2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate
;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct
*work
);
60 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
66 struct cpufreq_governor cpufreq_gov_ondemand
= {
68 .governor
= cpufreq_governor_dbs
,
69 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
74 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
76 struct cpu_dbs_info_s
{
77 cputime64_t prev_cpu_idle
;
78 cputime64_t prev_cpu_iowait
;
79 cputime64_t prev_cpu_wall
;
80 cputime64_t prev_cpu_nice
;
81 struct cpufreq_policy
*cur_policy
;
82 struct delayed_work work
;
83 struct cpufreq_frequency_table
*freq_table
;
85 unsigned int freq_lo_jiffies
;
86 unsigned int freq_hi_jiffies
;
87 unsigned int rate_mult
;
89 unsigned int sample_type
:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex
;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, od_cpu_dbs_info
);
99 static unsigned int dbs_enable
; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex
);
106 static struct dbs_tuners
{
107 unsigned int sampling_rate
;
108 unsigned int up_threshold
;
109 unsigned int down_differential
;
110 unsigned int ignore_nice
;
111 unsigned int sampling_down_factor
;
112 unsigned int powersave_bias
;
113 unsigned int io_is_busy
;
115 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
116 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
117 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
122 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
125 cputime64_t idle_time
;
126 cputime64_t cur_wall_time
;
127 cputime64_t busy_time
;
129 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
130 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
131 kstat_cpu(cpu
).cpustat
.system
);
133 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
134 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
135 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
136 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
138 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
140 *wall
= (cputime64_t
)jiffies_to_usecs(cur_wall_time
);
142 return (cputime64_t
)jiffies_to_usecs(idle_time
);
145 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
147 u64 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
149 if (idle_time
== -1ULL)
150 return get_cpu_idle_time_jiffy(cpu
, wall
);
152 idle_time
+= get_cpu_iowait_time_us(cpu
, wall
);
157 static inline cputime64_t
get_cpu_iowait_time(unsigned int cpu
, cputime64_t
*wall
)
159 u64 iowait_time
= get_cpu_iowait_time_us(cpu
, wall
);
161 if (iowait_time
== -1ULL)
168 * Find right freq to be set now with powersave_bias on.
169 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
170 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
172 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
173 unsigned int freq_next
,
174 unsigned int relation
)
176 unsigned int freq_req
, freq_reduc
, freq_avg
;
177 unsigned int freq_hi
, freq_lo
;
178 unsigned int index
= 0;
179 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
180 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
,
183 if (!dbs_info
->freq_table
) {
184 dbs_info
->freq_lo
= 0;
185 dbs_info
->freq_lo_jiffies
= 0;
189 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
191 freq_req
= dbs_info
->freq_table
[index
].frequency
;
192 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
193 freq_avg
= freq_req
- freq_reduc
;
195 /* Find freq bounds for freq_avg in freq_table */
197 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
198 CPUFREQ_RELATION_H
, &index
);
199 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
201 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
202 CPUFREQ_RELATION_L
, &index
);
203 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
205 /* Find out how long we have to be in hi and lo freqs */
206 if (freq_hi
== freq_lo
) {
207 dbs_info
->freq_lo
= 0;
208 dbs_info
->freq_lo_jiffies
= 0;
211 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
212 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
213 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
214 jiffies_hi
/= (freq_hi
- freq_lo
);
215 jiffies_lo
= jiffies_total
- jiffies_hi
;
216 dbs_info
->freq_lo
= freq_lo
;
217 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
218 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
222 static void ondemand_powersave_bias_init_cpu(int cpu
)
224 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
225 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
226 dbs_info
->freq_lo
= 0;
229 static void ondemand_powersave_bias_init(void)
232 for_each_online_cpu(i
) {
233 ondemand_powersave_bias_init_cpu(i
);
237 /************************** sysfs interface ************************/
239 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
240 struct attribute
*attr
, char *buf
)
242 return sprintf(buf
, "%u\n", min_sampling_rate
);
245 define_one_global_ro(sampling_rate_min
);
247 /* cpufreq_ondemand Governor Tunables */
248 #define show_one(file_name, object) \
249 static ssize_t show_##file_name \
250 (struct kobject *kobj, struct attribute *attr, char *buf) \
252 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
254 show_one(sampling_rate
, sampling_rate
);
255 show_one(io_is_busy
, io_is_busy
);
256 show_one(up_threshold
, up_threshold
);
257 show_one(sampling_down_factor
, sampling_down_factor
);
258 show_one(ignore_nice_load
, ignore_nice
);
259 show_one(powersave_bias
, powersave_bias
);
261 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
262 const char *buf
, size_t count
)
266 ret
= sscanf(buf
, "%u", &input
);
269 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
273 static ssize_t
store_io_is_busy(struct kobject
*a
, struct attribute
*b
,
274 const char *buf
, size_t count
)
279 ret
= sscanf(buf
, "%u", &input
);
282 dbs_tuners_ins
.io_is_busy
= !!input
;
286 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
287 const char *buf
, size_t count
)
291 ret
= sscanf(buf
, "%u", &input
);
293 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
294 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
297 dbs_tuners_ins
.up_threshold
= input
;
301 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
302 struct attribute
*b
, const char *buf
, size_t count
)
304 unsigned int input
, j
;
306 ret
= sscanf(buf
, "%u", &input
);
308 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
310 dbs_tuners_ins
.sampling_down_factor
= input
;
312 /* Reset down sampling multiplier in case it was active */
313 for_each_online_cpu(j
) {
314 struct cpu_dbs_info_s
*dbs_info
;
315 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
316 dbs_info
->rate_mult
= 1;
321 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
322 const char *buf
, size_t count
)
329 ret
= sscanf(buf
, "%u", &input
);
336 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
339 dbs_tuners_ins
.ignore_nice
= input
;
341 /* we need to re-evaluate prev_cpu_idle */
342 for_each_online_cpu(j
) {
343 struct cpu_dbs_info_s
*dbs_info
;
344 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
345 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
346 &dbs_info
->prev_cpu_wall
);
347 if (dbs_tuners_ins
.ignore_nice
)
348 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
354 static ssize_t
store_powersave_bias(struct kobject
*a
, struct attribute
*b
,
355 const char *buf
, size_t count
)
359 ret
= sscanf(buf
, "%u", &input
);
367 dbs_tuners_ins
.powersave_bias
= input
;
368 ondemand_powersave_bias_init();
372 define_one_global_rw(sampling_rate
);
373 define_one_global_rw(io_is_busy
);
374 define_one_global_rw(up_threshold
);
375 define_one_global_rw(sampling_down_factor
);
376 define_one_global_rw(ignore_nice_load
);
377 define_one_global_rw(powersave_bias
);
379 static struct attribute
*dbs_attributes
[] = {
380 &sampling_rate_min
.attr
,
383 &sampling_down_factor
.attr
,
384 &ignore_nice_load
.attr
,
385 &powersave_bias
.attr
,
390 static struct attribute_group dbs_attr_group
= {
391 .attrs
= dbs_attributes
,
395 /************************** sysfs end ************************/
397 static void dbs_freq_increase(struct cpufreq_policy
*p
, unsigned int freq
)
399 if (dbs_tuners_ins
.powersave_bias
)
400 freq
= powersave_bias_target(p
, freq
, CPUFREQ_RELATION_H
);
401 else if (p
->cur
== p
->max
)
404 __cpufreq_driver_target(p
, freq
, dbs_tuners_ins
.powersave_bias
?
405 CPUFREQ_RELATION_L
: CPUFREQ_RELATION_H
);
408 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
410 unsigned int max_load_freq
;
412 struct cpufreq_policy
*policy
;
415 this_dbs_info
->freq_lo
= 0;
416 policy
= this_dbs_info
->cur_policy
;
419 * Every sampling_rate, we check, if current idle time is less
420 * than 20% (default), then we try to increase frequency
421 * Every sampling_rate, we look for a the lowest
422 * frequency which can sustain the load while keeping idle time over
423 * 30%. If such a frequency exist, we try to decrease to this frequency.
425 * Any frequency increase takes it to the maximum frequency.
426 * Frequency reduction happens at minimum steps of
427 * 5% (default) of current frequency
430 /* Get Absolute Load - in terms of freq */
433 for_each_cpu(j
, policy
->cpus
) {
434 struct cpu_dbs_info_s
*j_dbs_info
;
435 cputime64_t cur_wall_time
, cur_idle_time
, cur_iowait_time
;
436 unsigned int idle_time
, wall_time
, iowait_time
;
437 unsigned int load
, load_freq
;
440 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
442 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
443 cur_iowait_time
= get_cpu_iowait_time(j
, &cur_wall_time
);
445 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
446 j_dbs_info
->prev_cpu_wall
);
447 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
449 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
450 j_dbs_info
->prev_cpu_idle
);
451 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
453 iowait_time
= (unsigned int) cputime64_sub(cur_iowait_time
,
454 j_dbs_info
->prev_cpu_iowait
);
455 j_dbs_info
->prev_cpu_iowait
= cur_iowait_time
;
457 if (dbs_tuners_ins
.ignore_nice
) {
458 cputime64_t cur_nice
;
459 unsigned long cur_nice_jiffies
;
461 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
462 j_dbs_info
->prev_cpu_nice
);
464 * Assumption: nice time between sampling periods will
465 * be less than 2^32 jiffies for 32 bit sys
467 cur_nice_jiffies
= (unsigned long)
468 cputime64_to_jiffies64(cur_nice
);
470 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
471 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
475 * For the purpose of ondemand, waiting for disk IO is an
476 * indication that you're performance critical, and not that
477 * the system is actually idle. So subtract the iowait time
478 * from the cpu idle time.
481 if (dbs_tuners_ins
.io_is_busy
&& idle_time
>= iowait_time
)
482 idle_time
-= iowait_time
;
484 if (unlikely(!wall_time
|| wall_time
< idle_time
))
487 load
= 100 * (wall_time
- idle_time
) / wall_time
;
489 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
491 freq_avg
= policy
->cur
;
493 load_freq
= load
* freq_avg
;
494 if (load_freq
> max_load_freq
)
495 max_load_freq
= load_freq
;
498 /* Check for frequency increase */
499 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
500 /* If switching to max speed, apply sampling_down_factor */
501 if (policy
->cur
< policy
->max
)
502 this_dbs_info
->rate_mult
=
503 dbs_tuners_ins
.sampling_down_factor
;
504 dbs_freq_increase(policy
, policy
->max
);
508 /* Check for frequency decrease */
509 /* if we cannot reduce the frequency anymore, break out early */
510 if (policy
->cur
== policy
->min
)
514 * The optimal frequency is the frequency that is the lowest that
515 * can support the current CPU usage without triggering the up
516 * policy. To be safe, we focus 10 points under the threshold.
519 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
521 unsigned int freq_next
;
522 freq_next
= max_load_freq
/
523 (dbs_tuners_ins
.up_threshold
-
524 dbs_tuners_ins
.down_differential
);
526 /* No longer fully busy, reset rate_mult */
527 this_dbs_info
->rate_mult
= 1;
529 if (freq_next
< policy
->min
)
530 freq_next
= policy
->min
;
532 if (!dbs_tuners_ins
.powersave_bias
) {
533 __cpufreq_driver_target(policy
, freq_next
,
536 int freq
= powersave_bias_target(policy
, freq_next
,
538 __cpufreq_driver_target(policy
, freq
,
544 static void do_dbs_timer(struct work_struct
*work
)
546 struct cpu_dbs_info_s
*dbs_info
=
547 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
548 unsigned int cpu
= dbs_info
->cpu
;
549 int sample_type
= dbs_info
->sample_type
;
553 mutex_lock(&dbs_info
->timer_mutex
);
555 /* Common NORMAL_SAMPLE setup */
556 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
557 if (!dbs_tuners_ins
.powersave_bias
||
558 sample_type
== DBS_NORMAL_SAMPLE
) {
559 dbs_check_cpu(dbs_info
);
560 if (dbs_info
->freq_lo
) {
561 /* Setup timer for SUB_SAMPLE */
562 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
563 delay
= dbs_info
->freq_hi_jiffies
;
565 /* We want all CPUs to do sampling nearly on
568 delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
569 * dbs_info
->rate_mult
);
571 if (num_online_cpus() > 1)
572 delay
-= jiffies
% delay
;
575 __cpufreq_driver_target(dbs_info
->cur_policy
,
576 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
577 delay
= dbs_info
->freq_lo_jiffies
;
579 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
580 mutex_unlock(&dbs_info
->timer_mutex
);
583 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
585 /* We want all CPUs to do sampling nearly on same jiffy */
586 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
588 if (num_online_cpus() > 1)
589 delay
-= jiffies
% delay
;
591 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
592 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
593 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
596 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
598 cancel_delayed_work_sync(&dbs_info
->work
);
602 * Not all CPUs want IO time to be accounted as busy; this dependson how
603 * efficient idling at a higher frequency/voltage is.
604 * Pavel Machek says this is not so for various generations of AMD and old
606 * Mike Chan (androidlcom) calis this is also not true for ARM.
607 * Because of this, whitelist specific known (series) of CPUs by default, and
608 * leave all others up to the user.
610 static int should_io_be_busy(void)
612 #if defined(CONFIG_X86)
614 * For Intel, Core 2 (model 15) andl later have an efficient idle.
616 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
617 boot_cpu_data
.x86
== 6 &&
618 boot_cpu_data
.x86_model
>= 15)
624 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
627 unsigned int cpu
= policy
->cpu
;
628 struct cpu_dbs_info_s
*this_dbs_info
;
632 this_dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
635 case CPUFREQ_GOV_START
:
636 if ((!cpu_online(cpu
)) || (!policy
->cur
))
639 mutex_lock(&dbs_mutex
);
642 for_each_cpu(j
, policy
->cpus
) {
643 struct cpu_dbs_info_s
*j_dbs_info
;
644 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
645 j_dbs_info
->cur_policy
= policy
;
647 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
648 &j_dbs_info
->prev_cpu_wall
);
649 if (dbs_tuners_ins
.ignore_nice
) {
650 j_dbs_info
->prev_cpu_nice
=
651 kstat_cpu(j
).cpustat
.nice
;
654 this_dbs_info
->cpu
= cpu
;
655 this_dbs_info
->rate_mult
= 1;
656 ondemand_powersave_bias_init_cpu(cpu
);
658 * Start the timerschedule work, when this governor
659 * is used for first time
661 if (dbs_enable
== 1) {
662 unsigned int latency
;
664 rc
= sysfs_create_group(cpufreq_global_kobject
,
667 mutex_unlock(&dbs_mutex
);
671 /* policy latency is in nS. Convert it to uS first */
672 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
675 /* Bring kernel and HW constraints together */
676 min_sampling_rate
= max(min_sampling_rate
,
677 MIN_LATENCY_MULTIPLIER
* latency
);
678 dbs_tuners_ins
.sampling_rate
=
679 max(min_sampling_rate
,
680 latency
* LATENCY_MULTIPLIER
);
681 dbs_tuners_ins
.io_is_busy
= should_io_be_busy();
683 mutex_unlock(&dbs_mutex
);
685 mutex_init(&this_dbs_info
->timer_mutex
);
686 dbs_timer_init(this_dbs_info
);
689 case CPUFREQ_GOV_STOP
:
690 dbs_timer_exit(this_dbs_info
);
692 mutex_lock(&dbs_mutex
);
693 mutex_destroy(&this_dbs_info
->timer_mutex
);
695 mutex_unlock(&dbs_mutex
);
697 sysfs_remove_group(cpufreq_global_kobject
,
702 case CPUFREQ_GOV_LIMITS
:
703 mutex_lock(&this_dbs_info
->timer_mutex
);
704 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
705 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
706 policy
->max
, CPUFREQ_RELATION_H
);
707 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
708 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
709 policy
->min
, CPUFREQ_RELATION_L
);
710 mutex_unlock(&this_dbs_info
->timer_mutex
);
716 static int __init
cpufreq_gov_dbs_init(void)
722 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
724 if (idle_time
!= -1ULL) {
725 /* Idle micro accounting is supported. Use finer thresholds */
726 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
727 dbs_tuners_ins
.down_differential
=
728 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
730 * In nohz/micro accounting case we set the minimum frequency
731 * not depending on HZ, but fixed (very low). The deferred
732 * timer might skip some samples if idle/sleeping as needed.
734 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
736 /* For correct statistics, we need 10 ticks for each measure */
738 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
741 return cpufreq_register_governor(&cpufreq_gov_ondemand
);
744 static void __exit
cpufreq_gov_dbs_exit(void)
746 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
750 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
751 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
752 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
753 "Low Latency Frequency Transition capable processors");
754 MODULE_LICENSE("GPL");
756 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
757 fs_initcall(cpufreq_gov_dbs_init
);
759 module_init(cpufreq_gov_dbs_init
);
761 module_exit(cpufreq_gov_dbs_exit
);