proc_dointvec_userhz_jiffies
,
2754 .procname
= "proxy_delay",
2755 .maxlen
= sizeof(int),
2757 .proc_handler
= proc_dointvec_userhz_jiffies
,
2760 .procname
= "locktime",
2761 .maxlen
= sizeof(int),
2763 .proc_handler
= proc_dointvec_userhz_jiffies
,
2766 .procname
= "retrans_time_ms",
2767 .maxlen
= sizeof(int),
2769 .proc_handler
= proc_dointvec_ms_jiffies
,
2772 .procname
= "base_reachable_time_ms",
2773 .maxlen
= sizeof(int),
2775 .proc_handler
= proc_dointvec_ms_jiffies
,
2778 .procname
= "gc_interval",
2779 .maxlen
= sizeof(int),
2781 .proc_handler
= proc_dointvec_jiffies
,
2784 .procname
= "gc_thresh1",
2785 .maxlen
= sizeof(int),
2787 .proc_handler
= proc_dointvec
,
2790 .procname
= "gc_thresh2",
2791 .maxlen
= sizeof(int),
2793 .proc_handler
= proc_dointvec
,
2796 .procname
= "gc_thresh3",
2797 .maxlen
= sizeof(int),
2799 .proc_handler
= proc_dointvec
,
2805 int neigh_sysctl_register(struct net_device
*dev
, struct neigh_parms
*p
,
2806 char *p_name
, proc_handler
*handler
)
2808 struct neigh_sysctl_table
*t
;
2809 const char *dev_name_source
= NULL
;
2811 #define NEIGH_CTL_PATH_ROOT 0
2812 #define NEIGH_CTL_PATH_PROTO 1
2813 #define NEIGH_CTL_PATH_NEIGH 2
2814 #define NEIGH_CTL_PATH_DEV 3
2816 struct ctl_path neigh_path
[] = {
2817 { .procname
= "net", },
2818 { .procname
= "proto", },
2819 { .procname
= "neigh", },
2820 { .procname
= "default", },
2824 t
= kmemdup(&neigh_sysctl_template
, sizeof(*t
), GFP_KERNEL
);
2828 t
->neigh_vars
[0].data
= &p
->mcast_probes
;
2829 t
->neigh_vars
[1].data
= &p
->ucast_probes
;
2830 t
->neigh_vars
[2].data
= &p
->app_probes
;
2831 t
->neigh_vars
[3].data
= &p
->retrans_time
;
2832 t
->neigh_vars
[4].data
= &p
->base_reachable_time
;
2833 t
->neigh_vars
[5].data
= &p
->delay_probe_time
;
2834 t
->neigh_vars
[6].data
= &p
->gc_staletime
;
2835 t
->neigh_vars
[7].data
= &p
->queue_len
;
2836 t
->neigh_vars
[8].data
= &p
->proxy_qlen
;
2837 t
->neigh_vars
[9].data
= &p
->anycast_delay
;
2838 t
->neigh_vars
[10].data
= &p
->proxy_delay
;
2839 t
->neigh_vars
[11].data
= &p
->locktime
;
2840 t
->neigh_vars
[12].data
= &p
->retrans_time
;
2841 t
->neigh_vars
[13].data
= &p
->base_reachable_time
;
2844 dev_name_source
= dev
->name
;
2845 /* Terminate the table early */
2846 memset(&t
->neigh_vars
[14], 0, sizeof(t
->neigh_vars
[14]));
2848 dev_name_source
= neigh_path
[NEIGH_CTL_PATH_DEV
].procname
;
2849 t
->neigh_vars
[14].data
= (int *)(p
+ 1);
2850 t
->neigh_vars
[15].data
= (int *)(p
+ 1) + 1;
2851 t
->neigh_vars
[16].data
= (int *)(p
+ 1) + 2;
2852 t
->neigh_vars
[17].data
= (int *)(p
+ 1) + 3;
2858 t
->neigh_vars
[3].proc_handler
= handler
;
2859 t
->neigh_vars
[3].extra1
= dev
;
2861 t
->neigh_vars
[4].proc_handler
= handler
;
2862 t
->neigh_vars
[4].extra1
= dev
;
2863 /* RetransTime (in milliseconds)*/
2864 t
->neigh_vars
[12].proc_handler
= handler
;
2865 t
->neigh_vars
[12].extra1
= dev
;
2866 /* ReachableTime (in milliseconds) */
2867 t
->neigh_vars
[13].proc_handler
= handler
;
2868 t
->neigh_vars
[13].extra1
= dev
;
2871 t
->dev_name
= kstrdup(dev_name_source
, GFP_KERNEL
);
2875 neigh_path
[NEIGH_CTL_PATH_DEV
].procname
= t
->dev_name
;
2876 neigh_path
[NEIGH_CTL_PATH_PROTO
].procname
= p_name
;
2879 register_net_sysctl_table(neigh_parms_net(p
), neigh_path
, t
->neigh_vars
);
2880 if (!t
->sysctl_header
)
2883 p
->sysctl_table
= t
;
2893 EXPORT_SYMBOL(neigh_sysctl_register
);
2895 void neigh_sysctl_unregister(struct neigh_parms
*p
)
2897 if (p
->sysctl_table
) {
2898 struct neigh_sysctl_table
*t
= p
->sysctl_table
;
2899 p
->sysctl_table
= NULL
;
2900 unregister_sysctl_table(t
->sysctl_header
);
2905 EXPORT_SYMBOL(neigh_sysctl_unregister
);
2907 #endif /* CONFIG_SYSCTL */
2909 static int __init
neigh_init(void)
2911 rtnl_register(PF_UNSPEC
, RTM_NEWNEIGH
, neigh_add
, NULL
);
2912 rtnl_register(PF_UNSPEC
, RTM_DELNEIGH
, neigh_delete
, NULL
);
2913 rtnl_register(PF_UNSPEC
, RTM_GETNEIGH
, NULL
, neigh_dump_info
);
2915 rtnl_register(PF_UNSPEC
, RTM_GETNEIGHTBL
, NULL
, neightbl_dump_info
);
2916 rtnl_register(PF_UNSPEC
, RTM_SETNEIGHTBL
, neightbl_set
, NULL
);
2921 subsys_initcall(neigh_init
);