2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex
);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys
*subsys
[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
66 struct cgroupfs_root
{
67 struct super_block
*sb
;
70 * The bitmask of subsystems intended to be attached to this
73 unsigned long subsys_bits
;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits
;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list
;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup
;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups
;
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list
;
90 /* Hierarchy-specific flags */
93 /* The path to use for release notifications. */
94 char release_agent_path
[PATH_MAX
];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode
;
105 /* The list of hierarchy roots */
107 static LIST_HEAD(roots
);
108 static int root_count
;
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
118 static int need_forkexit_callback __read_mostly
;
119 static int need_mm_owner_callback __read_mostly
;
121 /* convenient tests for these bits */
122 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
124 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
127 /* bits in struct cgroupfs_root flags field */
129 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
132 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
135 (1 << CGRP_RELEASABLE
) |
136 (1 << CGRP_NOTIFY_ON_RELEASE
);
137 return (cgrp
->flags
& bits
) == bits
;
140 static int notify_on_release(const struct cgroup
*cgrp
)
142 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
149 #define for_each_subsys(_root, _ss) \
150 list_for_each_entry(_ss, &_root->subsys_list, sibling)
152 /* for_each_root() allows you to iterate across the active hierarchies */
153 #define for_each_root(_root) \
154 list_for_each_entry(_root, &roots, root_list)
156 /* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158 static LIST_HEAD(release_list
);
159 static DEFINE_SPINLOCK(release_list_lock
);
160 static void cgroup_release_agent(struct work_struct
*work
);
161 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
162 static void check_for_release(struct cgroup
*cgrp
);
164 /* Link structure for associating css_set objects with cgroups */
165 struct cg_cgroup_link
{
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
170 struct list_head cgrp_link_list
;
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
175 struct list_head cg_link_list
;
179 /* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
186 static struct css_set init_css_set
;
187 static struct cg_cgroup_link init_css_set_link
;
189 /* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192 static DEFINE_RWLOCK(css_set_lock
);
193 static int css_set_count
;
195 /* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197 #define CSS_SET_HASH_BITS 7
198 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
201 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
205 unsigned long tmp
= 0UL;
207 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
208 tmp
+= (unsigned long)css
[i
];
209 tmp
= (tmp
>> 16) ^ tmp
;
211 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
213 return &css_set_table
[index
];
216 /* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
220 static int use_task_css_set_links __read_mostly
;
222 /* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
228 * subsystems moved between hierarchies while we were doing so.
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
237 * unlink a css_set from the list and free it
239 static void unlink_css_set(struct css_set
*cg
)
241 struct cg_cgroup_link
*link
;
242 struct cg_cgroup_link
*saved_link
;
244 hlist_del(&cg
->hlist
);
247 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
249 list_del(&link
->cg_link_list
);
250 list_del(&link
->cgrp_link_list
);
255 static void __put_css_set(struct css_set
*cg
, int taskexit
)
259 * Ensure that the refcount doesn't hit zero while any readers
260 * can see it. Similar to atomic_dec_and_lock(), but for an
263 if (atomic_add_unless(&cg
->refcount
, -1, 1))
265 write_lock(&css_set_lock
);
266 if (!atomic_dec_and_test(&cg
->refcount
)) {
267 write_unlock(&css_set_lock
);
271 write_unlock(&css_set_lock
);
274 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
275 struct cgroup
*cgrp
= cg
->subsys
[i
]->cgroup
;
276 if (atomic_dec_and_test(&cgrp
->count
) &&
277 notify_on_release(cgrp
)) {
279 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
280 check_for_release(cgrp
);
288 * refcounted get/put for css_set objects
290 static inline void get_css_set(struct css_set
*cg
)
292 atomic_inc(&cg
->refcount
);
295 static inline void put_css_set(struct css_set
*cg
)
297 __put_css_set(cg
, 0);
300 static inline void put_css_set_taskexit(struct css_set
*cg
)
302 __put_css_set(cg
, 1);
306 * find_existing_css_set() is a helper for
307 * find_css_set(), and checks to see whether an existing
308 * css_set is suitable.
310 * oldcg: the cgroup group that we're using before the cgroup
313 * cgrp: the cgroup that we're moving into
315 * template: location in which to build the desired set of subsystem
316 * state objects for the new cgroup group
318 static struct css_set
*find_existing_css_set(
319 struct css_set
*oldcg
,
321 struct cgroup_subsys_state
*template[])
324 struct cgroupfs_root
*root
= cgrp
->root
;
325 struct hlist_head
*hhead
;
326 struct hlist_node
*node
;
329 /* Built the set of subsystem state objects that we want to
330 * see in the new css_set */
331 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
332 if (root
->subsys_bits
& (1UL << i
)) {
333 /* Subsystem is in this hierarchy. So we want
334 * the subsystem state from the new
336 template[i
] = cgrp
->subsys
[i
];
338 /* Subsystem is not in this hierarchy, so we
339 * don't want to change the subsystem state */
340 template[i
] = oldcg
->subsys
[i
];
344 hhead
= css_set_hash(template);
345 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
346 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
347 /* All subsystems matched */
352 /* No existing cgroup group matched */
356 static void free_cg_links(struct list_head
*tmp
)
358 struct cg_cgroup_link
*link
;
359 struct cg_cgroup_link
*saved_link
;
361 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
362 list_del(&link
->cgrp_link_list
);
368 * allocate_cg_links() allocates "count" cg_cgroup_link structures
369 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
370 * success or a negative error
372 static int allocate_cg_links(int count
, struct list_head
*tmp
)
374 struct cg_cgroup_link
*link
;
377 for (i
= 0; i
< count
; i
++) {
378 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
383 list_add(&link
->cgrp_link_list
, tmp
);
389 * find_css_set() takes an existing cgroup group and a
390 * cgroup object, and returns a css_set object that's
391 * equivalent to the old group, but with the given cgroup
392 * substituted into the appropriate hierarchy. Must be called with
395 static struct css_set
*find_css_set(
396 struct css_set
*oldcg
, struct cgroup
*cgrp
)
399 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
402 struct list_head tmp_cg_links
;
403 struct cg_cgroup_link
*link
;
405 struct hlist_head
*hhead
;
407 /* First see if we already have a cgroup group that matches
409 read_lock(&css_set_lock
);
410 res
= find_existing_css_set(oldcg
, cgrp
, template);
413 read_unlock(&css_set_lock
);
418 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
428 atomic_set(&res
->refcount
, 1);
429 INIT_LIST_HEAD(&res
->cg_links
);
430 INIT_LIST_HEAD(&res
->tasks
);
431 INIT_HLIST_NODE(&res
->hlist
);
433 /* Copy the set of subsystem state objects generated in
434 * find_existing_css_set() */
435 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
437 write_lock(&css_set_lock
);
438 /* Add reference counts and links from the new css_set. */
439 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
440 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
441 struct cgroup_subsys
*ss
= subsys
[i
];
442 atomic_inc(&cgrp
->count
);
444 * We want to add a link once per cgroup, so we
445 * only do it for the first subsystem in each
448 if (ss
->root
->subsys_list
.next
== &ss
->sibling
) {
449 BUG_ON(list_empty(&tmp_cg_links
));
450 link
= list_entry(tmp_cg_links
.next
,
451 struct cg_cgroup_link
,
453 list_del(&link
->cgrp_link_list
);
454 list_add(&link
->cgrp_link_list
, &cgrp
->css_sets
);
456 list_add(&link
->cg_link_list
, &res
->cg_links
);
459 if (list_empty(&rootnode
.subsys_list
)) {
460 link
= list_entry(tmp_cg_links
.next
,
461 struct cg_cgroup_link
,
463 list_del(&link
->cgrp_link_list
);
464 list_add(&link
->cgrp_link_list
, &dummytop
->css_sets
);
466 list_add(&link
->cg_link_list
, &res
->cg_links
);
469 BUG_ON(!list_empty(&tmp_cg_links
));
473 /* Add this cgroup group to the hash table */
474 hhead
= css_set_hash(res
->subsys
);
475 hlist_add_head(&res
->hlist
, hhead
);
477 write_unlock(&css_set_lock
);
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
487 * A task must hold cgroup_mutex to modify cgroups.
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
492 * cgroup_attach_task() can increment it again. Because a count of zero
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
516 * The task_lock() exception
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
533 * cgroup_lock - lock out any changes to cgroup structures
536 void cgroup_lock(void)
538 mutex_lock(&cgroup_mutex
);
542 * cgroup_unlock - release lock on cgroup changes
544 * Undo the lock taken in a previous cgroup_lock() call.
546 void cgroup_unlock(void)
548 mutex_unlock(&cgroup_mutex
);
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
558 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
559 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
560 static int cgroup_populate_dir(struct cgroup
*cgrp
);
561 static struct inode_operations cgroup_dir_inode_operations
;
562 static struct file_operations proc_cgroupstats_operations
;
564 static struct backing_dev_info cgroup_backing_dev_info
= {
565 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
568 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
570 struct inode
*inode
= new_inode(sb
);
573 inode
->i_mode
= mode
;
574 inode
->i_uid
= current
->fsuid
;
575 inode
->i_gid
= current
->fsgid
;
577 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
578 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
587 static void cgroup_call_pre_destroy(struct cgroup
*cgrp
)
589 struct cgroup_subsys
*ss
;
590 for_each_subsys(cgrp
->root
, ss
)
591 if (ss
->pre_destroy
&& cgrp
->subsys
[ss
->subsys_id
])
592 ss
->pre_destroy(ss
, cgrp
);
596 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode
->i_mode
)) {
600 struct cgroup
*cgrp
= dentry
->d_fsdata
;
601 struct cgroup_subsys
*ss
;
602 BUG_ON(!(cgroup_is_removed(cgrp
)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
611 mutex_lock(&cgroup_mutex
);
613 * Release the subsystem state objects.
615 for_each_subsys(cgrp
->root
, ss
) {
616 if (cgrp
->subsys
[ss
->subsys_id
])
617 ss
->destroy(ss
, cgrp
);
620 cgrp
->root
->number_of_cgroups
--;
621 mutex_unlock(&cgroup_mutex
);
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp
->root
->sb
);
632 static void remove_dir(struct dentry
*d
)
634 struct dentry
*parent
= dget(d
->d_parent
);
637 simple_rmdir(parent
->d_inode
, d
);
641 static void cgroup_clear_directory(struct dentry
*dentry
)
643 struct list_head
*node
;
645 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
646 spin_lock(&dcache_lock
);
647 node
= dentry
->d_subdirs
.next
;
648 while (node
!= &dentry
->d_subdirs
) {
649 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
656 spin_unlock(&dcache_lock
);
658 simple_unlink(dentry
->d_inode
, d
);
660 spin_lock(&dcache_lock
);
662 node
= dentry
->d_subdirs
.next
;
664 spin_unlock(&dcache_lock
);
668 * NOTE : the dentry must have been dget()'ed
670 static void cgroup_d_remove_dir(struct dentry
*dentry
)
672 cgroup_clear_directory(dentry
);
674 spin_lock(&dcache_lock
);
675 list_del_init(&dentry
->d_u
.d_child
);
676 spin_unlock(&dcache_lock
);
680 static int rebind_subsystems(struct cgroupfs_root
*root
,
681 unsigned long final_bits
)
683 unsigned long added_bits
, removed_bits
;
684 struct cgroup
*cgrp
= &root
->top_cgroup
;
687 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
688 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
689 /* Check that any added subsystems are currently free */
690 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
691 unsigned long bit
= 1UL << i
;
692 struct cgroup_subsys
*ss
= subsys
[i
];
693 if (!(bit
& added_bits
))
695 if (ss
->root
!= &rootnode
) {
696 /* Subsystem isn't free */
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
705 if (root
->number_of_cgroups
> 1)
708 /* Process each subsystem */
709 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
710 struct cgroup_subsys
*ss
= subsys
[i
];
711 unsigned long bit
= 1UL << i
;
712 if (bit
& added_bits
) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp
->subsys
[i
]);
715 BUG_ON(!dummytop
->subsys
[i
]);
716 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
717 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
718 cgrp
->subsys
[i
]->cgroup
= cgrp
;
719 list_add(&ss
->sibling
, &root
->subsys_list
);
720 rcu_assign_pointer(ss
->root
, root
);
724 } else if (bit
& removed_bits
) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
727 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
729 ss
->bind(ss
, dummytop
);
730 dummytop
->subsys
[i
]->cgroup
= dummytop
;
731 cgrp
->subsys
[i
] = NULL
;
732 rcu_assign_pointer(subsys
[i
]->root
, &rootnode
);
733 list_del(&ss
->sibling
);
734 } else if (bit
& final_bits
) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp
->subsys
[i
]);
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp
->subsys
[i
]);
742 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
748 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
750 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
751 struct cgroup_subsys
*ss
;
753 mutex_lock(&cgroup_mutex
);
754 for_each_subsys(root
, ss
)
755 seq_printf(seq
, ",%s", ss
->name
);
756 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
757 seq_puts(seq
, ",noprefix");
758 if (strlen(root
->release_agent_path
))
759 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
760 mutex_unlock(&cgroup_mutex
);
764 struct cgroup_sb_opts
{
765 unsigned long subsys_bits
;
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
772 static int parse_cgroupfs_options(char *data
,
773 struct cgroup_sb_opts
*opts
)
775 char *token
, *o
= data
?: "all";
777 opts
->subsys_bits
= 0;
779 opts
->release_agent
= NULL
;
781 while ((token
= strsep(&o
, ",")) != NULL
) {
784 if (!strcmp(token
, "all")) {
785 /* Add all non-disabled subsystems */
787 opts
->subsys_bits
= 0;
788 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
789 struct cgroup_subsys
*ss
= subsys
[i
];
791 opts
->subsys_bits
|= 1ul << i
;
793 } else if (!strcmp(token
, "noprefix")) {
794 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
795 } else if (!strncmp(token
, "release_agent=", 14)) {
796 /* Specifying two release agents is forbidden */
797 if (opts
->release_agent
)
799 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
800 if (!opts
->release_agent
)
802 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
803 opts
->release_agent
[PATH_MAX
- 1] = 0;
805 struct cgroup_subsys
*ss
;
807 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
809 if (!strcmp(token
, ss
->name
)) {
811 set_bit(i
, &opts
->subsys_bits
);
815 if (i
== CGROUP_SUBSYS_COUNT
)
820 /* We can't have an empty hierarchy */
821 if (!opts
->subsys_bits
)
827 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
830 struct cgroupfs_root
*root
= sb
->s_fs_info
;
831 struct cgroup
*cgrp
= &root
->top_cgroup
;
832 struct cgroup_sb_opts opts
;
834 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
835 mutex_lock(&cgroup_mutex
);
837 /* See what subsystems are wanted */
838 ret
= parse_cgroupfs_options(data
, &opts
);
842 /* Don't allow flags to change at remount */
843 if (opts
.flags
!= root
->flags
) {
848 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
850 /* (re)populate subsystem files */
852 cgroup_populate_dir(cgrp
);
854 if (opts
.release_agent
)
855 strcpy(root
->release_agent_path
, opts
.release_agent
);
857 if (opts
.release_agent
)
858 kfree(opts
.release_agent
);
859 mutex_unlock(&cgroup_mutex
);
860 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
864 static struct super_operations cgroup_ops
= {
865 .statfs
= simple_statfs
,
866 .drop_inode
= generic_delete_inode
,
867 .show_options
= cgroup_show_options
,
868 .remount_fs
= cgroup_remount
,
871 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
873 INIT_LIST_HEAD(&cgrp
->sibling
);
874 INIT_LIST_HEAD(&cgrp
->children
);
875 INIT_LIST_HEAD(&cgrp
->css_sets
);
876 INIT_LIST_HEAD(&cgrp
->release_list
);
877 init_rwsem(&cgrp
->pids_mutex
);
879 static void init_cgroup_root(struct cgroupfs_root
*root
)
881 struct cgroup
*cgrp
= &root
->top_cgroup
;
882 INIT_LIST_HEAD(&root
->subsys_list
);
883 INIT_LIST_HEAD(&root
->root_list
);
884 root
->number_of_cgroups
= 1;
886 cgrp
->top_cgroup
= cgrp
;
887 init_cgroup_housekeeping(cgrp
);
890 static int cgroup_test_super(struct super_block
*sb
, void *data
)
892 struct cgroupfs_root
*new = data
;
893 struct cgroupfs_root
*root
= sb
->s_fs_info
;
895 /* First check subsystems */
896 if (new->subsys_bits
!= root
->subsys_bits
)
899 /* Next check flags */
900 if (new->flags
!= root
->flags
)
906 static int cgroup_set_super(struct super_block
*sb
, void *data
)
909 struct cgroupfs_root
*root
= data
;
911 ret
= set_anon_super(sb
, NULL
);
915 sb
->s_fs_info
= root
;
918 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
919 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
920 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
921 sb
->s_op
= &cgroup_ops
;
926 static int cgroup_get_rootdir(struct super_block
*sb
)
928 struct inode
*inode
=
929 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
930 struct dentry
*dentry
;
935 inode
->i_fop
= &simple_dir_operations
;
936 inode
->i_op
= &cgroup_dir_inode_operations
;
937 /* directories start off with i_nlink == 2 (for "." entry) */
939 dentry
= d_alloc_root(inode
);
948 static int cgroup_get_sb(struct file_system_type
*fs_type
,
949 int flags
, const char *unused_dev_name
,
950 void *data
, struct vfsmount
*mnt
)
952 struct cgroup_sb_opts opts
;
954 struct super_block
*sb
;
955 struct cgroupfs_root
*root
;
956 struct list_head tmp_cg_links
;
958 /* First find the desired set of subsystems */
959 ret
= parse_cgroupfs_options(data
, &opts
);
961 if (opts
.release_agent
)
962 kfree(opts
.release_agent
);
966 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
968 if (opts
.release_agent
)
969 kfree(opts
.release_agent
);
973 init_cgroup_root(root
);
974 root
->subsys_bits
= opts
.subsys_bits
;
975 root
->flags
= opts
.flags
;
976 if (opts
.release_agent
) {
977 strcpy(root
->release_agent_path
, opts
.release_agent
);
978 kfree(opts
.release_agent
);
981 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
988 if (sb
->s_fs_info
!= root
) {
989 /* Reusing an existing superblock */
990 BUG_ON(sb
->s_root
== NULL
);
995 struct cgroup
*cgrp
= &root
->top_cgroup
;
999 BUG_ON(sb
->s_root
!= NULL
);
1001 ret
= cgroup_get_rootdir(sb
);
1003 goto drop_new_super
;
1004 inode
= sb
->s_root
->d_inode
;
1006 mutex_lock(&inode
->i_mutex
);
1007 mutex_lock(&cgroup_mutex
);
1010 * We're accessing css_set_count without locking
1011 * css_set_lock here, but that's OK - it can only be
1012 * increased by someone holding cgroup_lock, and
1013 * that's us. The worst that can happen is that we
1014 * have some link structures left over
1016 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1018 mutex_unlock(&cgroup_mutex
);
1019 mutex_unlock(&inode
->i_mutex
);
1020 goto drop_new_super
;
1023 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1024 if (ret
== -EBUSY
) {
1025 mutex_unlock(&cgroup_mutex
);
1026 mutex_unlock(&inode
->i_mutex
);
1030 /* EBUSY should be the only error here */
1033 list_add(&root
->root_list
, &roots
);
1036 sb
->s_root
->d_fsdata
= &root
->top_cgroup
;
1037 root
->top_cgroup
.dentry
= sb
->s_root
;
1039 /* Link the top cgroup in this hierarchy into all
1040 * the css_set objects */
1041 write_lock(&css_set_lock
);
1042 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1043 struct hlist_head
*hhead
= &css_set_table
[i
];
1044 struct hlist_node
*node
;
1047 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
1048 struct cg_cgroup_link
*link
;
1050 BUG_ON(list_empty(&tmp_cg_links
));
1051 link
= list_entry(tmp_cg_links
.next
,
1052 struct cg_cgroup_link
,
1054 list_del(&link
->cgrp_link_list
);
1056 list_add(&link
->cgrp_link_list
,
1057 &root
->top_cgroup
.css_sets
);
1058 list_add(&link
->cg_link_list
, &cg
->cg_links
);
1061 write_unlock(&css_set_lock
);
1063 free_cg_links(&tmp_cg_links
);
1065 BUG_ON(!list_empty(&cgrp
->sibling
));
1066 BUG_ON(!list_empty(&cgrp
->children
));
1067 BUG_ON(root
->number_of_cgroups
!= 1);
1069 cgroup_populate_dir(cgrp
);
1070 mutex_unlock(&inode
->i_mutex
);
1071 mutex_unlock(&cgroup_mutex
);
1074 return simple_set_mnt(mnt
, sb
);
1077 free_cg_links(&tmp_cg_links
);
1079 up_write(&sb
->s_umount
);
1080 deactivate_super(sb
);
1084 static void cgroup_kill_sb(struct super_block
*sb
) {
1085 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1086 struct cgroup
*cgrp
= &root
->top_cgroup
;
1088 struct cg_cgroup_link
*link
;
1089 struct cg_cgroup_link
*saved_link
;
1093 BUG_ON(root
->number_of_cgroups
!= 1);
1094 BUG_ON(!list_empty(&cgrp
->children
));
1095 BUG_ON(!list_empty(&cgrp
->sibling
));
1097 mutex_lock(&cgroup_mutex
);
1099 /* Rebind all subsystems back to the default hierarchy */
1100 ret
= rebind_subsystems(root
, 0);
1101 /* Shouldn't be able to fail ... */
1105 * Release all the links from css_sets to this hierarchy's
1108 write_lock(&css_set_lock
);
1110 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1112 list_del(&link
->cg_link_list
);
1113 list_del(&link
->cgrp_link_list
);
1116 write_unlock(&css_set_lock
);
1118 if (!list_empty(&root
->root_list
)) {
1119 list_del(&root
->root_list
);
1122 mutex_unlock(&cgroup_mutex
);
1125 kill_litter_super(sb
);
1128 static struct file_system_type cgroup_fs_type
= {
1130 .get_sb
= cgroup_get_sb
,
1131 .kill_sb
= cgroup_kill_sb
,
1134 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1136 return dentry
->d_fsdata
;
1139 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1141 return dentry
->d_fsdata
;
1145 * cgroup_path - generate the path of a cgroup
1146 * @cgrp: the cgroup in question
1147 * @buf: the buffer to write the path into
1148 * @buflen: the length of the buffer
1150 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1151 * Returns 0 on success, -errno on error.
1153 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1157 if (cgrp
== dummytop
) {
1159 * Inactive subsystems have no dentry for their root
1166 start
= buf
+ buflen
;
1170 int len
= cgrp
->dentry
->d_name
.len
;
1171 if ((start
-= len
) < buf
)
1172 return -ENAMETOOLONG
;
1173 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1174 cgrp
= cgrp
->parent
;
1180 return -ENAMETOOLONG
;
1183 memmove(buf
, start
, buf
+ buflen
- start
);
1188 * Return the first subsystem attached to a cgroup's hierarchy, and
1192 static void get_first_subsys(const struct cgroup
*cgrp
,
1193 struct cgroup_subsys_state
**css
, int *subsys_id
)
1195 const struct cgroupfs_root
*root
= cgrp
->root
;
1196 const struct cgroup_subsys
*test_ss
;
1197 BUG_ON(list_empty(&root
->subsys_list
));
1198 test_ss
= list_entry(root
->subsys_list
.next
,
1199 struct cgroup_subsys
, sibling
);
1201 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1205 *subsys_id
= test_ss
->subsys_id
;
1209 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1210 * @cgrp: the cgroup the task is attaching to
1211 * @tsk: the task to be attached
1213 * Call holding cgroup_mutex. May take task_lock of
1214 * the task 'tsk' during call.
1216 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1219 struct cgroup_subsys
*ss
;
1220 struct cgroup
*oldcgrp
;
1221 struct css_set
*cg
= tsk
->cgroups
;
1222 struct css_set
*newcg
;
1223 struct cgroupfs_root
*root
= cgrp
->root
;
1226 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1228 /* Nothing to do if the task is already in that cgroup */
1229 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1230 if (cgrp
== oldcgrp
)
1233 for_each_subsys(root
, ss
) {
1234 if (ss
->can_attach
) {
1235 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1242 * Locate or allocate a new css_set for this task,
1243 * based on its final set of cgroups
1245 newcg
= find_css_set(cg
, cgrp
);
1250 if (tsk
->flags
& PF_EXITING
) {
1255 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1258 /* Update the css_set linked lists if we're using them */
1259 write_lock(&css_set_lock
);
1260 if (!list_empty(&tsk
->cg_list
)) {
1261 list_del(&tsk
->cg_list
);
1262 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1264 write_unlock(&css_set_lock
);
1266 for_each_subsys(root
, ss
) {
1268 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1270 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1277 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1278 * held. May take task_lock of task
1280 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1282 struct task_struct
*tsk
;
1287 tsk
= find_task_by_vpid(pid
);
1288 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1292 get_task_struct(tsk
);
1295 if ((current
->euid
) && (current
->euid
!= tsk
->uid
)
1296 && (current
->euid
!= tsk
->suid
)) {
1297 put_task_struct(tsk
);
1302 get_task_struct(tsk
);
1305 ret
= cgroup_attach_task(cgrp
, tsk
);
1306 put_task_struct(tsk
);
1310 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1313 if (!cgroup_lock_live_group(cgrp
))
1315 ret
= attach_task_by_pid(cgrp
, pid
);
1320 /* The various types of files and directories in a cgroup file system */
1321 enum cgroup_filetype
{
1325 FILE_NOTIFY_ON_RELEASE
,
1330 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1331 * @cgrp: the cgroup to be checked for liveness
1333 * On success, returns true; the lock should be later released with
1334 * cgroup_unlock(). On failure returns false with no lock held.
1336 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1338 mutex_lock(&cgroup_mutex
);
1339 if (cgroup_is_removed(cgrp
)) {
1340 mutex_unlock(&cgroup_mutex
);
1346 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1349 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1350 if (!cgroup_lock_live_group(cgrp
))
1352 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1357 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1358 struct seq_file
*seq
)
1360 if (!cgroup_lock_live_group(cgrp
))
1362 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1363 seq_putc(seq
, '\n');
1368 /* A buffer size big enough for numbers or short strings */
1369 #define CGROUP_LOCAL_BUFFER_SIZE 64
1371 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1373 const char __user
*userbuf
,
1374 size_t nbytes
, loff_t
*unused_ppos
)
1376 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1382 if (nbytes
>= sizeof(buffer
))
1384 if (copy_from_user(buffer
, userbuf
, nbytes
))
1387 buffer
[nbytes
] = 0; /* nul-terminate */
1389 if (cft
->write_u64
) {
1390 u64 val
= simple_strtoull(buffer
, &end
, 0);
1393 retval
= cft
->write_u64(cgrp
, cft
, val
);
1395 s64 val
= simple_strtoll(buffer
, &end
, 0);
1398 retval
= cft
->write_s64(cgrp
, cft
, val
);
1405 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1407 const char __user
*userbuf
,
1408 size_t nbytes
, loff_t
*unused_ppos
)
1410 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1412 size_t max_bytes
= cft
->max_write_len
;
1413 char *buffer
= local_buffer
;
1416 max_bytes
= sizeof(local_buffer
) - 1;
1417 if (nbytes
>= max_bytes
)
1419 /* Allocate a dynamic buffer if we need one */
1420 if (nbytes
>= sizeof(local_buffer
)) {
1421 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1425 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1430 buffer
[nbytes
] = 0; /* nul-terminate */
1432 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1436 if (buffer
!= local_buffer
)
1441 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1442 size_t nbytes
, loff_t
*ppos
)
1444 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1445 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1447 if (!cft
|| cgroup_is_removed(cgrp
))
1450 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1451 if (cft
->write_u64
|| cft
->write_s64
)
1452 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1453 if (cft
->write_string
)
1454 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1456 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1457 return ret
? ret
: nbytes
;
1462 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1464 char __user
*buf
, size_t nbytes
,
1467 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1468 u64 val
= cft
->read_u64(cgrp
, cft
);
1469 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1471 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1474 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1476 char __user
*buf
, size_t nbytes
,
1479 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1480 s64 val
= cft
->read_s64(cgrp
, cft
);
1481 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1483 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1486 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1487 size_t nbytes
, loff_t
*ppos
)
1489 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1490 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1492 if (!cft
|| cgroup_is_removed(cgrp
))
1496 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1498 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1500 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1505 * seqfile ops/methods for returning structured data. Currently just
1506 * supports string->u64 maps, but can be extended in future.
1509 struct cgroup_seqfile_state
{
1511 struct cgroup
*cgroup
;
1514 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1516 struct seq_file
*sf
= cb
->state
;
1517 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1520 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1522 struct cgroup_seqfile_state
*state
= m
->private;
1523 struct cftype
*cft
= state
->cft
;
1524 if (cft
->read_map
) {
1525 struct cgroup_map_cb cb
= {
1526 .fill
= cgroup_map_add
,
1529 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1531 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1534 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1536 struct seq_file
*seq
= file
->private_data
;
1537 kfree(seq
->private);
1538 return single_release(inode
, file
);
1541 static struct file_operations cgroup_seqfile_operations
= {
1543 .write
= cgroup_file_write
,
1544 .llseek
= seq_lseek
,
1545 .release
= cgroup_seqfile_release
,
1548 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1553 err
= generic_file_open(inode
, file
);
1557 cft
= __d_cft(file
->f_dentry
);
1560 if (cft
->read_map
|| cft
->read_seq_string
) {
1561 struct cgroup_seqfile_state
*state
=
1562 kzalloc(sizeof(*state
), GFP_USER
);
1566 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1567 file
->f_op
= &cgroup_seqfile_operations
;
1568 err
= single_open(file
, cgroup_seqfile_show
, state
);
1571 } else if (cft
->open
)
1572 err
= cft
->open(inode
, file
);
1579 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1581 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1583 return cft
->release(inode
, file
);
1588 * cgroup_rename - Only allow simple rename of directories in place.
1590 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1591 struct inode
*new_dir
, struct dentry
*new_dentry
)
1593 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1595 if (new_dentry
->d_inode
)
1597 if (old_dir
!= new_dir
)
1599 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1602 static struct file_operations cgroup_file_operations
= {
1603 .read
= cgroup_file_read
,
1604 .write
= cgroup_file_write
,
1605 .llseek
= generic_file_llseek
,
1606 .open
= cgroup_file_open
,
1607 .release
= cgroup_file_release
,
1610 static struct inode_operations cgroup_dir_inode_operations
= {
1611 .lookup
= simple_lookup
,
1612 .mkdir
= cgroup_mkdir
,
1613 .rmdir
= cgroup_rmdir
,
1614 .rename
= cgroup_rename
,
1617 static int cgroup_create_file(struct dentry
*dentry
, int mode
,
1618 struct super_block
*sb
)
1620 static struct dentry_operations cgroup_dops
= {
1621 .d_iput
= cgroup_diput
,
1624 struct inode
*inode
;
1628 if (dentry
->d_inode
)
1631 inode
= cgroup_new_inode(mode
, sb
);
1635 if (S_ISDIR(mode
)) {
1636 inode
->i_op
= &cgroup_dir_inode_operations
;
1637 inode
->i_fop
= &simple_dir_operations
;
1639 /* start off with i_nlink == 2 (for "." entry) */
1642 /* start with the directory inode held, so that we can
1643 * populate it without racing with another mkdir */
1644 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1645 } else if (S_ISREG(mode
)) {
1647 inode
->i_fop
= &cgroup_file_operations
;
1649 dentry
->d_op
= &cgroup_dops
;
1650 d_instantiate(dentry
, inode
);
1651 dget(dentry
); /* Extra count - pin the dentry in core */
1656 * cgroup_create_dir - create a directory for an object.
1657 * @cgrp: the cgroup we create the directory for. It must have a valid
1658 * ->parent field. And we are going to fill its ->dentry field.
1659 * @dentry: dentry of the new cgroup
1660 * @mode: mode to set on new directory.
1662 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1665 struct dentry
*parent
;
1668 parent
= cgrp
->parent
->dentry
;
1669 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1671 dentry
->d_fsdata
= cgrp
;
1672 inc_nlink(parent
->d_inode
);
1673 cgrp
->dentry
= dentry
;
1681 int cgroup_add_file(struct cgroup
*cgrp
,
1682 struct cgroup_subsys
*subsys
,
1683 const struct cftype
*cft
)
1685 struct dentry
*dir
= cgrp
->dentry
;
1686 struct dentry
*dentry
;
1689 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1690 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1691 strcpy(name
, subsys
->name
);
1694 strcat(name
, cft
->name
);
1695 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1696 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1697 if (!IS_ERR(dentry
)) {
1698 error
= cgroup_create_file(dentry
, 0644 | S_IFREG
,
1701 dentry
->d_fsdata
= (void *)cft
;
1704 error
= PTR_ERR(dentry
);
1708 int cgroup_add_files(struct cgroup
*cgrp
,
1709 struct cgroup_subsys
*subsys
,
1710 const struct cftype cft
[],
1714 for (i
= 0; i
< count
; i
++) {
1715 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1723 * cgroup_task_count - count the number of tasks in a cgroup.
1724 * @cgrp: the cgroup in question
1726 * Return the number of tasks in the cgroup.
1728 int cgroup_task_count(const struct cgroup
*cgrp
)
1731 struct cg_cgroup_link
*link
;
1733 read_lock(&css_set_lock
);
1734 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1735 count
+= atomic_read(&link
->cg
->refcount
);
1737 read_unlock(&css_set_lock
);
1742 * Advance a list_head iterator. The iterator should be positioned at
1743 * the start of a css_set
1745 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1746 struct cgroup_iter
*it
)
1748 struct list_head
*l
= it
->cg_link
;
1749 struct cg_cgroup_link
*link
;
1752 /* Advance to the next non-empty css_set */
1755 if (l
== &cgrp
->css_sets
) {
1759 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1761 } while (list_empty(&cg
->tasks
));
1763 it
->task
= cg
->tasks
.next
;
1767 * To reduce the fork() overhead for systems that are not actually
1768 * using their cgroups capability, we don't maintain the lists running
1769 * through each css_set to its tasks until we see the list actually
1770 * used - in other words after the first call to cgroup_iter_start().
1772 * The tasklist_lock is not held here, as do_each_thread() and
1773 * while_each_thread() are protected by RCU.
1775 static void cgroup_enable_task_cg_lists(void)
1777 struct task_struct
*p
, *g
;
1778 write_lock(&css_set_lock
);
1779 use_task_css_set_links
= 1;
1780 do_each_thread(g
, p
) {
1783 * We should check if the process is exiting, otherwise
1784 * it will race with cgroup_exit() in that the list
1785 * entry won't be deleted though the process has exited.
1787 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1788 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1790 } while_each_thread(g
, p
);
1791 write_unlock(&css_set_lock
);
1794 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1797 * The first time anyone tries to iterate across a cgroup,
1798 * we need to enable the list linking each css_set to its
1799 * tasks, and fix up all existing tasks.
1801 if (!use_task_css_set_links
)
1802 cgroup_enable_task_cg_lists();
1804 read_lock(&css_set_lock
);
1805 it
->cg_link
= &cgrp
->css_sets
;
1806 cgroup_advance_iter(cgrp
, it
);
1809 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1810 struct cgroup_iter
*it
)
1812 struct task_struct
*res
;
1813 struct list_head
*l
= it
->task
;
1815 /* If the iterator cg is NULL, we have no tasks */
1818 res
= list_entry(l
, struct task_struct
, cg_list
);
1819 /* Advance iterator to find next entry */
1821 if (l
== &res
->cgroups
->tasks
) {
1822 /* We reached the end of this task list - move on to
1823 * the next cg_cgroup_link */
1824 cgroup_advance_iter(cgrp
, it
);
1831 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1833 read_unlock(&css_set_lock
);
1836 static inline int started_after_time(struct task_struct
*t1
,
1837 struct timespec
*time
,
1838 struct task_struct
*t2
)
1840 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1841 if (start_diff
> 0) {
1843 } else if (start_diff
< 0) {
1847 * Arbitrarily, if two processes started at the same
1848 * time, we'll say that the lower pointer value
1849 * started first. Note that t2 may have exited by now
1850 * so this may not be a valid pointer any longer, but
1851 * that's fine - it still serves to distinguish
1852 * between two tasks started (effectively) simultaneously.
1859 * This function is a callback from heap_insert() and is used to order
1861 * In this case we order the heap in descending task start time.
1863 static inline int started_after(void *p1
, void *p2
)
1865 struct task_struct
*t1
= p1
;
1866 struct task_struct
*t2
= p2
;
1867 return started_after_time(t1
, &t2
->start_time
, t2
);
1871 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1872 * @scan: struct cgroup_scanner containing arguments for the scan
1874 * Arguments include pointers to callback functions test_task() and
1876 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1877 * and if it returns true, call process_task() for it also.
1878 * The test_task pointer may be NULL, meaning always true (select all tasks).
1879 * Effectively duplicates cgroup_iter_{start,next,end}()
1880 * but does not lock css_set_lock for the call to process_task().
1881 * The struct cgroup_scanner may be embedded in any structure of the caller's
1883 * It is guaranteed that process_task() will act on every task that
1884 * is a member of the cgroup for the duration of this call. This
1885 * function may or may not call process_task() for tasks that exit
1886 * or move to a different cgroup during the call, or are forked or
1887 * move into the cgroup during the call.
1889 * Note that test_task() may be called with locks held, and may in some
1890 * situations be called multiple times for the same task, so it should
1892 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1893 * pre-allocated and will be used for heap operations (and its "gt" member will
1894 * be overwritten), else a temporary heap will be used (allocation of which
1895 * may cause this function to fail).
1897 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
1900 struct cgroup_iter it
;
1901 struct task_struct
*p
, *dropped
;
1902 /* Never dereference latest_task, since it's not refcounted */
1903 struct task_struct
*latest_task
= NULL
;
1904 struct ptr_heap tmp_heap
;
1905 struct ptr_heap
*heap
;
1906 struct timespec latest_time
= { 0, 0 };
1909 /* The caller supplied our heap and pre-allocated its memory */
1911 heap
->gt
= &started_after
;
1913 /* We need to allocate our own heap memory */
1915 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
1917 /* cannot allocate the heap */
1923 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1924 * to determine which are of interest, and using the scanner's
1925 * "process_task" callback to process any of them that need an update.
1926 * Since we don't want to hold any locks during the task updates,
1927 * gather tasks to be processed in a heap structure.
1928 * The heap is sorted by descending task start time.
1929 * If the statically-sized heap fills up, we overflow tasks that
1930 * started later, and in future iterations only consider tasks that
1931 * started after the latest task in the previous pass. This
1932 * guarantees forward progress and that we don't miss any tasks.
1935 cgroup_iter_start(scan
->cg
, &it
);
1936 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
1938 * Only affect tasks that qualify per the caller's callback,
1939 * if he provided one
1941 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
1944 * Only process tasks that started after the last task
1947 if (!started_after_time(p
, &latest_time
, latest_task
))
1949 dropped
= heap_insert(heap
, p
);
1950 if (dropped
== NULL
) {
1952 * The new task was inserted; the heap wasn't
1956 } else if (dropped
!= p
) {
1958 * The new task was inserted, and pushed out a
1962 put_task_struct(dropped
);
1965 * Else the new task was newer than anything already in
1966 * the heap and wasn't inserted
1969 cgroup_iter_end(scan
->cg
, &it
);
1972 for (i
= 0; i
< heap
->size
; i
++) {
1973 struct task_struct
*q
= heap
->ptrs
[i
];
1975 latest_time
= q
->start_time
;
1978 /* Process the task per the caller's callback */
1979 scan
->process_task(q
, scan
);
1983 * If we had to process any tasks at all, scan again
1984 * in case some of them were in the middle of forking
1985 * children that didn't get processed.
1986 * Not the most efficient way to do it, but it avoids
1987 * having to take callback_mutex in the fork path
1991 if (heap
== &tmp_heap
)
1992 heap_free(&tmp_heap
);
1997 * Stuff for reading the 'tasks' file.
1999 * Reading this file can return large amounts of data if a cgroup has
2000 * *lots* of attached tasks. So it may need several calls to read(),
2001 * but we cannot guarantee that the information we produce is correct
2002 * unless we produce it entirely atomically.
2007 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2008 * 'cgrp'. Return actual number of pids loaded. No need to
2009 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2010 * read section, so the css_set can't go away, and is
2011 * immutable after creation.
2013 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2016 struct cgroup_iter it
;
2017 struct task_struct
*tsk
;
2018 cgroup_iter_start(cgrp
, &it
);
2019 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2020 if (unlikely(n
== npids
))
2022 pidarray
[n
++] = task_pid_vnr(tsk
);
2024 cgroup_iter_end(cgrp
, &it
);
2029 * cgroupstats_build - build and fill cgroupstats
2030 * @stats: cgroupstats to fill information into
2031 * @dentry: A dentry entry belonging to the cgroup for which stats have
2034 * Build and fill cgroupstats so that taskstats can export it to user
2037 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2040 struct cgroup
*cgrp
;
2041 struct cgroup_iter it
;
2042 struct task_struct
*tsk
;
2045 * Validate dentry by checking the superblock operations,
2046 * and make sure it's a directory.
2048 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2049 !S_ISDIR(dentry
->d_inode
->i_mode
))
2053 cgrp
= dentry
->d_fsdata
;
2056 cgroup_iter_start(cgrp
, &it
);
2057 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2058 switch (tsk
->state
) {
2060 stats
->nr_running
++;
2062 case TASK_INTERRUPTIBLE
:
2063 stats
->nr_sleeping
++;
2065 case TASK_UNINTERRUPTIBLE
:
2066 stats
->nr_uninterruptible
++;
2069 stats
->nr_stopped
++;
2072 if (delayacct_is_task_waiting_on_io(tsk
))
2073 stats
->nr_io_wait
++;
2077 cgroup_iter_end(cgrp
, &it
);
2084 static int cmppid(const void *a
, const void *b
)
2086 return *(pid_t
*)a
- *(pid_t
*)b
;
2091 * seq_file methods for the "tasks" file. The seq_file position is the
2092 * next pid to display; the seq_file iterator is a pointer to the pid
2093 * in the cgroup->tasks_pids array.
2096 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2099 * Initially we receive a position value that corresponds to
2100 * one more than the last pid shown (or 0 on the first call or
2101 * after a seek to the start). Use a binary-search to find the
2102 * next pid to display, if any
2104 struct cgroup
*cgrp
= s
->private;
2105 int index
= 0, pid
= *pos
;
2108 down_read(&cgrp
->pids_mutex
);
2110 int end
= cgrp
->pids_length
;
2112 while (index
< end
) {
2113 int mid
= (index
+ end
) / 2;
2114 if (cgrp
->tasks_pids
[mid
] == pid
) {
2117 } else if (cgrp
->tasks_pids
[mid
] <= pid
)
2123 /* If we're off the end of the array, we're done */
2124 if (index
>= cgrp
->pids_length
)
2126 /* Update the abstract position to be the actual pid that we found */
2127 iter
= cgrp
->tasks_pids
+ index
;
2132 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2134 struct cgroup
*cgrp
= s
->private;
2135 up_read(&cgrp
->pids_mutex
);
2138 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2140 struct cgroup
*cgrp
= s
->private;
2142 int *end
= cgrp
->tasks_pids
+ cgrp
->pids_length
;
2145 * Advance to the next pid in the array. If this goes off the
2157 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2159 return seq_printf(s
, "%d\n", *(int *)v
);
2162 static struct seq_operations cgroup_tasks_seq_operations
= {
2163 .start
= cgroup_tasks_start
,
2164 .stop
= cgroup_tasks_stop
,
2165 .next
= cgroup_tasks_next
,
2166 .show
= cgroup_tasks_show
,
2169 static void release_cgroup_pid_array(struct cgroup
*cgrp
)
2171 down_write(&cgrp
->pids_mutex
);
2172 BUG_ON(!cgrp
->pids_use_count
);
2173 if (!--cgrp
->pids_use_count
) {
2174 kfree(cgrp
->tasks_pids
);
2175 cgrp
->tasks_pids
= NULL
;
2176 cgrp
->pids_length
= 0;
2178 up_write(&cgrp
->pids_mutex
);
2181 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2183 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2185 if (!(file
->f_mode
& FMODE_READ
))
2188 release_cgroup_pid_array(cgrp
);
2189 return seq_release(inode
, file
);
2192 static struct file_operations cgroup_tasks_operations
= {
2194 .llseek
= seq_lseek
,
2195 .write
= cgroup_file_write
,
2196 .release
= cgroup_tasks_release
,
2200 * Handle an open on 'tasks' file. Prepare an array containing the
2201 * process id's of tasks currently attached to the cgroup being opened.
2204 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2206 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2211 /* Nothing to do for write-only files */
2212 if (!(file
->f_mode
& FMODE_READ
))
2216 * If cgroup gets more users after we read count, we won't have
2217 * enough space - tough. This race is indistinguishable to the
2218 * caller from the case that the additional cgroup users didn't
2219 * show up until sometime later on.
2221 npids
= cgroup_task_count(cgrp
);
2222 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2225 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2226 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2229 * Store the array in the cgroup, freeing the old
2230 * array if necessary
2232 down_write(&cgrp
->pids_mutex
);
2233 kfree(cgrp
->tasks_pids
);
2234 cgrp
->tasks_pids
= pidarray
;
2235 cgrp
->pids_length
= npids
;
2236 cgrp
->pids_use_count
++;
2237 up_write(&cgrp
->pids_mutex
);
2239 file
->f_op
= &cgroup_tasks_operations
;
2241 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2243 release_cgroup_pid_array(cgrp
);
2246 ((struct seq_file
*)file
->private_data
)->private = cgrp
;
2250 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2253 return notify_on_release(cgrp
);
2256 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2260 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2262 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2264 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2269 * for the common functions, 'private' gives the type of file
2271 static struct cftype files
[] = {
2274 .open
= cgroup_tasks_open
,
2275 .write_u64
= cgroup_tasks_write
,
2276 .release
= cgroup_tasks_release
,
2277 .private = FILE_TASKLIST
,
2281 .name
= "notify_on_release",
2282 .read_u64
= cgroup_read_notify_on_release
,
2283 .write_u64
= cgroup_write_notify_on_release
,
2284 .private = FILE_NOTIFY_ON_RELEASE
,
2288 static struct cftype cft_release_agent
= {
2289 .name
= "release_agent",
2290 .read_seq_string
= cgroup_release_agent_show
,
2291 .write_string
= cgroup_release_agent_write
,
2292 .max_write_len
= PATH_MAX
,
2293 .private = FILE_RELEASE_AGENT
,
2296 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2299 struct cgroup_subsys
*ss
;
2301 /* First clear out any existing files */
2302 cgroup_clear_directory(cgrp
->dentry
);
2304 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2308 if (cgrp
== cgrp
->top_cgroup
) {
2309 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2313 for_each_subsys(cgrp
->root
, ss
) {
2314 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2321 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2322 struct cgroup_subsys
*ss
,
2323 struct cgroup
*cgrp
)
2326 atomic_set(&css
->refcnt
, 0);
2328 if (cgrp
== dummytop
)
2329 set_bit(CSS_ROOT
, &css
->flags
);
2330 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2331 cgrp
->subsys
[ss
->subsys_id
] = css
;
2335 * cgroup_create - create a cgroup
2336 * @parent: cgroup that will be parent of the new cgroup
2337 * @dentry: dentry of the new cgroup
2338 * @mode: mode to set on new inode
2340 * Must be called with the mutex on the parent inode held
2342 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2345 struct cgroup
*cgrp
;
2346 struct cgroupfs_root
*root
= parent
->root
;
2348 struct cgroup_subsys
*ss
;
2349 struct super_block
*sb
= root
->sb
;
2351 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2355 /* Grab a reference on the superblock so the hierarchy doesn't
2356 * get deleted on unmount if there are child cgroups. This
2357 * can be done outside cgroup_mutex, since the sb can't
2358 * disappear while someone has an open control file on the
2360 atomic_inc(&sb
->s_active
);
2362 mutex_lock(&cgroup_mutex
);
2364 init_cgroup_housekeeping(cgrp
);
2366 cgrp
->parent
= parent
;
2367 cgrp
->root
= parent
->root
;
2368 cgrp
->top_cgroup
= parent
->top_cgroup
;
2370 if (notify_on_release(parent
))
2371 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2373 for_each_subsys(root
, ss
) {
2374 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2379 init_cgroup_css(css
, ss
, cgrp
);
2382 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2383 root
->number_of_cgroups
++;
2385 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2389 /* The cgroup directory was pre-locked for us */
2390 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2392 err
= cgroup_populate_dir(cgrp
);
2393 /* If err < 0, we have a half-filled directory - oh well ;) */
2395 mutex_unlock(&cgroup_mutex
);
2396 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2402 list_del(&cgrp
->sibling
);
2403 root
->number_of_cgroups
--;
2407 for_each_subsys(root
, ss
) {
2408 if (cgrp
->subsys
[ss
->subsys_id
])
2409 ss
->destroy(ss
, cgrp
);
2412 mutex_unlock(&cgroup_mutex
);
2414 /* Release the reference count that we took on the superblock */
2415 deactivate_super(sb
);
2421 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2423 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2425 /* the vfs holds inode->i_mutex already */
2426 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2429 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2431 /* Check the reference count on each subsystem. Since we
2432 * already established that there are no tasks in the
2433 * cgroup, if the css refcount is also 0, then there should
2434 * be no outstanding references, so the subsystem is safe to
2435 * destroy. We scan across all subsystems rather than using
2436 * the per-hierarchy linked list of mounted subsystems since
2437 * we can be called via check_for_release() with no
2438 * synchronization other than RCU, and the subsystem linked
2439 * list isn't RCU-safe */
2441 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2442 struct cgroup_subsys
*ss
= subsys
[i
];
2443 struct cgroup_subsys_state
*css
;
2444 /* Skip subsystems not in this hierarchy */
2445 if (ss
->root
!= cgrp
->root
)
2447 css
= cgrp
->subsys
[ss
->subsys_id
];
2448 /* When called from check_for_release() it's possible
2449 * that by this point the cgroup has been removed
2450 * and the css deleted. But a false-positive doesn't
2451 * matter, since it can only happen if the cgroup
2452 * has been deleted and hence no longer needs the
2453 * release agent to be called anyway. */
2454 if (css
&& atomic_read(&css
->refcnt
))
2460 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2462 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2464 struct cgroup
*parent
;
2465 struct super_block
*sb
;
2466 struct cgroupfs_root
*root
;
2468 /* the vfs holds both inode->i_mutex already */
2470 mutex_lock(&cgroup_mutex
);
2471 if (atomic_read(&cgrp
->count
) != 0) {
2472 mutex_unlock(&cgroup_mutex
);
2475 if (!list_empty(&cgrp
->children
)) {
2476 mutex_unlock(&cgroup_mutex
);
2479 mutex_unlock(&cgroup_mutex
);
2482 * Call pre_destroy handlers of subsys. Notify subsystems
2483 * that rmdir() request comes.
2485 cgroup_call_pre_destroy(cgrp
);
2487 mutex_lock(&cgroup_mutex
);
2488 parent
= cgrp
->parent
;
2492 if (atomic_read(&cgrp
->count
)
2493 || !list_empty(&cgrp
->children
)
2494 || cgroup_has_css_refs(cgrp
)) {
2495 mutex_unlock(&cgroup_mutex
);
2499 spin_lock(&release_list_lock
);
2500 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2501 if (!list_empty(&cgrp
->release_list
))
2502 list_del(&cgrp
->release_list
);
2503 spin_unlock(&release_list_lock
);
2504 /* delete my sibling from parent->children */
2505 list_del(&cgrp
->sibling
);
2506 spin_lock(&cgrp
->dentry
->d_lock
);
2507 d
= dget(cgrp
->dentry
);
2508 spin_unlock(&d
->d_lock
);
2510 cgroup_d_remove_dir(d
);
2513 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2514 check_for_release(parent
);
2516 mutex_unlock(&cgroup_mutex
);
2520 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2522 struct cgroup_subsys_state
*css
;
2524 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2526 /* Create the top cgroup state for this subsystem */
2527 ss
->root
= &rootnode
;
2528 css
= ss
->create(ss
, dummytop
);
2529 /* We don't handle early failures gracefully */
2530 BUG_ON(IS_ERR(css
));
2531 init_cgroup_css(css
, ss
, dummytop
);
2533 /* Update the init_css_set to contain a subsys
2534 * pointer to this state - since the subsystem is
2535 * newly registered, all tasks and hence the
2536 * init_css_set is in the subsystem's top cgroup. */
2537 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2539 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2540 need_mm_owner_callback
|= !!ss
->mm_owner_changed
;
2542 /* At system boot, before all subsystems have been
2543 * registered, no tasks have been forked, so we don't
2544 * need to invoke fork callbacks here. */
2545 BUG_ON(!list_empty(&init_task
.tasks
));
2551 * cgroup_init_early - cgroup initialization at system boot
2553 * Initialize cgroups at system boot, and initialize any
2554 * subsystems that request early init.
2556 int __init
cgroup_init_early(void)
2559 atomic_set(&init_css_set
.refcount
, 1);
2560 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2561 INIT_LIST_HEAD(&init_css_set
.tasks
);
2562 INIT_HLIST_NODE(&init_css_set
.hlist
);
2564 init_cgroup_root(&rootnode
);
2565 list_add(&rootnode
.root_list
, &roots
);
2567 init_task
.cgroups
= &init_css_set
;
2569 init_css_set_link
.cg
= &init_css_set
;
2570 list_add(&init_css_set_link
.cgrp_link_list
,
2571 &rootnode
.top_cgroup
.css_sets
);
2572 list_add(&init_css_set_link
.cg_link_list
,
2573 &init_css_set
.cg_links
);
2575 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2576 INIT_HLIST_HEAD(&css_set_table
[i
]);
2578 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2579 struct cgroup_subsys
*ss
= subsys
[i
];
2582 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2583 BUG_ON(!ss
->create
);
2584 BUG_ON(!ss
->destroy
);
2585 if (ss
->subsys_id
!= i
) {
2586 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2587 ss
->name
, ss
->subsys_id
);
2592 cgroup_init_subsys(ss
);
2598 * cgroup_init - cgroup initialization
2600 * Register cgroup filesystem and /proc file, and initialize
2601 * any subsystems that didn't request early init.
2603 int __init
cgroup_init(void)
2607 struct hlist_head
*hhead
;
2609 err
= bdi_init(&cgroup_backing_dev_info
);
2613 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2614 struct cgroup_subsys
*ss
= subsys
[i
];
2615 if (!ss
->early_init
)
2616 cgroup_init_subsys(ss
);
2619 /* Add init_css_set to the hash table */
2620 hhead
= css_set_hash(init_css_set
.subsys
);
2621 hlist_add_head(&init_css_set
.hlist
, hhead
);
2623 err
= register_filesystem(&cgroup_fs_type
);
2627 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2631 bdi_destroy(&cgroup_backing_dev_info
);
2637 * proc_cgroup_show()
2638 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2639 * - Used for /proc/<pid>/cgroup.
2640 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2641 * doesn't really matter if tsk->cgroup changes after we read it,
2642 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2643 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2644 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2645 * cgroup to top_cgroup.
2648 /* TODO: Use a proper seq_file iterator */
2649 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2652 struct task_struct
*tsk
;
2655 struct cgroupfs_root
*root
;
2658 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2664 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2670 mutex_lock(&cgroup_mutex
);
2672 for_each_root(root
) {
2673 struct cgroup_subsys
*ss
;
2674 struct cgroup
*cgrp
;
2678 /* Skip this hierarchy if it has no active subsystems */
2679 if (!root
->actual_subsys_bits
)
2681 seq_printf(m
, "%lu:", root
->subsys_bits
);
2682 for_each_subsys(root
, ss
)
2683 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2685 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2686 cgrp
= task_cgroup(tsk
, subsys_id
);
2687 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2695 mutex_unlock(&cgroup_mutex
);
2696 put_task_struct(tsk
);
2703 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2705 struct pid
*pid
= PROC_I(inode
)->pid
;
2706 return single_open(file
, proc_cgroup_show
, pid
);
2709 struct file_operations proc_cgroup_operations
= {
2710 .open
= cgroup_open
,
2712 .llseek
= seq_lseek
,
2713 .release
= single_release
,
2716 /* Display information about each subsystem and each hierarchy */
2717 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2721 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2722 mutex_lock(&cgroup_mutex
);
2723 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2724 struct cgroup_subsys
*ss
= subsys
[i
];
2725 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2726 ss
->name
, ss
->root
->subsys_bits
,
2727 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2729 mutex_unlock(&cgroup_mutex
);
2733 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2735 return single_open(file
, proc_cgroupstats_show
, NULL
);
2738 static struct file_operations proc_cgroupstats_operations
= {
2739 .open
= cgroupstats_open
,
2741 .llseek
= seq_lseek
,
2742 .release
= single_release
,
2746 * cgroup_fork - attach newly forked task to its parents cgroup.
2747 * @child: pointer to task_struct of forking parent process.
2749 * Description: A task inherits its parent's cgroup at fork().
2751 * A pointer to the shared css_set was automatically copied in
2752 * fork.c by dup_task_struct(). However, we ignore that copy, since
2753 * it was not made under the protection of RCU or cgroup_mutex, so
2754 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2755 * have already changed current->cgroups, allowing the previously
2756 * referenced cgroup group to be removed and freed.
2758 * At the point that cgroup_fork() is called, 'current' is the parent
2759 * task, and the passed argument 'child' points to the child task.
2761 void cgroup_fork(struct task_struct
*child
)
2764 child
->cgroups
= current
->cgroups
;
2765 get_css_set(child
->cgroups
);
2766 task_unlock(current
);
2767 INIT_LIST_HEAD(&child
->cg_list
);
2771 * cgroup_fork_callbacks - run fork callbacks
2772 * @child: the new task
2774 * Called on a new task very soon before adding it to the
2775 * tasklist. No need to take any locks since no-one can
2776 * be operating on this task.
2778 void cgroup_fork_callbacks(struct task_struct
*child
)
2780 if (need_forkexit_callback
) {
2782 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2783 struct cgroup_subsys
*ss
= subsys
[i
];
2785 ss
->fork(ss
, child
);
2790 #ifdef CONFIG_MM_OWNER
2792 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2795 * Called on every change to mm->owner. mm_init_owner() does not
2796 * invoke this routine, since it assigns the mm->owner the first time
2797 * and does not change it.
2799 * The callbacks are invoked with mmap_sem held in read mode.
2801 void cgroup_mm_owner_callbacks(struct task_struct
*old
, struct task_struct
*new)
2803 struct cgroup
*oldcgrp
, *newcgrp
= NULL
;
2805 if (need_mm_owner_callback
) {
2807 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2808 struct cgroup_subsys
*ss
= subsys
[i
];
2809 oldcgrp
= task_cgroup(old
, ss
->subsys_id
);
2811 newcgrp
= task_cgroup(new, ss
->subsys_id
);
2812 if (oldcgrp
== newcgrp
)
2814 if (ss
->mm_owner_changed
)
2815 ss
->mm_owner_changed(ss
, oldcgrp
, newcgrp
, new);
2819 #endif /* CONFIG_MM_OWNER */
2822 * cgroup_post_fork - called on a new task after adding it to the task list
2823 * @child: the task in question
2825 * Adds the task to the list running through its css_set if necessary.
2826 * Has to be after the task is visible on the task list in case we race
2827 * with the first call to cgroup_iter_start() - to guarantee that the
2828 * new task ends up on its list.
2830 void cgroup_post_fork(struct task_struct
*child
)
2832 if (use_task_css_set_links
) {
2833 write_lock(&css_set_lock
);
2834 if (list_empty(&child
->cg_list
))
2835 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
2836 write_unlock(&css_set_lock
);
2840 * cgroup_exit - detach cgroup from exiting task
2841 * @tsk: pointer to task_struct of exiting process
2842 * @run_callback: run exit callbacks?
2844 * Description: Detach cgroup from @tsk and release it.
2846 * Note that cgroups marked notify_on_release force every task in
2847 * them to take the global cgroup_mutex mutex when exiting.
2848 * This could impact scaling on very large systems. Be reluctant to
2849 * use notify_on_release cgroups where very high task exit scaling
2850 * is required on large systems.
2852 * the_top_cgroup_hack:
2854 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2856 * We call cgroup_exit() while the task is still competent to
2857 * handle notify_on_release(), then leave the task attached to the
2858 * root cgroup in each hierarchy for the remainder of its exit.
2860 * To do this properly, we would increment the reference count on
2861 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2862 * code we would add a second cgroup function call, to drop that
2863 * reference. This would just create an unnecessary hot spot on
2864 * the top_cgroup reference count, to no avail.
2866 * Normally, holding a reference to a cgroup without bumping its
2867 * count is unsafe. The cgroup could go away, or someone could
2868 * attach us to a different cgroup, decrementing the count on
2869 * the first cgroup that we never incremented. But in this case,
2870 * top_cgroup isn't going away, and either task has PF_EXITING set,
2871 * which wards off any cgroup_attach_task() attempts, or task is a failed
2872 * fork, never visible to cgroup_attach_task.
2874 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
2879 if (run_callbacks
&& need_forkexit_callback
) {
2880 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2881 struct cgroup_subsys
*ss
= subsys
[i
];
2888 * Unlink from the css_set task list if necessary.
2889 * Optimistically check cg_list before taking
2892 if (!list_empty(&tsk
->cg_list
)) {
2893 write_lock(&css_set_lock
);
2894 if (!list_empty(&tsk
->cg_list
))
2895 list_del(&tsk
->cg_list
);
2896 write_unlock(&css_set_lock
);
2899 /* Reassign the task to the init_css_set. */
2902 tsk
->cgroups
= &init_css_set
;
2905 put_css_set_taskexit(cg
);
2909 * cgroup_clone - clone the cgroup the given subsystem is attached to
2910 * @tsk: the task to be moved
2911 * @subsys: the given subsystem
2912 * @nodename: the name for the new cgroup
2914 * Duplicate the current cgroup in the hierarchy that the given
2915 * subsystem is attached to, and move this task into the new
2918 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
2921 struct dentry
*dentry
;
2923 struct cgroup
*parent
, *child
;
2924 struct inode
*inode
;
2926 struct cgroupfs_root
*root
;
2927 struct cgroup_subsys
*ss
;
2929 /* We shouldn't be called by an unregistered subsystem */
2930 BUG_ON(!subsys
->active
);
2932 /* First figure out what hierarchy and cgroup we're dealing
2933 * with, and pin them so we can drop cgroup_mutex */
2934 mutex_lock(&cgroup_mutex
);
2936 root
= subsys
->root
;
2937 if (root
== &rootnode
) {
2938 mutex_unlock(&cgroup_mutex
);
2942 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
2944 /* Pin the hierarchy */
2945 if (!atomic_inc_not_zero(&parent
->root
->sb
->s_active
)) {
2946 /* We race with the final deactivate_super() */
2947 mutex_unlock(&cgroup_mutex
);
2951 /* Keep the cgroup alive */
2953 mutex_unlock(&cgroup_mutex
);
2955 /* Now do the VFS work to create a cgroup */
2956 inode
= parent
->dentry
->d_inode
;
2958 /* Hold the parent directory mutex across this operation to
2959 * stop anyone else deleting the new cgroup */
2960 mutex_lock(&inode
->i_mutex
);
2961 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
2962 if (IS_ERR(dentry
)) {
2964 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
2966 ret
= PTR_ERR(dentry
);
2970 /* Create the cgroup directory, which also creates the cgroup */
2971 ret
= vfs_mkdir(inode
, dentry
, S_IFDIR
| 0755);
2972 child
= __d_cgrp(dentry
);
2976 "Failed to create cgroup %s: %d\n", nodename
,
2983 "Couldn't find new cgroup %s\n", nodename
);
2988 /* The cgroup now exists. Retake cgroup_mutex and check
2989 * that we're still in the same state that we thought we
2991 mutex_lock(&cgroup_mutex
);
2992 if ((root
!= subsys
->root
) ||
2993 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
2994 /* Aargh, we raced ... */
2995 mutex_unlock(&inode
->i_mutex
);
2998 deactivate_super(parent
->root
->sb
);
2999 /* The cgroup is still accessible in the VFS, but
3000 * we're not going to try to rmdir() it at this
3003 "Race in cgroup_clone() - leaking cgroup %s\n",
3008 /* do any required auto-setup */
3009 for_each_subsys(root
, ss
) {
3011 ss
->post_clone(ss
, child
);
3014 /* All seems fine. Finish by moving the task into the new cgroup */
3015 ret
= cgroup_attach_task(child
, tsk
);
3016 mutex_unlock(&cgroup_mutex
);
3019 mutex_unlock(&inode
->i_mutex
);
3021 mutex_lock(&cgroup_mutex
);
3023 mutex_unlock(&cgroup_mutex
);
3024 deactivate_super(parent
->root
->sb
);
3029 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3030 * @cgrp: the cgroup in question
3032 * See if @cgrp is a descendant of the current task's cgroup in
3033 * the appropriate hierarchy.
3035 * If we are sending in dummytop, then presumably we are creating
3036 * the top cgroup in the subsystem.
3038 * Called only by the ns (nsproxy) cgroup.
3040 int cgroup_is_descendant(const struct cgroup
*cgrp
)
3043 struct cgroup
*target
;
3046 if (cgrp
== dummytop
)
3049 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3050 target
= task_cgroup(current
, subsys_id
);
3051 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3052 cgrp
= cgrp
->parent
;
3053 ret
= (cgrp
== target
);
3057 static void check_for_release(struct cgroup
*cgrp
)
3059 /* All of these checks rely on RCU to keep the cgroup
3060 * structure alive */
3061 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3062 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3063 /* Control Group is currently removeable. If it's not
3064 * already queued for a userspace notification, queue
3066 int need_schedule_work
= 0;
3067 spin_lock(&release_list_lock
);
3068 if (!cgroup_is_removed(cgrp
) &&
3069 list_empty(&cgrp
->release_list
)) {
3070 list_add(&cgrp
->release_list
, &release_list
);
3071 need_schedule_work
= 1;
3073 spin_unlock(&release_list_lock
);
3074 if (need_schedule_work
)
3075 schedule_work(&release_agent_work
);
3079 void __css_put(struct cgroup_subsys_state
*css
)
3081 struct cgroup
*cgrp
= css
->cgroup
;
3083 if (atomic_dec_and_test(&css
->refcnt
) && notify_on_release(cgrp
)) {
3084 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3085 check_for_release(cgrp
);
3091 * Notify userspace when a cgroup is released, by running the
3092 * configured release agent with the name of the cgroup (path
3093 * relative to the root of cgroup file system) as the argument.
3095 * Most likely, this user command will try to rmdir this cgroup.
3097 * This races with the possibility that some other task will be
3098 * attached to this cgroup before it is removed, or that some other
3099 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3100 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3101 * unused, and this cgroup will be reprieved from its death sentence,
3102 * to continue to serve a useful existence. Next time it's released,
3103 * we will get notified again, if it still has 'notify_on_release' set.
3105 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3106 * means only wait until the task is successfully execve()'d. The
3107 * separate release agent task is forked by call_usermodehelper(),
3108 * then control in this thread returns here, without waiting for the
3109 * release agent task. We don't bother to wait because the caller of
3110 * this routine has no use for the exit status of the release agent
3111 * task, so no sense holding our caller up for that.
3113 static void cgroup_release_agent(struct work_struct
*work
)
3115 BUG_ON(work
!= &release_agent_work
);
3116 mutex_lock(&cgroup_mutex
);
3117 spin_lock(&release_list_lock
);
3118 while (!list_empty(&release_list
)) {
3119 char *argv
[3], *envp
[3];
3121 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3122 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3125 list_del_init(&cgrp
->release_list
);
3126 spin_unlock(&release_list_lock
);
3127 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3130 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3132 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3137 argv
[i
++] = agentbuf
;
3138 argv
[i
++] = pathbuf
;
3142 /* minimal command environment */
3143 envp
[i
++] = "HOME=/";
3144 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3147 /* Drop the lock while we invoke the usermode helper,
3148 * since the exec could involve hitting disk and hence
3149 * be a slow process */
3150 mutex_unlock(&cgroup_mutex
);
3151 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3152 mutex_lock(&cgroup_mutex
);
3156 spin_lock(&release_list_lock
);
3158 spin_unlock(&release_list_lock
);
3159 mutex_unlock(&cgroup_mutex
);
3162 static int __init
cgroup_disable(char *str
)
3167 while ((token
= strsep(&str
, ",")) != NULL
) {
3171 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3172 struct cgroup_subsys
*ss
= subsys
[i
];
3174 if (!strcmp(token
, ss
->name
)) {
3176 printk(KERN_INFO
"Disabling %s control group"
3177 " subsystem\n", ss
->name
);
3184 __setup("cgroup_disable=", cgroup_disable
);