Btrfs: lower the bar for chunk allocation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blobfa8af4ebb1d6b74d1ff73f64e665e22c87b839ee
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex);
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int sampling_down_factor;
112 unsigned int powersave_bias;
113 unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 .ignore_nice = 0,
119 .powersave_bias = 0,
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 cputime64_t *wall)
125 cputime64_t idle_time;
126 cputime64_t cur_wall_time;
127 cputime64_t busy_time;
129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 kstat_cpu(cpu).cpustat.system);
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138 idle_time = cputime64_sub(cur_wall_time, busy_time);
139 if (wall)
140 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
142 return (cputime64_t)jiffies_to_usecs(idle_time);
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
149 if (idle_time == -1ULL)
150 return get_cpu_idle_time_jiffy(cpu, wall);
151 else
152 idle_time += get_cpu_iowait_time_us(cpu, wall);
154 return idle_time;
157 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
159 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
161 if (iowait_time == -1ULL)
162 return 0;
164 return iowait_time;
168 * Find right freq to be set now with powersave_bias on.
169 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
170 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
172 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
173 unsigned int freq_next,
174 unsigned int relation)
176 unsigned int freq_req, freq_reduc, freq_avg;
177 unsigned int freq_hi, freq_lo;
178 unsigned int index = 0;
179 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
180 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
181 policy->cpu);
183 if (!dbs_info->freq_table) {
184 dbs_info->freq_lo = 0;
185 dbs_info->freq_lo_jiffies = 0;
186 return freq_next;
189 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
190 relation, &index);
191 freq_req = dbs_info->freq_table[index].frequency;
192 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
193 freq_avg = freq_req - freq_reduc;
195 /* Find freq bounds for freq_avg in freq_table */
196 index = 0;
197 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198 CPUFREQ_RELATION_H, &index);
199 freq_lo = dbs_info->freq_table[index].frequency;
200 index = 0;
201 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
202 CPUFREQ_RELATION_L, &index);
203 freq_hi = dbs_info->freq_table[index].frequency;
205 /* Find out how long we have to be in hi and lo freqs */
206 if (freq_hi == freq_lo) {
207 dbs_info->freq_lo = 0;
208 dbs_info->freq_lo_jiffies = 0;
209 return freq_lo;
211 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
212 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
213 jiffies_hi += ((freq_hi - freq_lo) / 2);
214 jiffies_hi /= (freq_hi - freq_lo);
215 jiffies_lo = jiffies_total - jiffies_hi;
216 dbs_info->freq_lo = freq_lo;
217 dbs_info->freq_lo_jiffies = jiffies_lo;
218 dbs_info->freq_hi_jiffies = jiffies_hi;
219 return freq_hi;
222 static void ondemand_powersave_bias_init_cpu(int cpu)
224 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
225 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
226 dbs_info->freq_lo = 0;
229 static void ondemand_powersave_bias_init(void)
231 int i;
232 for_each_online_cpu(i) {
233 ondemand_powersave_bias_init_cpu(i);
237 /************************** sysfs interface ************************/
239 static ssize_t show_sampling_rate_min(struct kobject *kobj,
240 struct attribute *attr, char *buf)
242 return sprintf(buf, "%u\n", min_sampling_rate);
245 define_one_global_ro(sampling_rate_min);
247 /* cpufreq_ondemand Governor Tunables */
248 #define show_one(file_name, object) \
249 static ssize_t show_##file_name \
250 (struct kobject *kobj, struct attribute *attr, char *buf) \
252 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
254 show_one(sampling_rate, sampling_rate);
255 show_one(io_is_busy, io_is_busy);
256 show_one(up_threshold, up_threshold);
257 show_one(sampling_down_factor, sampling_down_factor);
258 show_one(ignore_nice_load, ignore_nice);
259 show_one(powersave_bias, powersave_bias);
261 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
262 const char *buf, size_t count)
264 unsigned int input;
265 int ret;
266 ret = sscanf(buf, "%u", &input);
267 if (ret != 1)
268 return -EINVAL;
269 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
270 return count;
273 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
274 const char *buf, size_t count)
276 unsigned int input;
277 int ret;
279 ret = sscanf(buf, "%u", &input);
280 if (ret != 1)
281 return -EINVAL;
282 dbs_tuners_ins.io_is_busy = !!input;
283 return count;
286 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
287 const char *buf, size_t count)
289 unsigned int input;
290 int ret;
291 ret = sscanf(buf, "%u", &input);
293 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
294 input < MIN_FREQUENCY_UP_THRESHOLD) {
295 return -EINVAL;
297 dbs_tuners_ins.up_threshold = input;
298 return count;
301 static ssize_t store_sampling_down_factor(struct kobject *a,
302 struct attribute *b, const char *buf, size_t count)
304 unsigned int input, j;
305 int ret;
306 ret = sscanf(buf, "%u", &input);
308 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
309 return -EINVAL;
310 dbs_tuners_ins.sampling_down_factor = input;
312 /* Reset down sampling multiplier in case it was active */
313 for_each_online_cpu(j) {
314 struct cpu_dbs_info_s *dbs_info;
315 dbs_info = &per_cpu(od_cpu_dbs_info, j);
316 dbs_info->rate_mult = 1;
318 return count;
321 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322 const char *buf, size_t count)
324 unsigned int input;
325 int ret;
327 unsigned int j;
329 ret = sscanf(buf, "%u", &input);
330 if (ret != 1)
331 return -EINVAL;
333 if (input > 1)
334 input = 1;
336 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
337 return count;
339 dbs_tuners_ins.ignore_nice = input;
341 /* we need to re-evaluate prev_cpu_idle */
342 for_each_online_cpu(j) {
343 struct cpu_dbs_info_s *dbs_info;
344 dbs_info = &per_cpu(od_cpu_dbs_info, j);
345 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
346 &dbs_info->prev_cpu_wall);
347 if (dbs_tuners_ins.ignore_nice)
348 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
351 return count;
354 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
355 const char *buf, size_t count)
357 unsigned int input;
358 int ret;
359 ret = sscanf(buf, "%u", &input);
361 if (ret != 1)
362 return -EINVAL;
364 if (input > 1000)
365 input = 1000;
367 dbs_tuners_ins.powersave_bias = input;
368 ondemand_powersave_bias_init();
369 return count;
372 define_one_global_rw(sampling_rate);
373 define_one_global_rw(io_is_busy);
374 define_one_global_rw(up_threshold);
375 define_one_global_rw(sampling_down_factor);
376 define_one_global_rw(ignore_nice_load);
377 define_one_global_rw(powersave_bias);
379 static struct attribute *dbs_attributes[] = {
380 &sampling_rate_min.attr,
381 &sampling_rate.attr,
382 &up_threshold.attr,
383 &sampling_down_factor.attr,
384 &ignore_nice_load.attr,
385 &powersave_bias.attr,
386 &io_is_busy.attr,
387 NULL
390 static struct attribute_group dbs_attr_group = {
391 .attrs = dbs_attributes,
392 .name = "ondemand",
395 /************************** sysfs end ************************/
397 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
399 if (dbs_tuners_ins.powersave_bias)
400 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
401 else if (p->cur == p->max)
402 return;
404 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
405 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
408 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
410 unsigned int max_load_freq;
412 struct cpufreq_policy *policy;
413 unsigned int j;
415 this_dbs_info->freq_lo = 0;
416 policy = this_dbs_info->cur_policy;
419 * Every sampling_rate, we check, if current idle time is less
420 * than 20% (default), then we try to increase frequency
421 * Every sampling_rate, we look for a the lowest
422 * frequency which can sustain the load while keeping idle time over
423 * 30%. If such a frequency exist, we try to decrease to this frequency.
425 * Any frequency increase takes it to the maximum frequency.
426 * Frequency reduction happens at minimum steps of
427 * 5% (default) of current frequency
430 /* Get Absolute Load - in terms of freq */
431 max_load_freq = 0;
433 for_each_cpu(j, policy->cpus) {
434 struct cpu_dbs_info_s *j_dbs_info;
435 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
436 unsigned int idle_time, wall_time, iowait_time;
437 unsigned int load, load_freq;
438 int freq_avg;
440 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
442 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
443 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
445 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
446 j_dbs_info->prev_cpu_wall);
447 j_dbs_info->prev_cpu_wall = cur_wall_time;
449 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
450 j_dbs_info->prev_cpu_idle);
451 j_dbs_info->prev_cpu_idle = cur_idle_time;
453 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
454 j_dbs_info->prev_cpu_iowait);
455 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
457 if (dbs_tuners_ins.ignore_nice) {
458 cputime64_t cur_nice;
459 unsigned long cur_nice_jiffies;
461 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
462 j_dbs_info->prev_cpu_nice);
464 * Assumption: nice time between sampling periods will
465 * be less than 2^32 jiffies for 32 bit sys
467 cur_nice_jiffies = (unsigned long)
468 cputime64_to_jiffies64(cur_nice);
470 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
471 idle_time += jiffies_to_usecs(cur_nice_jiffies);
475 * For the purpose of ondemand, waiting for disk IO is an
476 * indication that you're performance critical, and not that
477 * the system is actually idle. So subtract the iowait time
478 * from the cpu idle time.
481 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
482 idle_time -= iowait_time;
484 if (unlikely(!wall_time || wall_time < idle_time))
485 continue;
487 load = 100 * (wall_time - idle_time) / wall_time;
489 freq_avg = __cpufreq_driver_getavg(policy, j);
490 if (freq_avg <= 0)
491 freq_avg = policy->cur;
493 load_freq = load * freq_avg;
494 if (load_freq > max_load_freq)
495 max_load_freq = load_freq;
498 /* Check for frequency increase */
499 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
500 /* If switching to max speed, apply sampling_down_factor */
501 if (policy->cur < policy->max)
502 this_dbs_info->rate_mult =
503 dbs_tuners_ins.sampling_down_factor;
504 dbs_freq_increase(policy, policy->max);
505 return;
508 /* Check for frequency decrease */
509 /* if we cannot reduce the frequency anymore, break out early */
510 if (policy->cur == policy->min)
511 return;
514 * The optimal frequency is the frequency that is the lowest that
515 * can support the current CPU usage without triggering the up
516 * policy. To be safe, we focus 10 points under the threshold.
518 if (max_load_freq <
519 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
520 policy->cur) {
521 unsigned int freq_next;
522 freq_next = max_load_freq /
523 (dbs_tuners_ins.up_threshold -
524 dbs_tuners_ins.down_differential);
526 /* No longer fully busy, reset rate_mult */
527 this_dbs_info->rate_mult = 1;
529 if (freq_next < policy->min)
530 freq_next = policy->min;
532 if (!dbs_tuners_ins.powersave_bias) {
533 __cpufreq_driver_target(policy, freq_next,
534 CPUFREQ_RELATION_L);
535 } else {
536 int freq = powersave_bias_target(policy, freq_next,
537 CPUFREQ_RELATION_L);
538 __cpufreq_driver_target(policy, freq,
539 CPUFREQ_RELATION_L);
544 static void do_dbs_timer(struct work_struct *work)
546 struct cpu_dbs_info_s *dbs_info =
547 container_of(work, struct cpu_dbs_info_s, work.work);
548 unsigned int cpu = dbs_info->cpu;
549 int sample_type = dbs_info->sample_type;
551 int delay;
553 mutex_lock(&dbs_info->timer_mutex);
555 /* Common NORMAL_SAMPLE setup */
556 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
557 if (!dbs_tuners_ins.powersave_bias ||
558 sample_type == DBS_NORMAL_SAMPLE) {
559 dbs_check_cpu(dbs_info);
560 if (dbs_info->freq_lo) {
561 /* Setup timer for SUB_SAMPLE */
562 dbs_info->sample_type = DBS_SUB_SAMPLE;
563 delay = dbs_info->freq_hi_jiffies;
564 } else {
565 /* We want all CPUs to do sampling nearly on
566 * same jiffy
568 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
569 * dbs_info->rate_mult);
571 if (num_online_cpus() > 1)
572 delay -= jiffies % delay;
574 } else {
575 __cpufreq_driver_target(dbs_info->cur_policy,
576 dbs_info->freq_lo, CPUFREQ_RELATION_H);
577 delay = dbs_info->freq_lo_jiffies;
579 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
580 mutex_unlock(&dbs_info->timer_mutex);
583 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
585 /* We want all CPUs to do sampling nearly on same jiffy */
586 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
588 if (num_online_cpus() > 1)
589 delay -= jiffies % delay;
591 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
592 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
593 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
596 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
598 cancel_delayed_work_sync(&dbs_info->work);
602 * Not all CPUs want IO time to be accounted as busy; this dependson how
603 * efficient idling at a higher frequency/voltage is.
604 * Pavel Machek says this is not so for various generations of AMD and old
605 * Intel systems.
606 * Mike Chan (androidlcom) calis this is also not true for ARM.
607 * Because of this, whitelist specific known (series) of CPUs by default, and
608 * leave all others up to the user.
610 static int should_io_be_busy(void)
612 #if defined(CONFIG_X86)
614 * For Intel, Core 2 (model 15) andl later have an efficient idle.
616 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
617 boot_cpu_data.x86 == 6 &&
618 boot_cpu_data.x86_model >= 15)
619 return 1;
620 #endif
621 return 0;
624 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
625 unsigned int event)
627 unsigned int cpu = policy->cpu;
628 struct cpu_dbs_info_s *this_dbs_info;
629 unsigned int j;
630 int rc;
632 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
634 switch (event) {
635 case CPUFREQ_GOV_START:
636 if ((!cpu_online(cpu)) || (!policy->cur))
637 return -EINVAL;
639 mutex_lock(&dbs_mutex);
641 dbs_enable++;
642 for_each_cpu(j, policy->cpus) {
643 struct cpu_dbs_info_s *j_dbs_info;
644 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
645 j_dbs_info->cur_policy = policy;
647 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
648 &j_dbs_info->prev_cpu_wall);
649 if (dbs_tuners_ins.ignore_nice) {
650 j_dbs_info->prev_cpu_nice =
651 kstat_cpu(j).cpustat.nice;
654 this_dbs_info->cpu = cpu;
655 this_dbs_info->rate_mult = 1;
656 ondemand_powersave_bias_init_cpu(cpu);
658 * Start the timerschedule work, when this governor
659 * is used for first time
661 if (dbs_enable == 1) {
662 unsigned int latency;
664 rc = sysfs_create_group(cpufreq_global_kobject,
665 &dbs_attr_group);
666 if (rc) {
667 mutex_unlock(&dbs_mutex);
668 return rc;
671 /* policy latency is in nS. Convert it to uS first */
672 latency = policy->cpuinfo.transition_latency / 1000;
673 if (latency == 0)
674 latency = 1;
675 /* Bring kernel and HW constraints together */
676 min_sampling_rate = max(min_sampling_rate,
677 MIN_LATENCY_MULTIPLIER * latency);
678 dbs_tuners_ins.sampling_rate =
679 max(min_sampling_rate,
680 latency * LATENCY_MULTIPLIER);
681 dbs_tuners_ins.io_is_busy = should_io_be_busy();
683 mutex_unlock(&dbs_mutex);
685 mutex_init(&this_dbs_info->timer_mutex);
686 dbs_timer_init(this_dbs_info);
687 break;
689 case CPUFREQ_GOV_STOP:
690 dbs_timer_exit(this_dbs_info);
692 mutex_lock(&dbs_mutex);
693 mutex_destroy(&this_dbs_info->timer_mutex);
694 dbs_enable--;
695 mutex_unlock(&dbs_mutex);
696 if (!dbs_enable)
697 sysfs_remove_group(cpufreq_global_kobject,
698 &dbs_attr_group);
700 break;
702 case CPUFREQ_GOV_LIMITS:
703 mutex_lock(&this_dbs_info->timer_mutex);
704 if (policy->max < this_dbs_info->cur_policy->cur)
705 __cpufreq_driver_target(this_dbs_info->cur_policy,
706 policy->max, CPUFREQ_RELATION_H);
707 else if (policy->min > this_dbs_info->cur_policy->cur)
708 __cpufreq_driver_target(this_dbs_info->cur_policy,
709 policy->min, CPUFREQ_RELATION_L);
710 mutex_unlock(&this_dbs_info->timer_mutex);
711 break;
713 return 0;
716 static int __init cpufreq_gov_dbs_init(void)
718 cputime64_t wall;
719 u64 idle_time;
720 int cpu = get_cpu();
722 idle_time = get_cpu_idle_time_us(cpu, &wall);
723 put_cpu();
724 if (idle_time != -1ULL) {
725 /* Idle micro accounting is supported. Use finer thresholds */
726 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
727 dbs_tuners_ins.down_differential =
728 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
730 * In nohz/micro accounting case we set the minimum frequency
731 * not depending on HZ, but fixed (very low). The deferred
732 * timer might skip some samples if idle/sleeping as needed.
734 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
735 } else {
736 /* For correct statistics, we need 10 ticks for each measure */
737 min_sampling_rate =
738 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
741 return cpufreq_register_governor(&cpufreq_gov_ondemand);
744 static void __exit cpufreq_gov_dbs_exit(void)
746 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
750 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
751 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
752 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
753 "Low Latency Frequency Transition capable processors");
754 MODULE_LICENSE("GPL");
756 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
757 fs_initcall(cpufreq_gov_dbs_init);
758 #else
759 module_init(cpufreq_gov_dbs_init);
760 #endif
761 module_exit(cpufreq_gov_dbs_exit);