2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
77 #include <linux/inet.h>
78 #include <linux/ipv6.h>
79 #include <linux/stddef.h>
80 #include <linux/proc_fs.h>
81 #include <linux/seq_file.h>
83 #include <linux/crypto.h>
84 #include <linux/scatterlist.h>
86 int sysctl_tcp_tw_reuse __read_mostly
;
87 int sysctl_tcp_low_latency __read_mostly
;
88 EXPORT_SYMBOL(sysctl_tcp_low_latency
);
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
94 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
95 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
);
98 struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
104 struct inet_hashinfo tcp_hashinfo
;
105 EXPORT_SYMBOL(tcp_hashinfo
);
107 static inline __u32
tcp_v4_init_sequence(const struct sk_buff
*skb
)
109 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
112 tcp_hdr(skb
)->source
);
115 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
117 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
118 struct tcp_sock
*tp
= tcp_sk(sk
);
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
131 if (tcptw
->tw_ts_recent_stamp
&&
132 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
133 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
134 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
135 if (tp
->write_seq
== 0)
137 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
138 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
150 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
151 struct inet_sock
*inet
= inet_sk(sk
);
152 struct tcp_sock
*tp
= tcp_sk(sk
);
153 __be16 orig_sport
, orig_dport
;
154 __be32 daddr
, nexthop
;
158 struct ip_options_rcu
*inet_opt
;
160 if (addr_len
< sizeof(struct sockaddr_in
))
163 if (usin
->sin_family
!= AF_INET
)
164 return -EAFNOSUPPORT
;
166 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
167 inet_opt
= rcu_dereference_protected(inet
->inet_opt
,
168 sock_owned_by_user(sk
));
169 if (inet_opt
&& inet_opt
->opt
.srr
) {
172 nexthop
= inet_opt
->opt
.faddr
;
175 orig_sport
= inet
->inet_sport
;
176 orig_dport
= usin
->sin_port
;
177 fl4
= &inet
->cork
.fl
.u
.ip4
;
178 rt
= ip_route_connect(fl4
, nexthop
, inet
->inet_saddr
,
179 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
181 orig_sport
, orig_dport
, sk
, true);
184 if (err
== -ENETUNREACH
)
185 IP_INC_STATS_BH(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
189 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
194 if (!inet_opt
|| !inet_opt
->opt
.srr
)
197 if (!inet
->inet_saddr
)
198 inet
->inet_saddr
= fl4
->saddr
;
199 inet
->inet_rcv_saddr
= inet
->inet_saddr
;
201 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->inet_daddr
!= daddr
) {
202 /* Reset inherited state */
203 tp
->rx_opt
.ts_recent
= 0;
204 tp
->rx_opt
.ts_recent_stamp
= 0;
208 if (tcp_death_row
.sysctl_tw_recycle
&&
209 !tp
->rx_opt
.ts_recent_stamp
&& fl4
->daddr
== daddr
) {
210 struct inet_peer
*peer
= rt_get_peer(rt
, fl4
->daddr
);
212 * VJ's idea. We save last timestamp seen from
213 * the destination in peer table, when entering state
214 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215 * when trying new connection.
218 inet_peer_refcheck(peer
);
219 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
<= TCP_PAWS_MSL
) {
220 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
221 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
226 inet
->inet_dport
= usin
->sin_port
;
227 inet
->inet_daddr
= daddr
;
229 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
231 inet_csk(sk
)->icsk_ext_hdr_len
= inet_opt
->opt
.optlen
;
233 tp
->rx_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
235 /* Socket identity is still unknown (sport may be zero).
236 * However we set state to SYN-SENT and not releasing socket
237 * lock select source port, enter ourselves into the hash tables and
238 * complete initialization after this.
240 tcp_set_state(sk
, TCP_SYN_SENT
);
241 err
= inet_hash_connect(&tcp_death_row
, sk
);
245 rt
= ip_route_newports(fl4
, rt
, orig_sport
, orig_dport
,
246 inet
->inet_sport
, inet
->inet_dport
, sk
);
252 /* OK, now commit destination to socket. */
253 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
254 sk_setup_caps(sk
, &rt
->dst
);
257 tp
->write_seq
= secure_tcp_sequence_number(inet
->inet_saddr
,
262 inet
->inet_id
= tp
->write_seq
^ jiffies
;
264 err
= tcp_connect(sk
);
273 * This unhashes the socket and releases the local port,
276 tcp_set_state(sk
, TCP_CLOSE
);
278 sk
->sk_route_caps
= 0;
279 inet
->inet_dport
= 0;
282 EXPORT_SYMBOL(tcp_v4_connect
);
285 * This routine does path mtu discovery as defined in RFC1191.
287 static void do_pmtu_discovery(struct sock
*sk
, const struct iphdr
*iph
, u32 mtu
)
289 struct dst_entry
*dst
;
290 struct inet_sock
*inet
= inet_sk(sk
);
292 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293 * send out by Linux are always <576bytes so they should go through
296 if (sk
->sk_state
== TCP_LISTEN
)
299 /* We don't check in the destentry if pmtu discovery is forbidden
300 * on this route. We just assume that no packet_to_big packets
301 * are send back when pmtu discovery is not active.
302 * There is a small race when the user changes this flag in the
303 * route, but I think that's acceptable.
305 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
308 dst
->ops
->update_pmtu(dst
, mtu
);
310 /* Something is about to be wrong... Remember soft error
311 * for the case, if this connection will not able to recover.
313 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
314 sk
->sk_err_soft
= EMSGSIZE
;
318 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
319 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
320 tcp_sync_mss(sk
, mtu
);
322 /* Resend the TCP packet because it's
323 * clear that the old packet has been
324 * dropped. This is the new "fast" path mtu
327 tcp_simple_retransmit(sk
);
328 } /* else let the usual retransmit timer handle it */
332 * This routine is called by the ICMP module when it gets some
333 * sort of error condition. If err < 0 then the socket should
334 * be closed and the error returned to the user. If err > 0
335 * it's just the icmp type << 8 | icmp code. After adjustment
336 * header points to the first 8 bytes of the tcp header. We need
337 * to find the appropriate port.
339 * The locking strategy used here is very "optimistic". When
340 * someone else accesses the socket the ICMP is just dropped
341 * and for some paths there is no check at all.
342 * A more general error queue to queue errors for later handling
343 * is probably better.
347 void tcp_v4_err(struct sk_buff
*icmp_skb
, u32 info
)
349 const struct iphdr
*iph
= (const struct iphdr
*)icmp_skb
->data
;
350 struct tcphdr
*th
= (struct tcphdr
*)(icmp_skb
->data
+ (iph
->ihl
<< 2));
351 struct inet_connection_sock
*icsk
;
353 struct inet_sock
*inet
;
354 const int type
= icmp_hdr(icmp_skb
)->type
;
355 const int code
= icmp_hdr(icmp_skb
)->code
;
361 struct net
*net
= dev_net(icmp_skb
->dev
);
363 if (icmp_skb
->len
< (iph
->ihl
<< 2) + 8) {
364 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
368 sk
= inet_lookup(net
, &tcp_hashinfo
, iph
->daddr
, th
->dest
,
369 iph
->saddr
, th
->source
, inet_iif(icmp_skb
));
371 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
374 if (sk
->sk_state
== TCP_TIME_WAIT
) {
375 inet_twsk_put(inet_twsk(sk
));
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
383 if (sock_owned_by_user(sk
))
384 NET_INC_STATS_BH(net
, LINUX_MIB_LOCKDROPPEDICMPS
);
386 if (sk
->sk_state
== TCP_CLOSE
)
389 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
390 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
396 seq
= ntohl(th
->seq
);
397 if (sk
->sk_state
!= TCP_LISTEN
&&
398 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
399 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
404 case ICMP_SOURCE_QUENCH
:
405 /* Just silently ignore these. */
407 case ICMP_PARAMETERPROB
:
410 case ICMP_DEST_UNREACH
:
411 if (code
> NR_ICMP_UNREACH
)
414 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
415 if (!sock_owned_by_user(sk
))
416 do_pmtu_discovery(sk
, iph
, info
);
420 err
= icmp_err_convert
[code
].errno
;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code
!= ICMP_NET_UNREACH
&& code
!= ICMP_HOST_UNREACH
)
425 if (seq
!= tp
->snd_una
|| !icsk
->icsk_retransmits
||
429 if (sock_owned_by_user(sk
))
432 icsk
->icsk_backoff
--;
433 inet_csk(sk
)->icsk_rto
= (tp
->srtt
? __tcp_set_rto(tp
) :
434 TCP_TIMEOUT_INIT
) << icsk
->icsk_backoff
;
437 skb
= tcp_write_queue_head(sk
);
440 remaining
= icsk
->icsk_rto
- min(icsk
->icsk_rto
,
441 tcp_time_stamp
- TCP_SKB_CB(skb
)->when
);
444 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
445 remaining
, TCP_RTO_MAX
);
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk
);
453 case ICMP_TIME_EXCEEDED
:
460 switch (sk
->sk_state
) {
461 struct request_sock
*req
, **prev
;
463 if (sock_owned_by_user(sk
))
466 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
467 iph
->daddr
, iph
->saddr
);
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
476 if (seq
!= tcp_rsk(req
)->snt_isn
) {
477 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
487 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
491 case TCP_SYN_RECV
: /* Cannot happen.
492 It can f.e. if SYNs crossed.
494 if (!sock_owned_by_user(sk
)) {
497 sk
->sk_error_report(sk
);
501 sk
->sk_err_soft
= err
;
506 /* If we've already connected we will keep trying
507 * until we time out, or the user gives up.
509 * rfc1122 4.2.3.9 allows to consider as hard errors
510 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511 * but it is obsoleted by pmtu discovery).
513 * Note, that in modern internet, where routing is unreliable
514 * and in each dark corner broken firewalls sit, sending random
515 * errors ordered by their masters even this two messages finally lose
516 * their original sense (even Linux sends invalid PORT_UNREACHs)
518 * Now we are in compliance with RFCs.
523 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
525 sk
->sk_error_report(sk
);
526 } else { /* Only an error on timeout */
527 sk
->sk_err_soft
= err
;
535 static void __tcp_v4_send_check(struct sk_buff
*skb
,
536 __be32 saddr
, __be32 daddr
)
538 struct tcphdr
*th
= tcp_hdr(skb
);
540 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
541 th
->check
= ~tcp_v4_check(skb
->len
, saddr
, daddr
, 0);
542 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
543 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
545 th
->check
= tcp_v4_check(skb
->len
, saddr
, daddr
,
552 /* This routine computes an IPv4 TCP checksum. */
553 void tcp_v4_send_check(struct sock
*sk
, struct sk_buff
*skb
)
555 const struct inet_sock
*inet
= inet_sk(sk
);
557 __tcp_v4_send_check(skb
, inet
->inet_saddr
, inet
->inet_daddr
);
559 EXPORT_SYMBOL(tcp_v4_send_check
);
561 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
563 const struct iphdr
*iph
;
566 if (!pskb_may_pull(skb
, sizeof(*th
)))
573 skb
->ip_summed
= CHECKSUM_PARTIAL
;
574 __tcp_v4_send_check(skb
, iph
->saddr
, iph
->daddr
);
579 * This routine will send an RST to the other tcp.
581 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
583 * Answer: if a packet caused RST, it is not for a socket
584 * existing in our system, if it is matched to a socket,
585 * it is just duplicate segment or bug in other side's TCP.
586 * So that we build reply only basing on parameters
587 * arrived with segment.
588 * Exception: precedence violation. We do not implement it in any case.
591 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
593 const struct tcphdr
*th
= tcp_hdr(skb
);
596 #ifdef CONFIG_TCP_MD5SIG
597 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
600 struct ip_reply_arg arg
;
601 #ifdef CONFIG_TCP_MD5SIG
602 struct tcp_md5sig_key
*key
;
606 /* Never send a reset in response to a reset. */
610 if (skb_rtable(skb
)->rt_type
!= RTN_LOCAL
)
613 /* Swap the send and the receive. */
614 memset(&rep
, 0, sizeof(rep
));
615 rep
.th
.dest
= th
->source
;
616 rep
.th
.source
= th
->dest
;
617 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
621 rep
.th
.seq
= th
->ack_seq
;
624 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
625 skb
->len
- (th
->doff
<< 2));
628 memset(&arg
, 0, sizeof(arg
));
629 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
630 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
632 #ifdef CONFIG_TCP_MD5SIG
633 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
) : NULL
;
635 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
637 (TCPOPT_MD5SIG
<< 8) |
639 /* Update length and the length the header thinks exists */
640 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
641 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
643 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[1],
644 key
, ip_hdr(skb
)->saddr
,
645 ip_hdr(skb
)->daddr
, &rep
.th
);
648 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
649 ip_hdr(skb
)->saddr
, /* XXX */
650 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
651 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
652 arg
.flags
= (sk
&& inet_sk(sk
)->transparent
) ? IP_REPLY_ARG_NOSRCCHECK
: 0;
654 net
= dev_net(skb_dst(skb
)->dev
);
655 ip_send_reply(net
->ipv4
.tcp_sock
, skb
, ip_hdr(skb
)->saddr
,
656 &arg
, arg
.iov
[0].iov_len
);
658 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
659 TCP_INC_STATS_BH(net
, TCP_MIB_OUTRSTS
);
662 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
663 outside socket context is ugly, certainly. What can I do?
666 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
667 u32 win
, u32 ts
, int oif
,
668 struct tcp_md5sig_key
*key
,
671 const struct tcphdr
*th
= tcp_hdr(skb
);
674 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
675 #ifdef CONFIG_TCP_MD5SIG
676 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
680 struct ip_reply_arg arg
;
681 struct net
*net
= dev_net(skb_dst(skb
)->dev
);
683 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
684 memset(&arg
, 0, sizeof(arg
));
686 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
687 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
689 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
690 (TCPOPT_TIMESTAMP
<< 8) |
692 rep
.opt
[1] = htonl(tcp_time_stamp
);
693 rep
.opt
[2] = htonl(ts
);
694 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
697 /* Swap the send and the receive. */
698 rep
.th
.dest
= th
->source
;
699 rep
.th
.source
= th
->dest
;
700 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
701 rep
.th
.seq
= htonl(seq
);
702 rep
.th
.ack_seq
= htonl(ack
);
704 rep
.th
.window
= htons(win
);
706 #ifdef CONFIG_TCP_MD5SIG
708 int offset
= (ts
) ? 3 : 0;
710 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
712 (TCPOPT_MD5SIG
<< 8) |
714 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
715 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
717 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[offset
],
718 key
, ip_hdr(skb
)->saddr
,
719 ip_hdr(skb
)->daddr
, &rep
.th
);
722 arg
.flags
= reply_flags
;
723 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
724 ip_hdr(skb
)->saddr
, /* XXX */
725 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
726 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
728 arg
.bound_dev_if
= oif
;
730 ip_send_reply(net
->ipv4
.tcp_sock
, skb
, ip_hdr(skb
)->saddr
,
731 &arg
, arg
.iov
[0].iov_len
);
733 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
736 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
738 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
739 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
741 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
742 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
745 tcp_twsk_md5_key(tcptw
),
746 tw
->tw_transparent
? IP_REPLY_ARG_NOSRCCHECK
: 0
752 static void tcp_v4_reqsk_send_ack(struct sock
*sk
, struct sk_buff
*skb
,
753 struct request_sock
*req
)
755 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1,
756 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
759 tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
),
760 inet_rsk(req
)->no_srccheck
? IP_REPLY_ARG_NOSRCCHECK
: 0);
764 * Send a SYN-ACK after having received a SYN.
765 * This still operates on a request_sock only, not on a big
768 static int tcp_v4_send_synack(struct sock
*sk
, struct dst_entry
*dst
,
769 struct request_sock
*req
,
770 struct request_values
*rvp
)
772 const struct inet_request_sock
*ireq
= inet_rsk(req
);
775 struct sk_buff
* skb
;
777 /* First, grab a route. */
778 if (!dst
&& (dst
= inet_csk_route_req(sk
, &fl4
, req
)) == NULL
)
781 skb
= tcp_make_synack(sk
, dst
, req
, rvp
);
784 __tcp_v4_send_check(skb
, ireq
->loc_addr
, ireq
->rmt_addr
);
786 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
789 err
= net_xmit_eval(err
);
796 static int tcp_v4_rtx_synack(struct sock
*sk
, struct request_sock
*req
,
797 struct request_values
*rvp
)
799 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
800 return tcp_v4_send_synack(sk
, NULL
, req
, rvp
);
804 * IPv4 request_sock destructor.
806 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
808 kfree(inet_rsk(req
)->opt
);
812 * Return 1 if a syncookie should be sent
814 int tcp_syn_flood_action(struct sock
*sk
,
815 const struct sk_buff
*skb
,
818 const char *msg
= "Dropping request";
820 struct listen_sock
*lopt
;
824 #ifdef CONFIG_SYN_COOKIES
825 if (sysctl_tcp_syncookies
) {
826 msg
= "Sending cookies";
828 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
831 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
833 lopt
= inet_csk(sk
)->icsk_accept_queue
.listen_opt
;
834 if (!lopt
->synflood_warned
) {
835 lopt
->synflood_warned
= 1;
836 pr_info("%s: Possible SYN flooding on port %d. %s. "
837 " Check SNMP counters.\n",
838 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
842 EXPORT_SYMBOL(tcp_syn_flood_action
);
845 * Save and compile IPv4 options into the request_sock if needed.
847 static struct ip_options_rcu
*tcp_v4_save_options(struct sock
*sk
,
850 const struct ip_options
*opt
= &(IPCB(skb
)->opt
);
851 struct ip_options_rcu
*dopt
= NULL
;
853 if (opt
&& opt
->optlen
) {
854 int opt_size
= sizeof(*dopt
) + opt
->optlen
;
856 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
858 if (ip_options_echo(&dopt
->opt
, skb
)) {
867 #ifdef CONFIG_TCP_MD5SIG
869 * RFC2385 MD5 checksumming requires a mapping of
870 * IP address->MD5 Key.
871 * We need to maintain these in the sk structure.
874 /* Find the Key structure for an address. */
875 static struct tcp_md5sig_key
*
876 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
878 struct tcp_sock
*tp
= tcp_sk(sk
);
881 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
883 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
884 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
885 return &tp
->md5sig_info
->keys4
[i
].base
;
890 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
891 struct sock
*addr_sk
)
893 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->inet_daddr
);
895 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
897 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
898 struct request_sock
*req
)
900 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
903 /* This can be called on a newly created socket, from other files */
904 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
905 u8
*newkey
, u8 newkeylen
)
907 /* Add Key to the list */
908 struct tcp_md5sig_key
*key
;
909 struct tcp_sock
*tp
= tcp_sk(sk
);
910 struct tcp4_md5sig_key
*keys
;
912 key
= tcp_v4_md5_do_lookup(sk
, addr
);
914 /* Pre-existing entry - just update that one. */
917 key
->keylen
= newkeylen
;
919 struct tcp_md5sig_info
*md5sig
;
921 if (!tp
->md5sig_info
) {
922 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
924 if (!tp
->md5sig_info
) {
928 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
931 md5sig
= tp
->md5sig_info
;
932 if (md5sig
->entries4
== 0 &&
933 tcp_alloc_md5sig_pool(sk
) == NULL
) {
938 if (md5sig
->alloced4
== md5sig
->entries4
) {
939 keys
= kmalloc((sizeof(*keys
) *
940 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
943 if (md5sig
->entries4
== 0)
944 tcp_free_md5sig_pool();
948 if (md5sig
->entries4
)
949 memcpy(keys
, md5sig
->keys4
,
950 sizeof(*keys
) * md5sig
->entries4
);
952 /* Free old key list, and reference new one */
953 kfree(md5sig
->keys4
);
954 md5sig
->keys4
= keys
;
958 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
959 md5sig
->keys4
[md5sig
->entries4
- 1].base
.key
= newkey
;
960 md5sig
->keys4
[md5sig
->entries4
- 1].base
.keylen
= newkeylen
;
964 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
966 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
967 u8
*newkey
, u8 newkeylen
)
969 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->inet_daddr
,
973 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
975 struct tcp_sock
*tp
= tcp_sk(sk
);
978 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
979 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
981 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
982 tp
->md5sig_info
->entries4
--;
984 if (tp
->md5sig_info
->entries4
== 0) {
985 kfree(tp
->md5sig_info
->keys4
);
986 tp
->md5sig_info
->keys4
= NULL
;
987 tp
->md5sig_info
->alloced4
= 0;
988 tcp_free_md5sig_pool();
989 } else if (tp
->md5sig_info
->entries4
!= i
) {
990 /* Need to do some manipulation */
991 memmove(&tp
->md5sig_info
->keys4
[i
],
992 &tp
->md5sig_info
->keys4
[i
+1],
993 (tp
->md5sig_info
->entries4
- i
) *
994 sizeof(struct tcp4_md5sig_key
));
1001 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
1003 static void tcp_v4_clear_md5_list(struct sock
*sk
)
1005 struct tcp_sock
*tp
= tcp_sk(sk
);
1007 /* Free each key, then the set of key keys,
1008 * the crypto element, and then decrement our
1009 * hold on the last resort crypto.
1011 if (tp
->md5sig_info
->entries4
) {
1013 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
1014 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
1015 tp
->md5sig_info
->entries4
= 0;
1016 tcp_free_md5sig_pool();
1018 if (tp
->md5sig_info
->keys4
) {
1019 kfree(tp
->md5sig_info
->keys4
);
1020 tp
->md5sig_info
->keys4
= NULL
;
1021 tp
->md5sig_info
->alloced4
= 0;
1025 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
1028 struct tcp_md5sig cmd
;
1029 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
1032 if (optlen
< sizeof(cmd
))
1035 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
1038 if (sin
->sin_family
!= AF_INET
)
1041 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
1042 if (!tcp_sk(sk
)->md5sig_info
)
1044 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
1047 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
1050 if (!tcp_sk(sk
)->md5sig_info
) {
1051 struct tcp_sock
*tp
= tcp_sk(sk
);
1052 struct tcp_md5sig_info
*p
;
1054 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
1058 tp
->md5sig_info
= p
;
1059 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1062 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, sk
->sk_allocation
);
1065 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1066 newkey
, cmd
.tcpm_keylen
);
1069 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool
*hp
,
1070 __be32 daddr
, __be32 saddr
, int nbytes
)
1072 struct tcp4_pseudohdr
*bp
;
1073 struct scatterlist sg
;
1075 bp
= &hp
->md5_blk
.ip4
;
1078 * 1. the TCP pseudo-header (in the order: source IP address,
1079 * destination IP address, zero-padded protocol number, and
1085 bp
->protocol
= IPPROTO_TCP
;
1086 bp
->len
= cpu_to_be16(nbytes
);
1088 sg_init_one(&sg
, bp
, sizeof(*bp
));
1089 return crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(*bp
));
1092 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
1093 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
)
1095 struct tcp_md5sig_pool
*hp
;
1096 struct hash_desc
*desc
;
1098 hp
= tcp_get_md5sig_pool();
1100 goto clear_hash_noput
;
1101 desc
= &hp
->md5_desc
;
1103 if (crypto_hash_init(desc
))
1105 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, th
->doff
<< 2))
1107 if (tcp_md5_hash_header(hp
, th
))
1109 if (tcp_md5_hash_key(hp
, key
))
1111 if (crypto_hash_final(desc
, md5_hash
))
1114 tcp_put_md5sig_pool();
1118 tcp_put_md5sig_pool();
1120 memset(md5_hash
, 0, 16);
1124 int tcp_v4_md5_hash_skb(char *md5_hash
, struct tcp_md5sig_key
*key
,
1125 struct sock
*sk
, struct request_sock
*req
,
1126 struct sk_buff
*skb
)
1128 struct tcp_md5sig_pool
*hp
;
1129 struct hash_desc
*desc
;
1130 struct tcphdr
*th
= tcp_hdr(skb
);
1131 __be32 saddr
, daddr
;
1134 saddr
= inet_sk(sk
)->inet_saddr
;
1135 daddr
= inet_sk(sk
)->inet_daddr
;
1137 saddr
= inet_rsk(req
)->loc_addr
;
1138 daddr
= inet_rsk(req
)->rmt_addr
;
1140 const struct iphdr
*iph
= ip_hdr(skb
);
1145 hp
= tcp_get_md5sig_pool();
1147 goto clear_hash_noput
;
1148 desc
= &hp
->md5_desc
;
1150 if (crypto_hash_init(desc
))
1153 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, skb
->len
))
1155 if (tcp_md5_hash_header(hp
, th
))
1157 if (tcp_md5_hash_skb_data(hp
, skb
, th
->doff
<< 2))
1159 if (tcp_md5_hash_key(hp
, key
))
1161 if (crypto_hash_final(desc
, md5_hash
))
1164 tcp_put_md5sig_pool();
1168 tcp_put_md5sig_pool();
1170 memset(md5_hash
, 0, 16);
1173 EXPORT_SYMBOL(tcp_v4_md5_hash_skb
);
1175 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1178 * This gets called for each TCP segment that arrives
1179 * so we want to be efficient.
1180 * We have 3 drop cases:
1181 * o No MD5 hash and one expected.
1182 * o MD5 hash and we're not expecting one.
1183 * o MD5 hash and its wrong.
1185 const __u8
*hash_location
= NULL
;
1186 struct tcp_md5sig_key
*hash_expected
;
1187 const struct iphdr
*iph
= ip_hdr(skb
);
1188 const struct tcphdr
*th
= tcp_hdr(skb
);
1190 unsigned char newhash
[16];
1192 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1193 hash_location
= tcp_parse_md5sig_option(th
);
1195 /* We've parsed the options - do we have a hash? */
1196 if (!hash_expected
&& !hash_location
)
1199 if (hash_expected
&& !hash_location
) {
1200 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
1204 if (!hash_expected
&& hash_location
) {
1205 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
1209 /* Okay, so this is hash_expected and hash_location -
1210 * so we need to calculate the checksum.
1212 genhash
= tcp_v4_md5_hash_skb(newhash
,
1216 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1217 if (net_ratelimit()) {
1218 printk(KERN_INFO
"MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219 &iph
->saddr
, ntohs(th
->source
),
1220 &iph
->daddr
, ntohs(th
->dest
),
1221 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1230 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1232 .obj_size
= sizeof(struct tcp_request_sock
),
1233 .rtx_syn_ack
= tcp_v4_rtx_synack
,
1234 .send_ack
= tcp_v4_reqsk_send_ack
,
1235 .destructor
= tcp_v4_reqsk_destructor
,
1236 .send_reset
= tcp_v4_send_reset
,
1237 .syn_ack_timeout
= tcp_syn_ack_timeout
,
1240 #ifdef CONFIG_TCP_MD5SIG
1241 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1242 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1243 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1247 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1249 struct tcp_extend_values tmp_ext
;
1250 struct tcp_options_received tmp_opt
;
1251 const u8
*hash_location
;
1252 struct request_sock
*req
;
1253 struct inet_request_sock
*ireq
;
1254 struct tcp_sock
*tp
= tcp_sk(sk
);
1255 struct dst_entry
*dst
= NULL
;
1256 __be32 saddr
= ip_hdr(skb
)->saddr
;
1257 __be32 daddr
= ip_hdr(skb
)->daddr
;
1258 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1259 int want_cookie
= 0;
1261 /* Never answer to SYNs send to broadcast or multicast */
1262 if (skb_rtable(skb
)->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
))
1265 /* TW buckets are converted to open requests without
1266 * limitations, they conserve resources and peer is
1267 * evidently real one.
1269 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1270 want_cookie
= tcp_syn_flood_action(sk
, skb
, "TCP");
1275 /* Accept backlog is full. If we have already queued enough
1276 * of warm entries in syn queue, drop request. It is better than
1277 * clogging syn queue with openreqs with exponentially increasing
1280 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1283 req
= inet_reqsk_alloc(&tcp_request_sock_ops
);
1287 #ifdef CONFIG_TCP_MD5SIG
1288 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1291 tcp_clear_options(&tmp_opt
);
1292 tmp_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
1293 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
1294 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
1296 if (tmp_opt
.cookie_plus
> 0 &&
1297 tmp_opt
.saw_tstamp
&&
1298 !tp
->rx_opt
.cookie_out_never
&&
1299 (sysctl_tcp_cookie_size
> 0 ||
1300 (tp
->cookie_values
!= NULL
&&
1301 tp
->cookie_values
->cookie_desired
> 0))) {
1303 u32
*mess
= &tmp_ext
.cookie_bakery
[COOKIE_DIGEST_WORDS
];
1304 int l
= tmp_opt
.cookie_plus
- TCPOLEN_COOKIE_BASE
;
1306 if (tcp_cookie_generator(&tmp_ext
.cookie_bakery
[0]) != 0)
1307 goto drop_and_release
;
1309 /* Secret recipe starts with IP addresses */
1310 *mess
++ ^= (__force u32
)daddr
;
1311 *mess
++ ^= (__force u32
)saddr
;
1313 /* plus variable length Initiator Cookie */
1316 *c
++ ^= *hash_location
++;
1318 want_cookie
= 0; /* not our kind of cookie */
1319 tmp_ext
.cookie_out_never
= 0; /* false */
1320 tmp_ext
.cookie_plus
= tmp_opt
.cookie_plus
;
1321 } else if (!tp
->rx_opt
.cookie_in_always
) {
1322 /* redundant indications, but ensure initialization. */
1323 tmp_ext
.cookie_out_never
= 1; /* true */
1324 tmp_ext
.cookie_plus
= 0;
1326 goto drop_and_release
;
1328 tmp_ext
.cookie_in_always
= tp
->rx_opt
.cookie_in_always
;
1330 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
1331 tcp_clear_options(&tmp_opt
);
1333 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1334 tcp_openreq_init(req
, &tmp_opt
, skb
);
1336 ireq
= inet_rsk(req
);
1337 ireq
->loc_addr
= daddr
;
1338 ireq
->rmt_addr
= saddr
;
1339 ireq
->no_srccheck
= inet_sk(sk
)->transparent
;
1340 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1342 if (security_inet_conn_request(sk
, skb
, req
))
1345 if (!want_cookie
|| tmp_opt
.tstamp_ok
)
1346 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1349 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1350 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
1352 struct inet_peer
*peer
= NULL
;
1355 /* VJ's idea. We save last timestamp seen
1356 * from the destination in peer table, when entering
1357 * state TIME-WAIT, and check against it before
1358 * accepting new connection request.
1360 * If "isn" is not zero, this request hit alive
1361 * timewait bucket, so that all the necessary checks
1362 * are made in the function processing timewait state.
1364 if (tmp_opt
.saw_tstamp
&&
1365 tcp_death_row
.sysctl_tw_recycle
&&
1366 (dst
= inet_csk_route_req(sk
, &fl4
, req
)) != NULL
&&
1367 fl4
.daddr
== saddr
&&
1368 (peer
= rt_get_peer((struct rtable
*)dst
, fl4
.daddr
)) != NULL
) {
1369 inet_peer_refcheck(peer
);
1370 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
< TCP_PAWS_MSL
&&
1371 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1373 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
1374 goto drop_and_release
;
1377 /* Kill the following clause, if you dislike this way. */
1378 else if (!sysctl_tcp_syncookies
&&
1379 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1380 (sysctl_max_syn_backlog
>> 2)) &&
1381 (!peer
|| !peer
->tcp_ts_stamp
) &&
1382 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1383 /* Without syncookies last quarter of
1384 * backlog is filled with destinations,
1385 * proven to be alive.
1386 * It means that we continue to communicate
1387 * to destinations, already remembered
1388 * to the moment of synflood.
1390 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open request from %pI4/%u\n",
1391 &saddr
, ntohs(tcp_hdr(skb
)->source
));
1392 goto drop_and_release
;
1395 isn
= tcp_v4_init_sequence(skb
);
1397 tcp_rsk(req
)->snt_isn
= isn
;
1398 tcp_rsk(req
)->snt_synack
= tcp_time_stamp
;
1400 if (tcp_v4_send_synack(sk
, dst
, req
,
1401 (struct request_values
*)&tmp_ext
) ||
1405 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1415 EXPORT_SYMBOL(tcp_v4_conn_request
);
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1422 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1423 struct request_sock
*req
,
1424 struct dst_entry
*dst
)
1426 struct inet_request_sock
*ireq
;
1427 struct inet_sock
*newinet
;
1428 struct tcp_sock
*newtp
;
1430 #ifdef CONFIG_TCP_MD5SIG
1431 struct tcp_md5sig_key
*key
;
1433 struct ip_options_rcu
*inet_opt
;
1435 if (sk_acceptq_is_full(sk
))
1438 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1442 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1444 newtp
= tcp_sk(newsk
);
1445 newinet
= inet_sk(newsk
);
1446 ireq
= inet_rsk(req
);
1447 newinet
->inet_daddr
= ireq
->rmt_addr
;
1448 newinet
->inet_rcv_saddr
= ireq
->loc_addr
;
1449 newinet
->inet_saddr
= ireq
->loc_addr
;
1450 inet_opt
= ireq
->opt
;
1451 rcu_assign_pointer(newinet
->inet_opt
, inet_opt
);
1453 newinet
->mc_index
= inet_iif(skb
);
1454 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1455 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1457 inet_csk(newsk
)->icsk_ext_hdr_len
= inet_opt
->opt
.optlen
;
1458 newinet
->inet_id
= newtp
->write_seq
^ jiffies
;
1460 if (!dst
&& (dst
= inet_csk_route_child_sock(sk
, newsk
, req
)) == NULL
)
1463 sk_setup_caps(newsk
, dst
);
1465 tcp_mtup_init(newsk
);
1466 tcp_sync_mss(newsk
, dst_mtu(dst
));
1467 newtp
->advmss
= dst_metric_advmss(dst
);
1468 if (tcp_sk(sk
)->rx_opt
.user_mss
&&
1469 tcp_sk(sk
)->rx_opt
.user_mss
< newtp
->advmss
)
1470 newtp
->advmss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1472 tcp_initialize_rcv_mss(newsk
);
1473 if (tcp_rsk(req
)->snt_synack
)
1474 tcp_valid_rtt_meas(newsk
,
1475 tcp_time_stamp
- tcp_rsk(req
)->snt_synack
);
1476 newtp
->total_retrans
= req
->retrans
;
1478 #ifdef CONFIG_TCP_MD5SIG
1479 /* Copy over the MD5 key from the original socket */
1480 key
= tcp_v4_md5_do_lookup(sk
, newinet
->inet_daddr
);
1483 * We're using one, so create a matching key
1484 * on the newsk structure. If we fail to get
1485 * memory, then we end up not copying the key
1488 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1490 tcp_v4_md5_do_add(newsk
, newinet
->inet_daddr
,
1491 newkey
, key
->keylen
);
1492 sk_nocaps_add(newsk
, NETIF_F_GSO_MASK
);
1496 if (__inet_inherit_port(sk
, newsk
) < 0)
1498 __inet_hash_nolisten(newsk
, NULL
);
1503 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
1507 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
1513 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1515 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1517 struct tcphdr
*th
= tcp_hdr(skb
);
1518 const struct iphdr
*iph
= ip_hdr(skb
);
1520 struct request_sock
**prev
;
1521 /* Find possible connection requests. */
1522 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1523 iph
->saddr
, iph
->daddr
);
1525 return tcp_check_req(sk
, skb
, req
, prev
);
1527 nsk
= inet_lookup_established(sock_net(sk
), &tcp_hashinfo
, iph
->saddr
,
1528 th
->source
, iph
->daddr
, th
->dest
, inet_iif(skb
));
1531 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1535 inet_twsk_put(inet_twsk(nsk
));
1539 #ifdef CONFIG_SYN_COOKIES
1541 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1546 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1548 const struct iphdr
*iph
= ip_hdr(skb
);
1550 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1551 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1552 iph
->daddr
, skb
->csum
)) {
1553 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1558 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1559 skb
->len
, IPPROTO_TCP
, 0);
1561 if (skb
->len
<= 76) {
1562 return __skb_checksum_complete(skb
);
1568 /* The socket must have it's spinlock held when we get
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1576 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1579 #ifdef CONFIG_TCP_MD5SIG
1581 * We really want to reject the packet as early as possible
1583 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1584 * o There is an MD5 option and we're not expecting one
1586 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1590 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1591 sock_rps_save_rxhash(sk
, skb
);
1592 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1599 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1602 if (sk
->sk_state
== TCP_LISTEN
) {
1603 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1608 sock_rps_save_rxhash(nsk
, skb
);
1609 if (tcp_child_process(sk
, nsk
, skb
)) {
1616 sock_rps_save_rxhash(sk
, skb
);
1618 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1625 tcp_v4_send_reset(rsk
, skb
);
1628 /* Be careful here. If this function gets more complicated and
1629 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630 * might be destroyed here. This current version compiles correctly,
1631 * but you have been warned.
1636 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
1639 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1645 int tcp_v4_rcv(struct sk_buff
*skb
)
1647 const struct iphdr
*iph
;
1648 const struct tcphdr
*th
;
1651 struct net
*net
= dev_net(skb
->dev
);
1653 if (skb
->pkt_type
!= PACKET_HOST
)
1656 /* Count it even if it's bad */
1657 TCP_INC_STATS_BH(net
, TCP_MIB_INSEGS
);
1659 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1664 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1666 if (!pskb_may_pull(skb
, th
->doff
* 4))
1669 /* An explanation is required here, I think.
1670 * Packet length and doff are validated by header prediction,
1671 * provided case of th->doff==0 is eliminated.
1672 * So, we defer the checks. */
1673 if (!skb_csum_unnecessary(skb
) && tcp_v4_checksum_init(skb
))
1678 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1679 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1680 skb
->len
- th
->doff
* 4);
1681 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1682 TCP_SKB_CB(skb
)->when
= 0;
1683 TCP_SKB_CB(skb
)->ip_dsfield
= ipv4_get_dsfield(iph
);
1684 TCP_SKB_CB(skb
)->sacked
= 0;
1686 sk
= __inet_lookup_skb(&tcp_hashinfo
, skb
, th
->source
, th
->dest
);
1691 if (sk
->sk_state
== TCP_TIME_WAIT
)
1694 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
1695 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
1696 goto discard_and_relse
;
1699 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1700 goto discard_and_relse
;
1703 if (sk_filter(sk
, skb
))
1704 goto discard_and_relse
;
1708 bh_lock_sock_nested(sk
);
1710 if (!sock_owned_by_user(sk
)) {
1711 #ifdef CONFIG_NET_DMA
1712 struct tcp_sock
*tp
= tcp_sk(sk
);
1713 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1714 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1715 if (tp
->ucopy
.dma_chan
)
1716 ret
= tcp_v4_do_rcv(sk
, skb
);
1720 if (!tcp_prequeue(sk
, skb
))
1721 ret
= tcp_v4_do_rcv(sk
, skb
);
1723 } else if (unlikely(sk_add_backlog(sk
, skb
))) {
1725 NET_INC_STATS_BH(net
, LINUX_MIB_TCPBACKLOGDROP
);
1726 goto discard_and_relse
;
1735 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1738 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1740 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1742 tcp_v4_send_reset(NULL
, skb
);
1746 /* Discard frame. */
1755 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1756 inet_twsk_put(inet_twsk(sk
));
1760 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1761 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1762 inet_twsk_put(inet_twsk(sk
));
1765 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1767 struct sock
*sk2
= inet_lookup_listener(dev_net(skb
->dev
),
1769 iph
->daddr
, th
->dest
,
1772 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1773 inet_twsk_put(inet_twsk(sk
));
1777 /* Fall through to ACK */
1780 tcp_v4_timewait_ack(sk
, skb
);
1784 case TCP_TW_SUCCESS
:;
1789 struct inet_peer
*tcp_v4_get_peer(struct sock
*sk
, bool *release_it
)
1791 struct rtable
*rt
= (struct rtable
*) __sk_dst_get(sk
);
1792 struct inet_sock
*inet
= inet_sk(sk
);
1793 struct inet_peer
*peer
;
1796 inet
->cork
.fl
.u
.ip4
.daddr
!= inet
->inet_daddr
) {
1797 peer
= inet_getpeer_v4(inet
->inet_daddr
, 1);
1801 rt_bind_peer(rt
, inet
->inet_daddr
, 1);
1803 *release_it
= false;
1808 EXPORT_SYMBOL(tcp_v4_get_peer
);
1810 void *tcp_v4_tw_get_peer(struct sock
*sk
)
1812 const struct inet_timewait_sock
*tw
= inet_twsk(sk
);
1814 return inet_getpeer_v4(tw
->tw_daddr
, 1);
1816 EXPORT_SYMBOL(tcp_v4_tw_get_peer
);
1818 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1819 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1820 .twsk_unique
= tcp_twsk_unique
,
1821 .twsk_destructor
= tcp_twsk_destructor
,
1822 .twsk_getpeer
= tcp_v4_tw_get_peer
,
1825 const struct inet_connection_sock_af_ops ipv4_specific
= {
1826 .queue_xmit
= ip_queue_xmit
,
1827 .send_check
= tcp_v4_send_check
,
1828 .rebuild_header
= inet_sk_rebuild_header
,
1829 .conn_request
= tcp_v4_conn_request
,
1830 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1831 .get_peer
= tcp_v4_get_peer
,
1832 .net_header_len
= sizeof(struct iphdr
),
1833 .setsockopt
= ip_setsockopt
,
1834 .getsockopt
= ip_getsockopt
,
1835 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1836 .sockaddr_len
= sizeof(struct sockaddr_in
),
1837 .bind_conflict
= inet_csk_bind_conflict
,
1838 #ifdef CONFIG_COMPAT
1839 .compat_setsockopt
= compat_ip_setsockopt
,
1840 .compat_getsockopt
= compat_ip_getsockopt
,
1843 EXPORT_SYMBOL(ipv4_specific
);
1845 #ifdef CONFIG_TCP_MD5SIG
1846 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1847 .md5_lookup
= tcp_v4_md5_lookup
,
1848 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1849 .md5_add
= tcp_v4_md5_add_func
,
1850 .md5_parse
= tcp_v4_parse_md5_keys
,
1854 /* NOTE: A lot of things set to zero explicitly by call to
1855 * sk_alloc() so need not be done here.
1857 static int tcp_v4_init_sock(struct sock
*sk
)
1859 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1860 struct tcp_sock
*tp
= tcp_sk(sk
);
1862 skb_queue_head_init(&tp
->out_of_order_queue
);
1863 tcp_init_xmit_timers(sk
);
1864 tcp_prequeue_init(tp
);
1866 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1867 tp
->mdev
= TCP_TIMEOUT_INIT
;
1869 /* So many TCP implementations out there (incorrectly) count the
1870 * initial SYN frame in their delayed-ACK and congestion control
1871 * algorithms that we must have the following bandaid to talk
1872 * efficiently to them. -DaveM
1874 tp
->snd_cwnd
= TCP_INIT_CWND
;
1876 /* See draft-stevens-tcpca-spec-01 for discussion of the
1877 * initialization of these values.
1879 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
1880 tp
->snd_cwnd_clamp
= ~0;
1881 tp
->mss_cache
= TCP_MSS_DEFAULT
;
1883 tp
->reordering
= sysctl_tcp_reordering
;
1884 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1886 sk
->sk_state
= TCP_CLOSE
;
1888 sk
->sk_write_space
= sk_stream_write_space
;
1889 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1891 icsk
->icsk_af_ops
= &ipv4_specific
;
1892 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1893 #ifdef CONFIG_TCP_MD5SIG
1894 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1897 /* TCP Cookie Transactions */
1898 if (sysctl_tcp_cookie_size
> 0) {
1899 /* Default, cookies without s_data_payload. */
1901 kzalloc(sizeof(*tp
->cookie_values
),
1903 if (tp
->cookie_values
!= NULL
)
1904 kref_init(&tp
->cookie_values
->kref
);
1906 /* Presumed zeroed, in order of appearance:
1907 * cookie_in_always, cookie_out_never,
1908 * s_data_constant, s_data_in, s_data_out
1910 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1911 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1914 percpu_counter_inc(&tcp_sockets_allocated
);
1920 void tcp_v4_destroy_sock(struct sock
*sk
)
1922 struct tcp_sock
*tp
= tcp_sk(sk
);
1924 tcp_clear_xmit_timers(sk
);
1926 tcp_cleanup_congestion_control(sk
);
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk
);
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp
->out_of_order_queue
);
1934 #ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp
->md5sig_info
) {
1937 tcp_v4_clear_md5_list(sk
);
1938 kfree(tp
->md5sig_info
);
1939 tp
->md5sig_info
= NULL
;
1943 #ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk
)->icsk_bind_hash
)
1956 * If sendmsg cached page exists, toss it.
1958 if (sk
->sk_sndmsg_page
) {
1959 __free_page(sk
->sk_sndmsg_page
);
1960 sk
->sk_sndmsg_page
= NULL
;
1963 /* TCP Cookie Transactions */
1964 if (tp
->cookie_values
!= NULL
) {
1965 kref_put(&tp
->cookie_values
->kref
,
1966 tcp_cookie_values_release
);
1967 tp
->cookie_values
= NULL
;
1970 percpu_counter_dec(&tcp_sockets_allocated
);
1972 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1974 #ifdef CONFIG_PROC_FS
1975 /* Proc filesystem TCP sock list dumping. */
1977 static inline struct inet_timewait_sock
*tw_head(struct hlist_nulls_head
*head
)
1979 return hlist_nulls_empty(head
) ? NULL
:
1980 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1983 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1985 return !is_a_nulls(tw
->tw_node
.next
) ?
1986 hlist_nulls_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1990 * Get next listener socket follow cur. If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1994 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1996 struct inet_connection_sock
*icsk
;
1997 struct hlist_nulls_node
*node
;
1998 struct sock
*sk
= cur
;
1999 struct inet_listen_hashbucket
*ilb
;
2000 struct tcp_iter_state
*st
= seq
->private;
2001 struct net
*net
= seq_file_net(seq
);
2004 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2005 spin_lock_bh(&ilb
->lock
);
2006 sk
= sk_nulls_head(&ilb
->head
);
2010 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2014 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
2015 struct request_sock
*req
= cur
;
2017 icsk
= inet_csk(st
->syn_wait_sk
);
2021 if (req
->rsk_ops
->family
== st
->family
) {
2027 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
2030 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
2032 sk
= sk_nulls_next(st
->syn_wait_sk
);
2033 st
->state
= TCP_SEQ_STATE_LISTENING
;
2034 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2036 icsk
= inet_csk(sk
);
2037 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2038 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
2040 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2041 sk
= sk_nulls_next(sk
);
2044 sk_nulls_for_each_from(sk
, node
) {
2045 if (!net_eq(sock_net(sk
), net
))
2047 if (sk
->sk_family
== st
->family
) {
2051 icsk
= inet_csk(sk
);
2052 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2053 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2055 st
->uid
= sock_i_uid(sk
);
2056 st
->syn_wait_sk
= sk
;
2057 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2061 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2063 spin_unlock_bh(&ilb
->lock
);
2065 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2066 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2067 spin_lock_bh(&ilb
->lock
);
2068 sk
= sk_nulls_head(&ilb
->head
);
2076 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2078 struct tcp_iter_state
*st
= seq
->private;
2083 rc
= listening_get_next(seq
, NULL
);
2085 while (rc
&& *pos
) {
2086 rc
= listening_get_next(seq
, rc
);
2092 static inline int empty_bucket(struct tcp_iter_state
*st
)
2094 return hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].chain
) &&
2095 hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2102 static void *established_get_first(struct seq_file
*seq
)
2104 struct tcp_iter_state
*st
= seq
->private;
2105 struct net
*net
= seq_file_net(seq
);
2109 for (; st
->bucket
<= tcp_hashinfo
.ehash_mask
; ++st
->bucket
) {
2111 struct hlist_nulls_node
*node
;
2112 struct inet_timewait_sock
*tw
;
2113 spinlock_t
*lock
= inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
);
2115 /* Lockless fast path for the common case of empty buckets */
2116 if (empty_bucket(st
))
2120 sk_nulls_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2121 if (sk
->sk_family
!= st
->family
||
2122 !net_eq(sock_net(sk
), net
)) {
2128 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2129 inet_twsk_for_each(tw
, node
,
2130 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2131 if (tw
->tw_family
!= st
->family
||
2132 !net_eq(twsk_net(tw
), net
)) {
2138 spin_unlock_bh(lock
);
2139 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2145 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2147 struct sock
*sk
= cur
;
2148 struct inet_timewait_sock
*tw
;
2149 struct hlist_nulls_node
*node
;
2150 struct tcp_iter_state
*st
= seq
->private;
2151 struct net
*net
= seq_file_net(seq
);
2156 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2160 while (tw
&& (tw
->tw_family
!= st
->family
|| !net_eq(twsk_net(tw
), net
))) {
2167 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2168 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2170 /* Look for next non empty bucket */
2172 while (++st
->bucket
<= tcp_hashinfo
.ehash_mask
&&
2175 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2178 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2179 sk
= sk_nulls_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2181 sk
= sk_nulls_next(sk
);
2183 sk_nulls_for_each_from(sk
, node
) {
2184 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
))
2188 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2189 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2197 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2199 struct tcp_iter_state
*st
= seq
->private;
2203 rc
= established_get_first(seq
);
2206 rc
= established_get_next(seq
, rc
);
2212 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2215 struct tcp_iter_state
*st
= seq
->private;
2217 st
->state
= TCP_SEQ_STATE_LISTENING
;
2218 rc
= listening_get_idx(seq
, &pos
);
2221 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2222 rc
= established_get_idx(seq
, pos
);
2228 static void *tcp_seek_last_pos(struct seq_file
*seq
)
2230 struct tcp_iter_state
*st
= seq
->private;
2231 int offset
= st
->offset
;
2232 int orig_num
= st
->num
;
2235 switch (st
->state
) {
2236 case TCP_SEQ_STATE_OPENREQ
:
2237 case TCP_SEQ_STATE_LISTENING
:
2238 if (st
->bucket
>= INET_LHTABLE_SIZE
)
2240 st
->state
= TCP_SEQ_STATE_LISTENING
;
2241 rc
= listening_get_next(seq
, NULL
);
2242 while (offset
-- && rc
)
2243 rc
= listening_get_next(seq
, rc
);
2248 case TCP_SEQ_STATE_ESTABLISHED
:
2249 case TCP_SEQ_STATE_TIME_WAIT
:
2250 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2251 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2253 rc
= established_get_first(seq
);
2254 while (offset
-- && rc
)
2255 rc
= established_get_next(seq
, rc
);
2263 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2265 struct tcp_iter_state
*st
= seq
->private;
2268 if (*pos
&& *pos
== st
->last_pos
) {
2269 rc
= tcp_seek_last_pos(seq
);
2274 st
->state
= TCP_SEQ_STATE_LISTENING
;
2278 rc
= *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2281 st
->last_pos
= *pos
;
2285 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2287 struct tcp_iter_state
*st
= seq
->private;
2290 if (v
== SEQ_START_TOKEN
) {
2291 rc
= tcp_get_idx(seq
, 0);
2295 switch (st
->state
) {
2296 case TCP_SEQ_STATE_OPENREQ
:
2297 case TCP_SEQ_STATE_LISTENING
:
2298 rc
= listening_get_next(seq
, v
);
2300 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2303 rc
= established_get_first(seq
);
2306 case TCP_SEQ_STATE_ESTABLISHED
:
2307 case TCP_SEQ_STATE_TIME_WAIT
:
2308 rc
= established_get_next(seq
, v
);
2313 st
->last_pos
= *pos
;
2317 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2319 struct tcp_iter_state
*st
= seq
->private;
2321 switch (st
->state
) {
2322 case TCP_SEQ_STATE_OPENREQ
:
2324 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2325 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2327 case TCP_SEQ_STATE_LISTENING
:
2328 if (v
!= SEQ_START_TOKEN
)
2329 spin_unlock_bh(&tcp_hashinfo
.listening_hash
[st
->bucket
].lock
);
2331 case TCP_SEQ_STATE_TIME_WAIT
:
2332 case TCP_SEQ_STATE_ESTABLISHED
:
2334 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2339 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2341 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2342 struct tcp_iter_state
*s
;
2345 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2346 sizeof(struct tcp_iter_state
));
2350 s
= ((struct seq_file
*)file
->private_data
)->private;
2351 s
->family
= afinfo
->family
;
2356 int tcp_proc_register(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2359 struct proc_dir_entry
*p
;
2361 afinfo
->seq_fops
.open
= tcp_seq_open
;
2362 afinfo
->seq_fops
.read
= seq_read
;
2363 afinfo
->seq_fops
.llseek
= seq_lseek
;
2364 afinfo
->seq_fops
.release
= seq_release_net
;
2366 afinfo
->seq_ops
.start
= tcp_seq_start
;
2367 afinfo
->seq_ops
.next
= tcp_seq_next
;
2368 afinfo
->seq_ops
.stop
= tcp_seq_stop
;
2370 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2371 &afinfo
->seq_fops
, afinfo
);
2376 EXPORT_SYMBOL(tcp_proc_register
);
2378 void tcp_proc_unregister(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2380 proc_net_remove(net
, afinfo
->name
);
2382 EXPORT_SYMBOL(tcp_proc_unregister
);
2384 static void get_openreq4(const struct sock
*sk
, const struct request_sock
*req
,
2385 struct seq_file
*f
, int i
, int uid
, int *len
)
2387 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2388 int ttd
= req
->expires
- jiffies
;
2390 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2391 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2394 ntohs(inet_sk(sk
)->inet_sport
),
2396 ntohs(ireq
->rmt_port
),
2398 0, 0, /* could print option size, but that is af dependent. */
2399 1, /* timers active (only the expire timer) */
2400 jiffies_to_clock_t(ttd
),
2403 0, /* non standard timer */
2404 0, /* open_requests have no inode */
2405 atomic_read(&sk
->sk_refcnt
),
2410 static void get_tcp4_sock(struct sock
*sk
, struct seq_file
*f
, int i
, int *len
)
2413 unsigned long timer_expires
;
2414 const struct tcp_sock
*tp
= tcp_sk(sk
);
2415 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2416 const struct inet_sock
*inet
= inet_sk(sk
);
2417 __be32 dest
= inet
->inet_daddr
;
2418 __be32 src
= inet
->inet_rcv_saddr
;
2419 __u16 destp
= ntohs(inet
->inet_dport
);
2420 __u16 srcp
= ntohs(inet
->inet_sport
);
2423 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2425 timer_expires
= icsk
->icsk_timeout
;
2426 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2428 timer_expires
= icsk
->icsk_timeout
;
2429 } else if (timer_pending(&sk
->sk_timer
)) {
2431 timer_expires
= sk
->sk_timer
.expires
;
2434 timer_expires
= jiffies
;
2437 if (sk
->sk_state
== TCP_LISTEN
)
2438 rx_queue
= sk
->sk_ack_backlog
;
2441 * because we dont lock socket, we might find a transient negative value
2443 rx_queue
= max_t(int, tp
->rcv_nxt
- tp
->copied_seq
, 0);
2445 seq_printf(f
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2448 tp
->write_seq
- tp
->snd_una
,
2451 jiffies_to_clock_t(timer_expires
- jiffies
),
2452 icsk
->icsk_retransmits
,
2454 icsk
->icsk_probes_out
,
2456 atomic_read(&sk
->sk_refcnt
), sk
,
2457 jiffies_to_clock_t(icsk
->icsk_rto
),
2458 jiffies_to_clock_t(icsk
->icsk_ack
.ato
),
2459 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2461 tcp_in_initial_slowstart(tp
) ? -1 : tp
->snd_ssthresh
,
2465 static void get_timewait4_sock(const struct inet_timewait_sock
*tw
,
2466 struct seq_file
*f
, int i
, int *len
)
2470 int ttd
= tw
->tw_ttd
- jiffies
;
2475 dest
= tw
->tw_daddr
;
2476 src
= tw
->tw_rcv_saddr
;
2477 destp
= ntohs(tw
->tw_dport
);
2478 srcp
= ntohs(tw
->tw_sport
);
2480 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2481 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2483 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2484 atomic_read(&tw
->tw_refcnt
), tw
, len
);
2489 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2491 struct tcp_iter_state
*st
;
2494 if (v
== SEQ_START_TOKEN
) {
2495 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2496 " sl local_address rem_address st tx_queue "
2497 "rx_queue tr tm->when retrnsmt uid timeout "
2503 switch (st
->state
) {
2504 case TCP_SEQ_STATE_LISTENING
:
2505 case TCP_SEQ_STATE_ESTABLISHED
:
2506 get_tcp4_sock(v
, seq
, st
->num
, &len
);
2508 case TCP_SEQ_STATE_OPENREQ
:
2509 get_openreq4(st
->syn_wait_sk
, v
, seq
, st
->num
, st
->uid
, &len
);
2511 case TCP_SEQ_STATE_TIME_WAIT
:
2512 get_timewait4_sock(v
, seq
, st
->num
, &len
);
2515 seq_printf(seq
, "%*s\n", TMPSZ
- 1 - len
, "");
2520 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2524 .owner
= THIS_MODULE
,
2527 .show
= tcp4_seq_show
,
2531 static int __net_init
tcp4_proc_init_net(struct net
*net
)
2533 return tcp_proc_register(net
, &tcp4_seq_afinfo
);
2536 static void __net_exit
tcp4_proc_exit_net(struct net
*net
)
2538 tcp_proc_unregister(net
, &tcp4_seq_afinfo
);
2541 static struct pernet_operations tcp4_net_ops
= {
2542 .init
= tcp4_proc_init_net
,
2543 .exit
= tcp4_proc_exit_net
,
2546 int __init
tcp4_proc_init(void)
2548 return register_pernet_subsys(&tcp4_net_ops
);
2551 void tcp4_proc_exit(void)
2553 unregister_pernet_subsys(&tcp4_net_ops
);
2555 #endif /* CONFIG_PROC_FS */
2557 struct sk_buff
**tcp4_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2559 const struct iphdr
*iph
= skb_gro_network_header(skb
);
2561 switch (skb
->ip_summed
) {
2562 case CHECKSUM_COMPLETE
:
2563 if (!tcp_v4_check(skb_gro_len(skb
), iph
->saddr
, iph
->daddr
,
2565 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2571 NAPI_GRO_CB(skb
)->flush
= 1;
2575 return tcp_gro_receive(head
, skb
);
2578 int tcp4_gro_complete(struct sk_buff
*skb
)
2580 const struct iphdr
*iph
= ip_hdr(skb
);
2581 struct tcphdr
*th
= tcp_hdr(skb
);
2583 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
2584 iph
->saddr
, iph
->daddr
, 0);
2585 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
2587 return tcp_gro_complete(skb
);
2590 struct proto tcp_prot
= {
2592 .owner
= THIS_MODULE
,
2594 .connect
= tcp_v4_connect
,
2595 .disconnect
= tcp_disconnect
,
2596 .accept
= inet_csk_accept
,
2598 .init
= tcp_v4_init_sock
,
2599 .destroy
= tcp_v4_destroy_sock
,
2600 .shutdown
= tcp_shutdown
,
2601 .setsockopt
= tcp_setsockopt
,
2602 .getsockopt
= tcp_getsockopt
,
2603 .recvmsg
= tcp_recvmsg
,
2604 .sendmsg
= tcp_sendmsg
,
2605 .sendpage
= tcp_sendpage
,
2606 .backlog_rcv
= tcp_v4_do_rcv
,
2608 .unhash
= inet_unhash
,
2609 .get_port
= inet_csk_get_port
,
2610 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2611 .sockets_allocated
= &tcp_sockets_allocated
,
2612 .orphan_count
= &tcp_orphan_count
,
2613 .memory_allocated
= &tcp_memory_allocated
,
2614 .memory_pressure
= &tcp_memory_pressure
,
2615 .sysctl_mem
= sysctl_tcp_mem
,
2616 .sysctl_wmem
= sysctl_tcp_wmem
,
2617 .sysctl_rmem
= sysctl_tcp_rmem
,
2618 .max_header
= MAX_TCP_HEADER
,
2619 .obj_size
= sizeof(struct tcp_sock
),
2620 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2621 .twsk_prot
= &tcp_timewait_sock_ops
,
2622 .rsk_prot
= &tcp_request_sock_ops
,
2623 .h
.hashinfo
= &tcp_hashinfo
,
2624 .no_autobind
= true,
2625 #ifdef CONFIG_COMPAT
2626 .compat_setsockopt
= compat_tcp_setsockopt
,
2627 .compat_getsockopt
= compat_tcp_getsockopt
,
2630 EXPORT_SYMBOL(tcp_prot
);
2633 static int __net_init
tcp_sk_init(struct net
*net
)
2635 return inet_ctl_sock_create(&net
->ipv4
.tcp_sock
,
2636 PF_INET
, SOCK_RAW
, IPPROTO_TCP
, net
);
2639 static void __net_exit
tcp_sk_exit(struct net
*net
)
2641 inet_ctl_sock_destroy(net
->ipv4
.tcp_sock
);
2644 static void __net_exit
tcp_sk_exit_batch(struct list_head
*net_exit_list
)
2646 inet_twsk_purge(&tcp_hashinfo
, &tcp_death_row
, AF_INET
);
2649 static struct pernet_operations __net_initdata tcp_sk_ops
= {
2650 .init
= tcp_sk_init
,
2651 .exit
= tcp_sk_exit
,
2652 .exit_batch
= tcp_sk_exit_batch
,
2655 void __init
tcp_v4_init(void)
2657 inet_hashinfo_init(&tcp_hashinfo
);
2658 if (register_pernet_subsys(&tcp_sk_ops
))
2659 panic("Failed to create the TCP control socket.\n");