Revert "[PATCH] x86_64: Fix the node cpumask of a cpu going down"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86_64 / kernel / smpboot.c
bloba28756ef7cef972dcfd8fff90b1f8a7a19ff5e4a
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 /* core ID of each logical CPU */
68 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map __read_mostly;
73 EXPORT_SYMBOL(cpu_online_map);
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
91 /* representing HT siblings of each logical CPU */
92 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
94 /* representing HT and core siblings of each logical CPU */
95 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_core_map);
99 * Trampoline 80x86 program as an array.
102 extern unsigned char trampoline_data[];
103 extern unsigned char trampoline_end[];
105 /* State of each CPU */
106 DEFINE_PER_CPU(int, cpu_state) = { 0 };
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
111 * for idle threads.
113 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
115 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
116 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
124 static unsigned long __cpuinit setup_trampoline(void)
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
132 * The bootstrap kernel entry code has set these up. Save them for
133 * a given CPU
136 static void __cpuinit smp_store_cpu_info(int id)
138 struct cpuinfo_x86 *c = cpu_data + id;
140 *c = boot_cpu_data;
141 identify_cpu(c);
142 print_cpu_info(c);
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
152 * Original comment reproduced below.
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
162 * slave master
164 * t0 ---\
165 * ---\
166 * --->
167 * tm
168 * /---
169 * /---
170 * t1 <---
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
194 #define MASTER 0
195 #define SLAVE (SMP_CACHE_BYTES/8)
197 /* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201 #define no_cpu_relax() barrier()
203 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
204 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205 static int notscsync __cpuinitdata;
207 #undef DEBUG_TSC_SYNC
209 #define NUM_ROUNDS 64 /* magic value */
210 #define NUM_ITERS 5 /* likewise */
212 /* Callback on boot CPU */
213 static __cpuinit void sync_master(void *arg)
215 unsigned long flags, i;
217 go[MASTER] = 0;
219 local_irq_save(flags);
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
228 local_irq_restore(flags);
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
236 static inline long
237 get_delta(long *rt, long *master)
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
265 static __cpuinit void sync_tsc(unsigned int master)
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
270 #ifdef DEBUG_TSC_SYNC
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277 #endif
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
282 go[MASTER] = 1;
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
291 while (go[MASTER]) /* wait for master to be ready */
292 no_cpu_relax();
294 spin_lock_irqsave(&tsc_sync_lock, flags);
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
298 if (delta == 0) {
299 done = 1; /* let's lock on to this... */
300 bound = rt;
303 if (!done) {
304 unsigned long t;
305 if (i > 0) {
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
308 } else
309 adj = -delta;
311 rdtscll(t);
312 wrmsrl(MSR_IA32_TSC, t + adj);
314 #ifdef DEBUG_TSC_SYNC
315 t[i].rt = rt;
316 t[i].master = master_time_stamp;
317 t[i].diff = delta;
318 t[i].lat = adjust_latency/4;
319 #endif
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
324 #ifdef DEBUG_TSC_SYNC
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
328 #endif
330 printk(KERN_INFO
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
333 smp_processor_id(), master, delta, rt);
336 static void __cpuinit tsc_sync_wait(void)
339 * When the CPU has synchronized TSCs assume the BIOS
340 * or the hardware already synced. Otherwise we could
341 * mess up a possible perfect synchronization with a
342 * not-quite-perfect algorithm.
344 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
345 return;
346 sync_tsc(0);
349 static __init int notscsync_setup(char *s)
351 notscsync = 1;
352 return 0;
354 __setup("notscsync", notscsync_setup);
356 static atomic_t init_deasserted __cpuinitdata;
359 * Report back to the Boot Processor.
360 * Running on AP.
362 void __cpuinit smp_callin(void)
364 int cpuid, phys_id;
365 unsigned long timeout;
368 * If waken up by an INIT in an 82489DX configuration
369 * we may get here before an INIT-deassert IPI reaches
370 * our local APIC. We have to wait for the IPI or we'll
371 * lock up on an APIC access.
373 while (!atomic_read(&init_deasserted))
374 cpu_relax();
377 * (This works even if the APIC is not enabled.)
379 phys_id = GET_APIC_ID(apic_read(APIC_ID));
380 cpuid = smp_processor_id();
381 if (cpu_isset(cpuid, cpu_callin_map)) {
382 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
383 phys_id, cpuid);
385 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
388 * STARTUP IPIs are fragile beasts as they might sometimes
389 * trigger some glue motherboard logic. Complete APIC bus
390 * silence for 1 second, this overestimates the time the
391 * boot CPU is spending to send the up to 2 STARTUP IPIs
392 * by a factor of two. This should be enough.
396 * Waiting 2s total for startup (udelay is not yet working)
398 timeout = jiffies + 2*HZ;
399 while (time_before(jiffies, timeout)) {
401 * Has the boot CPU finished it's STARTUP sequence?
403 if (cpu_isset(cpuid, cpu_callout_map))
404 break;
405 cpu_relax();
408 if (!time_before(jiffies, timeout)) {
409 panic("smp_callin: CPU%d started up but did not get a callout!\n",
410 cpuid);
414 * the boot CPU has finished the init stage and is spinning
415 * on callin_map until we finish. We are free to set up this
416 * CPU, first the APIC. (this is probably redundant on most
417 * boards)
420 Dprintk("CALLIN, before setup_local_APIC().\n");
421 setup_local_APIC();
424 * Get our bogomips.
426 * Need to enable IRQs because it can take longer and then
427 * the NMI watchdog might kill us.
429 local_irq_enable();
430 calibrate_delay();
431 local_irq_disable();
432 Dprintk("Stack at about %p\n",&cpuid);
434 disable_APIC_timer();
437 * Save our processor parameters
439 smp_store_cpu_info(cpuid);
442 * Allow the master to continue.
444 cpu_set(cpuid, cpu_callin_map);
447 /* representing cpus for which sibling maps can be computed */
448 static cpumask_t cpu_sibling_setup_map;
450 static inline void set_cpu_sibling_map(int cpu)
452 int i;
453 struct cpuinfo_x86 *c = cpu_data;
455 cpu_set(cpu, cpu_sibling_setup_map);
457 if (smp_num_siblings > 1) {
458 for_each_cpu_mask(i, cpu_sibling_setup_map) {
459 if (phys_proc_id[cpu] == phys_proc_id[i] &&
460 cpu_core_id[cpu] == cpu_core_id[i]) {
461 cpu_set(i, cpu_sibling_map[cpu]);
462 cpu_set(cpu, cpu_sibling_map[i]);
463 cpu_set(i, cpu_core_map[cpu]);
464 cpu_set(cpu, cpu_core_map[i]);
467 } else {
468 cpu_set(cpu, cpu_sibling_map[cpu]);
471 if (current_cpu_data.x86_max_cores == 1) {
472 cpu_core_map[cpu] = cpu_sibling_map[cpu];
473 c[cpu].booted_cores = 1;
474 return;
477 for_each_cpu_mask(i, cpu_sibling_setup_map) {
478 if (phys_proc_id[cpu] == phys_proc_id[i]) {
479 cpu_set(i, cpu_core_map[cpu]);
480 cpu_set(cpu, cpu_core_map[i]);
482 * Does this new cpu bringup a new core?
484 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
486 * for each core in package, increment
487 * the booted_cores for this new cpu
489 if (first_cpu(cpu_sibling_map[i]) == i)
490 c[cpu].booted_cores++;
492 * increment the core count for all
493 * the other cpus in this package
495 if (i != cpu)
496 c[i].booted_cores++;
497 } else if (i != cpu && !c[cpu].booted_cores)
498 c[cpu].booted_cores = c[i].booted_cores;
504 * Setup code on secondary processor (after comming out of the trampoline)
506 void __cpuinit start_secondary(void)
509 * Dont put anything before smp_callin(), SMP
510 * booting is too fragile that we want to limit the
511 * things done here to the most necessary things.
513 cpu_init();
514 preempt_disable();
515 smp_callin();
517 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
518 barrier();
520 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
521 setup_secondary_APIC_clock();
523 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
525 if (nmi_watchdog == NMI_IO_APIC) {
526 disable_8259A_irq(0);
527 enable_NMI_through_LVT0(NULL);
528 enable_8259A_irq(0);
531 enable_APIC_timer();
534 * The sibling maps must be set before turing the online map on for
535 * this cpu
537 set_cpu_sibling_map(smp_processor_id());
540 * Wait for TSC sync to not schedule things before.
541 * We still process interrupts, which could see an inconsistent
542 * time in that window unfortunately.
543 * Do this here because TSC sync has global unprotected state.
545 tsc_sync_wait();
548 * We need to hold call_lock, so there is no inconsistency
549 * between the time smp_call_function() determines number of
550 * IPI receipients, and the time when the determination is made
551 * for which cpus receive the IPI in genapic_flat.c. Holding this
552 * lock helps us to not include this cpu in a currently in progress
553 * smp_call_function().
555 lock_ipi_call_lock();
558 * Allow the master to continue.
560 cpu_set(smp_processor_id(), cpu_online_map);
561 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
562 unlock_ipi_call_lock();
564 cpu_idle();
567 extern volatile unsigned long init_rsp;
568 extern void (*initial_code)(void);
570 #ifdef APIC_DEBUG
571 static void inquire_remote_apic(int apicid)
573 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
574 char *names[] = { "ID", "VERSION", "SPIV" };
575 int timeout, status;
577 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
579 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
580 printk("... APIC #%d %s: ", apicid, names[i]);
583 * Wait for idle.
585 apic_wait_icr_idle();
587 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
588 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
590 timeout = 0;
591 do {
592 udelay(100);
593 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
594 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
596 switch (status) {
597 case APIC_ICR_RR_VALID:
598 status = apic_read(APIC_RRR);
599 printk("%08x\n", status);
600 break;
601 default:
602 printk("failed\n");
606 #endif
609 * Kick the secondary to wake up.
611 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
613 unsigned long send_status = 0, accept_status = 0;
614 int maxlvt, timeout, num_starts, j;
616 Dprintk("Asserting INIT.\n");
619 * Turn INIT on target chip
621 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
624 * Send IPI
626 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
627 | APIC_DM_INIT);
629 Dprintk("Waiting for send to finish...\n");
630 timeout = 0;
631 do {
632 Dprintk("+");
633 udelay(100);
634 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
635 } while (send_status && (timeout++ < 1000));
637 mdelay(10);
639 Dprintk("Deasserting INIT.\n");
641 /* Target chip */
642 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
644 /* Send IPI */
645 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
647 Dprintk("Waiting for send to finish...\n");
648 timeout = 0;
649 do {
650 Dprintk("+");
651 udelay(100);
652 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
653 } while (send_status && (timeout++ < 1000));
655 mb();
656 atomic_set(&init_deasserted, 1);
658 num_starts = 2;
661 * Run STARTUP IPI loop.
663 Dprintk("#startup loops: %d.\n", num_starts);
665 maxlvt = get_maxlvt();
667 for (j = 1; j <= num_starts; j++) {
668 Dprintk("Sending STARTUP #%d.\n",j);
669 apic_write(APIC_ESR, 0);
670 apic_read(APIC_ESR);
671 Dprintk("After apic_write.\n");
674 * STARTUP IPI
677 /* Target chip */
678 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
680 /* Boot on the stack */
681 /* Kick the second */
682 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
685 * Give the other CPU some time to accept the IPI.
687 udelay(300);
689 Dprintk("Startup point 1.\n");
691 Dprintk("Waiting for send to finish...\n");
692 timeout = 0;
693 do {
694 Dprintk("+");
695 udelay(100);
696 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
697 } while (send_status && (timeout++ < 1000));
700 * Give the other CPU some time to accept the IPI.
702 udelay(200);
704 * Due to the Pentium erratum 3AP.
706 if (maxlvt > 3) {
707 apic_write(APIC_ESR, 0);
709 accept_status = (apic_read(APIC_ESR) & 0xEF);
710 if (send_status || accept_status)
711 break;
713 Dprintk("After Startup.\n");
715 if (send_status)
716 printk(KERN_ERR "APIC never delivered???\n");
717 if (accept_status)
718 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
720 return (send_status | accept_status);
723 struct create_idle {
724 struct task_struct *idle;
725 struct completion done;
726 int cpu;
729 void do_fork_idle(void *_c_idle)
731 struct create_idle *c_idle = _c_idle;
733 c_idle->idle = fork_idle(c_idle->cpu);
734 complete(&c_idle->done);
738 * Boot one CPU.
740 static int __cpuinit do_boot_cpu(int cpu, int apicid)
742 unsigned long boot_error;
743 int timeout;
744 unsigned long start_rip;
745 struct create_idle c_idle = {
746 .cpu = cpu,
747 .done = COMPLETION_INITIALIZER(c_idle.done),
749 DECLARE_WORK(work, do_fork_idle, &c_idle);
751 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
752 if (!cpu_gdt_descr[cpu].address &&
753 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
754 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
755 return -1;
758 /* Allocate node local memory for AP pdas */
759 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
760 struct x8664_pda *newpda, *pda;
761 int node = cpu_to_node(cpu);
762 pda = cpu_pda(cpu);
763 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
764 node);
765 if (newpda) {
766 memcpy(newpda, pda, sizeof (struct x8664_pda));
767 cpu_pda(cpu) = newpda;
768 } else
769 printk(KERN_ERR
770 "Could not allocate node local PDA for CPU %d on node %d\n",
771 cpu, node);
775 c_idle.idle = get_idle_for_cpu(cpu);
777 if (c_idle.idle) {
778 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
779 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
780 init_idle(c_idle.idle, cpu);
781 goto do_rest;
785 * During cold boot process, keventd thread is not spun up yet.
786 * When we do cpu hot-add, we create idle threads on the fly, we should
787 * not acquire any attributes from the calling context. Hence the clean
788 * way to create kernel_threads() is to do that from keventd().
789 * We do the current_is_keventd() due to the fact that ACPI notifier
790 * was also queuing to keventd() and when the caller is already running
791 * in context of keventd(), we would end up with locking up the keventd
792 * thread.
794 if (!keventd_up() || current_is_keventd())
795 work.func(work.data);
796 else {
797 schedule_work(&work);
798 wait_for_completion(&c_idle.done);
801 if (IS_ERR(c_idle.idle)) {
802 printk("failed fork for CPU %d\n", cpu);
803 return PTR_ERR(c_idle.idle);
806 set_idle_for_cpu(cpu, c_idle.idle);
808 do_rest:
810 cpu_pda(cpu)->pcurrent = c_idle.idle;
812 start_rip = setup_trampoline();
814 init_rsp = c_idle.idle->thread.rsp;
815 per_cpu(init_tss,cpu).rsp0 = init_rsp;
816 initial_code = start_secondary;
817 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
819 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
820 cpus_weight(cpu_present_map),
821 apicid);
824 * This grunge runs the startup process for
825 * the targeted processor.
828 atomic_set(&init_deasserted, 0);
830 Dprintk("Setting warm reset code and vector.\n");
832 CMOS_WRITE(0xa, 0xf);
833 local_flush_tlb();
834 Dprintk("1.\n");
835 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
836 Dprintk("2.\n");
837 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
838 Dprintk("3.\n");
841 * Be paranoid about clearing APIC errors.
843 apic_write(APIC_ESR, 0);
844 apic_read(APIC_ESR);
847 * Status is now clean
849 boot_error = 0;
852 * Starting actual IPI sequence...
854 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
856 if (!boot_error) {
858 * allow APs to start initializing.
860 Dprintk("Before Callout %d.\n", cpu);
861 cpu_set(cpu, cpu_callout_map);
862 Dprintk("After Callout %d.\n", cpu);
865 * Wait 5s total for a response
867 for (timeout = 0; timeout < 50000; timeout++) {
868 if (cpu_isset(cpu, cpu_callin_map))
869 break; /* It has booted */
870 udelay(100);
873 if (cpu_isset(cpu, cpu_callin_map)) {
874 /* number CPUs logically, starting from 1 (BSP is 0) */
875 Dprintk("CPU has booted.\n");
876 } else {
877 boot_error = 1;
878 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
879 == 0xA5)
880 /* trampoline started but...? */
881 printk("Stuck ??\n");
882 else
883 /* trampoline code not run */
884 printk("Not responding.\n");
885 #ifdef APIC_DEBUG
886 inquire_remote_apic(apicid);
887 #endif
890 if (boot_error) {
891 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
892 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
893 cpu_clear(cpu, cpu_present_map);
894 cpu_clear(cpu, cpu_possible_map);
895 x86_cpu_to_apicid[cpu] = BAD_APICID;
896 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
897 return -EIO;
900 return 0;
903 cycles_t cacheflush_time;
904 unsigned long cache_decay_ticks;
907 * Cleanup possible dangling ends...
909 static __cpuinit void smp_cleanup_boot(void)
912 * Paranoid: Set warm reset code and vector here back
913 * to default values.
915 CMOS_WRITE(0, 0xf);
918 * Reset trampoline flag
920 *((volatile int *) phys_to_virt(0x467)) = 0;
924 * Fall back to non SMP mode after errors.
926 * RED-PEN audit/test this more. I bet there is more state messed up here.
928 static __init void disable_smp(void)
930 cpu_present_map = cpumask_of_cpu(0);
931 cpu_possible_map = cpumask_of_cpu(0);
932 if (smp_found_config)
933 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
934 else
935 phys_cpu_present_map = physid_mask_of_physid(0);
936 cpu_set(0, cpu_sibling_map[0]);
937 cpu_set(0, cpu_core_map[0]);
940 #ifdef CONFIG_HOTPLUG_CPU
942 int additional_cpus __initdata = -1;
945 * cpu_possible_map should be static, it cannot change as cpu's
946 * are onlined, or offlined. The reason is per-cpu data-structures
947 * are allocated by some modules at init time, and dont expect to
948 * do this dynamically on cpu arrival/departure.
949 * cpu_present_map on the other hand can change dynamically.
950 * In case when cpu_hotplug is not compiled, then we resort to current
951 * behaviour, which is cpu_possible == cpu_present.
952 * - Ashok Raj
954 * Three ways to find out the number of additional hotplug CPUs:
955 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
956 * - The user can overwrite it with additional_cpus=NUM
957 * - Otherwise don't reserve additional CPUs.
958 * We do this because additional CPUs waste a lot of memory.
959 * -AK
961 __init void prefill_possible_map(void)
963 int i;
964 int possible;
966 if (additional_cpus == -1) {
967 if (disabled_cpus > 0)
968 additional_cpus = disabled_cpus;
969 else
970 additional_cpus = 0;
972 possible = num_processors + additional_cpus;
973 if (possible > NR_CPUS)
974 possible = NR_CPUS;
976 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
977 possible,
978 max_t(int, possible - num_processors, 0));
980 for (i = 0; i < possible; i++)
981 cpu_set(i, cpu_possible_map);
983 #endif
986 * Various sanity checks.
988 static int __init smp_sanity_check(unsigned max_cpus)
990 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
991 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
992 hard_smp_processor_id());
993 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
997 * If we couldn't find an SMP configuration at boot time,
998 * get out of here now!
1000 if (!smp_found_config) {
1001 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1002 disable_smp();
1003 if (APIC_init_uniprocessor())
1004 printk(KERN_NOTICE "Local APIC not detected."
1005 " Using dummy APIC emulation.\n");
1006 return -1;
1010 * Should not be necessary because the MP table should list the boot
1011 * CPU too, but we do it for the sake of robustness anyway.
1013 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1014 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1015 boot_cpu_id);
1016 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1020 * If we couldn't find a local APIC, then get out of here now!
1022 if (!cpu_has_apic) {
1023 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1024 boot_cpu_id);
1025 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1026 nr_ioapics = 0;
1027 return -1;
1031 * If SMP should be disabled, then really disable it!
1033 if (!max_cpus) {
1034 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1035 nr_ioapics = 0;
1036 return -1;
1039 return 0;
1043 * Prepare for SMP bootup. The MP table or ACPI has been read
1044 * earlier. Just do some sanity checking here and enable APIC mode.
1046 void __init smp_prepare_cpus(unsigned int max_cpus)
1048 nmi_watchdog_default();
1049 current_cpu_data = boot_cpu_data;
1050 current_thread_info()->cpu = 0; /* needed? */
1051 set_cpu_sibling_map(0);
1053 if (smp_sanity_check(max_cpus) < 0) {
1054 printk(KERN_INFO "SMP disabled\n");
1055 disable_smp();
1056 return;
1061 * Switch from PIC to APIC mode.
1063 connect_bsp_APIC();
1064 setup_local_APIC();
1066 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1067 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1068 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1069 /* Or can we switch back to PIC here? */
1073 * Now start the IO-APICs
1075 if (!skip_ioapic_setup && nr_ioapics)
1076 setup_IO_APIC();
1077 else
1078 nr_ioapics = 0;
1081 * Set up local APIC timer on boot CPU.
1084 setup_boot_APIC_clock();
1088 * Early setup to make printk work.
1090 void __init smp_prepare_boot_cpu(void)
1092 int me = smp_processor_id();
1093 cpu_set(me, cpu_online_map);
1094 cpu_set(me, cpu_callout_map);
1095 per_cpu(cpu_state, me) = CPU_ONLINE;
1099 * Entry point to boot a CPU.
1101 int __cpuinit __cpu_up(unsigned int cpu)
1103 int err;
1104 int apicid = cpu_present_to_apicid(cpu);
1106 WARN_ON(irqs_disabled());
1108 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1110 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1111 !physid_isset(apicid, phys_cpu_present_map)) {
1112 printk("__cpu_up: bad cpu %d\n", cpu);
1113 return -EINVAL;
1117 * Already booted CPU?
1119 if (cpu_isset(cpu, cpu_callin_map)) {
1120 Dprintk("do_boot_cpu %d Already started\n", cpu);
1121 return -ENOSYS;
1124 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1125 /* Boot it! */
1126 err = do_boot_cpu(cpu, apicid);
1127 if (err < 0) {
1128 Dprintk("do_boot_cpu failed %d\n", err);
1129 return err;
1132 /* Unleash the CPU! */
1133 Dprintk("waiting for cpu %d\n", cpu);
1135 while (!cpu_isset(cpu, cpu_online_map))
1136 cpu_relax();
1137 err = 0;
1139 return err;
1143 * Finish the SMP boot.
1145 void __init smp_cpus_done(unsigned int max_cpus)
1147 smp_cleanup_boot();
1149 #ifdef CONFIG_X86_IO_APIC
1150 setup_ioapic_dest();
1151 #endif
1153 time_init_gtod();
1155 check_nmi_watchdog();
1158 #ifdef CONFIG_HOTPLUG_CPU
1160 static void remove_siblinginfo(int cpu)
1162 int sibling;
1163 struct cpuinfo_x86 *c = cpu_data;
1165 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1166 cpu_clear(cpu, cpu_core_map[sibling]);
1168 * last thread sibling in this cpu core going down
1170 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1171 c[sibling].booted_cores--;
1174 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1175 cpu_clear(cpu, cpu_sibling_map[sibling]);
1176 cpus_clear(cpu_sibling_map[cpu]);
1177 cpus_clear(cpu_core_map[cpu]);
1178 phys_proc_id[cpu] = BAD_APICID;
1179 cpu_core_id[cpu] = BAD_APICID;
1180 cpu_clear(cpu, cpu_sibling_setup_map);
1183 void remove_cpu_from_maps(void)
1185 int cpu = smp_processor_id();
1187 cpu_clear(cpu, cpu_callout_map);
1188 cpu_clear(cpu, cpu_callin_map);
1189 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1192 int __cpu_disable(void)
1194 int cpu = smp_processor_id();
1197 * Perhaps use cpufreq to drop frequency, but that could go
1198 * into generic code.
1200 * We won't take down the boot processor on i386 due to some
1201 * interrupts only being able to be serviced by the BSP.
1202 * Especially so if we're not using an IOAPIC -zwane
1204 if (cpu == 0)
1205 return -EBUSY;
1207 clear_local_APIC();
1210 * HACK:
1211 * Allow any queued timer interrupts to get serviced
1212 * This is only a temporary solution until we cleanup
1213 * fixup_irqs as we do for IA64.
1215 local_irq_enable();
1216 mdelay(1);
1218 local_irq_disable();
1219 remove_siblinginfo(cpu);
1221 /* It's now safe to remove this processor from the online map */
1222 cpu_clear(cpu, cpu_online_map);
1223 remove_cpu_from_maps();
1224 fixup_irqs(cpu_online_map);
1225 return 0;
1228 void __cpu_die(unsigned int cpu)
1230 /* We don't do anything here: idle task is faking death itself. */
1231 unsigned int i;
1233 for (i = 0; i < 10; i++) {
1234 /* They ack this in play_dead by setting CPU_DEAD */
1235 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1236 printk ("CPU %d is now offline\n", cpu);
1237 return;
1239 msleep(100);
1241 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1244 static __init int setup_additional_cpus(char *s)
1246 return get_option(&s, &additional_cpus);
1248 __setup("additional_cpus=", setup_additional_cpus);
1250 #else /* ... !CONFIG_HOTPLUG_CPU */
1252 int __cpu_disable(void)
1254 return -ENOSYS;
1257 void __cpu_die(unsigned int cpu)
1259 /* We said "no" in __cpu_disable */
1260 BUG();
1262 #endif /* CONFIG_HOTPLUG_CPU */