powerpc: Account time using timebase rather than PURR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / time.c
blobfca20643c3686f3b2480cbfce688fe1337c78255
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
138 #define XSEC_PER_SEC (1024*1024)
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
153 DEFINE_SPINLOCK(rtc_lock);
154 EXPORT_SYMBOL_GPL(rtc_lock);
156 static u64 tb_to_ns_scale __read_mostly;
157 static unsigned tb_to_ns_shift __read_mostly;
158 static unsigned long boot_tb __read_mostly;
160 extern struct timezone sys_tz;
161 static long timezone_offset;
163 unsigned long ppc_proc_freq;
164 EXPORT_SYMBOL(ppc_proc_freq);
165 unsigned long ppc_tb_freq;
167 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
169 * Factors for converting from cputime_t (timebase ticks) to
170 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
171 * These are all stored as 0.64 fixed-point binary fractions.
173 u64 __cputime_jiffies_factor;
174 EXPORT_SYMBOL(__cputime_jiffies_factor);
175 u64 __cputime_msec_factor;
176 EXPORT_SYMBOL(__cputime_msec_factor);
177 u64 __cputime_sec_factor;
178 EXPORT_SYMBOL(__cputime_sec_factor);
179 u64 __cputime_clockt_factor;
180 EXPORT_SYMBOL(__cputime_clockt_factor);
181 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
182 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
184 cputime_t cputime_one_jiffy;
186 static void calc_cputime_factors(void)
188 struct div_result res;
190 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
191 __cputime_jiffies_factor = res.result_low;
192 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
193 __cputime_msec_factor = res.result_low;
194 div128_by_32(1, 0, tb_ticks_per_sec, &res);
195 __cputime_sec_factor = res.result_low;
196 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
197 __cputime_clockt_factor = res.result_low;
201 * Read the SPURR on systems that have it, otherwise the PURR,
202 * or if that doesn't exist return the timebase value passed in.
204 static u64 read_spurr(u64 tb)
206 if (cpu_has_feature(CPU_FTR_SPURR))
207 return mfspr(SPRN_SPURR);
208 if (cpu_has_feature(CPU_FTR_PURR))
209 return mfspr(SPRN_PURR);
210 return tb;
213 #ifdef CONFIG_PPC_SPLPAR
216 * Scan the dispatch trace log and count up the stolen time.
217 * Should be called with interrupts disabled.
219 static u64 scan_dispatch_log(u64 stop_tb)
221 unsigned long i = local_paca->dtl_ridx;
222 struct dtl_entry *dtl = local_paca->dtl_curr;
223 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
224 struct lppaca *vpa = local_paca->lppaca_ptr;
225 u64 tb_delta;
226 u64 stolen = 0;
227 u64 dtb;
229 if (i == vpa->dtl_idx)
230 return 0;
231 while (i < vpa->dtl_idx) {
232 dtb = dtl->timebase;
233 tb_delta = dtl->enqueue_to_dispatch_time +
234 dtl->ready_to_enqueue_time;
235 barrier();
236 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
237 /* buffer has overflowed */
238 i = vpa->dtl_idx - N_DISPATCH_LOG;
239 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
240 continue;
242 if (dtb > stop_tb)
243 break;
244 stolen += tb_delta;
245 ++i;
246 ++dtl;
247 if (dtl == dtl_end)
248 dtl = local_paca->dispatch_log;
250 local_paca->dtl_ridx = i;
251 local_paca->dtl_curr = dtl;
252 return stolen;
256 * Accumulate stolen time by scanning the dispatch trace log.
257 * Called on entry from user mode.
259 void accumulate_stolen_time(void)
261 u64 sst, ust;
263 sst = scan_dispatch_log(get_paca()->starttime_user);
264 ust = scan_dispatch_log(get_paca()->starttime);
265 get_paca()->system_time -= sst;
266 get_paca()->user_time -= ust;
267 get_paca()->stolen_time += ust + sst;
270 static inline u64 calculate_stolen_time(u64 stop_tb)
272 u64 stolen = 0;
274 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
275 stolen = scan_dispatch_log(stop_tb);
276 get_paca()->system_time -= stolen;
279 stolen += get_paca()->stolen_time;
280 get_paca()->stolen_time = 0;
281 return stolen;
284 #else /* CONFIG_PPC_SPLPAR */
285 static inline u64 calculate_stolen_time(u64 stop_tb)
287 return 0;
290 #endif /* CONFIG_PPC_SPLPAR */
293 * Account time for a transition between system, hard irq
294 * or soft irq state.
296 void account_system_vtime(struct task_struct *tsk)
298 u64 now, nowscaled, delta, deltascaled;
299 unsigned long flags;
300 u64 stolen, udelta, sys_scaled, user_scaled;
302 local_irq_save(flags);
303 now = mftb();
304 nowscaled = read_spurr(now);
305 get_paca()->system_time += now - get_paca()->starttime;
306 get_paca()->starttime = now;
307 deltascaled = nowscaled - get_paca()->startspurr;
308 get_paca()->startspurr = nowscaled;
310 stolen = calculate_stolen_time(now);
312 delta = get_paca()->system_time;
313 get_paca()->system_time = 0;
314 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
315 get_paca()->utime_sspurr = get_paca()->user_time;
318 * Because we don't read the SPURR on every kernel entry/exit,
319 * deltascaled includes both user and system SPURR ticks.
320 * Apportion these ticks to system SPURR ticks and user
321 * SPURR ticks in the same ratio as the system time (delta)
322 * and user time (udelta) values obtained from the timebase
323 * over the same interval. The system ticks get accounted here;
324 * the user ticks get saved up in paca->user_time_scaled to be
325 * used by account_process_tick.
327 sys_scaled = delta;
328 user_scaled = udelta;
329 if (deltascaled != delta + udelta) {
330 if (udelta) {
331 sys_scaled = deltascaled * delta / (delta + udelta);
332 user_scaled = deltascaled - sys_scaled;
333 } else {
334 sys_scaled = deltascaled;
337 get_paca()->user_time_scaled += user_scaled;
339 if (in_irq() || idle_task(smp_processor_id()) != tsk) {
340 account_system_time(tsk, 0, delta, sys_scaled);
341 if (stolen)
342 account_steal_time(stolen);
343 } else {
344 account_idle_time(delta + stolen);
346 local_irq_restore(flags);
348 EXPORT_SYMBOL_GPL(account_system_vtime);
351 * Transfer the user and system times accumulated in the paca
352 * by the exception entry and exit code to the generic process
353 * user and system time records.
354 * Must be called with interrupts disabled.
355 * Assumes that account_system_vtime() has been called recently
356 * (i.e. since the last entry from usermode) so that
357 * get_paca()->user_time_scaled is up to date.
359 void account_process_tick(struct task_struct *tsk, int user_tick)
361 cputime_t utime, utimescaled;
363 utime = get_paca()->user_time;
364 utimescaled = get_paca()->user_time_scaled;
365 get_paca()->user_time = 0;
366 get_paca()->user_time_scaled = 0;
367 get_paca()->utime_sspurr = 0;
368 account_user_time(tsk, utime, utimescaled);
371 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
372 #define calc_cputime_factors()
373 #endif
375 void __delay(unsigned long loops)
377 unsigned long start;
378 int diff;
380 if (__USE_RTC()) {
381 start = get_rtcl();
382 do {
383 /* the RTCL register wraps at 1000000000 */
384 diff = get_rtcl() - start;
385 if (diff < 0)
386 diff += 1000000000;
387 } while (diff < loops);
388 } else {
389 start = get_tbl();
390 while (get_tbl() - start < loops)
391 HMT_low();
392 HMT_medium();
395 EXPORT_SYMBOL(__delay);
397 void udelay(unsigned long usecs)
399 __delay(tb_ticks_per_usec * usecs);
401 EXPORT_SYMBOL(udelay);
403 #ifdef CONFIG_SMP
404 unsigned long profile_pc(struct pt_regs *regs)
406 unsigned long pc = instruction_pointer(regs);
408 if (in_lock_functions(pc))
409 return regs->link;
411 return pc;
413 EXPORT_SYMBOL(profile_pc);
414 #endif
416 #ifdef CONFIG_PPC_ISERIES
419 * This function recalibrates the timebase based on the 49-bit time-of-day
420 * value in the Titan chip. The Titan is much more accurate than the value
421 * returned by the service processor for the timebase frequency.
424 static int __init iSeries_tb_recal(void)
426 unsigned long titan, tb;
428 /* Make sure we only run on iSeries */
429 if (!firmware_has_feature(FW_FEATURE_ISERIES))
430 return -ENODEV;
432 tb = get_tb();
433 titan = HvCallXm_loadTod();
434 if ( iSeries_recal_titan ) {
435 unsigned long tb_ticks = tb - iSeries_recal_tb;
436 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
437 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
438 unsigned long new_tb_ticks_per_jiffy =
439 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
440 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
441 char sign = '+';
442 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
443 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
445 if ( tick_diff < 0 ) {
446 tick_diff = -tick_diff;
447 sign = '-';
449 if ( tick_diff ) {
450 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
451 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
452 new_tb_ticks_per_jiffy, sign, tick_diff );
453 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
454 tb_ticks_per_sec = new_tb_ticks_per_sec;
455 calc_cputime_factors();
456 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
457 setup_cputime_one_jiffy();
459 else {
460 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
461 " new tb_ticks_per_jiffy = %lu\n"
462 " old tb_ticks_per_jiffy = %lu\n",
463 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
467 iSeries_recal_titan = titan;
468 iSeries_recal_tb = tb;
470 /* Called here as now we know accurate values for the timebase */
471 clocksource_init();
472 return 0;
474 late_initcall(iSeries_tb_recal);
476 /* Called from platform early init */
477 void __init iSeries_time_init_early(void)
479 iSeries_recal_tb = get_tb();
480 iSeries_recal_titan = HvCallXm_loadTod();
482 #endif /* CONFIG_PPC_ISERIES */
484 #ifdef CONFIG_PERF_EVENTS
487 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
489 #ifdef CONFIG_PPC64
490 static inline unsigned long test_perf_event_pending(void)
492 unsigned long x;
494 asm volatile("lbz %0,%1(13)"
495 : "=r" (x)
496 : "i" (offsetof(struct paca_struct, perf_event_pending)));
497 return x;
500 static inline void set_perf_event_pending_flag(void)
502 asm volatile("stb %0,%1(13)" : :
503 "r" (1),
504 "i" (offsetof(struct paca_struct, perf_event_pending)));
507 static inline void clear_perf_event_pending(void)
509 asm volatile("stb %0,%1(13)" : :
510 "r" (0),
511 "i" (offsetof(struct paca_struct, perf_event_pending)));
514 #else /* 32-bit */
516 DEFINE_PER_CPU(u8, perf_event_pending);
518 #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
519 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
520 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
522 #endif /* 32 vs 64 bit */
524 void set_perf_event_pending(void)
526 preempt_disable();
527 set_perf_event_pending_flag();
528 set_dec(1);
529 preempt_enable();
532 #else /* CONFIG_PERF_EVENTS */
534 #define test_perf_event_pending() 0
535 #define clear_perf_event_pending()
537 #endif /* CONFIG_PERF_EVENTS */
540 * For iSeries shared processors, we have to let the hypervisor
541 * set the hardware decrementer. We set a virtual decrementer
542 * in the lppaca and call the hypervisor if the virtual
543 * decrementer is less than the current value in the hardware
544 * decrementer. (almost always the new decrementer value will
545 * be greater than the current hardware decementer so the hypervisor
546 * call will not be needed)
550 * timer_interrupt - gets called when the decrementer overflows,
551 * with interrupts disabled.
553 void timer_interrupt(struct pt_regs * regs)
555 struct pt_regs *old_regs;
556 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
557 struct clock_event_device *evt = &decrementer->event;
558 u64 now;
560 trace_timer_interrupt_entry(regs);
562 __get_cpu_var(irq_stat).timer_irqs++;
564 /* Ensure a positive value is written to the decrementer, or else
565 * some CPUs will continuue to take decrementer exceptions */
566 set_dec(DECREMENTER_MAX);
568 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
569 if (atomic_read(&ppc_n_lost_interrupts) != 0)
570 do_IRQ(regs);
571 #endif
573 old_regs = set_irq_regs(regs);
574 irq_enter();
576 if (test_perf_event_pending()) {
577 clear_perf_event_pending();
578 perf_event_do_pending();
581 #ifdef CONFIG_PPC_ISERIES
582 if (firmware_has_feature(FW_FEATURE_ISERIES))
583 get_lppaca()->int_dword.fields.decr_int = 0;
584 #endif
586 now = get_tb_or_rtc();
587 if (now >= decrementer->next_tb) {
588 decrementer->next_tb = ~(u64)0;
589 if (evt->event_handler)
590 evt->event_handler(evt);
591 } else {
592 now = decrementer->next_tb - now;
593 if (now <= DECREMENTER_MAX)
594 set_dec((int)now);
597 #ifdef CONFIG_PPC_ISERIES
598 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
599 process_hvlpevents();
600 #endif
602 #ifdef CONFIG_PPC64
603 /* collect purr register values often, for accurate calculations */
604 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
605 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
606 cu->current_tb = mfspr(SPRN_PURR);
608 #endif
610 irq_exit();
611 set_irq_regs(old_regs);
613 trace_timer_interrupt_exit(regs);
616 #ifdef CONFIG_SUSPEND
617 static void generic_suspend_disable_irqs(void)
619 /* Disable the decrementer, so that it doesn't interfere
620 * with suspending.
623 set_dec(0x7fffffff);
624 local_irq_disable();
625 set_dec(0x7fffffff);
628 static void generic_suspend_enable_irqs(void)
630 local_irq_enable();
633 /* Overrides the weak version in kernel/power/main.c */
634 void arch_suspend_disable_irqs(void)
636 if (ppc_md.suspend_disable_irqs)
637 ppc_md.suspend_disable_irqs();
638 generic_suspend_disable_irqs();
641 /* Overrides the weak version in kernel/power/main.c */
642 void arch_suspend_enable_irqs(void)
644 generic_suspend_enable_irqs();
645 if (ppc_md.suspend_enable_irqs)
646 ppc_md.suspend_enable_irqs();
648 #endif
651 * Scheduler clock - returns current time in nanosec units.
653 * Note: mulhdu(a, b) (multiply high double unsigned) returns
654 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
655 * are 64-bit unsigned numbers.
657 unsigned long long sched_clock(void)
659 if (__USE_RTC())
660 return get_rtc();
661 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
664 static int __init get_freq(char *name, int cells, unsigned long *val)
666 struct device_node *cpu;
667 const unsigned int *fp;
668 int found = 0;
670 /* The cpu node should have timebase and clock frequency properties */
671 cpu = of_find_node_by_type(NULL, "cpu");
673 if (cpu) {
674 fp = of_get_property(cpu, name, NULL);
675 if (fp) {
676 found = 1;
677 *val = of_read_ulong(fp, cells);
680 of_node_put(cpu);
683 return found;
686 /* should become __cpuinit when secondary_cpu_time_init also is */
687 void start_cpu_decrementer(void)
689 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
690 /* Clear any pending timer interrupts */
691 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
693 /* Enable decrementer interrupt */
694 mtspr(SPRN_TCR, TCR_DIE);
695 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
698 void __init generic_calibrate_decr(void)
700 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
702 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
703 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
705 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
706 "(not found)\n");
709 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
711 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
712 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
714 printk(KERN_ERR "WARNING: Estimating processor frequency "
715 "(not found)\n");
719 int update_persistent_clock(struct timespec now)
721 struct rtc_time tm;
723 if (!ppc_md.set_rtc_time)
724 return 0;
726 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
727 tm.tm_year -= 1900;
728 tm.tm_mon -= 1;
730 return ppc_md.set_rtc_time(&tm);
733 static void __read_persistent_clock(struct timespec *ts)
735 struct rtc_time tm;
736 static int first = 1;
738 ts->tv_nsec = 0;
739 /* XXX this is a litle fragile but will work okay in the short term */
740 if (first) {
741 first = 0;
742 if (ppc_md.time_init)
743 timezone_offset = ppc_md.time_init();
745 /* get_boot_time() isn't guaranteed to be safe to call late */
746 if (ppc_md.get_boot_time) {
747 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
748 return;
751 if (!ppc_md.get_rtc_time) {
752 ts->tv_sec = 0;
753 return;
755 ppc_md.get_rtc_time(&tm);
757 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
758 tm.tm_hour, tm.tm_min, tm.tm_sec);
761 void read_persistent_clock(struct timespec *ts)
763 __read_persistent_clock(ts);
765 /* Sanitize it in case real time clock is set below EPOCH */
766 if (ts->tv_sec < 0) {
767 ts->tv_sec = 0;
768 ts->tv_nsec = 0;
773 /* clocksource code */
774 static cycle_t rtc_read(struct clocksource *cs)
776 return (cycle_t)get_rtc();
779 static cycle_t timebase_read(struct clocksource *cs)
781 return (cycle_t)get_tb();
784 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
785 struct clocksource *clock, u32 mult)
787 u64 new_tb_to_xs, new_stamp_xsec;
788 u32 frac_sec;
790 if (clock != &clocksource_timebase)
791 return;
793 /* Make userspace gettimeofday spin until we're done. */
794 ++vdso_data->tb_update_count;
795 smp_mb();
797 /* XXX this assumes clock->shift == 22 */
798 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
799 new_tb_to_xs = (u64) mult * 4611686018ULL;
800 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
801 do_div(new_stamp_xsec, 1000000000);
802 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
804 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
805 /* this is tv_nsec / 1e9 as a 0.32 fraction */
806 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
809 * tb_update_count is used to allow the userspace gettimeofday code
810 * to assure itself that it sees a consistent view of the tb_to_xs and
811 * stamp_xsec variables. It reads the tb_update_count, then reads
812 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
813 * the two values of tb_update_count match and are even then the
814 * tb_to_xs and stamp_xsec values are consistent. If not, then it
815 * loops back and reads them again until this criteria is met.
816 * We expect the caller to have done the first increment of
817 * vdso_data->tb_update_count already.
819 vdso_data->tb_orig_stamp = clock->cycle_last;
820 vdso_data->stamp_xsec = new_stamp_xsec;
821 vdso_data->tb_to_xs = new_tb_to_xs;
822 vdso_data->wtom_clock_sec = wtm->tv_sec;
823 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
824 vdso_data->stamp_xtime = *wall_time;
825 vdso_data->stamp_sec_fraction = frac_sec;
826 smp_wmb();
827 ++(vdso_data->tb_update_count);
830 void update_vsyscall_tz(void)
832 /* Make userspace gettimeofday spin until we're done. */
833 ++vdso_data->tb_update_count;
834 smp_mb();
835 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
836 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
837 smp_mb();
838 ++vdso_data->tb_update_count;
841 static void __init clocksource_init(void)
843 struct clocksource *clock;
845 if (__USE_RTC())
846 clock = &clocksource_rtc;
847 else
848 clock = &clocksource_timebase;
850 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
852 if (clocksource_register(clock)) {
853 printk(KERN_ERR "clocksource: %s is already registered\n",
854 clock->name);
855 return;
858 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
859 clock->name, clock->mult, clock->shift);
862 static int decrementer_set_next_event(unsigned long evt,
863 struct clock_event_device *dev)
865 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
866 set_dec(evt);
867 return 0;
870 static void decrementer_set_mode(enum clock_event_mode mode,
871 struct clock_event_device *dev)
873 if (mode != CLOCK_EVT_MODE_ONESHOT)
874 decrementer_set_next_event(DECREMENTER_MAX, dev);
877 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
878 int shift)
880 uint64_t tmp = ((uint64_t)ticks) << shift;
882 do_div(tmp, nsec);
883 return tmp;
886 static void __init setup_clockevent_multiplier(unsigned long hz)
888 u64 mult, shift = 32;
890 while (1) {
891 mult = div_sc64(hz, NSEC_PER_SEC, shift);
892 if (mult && (mult >> 32UL) == 0UL)
893 break;
895 shift--;
898 decrementer_clockevent.shift = shift;
899 decrementer_clockevent.mult = mult;
902 static void register_decrementer_clockevent(int cpu)
904 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
906 *dec = decrementer_clockevent;
907 dec->cpumask = cpumask_of(cpu);
909 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
910 dec->name, dec->mult, dec->shift, cpu);
912 clockevents_register_device(dec);
915 static void __init init_decrementer_clockevent(void)
917 int cpu = smp_processor_id();
919 setup_clockevent_multiplier(ppc_tb_freq);
920 decrementer_clockevent.max_delta_ns =
921 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
922 decrementer_clockevent.min_delta_ns =
923 clockevent_delta2ns(2, &decrementer_clockevent);
925 register_decrementer_clockevent(cpu);
928 void secondary_cpu_time_init(void)
930 /* Start the decrementer on CPUs that have manual control
931 * such as BookE
933 start_cpu_decrementer();
935 /* FIME: Should make unrelatred change to move snapshot_timebase
936 * call here ! */
937 register_decrementer_clockevent(smp_processor_id());
940 /* This function is only called on the boot processor */
941 void __init time_init(void)
943 struct div_result res;
944 u64 scale;
945 unsigned shift;
947 if (__USE_RTC()) {
948 /* 601 processor: dec counts down by 128 every 128ns */
949 ppc_tb_freq = 1000000000;
950 } else {
951 /* Normal PowerPC with timebase register */
952 ppc_md.calibrate_decr();
953 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
954 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
955 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
956 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
959 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
960 tb_ticks_per_sec = ppc_tb_freq;
961 tb_ticks_per_usec = ppc_tb_freq / 1000000;
962 calc_cputime_factors();
963 setup_cputime_one_jiffy();
966 * Compute scale factor for sched_clock.
967 * The calibrate_decr() function has set tb_ticks_per_sec,
968 * which is the timebase frequency.
969 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
970 * the 128-bit result as a 64.64 fixed-point number.
971 * We then shift that number right until it is less than 1.0,
972 * giving us the scale factor and shift count to use in
973 * sched_clock().
975 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
976 scale = res.result_low;
977 for (shift = 0; res.result_high != 0; ++shift) {
978 scale = (scale >> 1) | (res.result_high << 63);
979 res.result_high >>= 1;
981 tb_to_ns_scale = scale;
982 tb_to_ns_shift = shift;
983 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
984 boot_tb = get_tb_or_rtc();
986 /* If platform provided a timezone (pmac), we correct the time */
987 if (timezone_offset) {
988 sys_tz.tz_minuteswest = -timezone_offset / 60;
989 sys_tz.tz_dsttime = 0;
992 vdso_data->tb_update_count = 0;
993 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
995 /* Start the decrementer on CPUs that have manual control
996 * such as BookE
998 start_cpu_decrementer();
1000 /* Register the clocksource, if we're not running on iSeries */
1001 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1002 clocksource_init();
1004 init_decrementer_clockevent();
1008 #define FEBRUARY 2
1009 #define STARTOFTIME 1970
1010 #define SECDAY 86400L
1011 #define SECYR (SECDAY * 365)
1012 #define leapyear(year) ((year) % 4 == 0 && \
1013 ((year) % 100 != 0 || (year) % 400 == 0))
1014 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1015 #define days_in_month(a) (month_days[(a) - 1])
1017 static int month_days[12] = {
1018 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1022 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1024 void GregorianDay(struct rtc_time * tm)
1026 int leapsToDate;
1027 int lastYear;
1028 int day;
1029 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1031 lastYear = tm->tm_year - 1;
1034 * Number of leap corrections to apply up to end of last year
1036 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1039 * This year is a leap year if it is divisible by 4 except when it is
1040 * divisible by 100 unless it is divisible by 400
1042 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1044 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1046 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1047 tm->tm_mday;
1049 tm->tm_wday = day % 7;
1052 void to_tm(int tim, struct rtc_time * tm)
1054 register int i;
1055 register long hms, day;
1057 day = tim / SECDAY;
1058 hms = tim % SECDAY;
1060 /* Hours, minutes, seconds are easy */
1061 tm->tm_hour = hms / 3600;
1062 tm->tm_min = (hms % 3600) / 60;
1063 tm->tm_sec = (hms % 3600) % 60;
1065 /* Number of years in days */
1066 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1067 day -= days_in_year(i);
1068 tm->tm_year = i;
1070 /* Number of months in days left */
1071 if (leapyear(tm->tm_year))
1072 days_in_month(FEBRUARY) = 29;
1073 for (i = 1; day >= days_in_month(i); i++)
1074 day -= days_in_month(i);
1075 days_in_month(FEBRUARY) = 28;
1076 tm->tm_mon = i;
1078 /* Days are what is left over (+1) from all that. */
1079 tm->tm_mday = day + 1;
1082 * Determine the day of week
1084 GregorianDay(tm);
1088 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1089 * result.
1091 void div128_by_32(u64 dividend_high, u64 dividend_low,
1092 unsigned divisor, struct div_result *dr)
1094 unsigned long a, b, c, d;
1095 unsigned long w, x, y, z;
1096 u64 ra, rb, rc;
1098 a = dividend_high >> 32;
1099 b = dividend_high & 0xffffffff;
1100 c = dividend_low >> 32;
1101 d = dividend_low & 0xffffffff;
1103 w = a / divisor;
1104 ra = ((u64)(a - (w * divisor)) << 32) + b;
1106 rb = ((u64) do_div(ra, divisor) << 32) + c;
1107 x = ra;
1109 rc = ((u64) do_div(rb, divisor) << 32) + d;
1110 y = rb;
1112 do_div(rc, divisor);
1113 z = rc;
1115 dr->result_high = ((u64)w << 32) + x;
1116 dr->result_low = ((u64)y << 32) + z;
1120 /* We don't need to calibrate delay, we use the CPU timebase for that */
1121 void calibrate_delay(void)
1123 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1124 * as the number of __delay(1) in a jiffy, so make it so
1126 loops_per_jiffy = tb_ticks_per_jiffy;
1129 static int __init rtc_init(void)
1131 struct platform_device *pdev;
1133 if (!ppc_md.get_rtc_time)
1134 return -ENODEV;
1136 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1137 if (IS_ERR(pdev))
1138 return PTR_ERR(pdev);
1140 return 0;
1143 module_init(rtc_init);