1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <linux/firmware.h>
165 #include <asm/unaligned.h>
168 #define DRV_NAME "e100"
169 #define DRV_EXT "-NAPI"
170 #define DRV_VERSION "3.5.24-k2"DRV_EXT
171 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
172 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
173 #define PFX DRV_NAME ": "
175 #define E100_WATCHDOG_PERIOD (2 * HZ)
176 #define E100_NAPI_WEIGHT 16
178 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
179 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
180 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
182 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
183 MODULE_AUTHOR(DRV_COPYRIGHT
);
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION
);
186 MODULE_FIRMWARE(FIRMWARE_D101M
);
187 MODULE_FIRMWARE(FIRMWARE_D101S
);
188 MODULE_FIRMWARE(FIRMWARE_D102E
);
190 static int debug
= 3;
191 static int eeprom_bad_csum_allow
= 0;
192 static int use_io
= 0;
193 module_param(debug
, int, 0);
194 module_param(eeprom_bad_csum_allow
, int, 0);
195 module_param(use_io
, int, 0);
196 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
197 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
198 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
199 #define DPRINTK(nlevel, klevel, fmt, args...) \
200 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
201 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
204 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
205 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
206 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
207 static struct pci_device_id e100_id_table
[] = {
208 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
210 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
211 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
212 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
216 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
217 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
222 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
223 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
231 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
232 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
239 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
240 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
245 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
246 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
247 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
248 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
252 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
255 mac_82557_D100_A
= 0,
256 mac_82557_D100_B
= 1,
257 mac_82557_D100_C
= 2,
258 mac_82558_D101_A4
= 4,
259 mac_82558_D101_B0
= 5,
263 mac_82550_D102_C
= 13,
271 phy_100a
= 0x000003E0,
272 phy_100c
= 0x035002A8,
273 phy_82555_tx
= 0x015002A8,
274 phy_nsc_tx
= 0x5C002000,
275 phy_82562_et
= 0x033002A8,
276 phy_82562_em
= 0x032002A8,
277 phy_82562_ek
= 0x031002A8,
278 phy_82562_eh
= 0x017002A8,
279 phy_82552_v
= 0xd061004d,
280 phy_unknown
= 0xFFFFFFFF,
283 /* CSR (Control/Status Registers) */
309 RU_UNINITIALIZED
= -1,
313 stat_ack_not_ours
= 0x00,
314 stat_ack_sw_gen
= 0x04,
316 stat_ack_cu_idle
= 0x20,
317 stat_ack_frame_rx
= 0x40,
318 stat_ack_cu_cmd_done
= 0x80,
319 stat_ack_not_present
= 0xFF,
320 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
321 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
325 irq_mask_none
= 0x00,
333 ruc_load_base
= 0x06,
336 cuc_dump_addr
= 0x40,
337 cuc_dump_stats
= 0x50,
338 cuc_load_base
= 0x60,
339 cuc_dump_reset
= 0x70,
343 cuc_dump_complete
= 0x0000A005,
344 cuc_dump_reset_complete
= 0x0000A007,
348 software_reset
= 0x0000,
350 selective_reset
= 0x0002,
353 enum eeprom_ctrl_lo
{
361 mdi_write
= 0x04000000,
362 mdi_read
= 0x08000000,
363 mdi_ready
= 0x10000000,
373 enum eeprom_offsets
{
374 eeprom_cnfg_mdix
= 0x03,
376 eeprom_config_asf
= 0x0D,
377 eeprom_smbus_addr
= 0x90,
380 enum eeprom_cnfg_mdix
{
381 eeprom_mdix_enabled
= 0x0080,
385 eeprom_id_wol
= 0x0020,
388 enum eeprom_config_asf
{
394 cb_complete
= 0x8000,
423 struct rx
*next
, *prev
;
428 #if defined(__BIG_ENDIAN_BITFIELD)
434 /*0*/ u8
X(byte_count
:6, pad0
:2);
435 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
436 /*2*/ u8 adaptive_ifs
;
437 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
438 term_write_cache_line
:1), pad3
:4);
439 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
440 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
441 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
442 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
443 rx_discard_overruns
:1), rx_save_bad_frames
:1);
444 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
445 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
447 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
448 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
449 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
450 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
452 /*11*/ u8
X(linear_priority
:3, pad11
:5);
453 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
454 /*13*/ u8 ip_addr_lo
;
455 /*14*/ u8 ip_addr_hi
;
456 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
457 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
458 pad15_2
:1), crs_or_cdt
:1);
459 /*16*/ u8 fc_delay_lo
;
460 /*17*/ u8 fc_delay_hi
;
461 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
462 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
463 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
464 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
465 full_duplex_force
:1), full_duplex_pin
:1);
466 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
467 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
468 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
472 #define E100_MAX_MULTICAST_ADDRS 64
475 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
478 /* Important: keep total struct u32-aligned */
479 #define UCODE_SIZE 134
486 __le32 ucode
[UCODE_SIZE
];
487 struct config config
;
500 __le32 dump_buffer_addr
;
502 struct cb
*next
, *prev
;
508 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
512 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
513 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
514 tx_multiple_collisions
, tx_total_collisions
;
515 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
516 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
517 rx_short_frame_errors
;
518 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
519 __le16 xmt_tco_frames
, rcv_tco_frames
;
539 struct param_range rfds
;
540 struct param_range cbs
;
544 /* Begin: frequently used values: keep adjacent for cache effect */
545 u32 msg_enable ____cacheline_aligned
;
546 struct net_device
*netdev
;
547 struct pci_dev
*pdev
;
549 struct rx
*rxs ____cacheline_aligned
;
550 struct rx
*rx_to_use
;
551 struct rx
*rx_to_clean
;
552 struct rfd blank_rfd
;
553 enum ru_state ru_running
;
555 spinlock_t cb_lock ____cacheline_aligned
;
557 struct csr __iomem
*csr
;
558 enum scb_cmd_lo cuc_cmd
;
559 unsigned int cbs_avail
;
560 struct napi_struct napi
;
562 struct cb
*cb_to_use
;
563 struct cb
*cb_to_send
;
564 struct cb
*cb_to_clean
;
566 /* End: frequently used values: keep adjacent for cache effect */
570 promiscuous
= (1 << 1),
571 multicast_all
= (1 << 2),
572 wol_magic
= (1 << 3),
573 ich_10h_workaround
= (1 << 4),
574 } flags ____cacheline_aligned
;
578 struct params params
;
579 struct timer_list watchdog
;
580 struct timer_list blink_timer
;
581 struct mii_if_info mii
;
582 struct work_struct tx_timeout_task
;
583 enum loopback loopback
;
588 dma_addr_t cbs_dma_addr
;
594 u32 tx_single_collisions
;
595 u32 tx_multiple_collisions
;
600 u32 rx_fc_unsupported
;
602 u32 rx_over_length_errors
;
607 spinlock_t mdio_lock
;
610 static inline void e100_write_flush(struct nic
*nic
)
612 /* Flush previous PCI writes through intermediate bridges
613 * by doing a benign read */
614 (void)ioread8(&nic
->csr
->scb
.status
);
617 static void e100_enable_irq(struct nic
*nic
)
621 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
622 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
623 e100_write_flush(nic
);
624 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
627 static void e100_disable_irq(struct nic
*nic
)
631 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
632 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
633 e100_write_flush(nic
);
634 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
637 static void e100_hw_reset(struct nic
*nic
)
639 /* Put CU and RU into idle with a selective reset to get
640 * device off of PCI bus */
641 iowrite32(selective_reset
, &nic
->csr
->port
);
642 e100_write_flush(nic
); udelay(20);
644 /* Now fully reset device */
645 iowrite32(software_reset
, &nic
->csr
->port
);
646 e100_write_flush(nic
); udelay(20);
648 /* Mask off our interrupt line - it's unmasked after reset */
649 e100_disable_irq(nic
);
652 static int e100_self_test(struct nic
*nic
)
654 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
656 /* Passing the self-test is a pretty good indication
657 * that the device can DMA to/from host memory */
659 nic
->mem
->selftest
.signature
= 0;
660 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
662 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
663 e100_write_flush(nic
);
664 /* Wait 10 msec for self-test to complete */
667 /* Interrupts are enabled after self-test */
668 e100_disable_irq(nic
);
670 /* Check results of self-test */
671 if (nic
->mem
->selftest
.result
!= 0) {
672 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
673 nic
->mem
->selftest
.result
);
676 if (nic
->mem
->selftest
.signature
== 0) {
677 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
684 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
686 u32 cmd_addr_data
[3];
690 /* Three cmds: write/erase enable, write data, write/erase disable */
691 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
692 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
694 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
696 /* Bit-bang cmds to write word to eeprom */
697 for (j
= 0; j
< 3; j
++) {
700 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
701 e100_write_flush(nic
); udelay(4);
703 for (i
= 31; i
>= 0; i
--) {
704 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
706 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
707 e100_write_flush(nic
); udelay(4);
709 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
710 e100_write_flush(nic
); udelay(4);
712 /* Wait 10 msec for cmd to complete */
716 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
717 e100_write_flush(nic
); udelay(4);
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
729 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
732 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
733 e100_write_flush(nic
); udelay(4);
735 /* Bit-bang to read word from eeprom */
736 for (i
= 31; i
>= 0; i
--) {
737 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
738 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
739 e100_write_flush(nic
); udelay(4);
741 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
742 e100_write_flush(nic
); udelay(4);
744 /* Eeprom drives a dummy zero to EEDO after receiving
745 * complete address. Use this to adjust addr_len. */
746 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
747 if (!(ctrl
& eedo
) && i
> 16) {
748 *addr_len
-= (i
- 16);
752 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
756 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
757 e100_write_flush(nic
); udelay(4);
759 return cpu_to_le16(data
);
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic
*nic
)
765 u16 addr
, addr_len
= 8, checksum
= 0;
767 /* Try reading with an 8-bit addr len to discover actual addr len */
768 e100_eeprom_read(nic
, &addr_len
, 0);
769 nic
->eeprom_wc
= 1 << addr_len
;
771 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
772 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
773 if (addr
< nic
->eeprom_wc
- 1)
774 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
777 /* The checksum, stored in the last word, is calculated such that
778 * the sum of words should be 0xBABA */
779 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
780 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
781 if (!eeprom_bad_csum_allow
)
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
791 u16 addr
, addr_len
= 8, checksum
= 0;
793 /* Try reading with an 8-bit addr len to discover actual addr len */
794 e100_eeprom_read(nic
, &addr_len
, 0);
795 nic
->eeprom_wc
= 1 << addr_len
;
797 if (start
+ count
>= nic
->eeprom_wc
)
800 for (addr
= start
; addr
< start
+ count
; addr
++)
801 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
803 /* The checksum, stored in the last word, is calculated such that
804 * the sum of words should be 0xBABA */
805 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
806 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
807 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
808 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
809 nic
->eeprom
[nic
->eeprom_wc
- 1]);
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
816 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
822 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
824 /* Previous command is accepted when SCB clears */
825 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
826 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
829 if (unlikely(i
> E100_WAIT_SCB_FAST
))
832 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
837 if (unlikely(cmd
!= cuc_resume
))
838 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
839 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
842 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
847 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
848 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
854 spin_lock_irqsave(&nic
->cb_lock
, flags
);
856 if (unlikely(!nic
->cbs_avail
)) {
862 nic
->cb_to_use
= cb
->next
;
866 if (unlikely(!nic
->cbs_avail
))
869 cb_prepare(nic
, cb
, skb
);
871 /* Order is important otherwise we'll be in a race with h/w:
872 * set S-bit in current first, then clear S-bit in previous. */
873 cb
->command
|= cpu_to_le16(cb_s
);
875 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
877 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
878 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
879 nic
->cb_to_send
->dma_addr
))) {
880 /* Ok, here's where things get sticky. It's
881 * possible that we can't schedule the command
882 * because the controller is too busy, so
883 * let's just queue the command and try again
884 * when another command is scheduled. */
885 if (err
== -ENOSPC
) {
887 schedule_work(&nic
->tx_timeout_task
);
891 nic
->cuc_cmd
= cuc_resume
;
892 nic
->cb_to_send
= nic
->cb_to_send
->next
;
897 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
902 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
910 * Stratus87247: we shouldn't be writing the MDI control
911 * register until the Ready bit shows True. Also, since
912 * manipulation of the MDI control registers is a multi-step
913 * procedure it should be done under lock.
915 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
916 for (i
= 100; i
; --i
) {
917 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
922 printk("e100.mdio_ctrl(%s) won't go Ready\n",
924 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
925 return 0; /* No way to indicate timeout error */
927 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
929 for (i
= 0; i
< 100; i
++) {
931 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
934 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
936 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
937 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
938 return (u16
)data_out
;
941 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
943 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
946 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
948 struct nic
*nic
= netdev_priv(netdev
);
950 if ((nic
->phy
== phy_82552_v
) && (reg
== MII_BMCR
) &&
951 (data
& (BMCR_ANRESTART
| BMCR_ANENABLE
))) {
952 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
955 * Workaround Si issue where sometimes the part will not
956 * autoneg to 100Mbps even when advertised.
958 if (advert
& ADVERTISE_100FULL
)
959 data
|= BMCR_SPEED100
| BMCR_FULLDPLX
;
960 else if (advert
& ADVERTISE_100HALF
)
961 data
|= BMCR_SPEED100
;
964 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
967 static void e100_get_defaults(struct nic
*nic
)
969 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
970 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
972 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
973 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
974 if (nic
->mac
== mac_unknown
)
975 nic
->mac
= mac_82557_D100_A
;
977 nic
->params
.rfds
= rfds
;
978 nic
->params
.cbs
= cbs
;
980 /* Quadwords to DMA into FIFO before starting frame transmit */
981 nic
->tx_threshold
= 0xE0;
983 /* no interrupt for every tx completion, delay = 256us if not 557 */
984 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
985 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
987 /* Template for a freshly allocated RFD */
988 nic
->blank_rfd
.command
= 0;
989 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
990 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
993 nic
->mii
.phy_id_mask
= 0x1F;
994 nic
->mii
.reg_num_mask
= 0x1F;
995 nic
->mii
.dev
= nic
->netdev
;
996 nic
->mii
.mdio_read
= mdio_read
;
997 nic
->mii
.mdio_write
= mdio_write
;
1000 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1002 struct config
*config
= &cb
->u
.config
;
1003 u8
*c
= (u8
*)config
;
1005 cb
->command
= cpu_to_le16(cb_config
);
1007 memset(config
, 0, sizeof(struct config
));
1009 config
->byte_count
= 0x16; /* bytes in this struct */
1010 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
1011 config
->direct_rx_dma
= 0x1; /* reserved */
1012 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
1013 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
1014 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
1015 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
1016 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
1017 config
->pad10
= 0x6;
1018 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1019 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1020 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1021 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1022 config
->pad15_1
= 0x1;
1023 config
->pad15_2
= 0x1;
1024 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1025 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1026 config
->tx_padding
= 0x1; /* 1=pad short frames */
1027 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1028 config
->pad18
= 0x1;
1029 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1030 config
->pad20_1
= 0x1F;
1031 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1032 config
->pad21_1
= 0x5;
1034 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1035 config
->loopback
= nic
->loopback
;
1037 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1038 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1040 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1041 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1042 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1043 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1046 if (nic
->flags
& multicast_all
)
1047 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1049 /* disable WoL when up */
1050 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1051 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1053 if (nic
->mac
>= mac_82558_D101_A4
) {
1054 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1055 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1056 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1057 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1058 if (nic
->mac
>= mac_82559_D101M
) {
1059 config
->tno_intr
= 0x1; /* TCO stats enable */
1060 /* Enable TCO in extended config */
1061 if (nic
->mac
>= mac_82551_10
) {
1062 config
->byte_count
= 0x20; /* extended bytes */
1063 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1066 config
->standard_stat_counter
= 0x0;
1070 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1071 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1072 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1073 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1074 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1075 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1078 /*************************************************************************
1079 * CPUSaver parameters
1081 * All CPUSaver parameters are 16-bit literals that are part of a
1082 * "move immediate value" instruction. By changing the value of
1083 * the literal in the instruction before the code is loaded, the
1084 * driver can change the algorithm.
1086 * INTDELAY - This loads the dead-man timer with its initial value.
1087 * When this timer expires the interrupt is asserted, and the
1088 * timer is reset each time a new packet is received. (see
1089 * BUNDLEMAX below to set the limit on number of chained packets)
1090 * The current default is 0x600 or 1536. Experiments show that
1091 * the value should probably stay within the 0x200 - 0x1000.
1094 * This sets the maximum number of frames that will be bundled. In
1095 * some situations, such as the TCP windowing algorithm, it may be
1096 * better to limit the growth of the bundle size than let it go as
1097 * high as it can, because that could cause too much added latency.
1098 * The default is six, because this is the number of packets in the
1099 * default TCP window size. A value of 1 would make CPUSaver indicate
1100 * an interrupt for every frame received. If you do not want to put
1101 * a limit on the bundle size, set this value to xFFFF.
1104 * This contains a bit-mask describing the minimum size frame that
1105 * will be bundled. The default masks the lower 7 bits, which means
1106 * that any frame less than 128 bytes in length will not be bundled,
1107 * but will instead immediately generate an interrupt. This does
1108 * not affect the current bundle in any way. Any frame that is 128
1109 * bytes or large will be bundled normally. This feature is meant
1110 * to provide immediate indication of ACK frames in a TCP environment.
1111 * Customers were seeing poor performance when a machine with CPUSaver
1112 * enabled was sending but not receiving. The delay introduced when
1113 * the ACKs were received was enough to reduce total throughput, because
1114 * the sender would sit idle until the ACK was finally seen.
1116 * The current default is 0xFF80, which masks out the lower 7 bits.
1117 * This means that any frame which is x7F (127) bytes or smaller
1118 * will cause an immediate interrupt. Because this value must be a
1119 * bit mask, there are only a few valid values that can be used. To
1120 * turn this feature off, the driver can write the value xFFFF to the
1121 * lower word of this instruction (in the same way that the other
1122 * parameters are used). Likewise, a value of 0xF800 (2047) would
1123 * cause an interrupt to be generated for every frame, because all
1124 * standard Ethernet frames are <= 2047 bytes in length.
1125 *************************************************************************/
1127 /* if you wish to disable the ucode functionality, while maintaining the
1128 * workarounds it provides, set the following defines to:
1133 #define BUNDLESMALL 1
1134 #define BUNDLEMAX (u16)6
1135 #define INTDELAY (u16)1536 /* 0x600 */
1137 /* Initialize firmware */
1138 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1140 const char *fw_name
;
1141 const struct firmware
*fw
;
1142 u8 timer
, bundle
, min_size
;
1145 /* do not load u-code for ICH devices */
1146 if (nic
->flags
& ich
)
1149 /* Search for ucode match against h/w revision */
1150 if (nic
->mac
== mac_82559_D101M
)
1151 fw_name
= FIRMWARE_D101M
;
1152 else if (nic
->mac
== mac_82559_D101S
)
1153 fw_name
= FIRMWARE_D101S
;
1154 else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
)
1155 fw_name
= FIRMWARE_D102E
;
1156 else /* No ucode on other devices */
1159 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1161 DPRINTK(PROBE
, ERR
, "Failed to load firmware \"%s\": %d\n",
1163 return ERR_PTR(err
);
1165 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1166 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1167 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1168 DPRINTK(PROBE
, ERR
, "Firmware \"%s\" has wrong size %zu\n",
1170 release_firmware(fw
);
1171 return ERR_PTR(-EINVAL
);
1174 /* Read timer, bundle and min_size from end of firmware blob */
1175 timer
= fw
->data
[UCODE_SIZE
* 4];
1176 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1177 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1179 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1180 min_size
>= UCODE_SIZE
) {
1182 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1183 fw_name
, timer
, bundle
, min_size
);
1184 release_firmware(fw
);
1185 return ERR_PTR(-EINVAL
);
1187 /* OK, firmware is validated and ready to use... */
1191 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1192 struct sk_buff
*skb
)
1194 const struct firmware
*fw
= (void *)skb
;
1195 u8 timer
, bundle
, min_size
;
1197 /* It's not a real skb; we just abused the fact that e100_exec_cb
1198 will pass it through to here... */
1201 /* firmware is stored as little endian already */
1202 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1204 /* Read timer, bundle and min_size from end of firmware blob */
1205 timer
= fw
->data
[UCODE_SIZE
* 4];
1206 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1207 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1209 /* Insert user-tunable settings in cb->u.ucode */
1210 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1211 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1212 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1213 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1214 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1215 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1217 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1220 static inline int e100_load_ucode_wait(struct nic
*nic
)
1222 const struct firmware
*fw
;
1223 int err
= 0, counter
= 50;
1224 struct cb
*cb
= nic
->cb_to_clean
;
1226 fw
= e100_request_firmware(nic
);
1227 /* If it's NULL, then no ucode is required */
1228 if (!fw
|| IS_ERR(fw
))
1231 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1232 DPRINTK(PROBE
,ERR
, "ucode cmd failed with error %d\n", err
);
1234 /* must restart cuc */
1235 nic
->cuc_cmd
= cuc_start
;
1237 /* wait for completion */
1238 e100_write_flush(nic
);
1241 /* wait for possibly (ouch) 500ms */
1242 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1244 if (!--counter
) break;
1247 /* ack any interrupts, something could have been set */
1248 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1250 /* if the command failed, or is not OK, notify and return */
1251 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1252 DPRINTK(PROBE
,ERR
, "ucode load failed\n");
1259 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1260 struct sk_buff
*skb
)
1262 cb
->command
= cpu_to_le16(cb_iaaddr
);
1263 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1266 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1268 cb
->command
= cpu_to_le16(cb_dump
);
1269 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1270 offsetof(struct mem
, dump_buf
));
1273 #define NCONFIG_AUTO_SWITCH 0x0080
1274 #define MII_NSC_CONG MII_RESV1
1275 #define NSC_CONG_ENABLE 0x0100
1276 #define NSC_CONG_TXREADY 0x0400
1277 #define ADVERTISE_FC_SUPPORTED 0x0400
1278 static int e100_phy_init(struct nic
*nic
)
1280 struct net_device
*netdev
= nic
->netdev
;
1282 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1284 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1285 for (addr
= 0; addr
< 32; addr
++) {
1286 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1287 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1288 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1289 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1290 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1293 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1297 /* Isolate all the PHY ids */
1298 for (addr
= 0; addr
< 32; addr
++)
1299 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1300 /* Select the discovered PHY */
1301 bmcr
&= ~BMCR_ISOLATE
;
1302 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1305 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1306 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1307 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1308 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1310 /* Handle National tx phys */
1311 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1312 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1313 /* Disable congestion control */
1314 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1315 cong
|= NSC_CONG_TXREADY
;
1316 cong
&= ~NSC_CONG_ENABLE
;
1317 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1320 if (nic
->phy
== phy_82552_v
) {
1321 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
1323 /* Workaround Si not advertising flow-control during autoneg */
1324 advert
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1325 mdio_write(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
, advert
);
1327 /* Reset for the above changes to take effect */
1328 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1330 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1331 } else if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1332 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1333 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1334 /* enable/disable MDI/MDI-X auto-switching. */
1335 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1336 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1342 static int e100_hw_init(struct nic
*nic
)
1348 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1349 if (!in_interrupt() && (err
= e100_self_test(nic
)))
1352 if ((err
= e100_phy_init(nic
)))
1354 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1356 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1358 if ((err
= e100_load_ucode_wait(nic
)))
1360 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1362 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1364 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1365 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1367 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1370 e100_disable_irq(nic
);
1375 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1377 struct net_device
*netdev
= nic
->netdev
;
1378 struct dev_mc_list
*list
= netdev
->mc_list
;
1379 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1381 cb
->command
= cpu_to_le16(cb_multi
);
1382 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1383 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1384 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1388 static void e100_set_multicast_list(struct net_device
*netdev
)
1390 struct nic
*nic
= netdev_priv(netdev
);
1392 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1393 netdev
->mc_count
, netdev
->flags
);
1395 if (netdev
->flags
& IFF_PROMISC
)
1396 nic
->flags
|= promiscuous
;
1398 nic
->flags
&= ~promiscuous
;
1400 if (netdev
->flags
& IFF_ALLMULTI
||
1401 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1402 nic
->flags
|= multicast_all
;
1404 nic
->flags
&= ~multicast_all
;
1406 e100_exec_cb(nic
, NULL
, e100_configure
);
1407 e100_exec_cb(nic
, NULL
, e100_multi
);
1410 static void e100_update_stats(struct nic
*nic
)
1412 struct net_device
*dev
= nic
->netdev
;
1413 struct net_device_stats
*ns
= &dev
->stats
;
1414 struct stats
*s
= &nic
->mem
->stats
;
1415 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1416 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1419 /* Device's stats reporting may take several microseconds to
1420 * complete, so we're always waiting for results of the
1421 * previous command. */
1423 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1425 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1426 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1427 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1428 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1429 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1430 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1431 ns
->collisions
+= nic
->tx_collisions
;
1432 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1433 le32_to_cpu(s
->tx_lost_crs
);
1434 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1435 nic
->rx_over_length_errors
;
1436 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1437 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1438 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1439 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1440 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1441 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1442 le32_to_cpu(s
->rx_alignment_errors
) +
1443 le32_to_cpu(s
->rx_short_frame_errors
) +
1444 le32_to_cpu(s
->rx_cdt_errors
);
1445 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1446 nic
->tx_single_collisions
+=
1447 le32_to_cpu(s
->tx_single_collisions
);
1448 nic
->tx_multiple_collisions
+=
1449 le32_to_cpu(s
->tx_multiple_collisions
);
1450 if (nic
->mac
>= mac_82558_D101_A4
) {
1451 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1452 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1453 nic
->rx_fc_unsupported
+=
1454 le32_to_cpu(s
->fc_rcv_unsupported
);
1455 if (nic
->mac
>= mac_82559_D101M
) {
1456 nic
->tx_tco_frames
+=
1457 le16_to_cpu(s
->xmt_tco_frames
);
1458 nic
->rx_tco_frames
+=
1459 le16_to_cpu(s
->rcv_tco_frames
);
1465 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1466 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1469 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1471 /* Adjust inter-frame-spacing (IFS) between two transmits if
1472 * we're getting collisions on a half-duplex connection. */
1474 if (duplex
== DUPLEX_HALF
) {
1475 u32 prev
= nic
->adaptive_ifs
;
1476 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1478 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1479 (nic
->tx_frames
> min_frames
)) {
1480 if (nic
->adaptive_ifs
< 60)
1481 nic
->adaptive_ifs
+= 5;
1482 } else if (nic
->tx_frames
< min_frames
) {
1483 if (nic
->adaptive_ifs
>= 5)
1484 nic
->adaptive_ifs
-= 5;
1486 if (nic
->adaptive_ifs
!= prev
)
1487 e100_exec_cb(nic
, NULL
, e100_configure
);
1491 static void e100_watchdog(unsigned long data
)
1493 struct nic
*nic
= (struct nic
*)data
;
1494 struct ethtool_cmd cmd
;
1496 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1498 /* mii library handles link maintenance tasks */
1500 mii_ethtool_gset(&nic
->mii
, &cmd
);
1502 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1503 printk(KERN_INFO
"e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1505 cmd
.speed
== SPEED_100
? "100" : "10",
1506 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1507 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1508 printk(KERN_INFO
"e100: %s NIC Link is Down\n",
1512 mii_check_link(&nic
->mii
);
1514 /* Software generated interrupt to recover from (rare) Rx
1515 * allocation failure.
1516 * Unfortunately have to use a spinlock to not re-enable interrupts
1517 * accidentally, due to hardware that shares a register between the
1518 * interrupt mask bit and the SW Interrupt generation bit */
1519 spin_lock_irq(&nic
->cmd_lock
);
1520 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1521 e100_write_flush(nic
);
1522 spin_unlock_irq(&nic
->cmd_lock
);
1524 e100_update_stats(nic
);
1525 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1527 if (nic
->mac
<= mac_82557_D100_C
)
1528 /* Issue a multicast command to workaround a 557 lock up */
1529 e100_set_multicast_list(nic
->netdev
);
1531 if (nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1532 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1533 nic
->flags
|= ich_10h_workaround
;
1535 nic
->flags
&= ~ich_10h_workaround
;
1537 mod_timer(&nic
->watchdog
,
1538 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1541 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1542 struct sk_buff
*skb
)
1544 cb
->command
= nic
->tx_command
;
1545 /* interrupt every 16 packets regardless of delay */
1546 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1547 cb
->command
|= cpu_to_le16(cb_i
);
1548 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1549 cb
->u
.tcb
.tcb_byte_count
= 0;
1550 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1551 cb
->u
.tcb
.tbd_count
= 1;
1552 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1553 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1554 /* check for mapping failure? */
1555 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1558 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1560 struct nic
*nic
= netdev_priv(netdev
);
1563 if (nic
->flags
& ich_10h_workaround
) {
1564 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1565 Issue a NOP command followed by a 1us delay before
1566 issuing the Tx command. */
1567 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1568 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1572 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1576 /* We queued the skb, but now we're out of space. */
1577 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1578 netif_stop_queue(netdev
);
1581 /* This is a hard error - log it. */
1582 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1583 netif_stop_queue(netdev
);
1587 netdev
->trans_start
= jiffies
;
1591 static int e100_tx_clean(struct nic
*nic
)
1593 struct net_device
*dev
= nic
->netdev
;
1597 spin_lock(&nic
->cb_lock
);
1599 /* Clean CBs marked complete */
1600 for (cb
= nic
->cb_to_clean
;
1601 cb
->status
& cpu_to_le16(cb_complete
);
1602 cb
= nic
->cb_to_clean
= cb
->next
) {
1603 DPRINTK(TX_DONE
, DEBUG
, "cb[%d]->status = 0x%04X\n",
1604 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1607 if (likely(cb
->skb
!= NULL
)) {
1608 dev
->stats
.tx_packets
++;
1609 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1611 pci_unmap_single(nic
->pdev
,
1612 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1613 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1615 dev_kfree_skb_any(cb
->skb
);
1623 spin_unlock(&nic
->cb_lock
);
1625 /* Recover from running out of Tx resources in xmit_frame */
1626 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1627 netif_wake_queue(nic
->netdev
);
1632 static void e100_clean_cbs(struct nic
*nic
)
1635 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1636 struct cb
*cb
= nic
->cb_to_clean
;
1638 pci_unmap_single(nic
->pdev
,
1639 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1640 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1642 dev_kfree_skb(cb
->skb
);
1644 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1647 pci_free_consistent(nic
->pdev
,
1648 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1649 nic
->cbs
, nic
->cbs_dma_addr
);
1653 nic
->cuc_cmd
= cuc_start
;
1654 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1658 static int e100_alloc_cbs(struct nic
*nic
)
1661 unsigned int i
, count
= nic
->params
.cbs
.count
;
1663 nic
->cuc_cmd
= cuc_start
;
1664 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1667 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1668 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1672 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1673 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1674 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1676 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1677 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1678 ((i
+1) % count
) * sizeof(struct cb
));
1682 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1683 nic
->cbs_avail
= count
;
1688 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1690 if (!nic
->rxs
) return;
1691 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1693 /* handle init time starts */
1694 if (!rx
) rx
= nic
->rxs
;
1696 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1698 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1699 nic
->ru_running
= RU_RUNNING
;
1703 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1704 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1706 if (!(rx
->skb
= netdev_alloc_skb(nic
->netdev
, RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1709 /* Align, init, and map the RFD. */
1710 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1711 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1712 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1713 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1715 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1716 dev_kfree_skb_any(rx
->skb
);
1722 /* Link the RFD to end of RFA by linking previous RFD to
1723 * this one. We are safe to touch the previous RFD because
1724 * it is protected by the before last buffer's el bit being set */
1725 if (rx
->prev
->skb
) {
1726 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1727 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1728 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1729 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1735 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1736 unsigned int *work_done
, unsigned int work_to_do
)
1738 struct net_device
*dev
= nic
->netdev
;
1739 struct sk_buff
*skb
= rx
->skb
;
1740 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1741 u16 rfd_status
, actual_size
;
1743 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1746 /* Need to sync before taking a peek at cb_complete bit */
1747 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1748 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1749 rfd_status
= le16_to_cpu(rfd
->status
);
1751 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1753 /* If data isn't ready, nothing to indicate */
1754 if (unlikely(!(rfd_status
& cb_complete
))) {
1755 /* If the next buffer has the el bit, but we think the receiver
1756 * is still running, check to see if it really stopped while
1757 * we had interrupts off.
1758 * This allows for a fast restart without re-enabling
1760 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1761 (RU_RUNNING
== nic
->ru_running
))
1763 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1764 nic
->ru_running
= RU_SUSPENDED
;
1768 /* Get actual data size */
1769 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1770 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1771 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1774 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1775 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1777 /* If this buffer has the el bit, but we think the receiver
1778 * is still running, check to see if it really stopped while
1779 * we had interrupts off.
1780 * This allows for a fast restart without re-enabling interrupts.
1781 * This can happen when the RU sees the size change but also sees
1782 * the el bit set. */
1783 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1784 (RU_RUNNING
== nic
->ru_running
)) {
1786 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1787 nic
->ru_running
= RU_SUSPENDED
;
1790 /* Pull off the RFD and put the actual data (minus eth hdr) */
1791 skb_reserve(skb
, sizeof(struct rfd
));
1792 skb_put(skb
, actual_size
);
1793 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1795 if (unlikely(!(rfd_status
& cb_ok
))) {
1796 /* Don't indicate if hardware indicates errors */
1797 dev_kfree_skb_any(skb
);
1798 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1799 /* Don't indicate oversized frames */
1800 nic
->rx_over_length_errors
++;
1801 dev_kfree_skb_any(skb
);
1803 dev
->stats
.rx_packets
++;
1804 dev
->stats
.rx_bytes
+= actual_size
;
1805 netif_receive_skb(skb
);
1815 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1816 unsigned int work_to_do
)
1819 int restart_required
= 0, err
= 0;
1820 struct rx
*old_before_last_rx
, *new_before_last_rx
;
1821 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
1823 /* Indicate newly arrived packets */
1824 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1825 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1826 /* Hit quota or no more to clean */
1827 if (-EAGAIN
== err
|| -ENODATA
== err
)
1832 /* On EAGAIN, hit quota so have more work to do, restart once
1833 * cleanup is complete.
1834 * Else, are we already rnr? then pay attention!!! this ensures that
1835 * the state machine progression never allows a start with a
1836 * partially cleaned list, avoiding a race between hardware
1837 * and rx_to_clean when in NAPI mode */
1838 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
1839 restart_required
= 1;
1841 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1842 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
1844 /* Alloc new skbs to refill list */
1845 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1846 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
1847 break; /* Better luck next time (see watchdog) */
1850 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1851 if (new_before_last_rx
!= old_before_last_rx
) {
1852 /* Set the el-bit on the buffer that is before the last buffer.
1853 * This lets us update the next pointer on the last buffer
1854 * without worrying about hardware touching it.
1855 * We set the size to 0 to prevent hardware from touching this
1857 * When the hardware hits the before last buffer with el-bit
1858 * and size of 0, it will RNR interrupt, the RUS will go into
1859 * the No Resources state. It will not complete nor write to
1861 new_before_last_rfd
=
1862 (struct rfd
*)new_before_last_rx
->skb
->data
;
1863 new_before_last_rfd
->size
= 0;
1864 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
1865 pci_dma_sync_single_for_device(nic
->pdev
,
1866 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1867 PCI_DMA_BIDIRECTIONAL
);
1869 /* Now that we have a new stopping point, we can clear the old
1870 * stopping point. We must sync twice to get the proper
1871 * ordering on the hardware side of things. */
1872 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
1873 pci_dma_sync_single_for_device(nic
->pdev
,
1874 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1875 PCI_DMA_BIDIRECTIONAL
);
1876 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
1877 pci_dma_sync_single_for_device(nic
->pdev
,
1878 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1879 PCI_DMA_BIDIRECTIONAL
);
1882 if (restart_required
) {
1884 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1885 e100_start_receiver(nic
, nic
->rx_to_clean
);
1891 static void e100_rx_clean_list(struct nic
*nic
)
1894 unsigned int i
, count
= nic
->params
.rfds
.count
;
1896 nic
->ru_running
= RU_UNINITIALIZED
;
1899 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1901 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1902 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1903 dev_kfree_skb(rx
->skb
);
1910 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1913 static int e100_rx_alloc_list(struct nic
*nic
)
1916 unsigned int i
, count
= nic
->params
.rfds
.count
;
1917 struct rfd
*before_last
;
1919 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1920 nic
->ru_running
= RU_UNINITIALIZED
;
1922 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
1925 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1926 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1927 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1928 if (e100_rx_alloc_skb(nic
, rx
)) {
1929 e100_rx_clean_list(nic
);
1933 /* Set the el-bit on the buffer that is before the last buffer.
1934 * This lets us update the next pointer on the last buffer without
1935 * worrying about hardware touching it.
1936 * We set the size to 0 to prevent hardware from touching this buffer.
1937 * When the hardware hits the before last buffer with el-bit and size
1938 * of 0, it will RNR interrupt, the RU will go into the No Resources
1939 * state. It will not complete nor write to this buffer. */
1940 rx
= nic
->rxs
->prev
->prev
;
1941 before_last
= (struct rfd
*)rx
->skb
->data
;
1942 before_last
->command
|= cpu_to_le16(cb_el
);
1943 before_last
->size
= 0;
1944 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
1945 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1947 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1948 nic
->ru_running
= RU_SUSPENDED
;
1953 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
1955 struct net_device
*netdev
= dev_id
;
1956 struct nic
*nic
= netdev_priv(netdev
);
1957 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
1959 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1961 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1962 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1965 /* Ack interrupt(s) */
1966 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1968 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1969 if (stat_ack
& stat_ack_rnr
)
1970 nic
->ru_running
= RU_SUSPENDED
;
1972 if (likely(napi_schedule_prep(&nic
->napi
))) {
1973 e100_disable_irq(nic
);
1974 __napi_schedule(&nic
->napi
);
1980 static int e100_poll(struct napi_struct
*napi
, int budget
)
1982 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
1983 unsigned int work_done
= 0;
1985 e100_rx_clean(nic
, &work_done
, budget
);
1988 /* If budget not fully consumed, exit the polling mode */
1989 if (work_done
< budget
) {
1990 napi_complete(napi
);
1991 e100_enable_irq(nic
);
1997 #ifdef CONFIG_NET_POLL_CONTROLLER
1998 static void e100_netpoll(struct net_device
*netdev
)
2000 struct nic
*nic
= netdev_priv(netdev
);
2002 e100_disable_irq(nic
);
2003 e100_intr(nic
->pdev
->irq
, netdev
);
2005 e100_enable_irq(nic
);
2009 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2011 struct nic
*nic
= netdev_priv(netdev
);
2012 struct sockaddr
*addr
= p
;
2014 if (!is_valid_ether_addr(addr
->sa_data
))
2015 return -EADDRNOTAVAIL
;
2017 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2018 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2023 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2025 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2027 netdev
->mtu
= new_mtu
;
2031 static int e100_asf(struct nic
*nic
)
2033 /* ASF can be enabled from eeprom */
2034 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2035 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2036 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2037 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
2040 static int e100_up(struct nic
*nic
)
2044 if ((err
= e100_rx_alloc_list(nic
)))
2046 if ((err
= e100_alloc_cbs(nic
)))
2047 goto err_rx_clean_list
;
2048 if ((err
= e100_hw_init(nic
)))
2050 e100_set_multicast_list(nic
->netdev
);
2051 e100_start_receiver(nic
, NULL
);
2052 mod_timer(&nic
->watchdog
, jiffies
);
2053 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2054 nic
->netdev
->name
, nic
->netdev
)))
2056 netif_wake_queue(nic
->netdev
);
2057 napi_enable(&nic
->napi
);
2058 /* enable ints _after_ enabling poll, preventing a race between
2059 * disable ints+schedule */
2060 e100_enable_irq(nic
);
2064 del_timer_sync(&nic
->watchdog
);
2066 e100_clean_cbs(nic
);
2068 e100_rx_clean_list(nic
);
2072 static void e100_down(struct nic
*nic
)
2074 /* wait here for poll to complete */
2075 napi_disable(&nic
->napi
);
2076 netif_stop_queue(nic
->netdev
);
2078 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2079 del_timer_sync(&nic
->watchdog
);
2080 netif_carrier_off(nic
->netdev
);
2081 e100_clean_cbs(nic
);
2082 e100_rx_clean_list(nic
);
2085 static void e100_tx_timeout(struct net_device
*netdev
)
2087 struct nic
*nic
= netdev_priv(netdev
);
2089 /* Reset outside of interrupt context, to avoid request_irq
2090 * in interrupt context */
2091 schedule_work(&nic
->tx_timeout_task
);
2094 static void e100_tx_timeout_task(struct work_struct
*work
)
2096 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2097 struct net_device
*netdev
= nic
->netdev
;
2099 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2100 ioread8(&nic
->csr
->scb
.status
));
2101 e100_down(netdev_priv(netdev
));
2102 e100_up(netdev_priv(netdev
));
2105 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2108 struct sk_buff
*skb
;
2110 /* Use driver resources to perform internal MAC or PHY
2111 * loopback test. A single packet is prepared and transmitted
2112 * in loopback mode, and the test passes if the received
2113 * packet compares byte-for-byte to the transmitted packet. */
2115 if ((err
= e100_rx_alloc_list(nic
)))
2117 if ((err
= e100_alloc_cbs(nic
)))
2120 /* ICH PHY loopback is broken so do MAC loopback instead */
2121 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2122 loopback_mode
= lb_mac
;
2124 nic
->loopback
= loopback_mode
;
2125 if ((err
= e100_hw_init(nic
)))
2126 goto err_loopback_none
;
2128 if (loopback_mode
== lb_phy
)
2129 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2132 e100_start_receiver(nic
, NULL
);
2134 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2136 goto err_loopback_none
;
2138 skb_put(skb
, ETH_DATA_LEN
);
2139 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2140 e100_xmit_frame(skb
, nic
->netdev
);
2144 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2145 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2147 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2148 skb
->data
, ETH_DATA_LEN
))
2152 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2153 nic
->loopback
= lb_none
;
2154 e100_clean_cbs(nic
);
2157 e100_rx_clean_list(nic
);
2161 #define MII_LED_CONTROL 0x1B
2162 #define E100_82552_LED_OVERRIDE 0x19
2163 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2164 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2165 static void e100_blink_led(unsigned long data
)
2167 struct nic
*nic
= (struct nic
*)data
;
2174 u16 led_reg
= MII_LED_CONTROL
;
2176 if (nic
->phy
== phy_82552_v
) {
2177 led_reg
= E100_82552_LED_OVERRIDE
;
2179 nic
->leds
= (nic
->leds
== E100_82552_LED_ON
) ?
2180 E100_82552_LED_OFF
: E100_82552_LED_ON
;
2182 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2183 (nic
->mac
< mac_82559_D101M
) ? led_on_557
:
2186 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, led_reg
, nic
->leds
);
2187 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2190 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2192 struct nic
*nic
= netdev_priv(netdev
);
2193 return mii_ethtool_gset(&nic
->mii
, cmd
);
2196 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2198 struct nic
*nic
= netdev_priv(netdev
);
2201 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2202 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2203 e100_exec_cb(nic
, NULL
, e100_configure
);
2208 static void e100_get_drvinfo(struct net_device
*netdev
,
2209 struct ethtool_drvinfo
*info
)
2211 struct nic
*nic
= netdev_priv(netdev
);
2212 strcpy(info
->driver
, DRV_NAME
);
2213 strcpy(info
->version
, DRV_VERSION
);
2214 strcpy(info
->fw_version
, "N/A");
2215 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2218 #define E100_PHY_REGS 0x1C
2219 static int e100_get_regs_len(struct net_device
*netdev
)
2221 struct nic
*nic
= netdev_priv(netdev
);
2222 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2225 static void e100_get_regs(struct net_device
*netdev
,
2226 struct ethtool_regs
*regs
, void *p
)
2228 struct nic
*nic
= netdev_priv(netdev
);
2232 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2233 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2234 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2235 ioread16(&nic
->csr
->scb
.status
);
2236 for (i
= E100_PHY_REGS
; i
>= 0; i
--)
2237 buff
[1 + E100_PHY_REGS
- i
] =
2238 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2239 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2240 e100_exec_cb(nic
, NULL
, e100_dump
);
2242 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2243 sizeof(nic
->mem
->dump_buf
));
2246 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2248 struct nic
*nic
= netdev_priv(netdev
);
2249 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2250 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2253 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2255 struct nic
*nic
= netdev_priv(netdev
);
2257 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2258 !device_can_wakeup(&nic
->pdev
->dev
))
2262 nic
->flags
|= wol_magic
;
2264 nic
->flags
&= ~wol_magic
;
2266 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2268 e100_exec_cb(nic
, NULL
, e100_configure
);
2273 static u32
e100_get_msglevel(struct net_device
*netdev
)
2275 struct nic
*nic
= netdev_priv(netdev
);
2276 return nic
->msg_enable
;
2279 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2281 struct nic
*nic
= netdev_priv(netdev
);
2282 nic
->msg_enable
= value
;
2285 static int e100_nway_reset(struct net_device
*netdev
)
2287 struct nic
*nic
= netdev_priv(netdev
);
2288 return mii_nway_restart(&nic
->mii
);
2291 static u32
e100_get_link(struct net_device
*netdev
)
2293 struct nic
*nic
= netdev_priv(netdev
);
2294 return mii_link_ok(&nic
->mii
);
2297 static int e100_get_eeprom_len(struct net_device
*netdev
)
2299 struct nic
*nic
= netdev_priv(netdev
);
2300 return nic
->eeprom_wc
<< 1;
2303 #define E100_EEPROM_MAGIC 0x1234
2304 static int e100_get_eeprom(struct net_device
*netdev
,
2305 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2307 struct nic
*nic
= netdev_priv(netdev
);
2309 eeprom
->magic
= E100_EEPROM_MAGIC
;
2310 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2315 static int e100_set_eeprom(struct net_device
*netdev
,
2316 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2318 struct nic
*nic
= netdev_priv(netdev
);
2320 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2323 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2325 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2326 (eeprom
->len
>> 1) + 1);
2329 static void e100_get_ringparam(struct net_device
*netdev
,
2330 struct ethtool_ringparam
*ring
)
2332 struct nic
*nic
= netdev_priv(netdev
);
2333 struct param_range
*rfds
= &nic
->params
.rfds
;
2334 struct param_range
*cbs
= &nic
->params
.cbs
;
2336 ring
->rx_max_pending
= rfds
->max
;
2337 ring
->tx_max_pending
= cbs
->max
;
2338 ring
->rx_mini_max_pending
= 0;
2339 ring
->rx_jumbo_max_pending
= 0;
2340 ring
->rx_pending
= rfds
->count
;
2341 ring
->tx_pending
= cbs
->count
;
2342 ring
->rx_mini_pending
= 0;
2343 ring
->rx_jumbo_pending
= 0;
2346 static int e100_set_ringparam(struct net_device
*netdev
,
2347 struct ethtool_ringparam
*ring
)
2349 struct nic
*nic
= netdev_priv(netdev
);
2350 struct param_range
*rfds
= &nic
->params
.rfds
;
2351 struct param_range
*cbs
= &nic
->params
.cbs
;
2353 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2356 if (netif_running(netdev
))
2358 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2359 rfds
->count
= min(rfds
->count
, rfds
->max
);
2360 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2361 cbs
->count
= min(cbs
->count
, cbs
->max
);
2362 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2363 rfds
->count
, cbs
->count
);
2364 if (netif_running(netdev
))
2370 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2371 "Link test (on/offline)",
2372 "Eeprom test (on/offline)",
2373 "Self test (offline)",
2374 "Mac loopback (offline)",
2375 "Phy loopback (offline)",
2377 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2379 static void e100_diag_test(struct net_device
*netdev
,
2380 struct ethtool_test
*test
, u64
*data
)
2382 struct ethtool_cmd cmd
;
2383 struct nic
*nic
= netdev_priv(netdev
);
2386 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2387 data
[0] = !mii_link_ok(&nic
->mii
);
2388 data
[1] = e100_eeprom_load(nic
);
2389 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2391 /* save speed, duplex & autoneg settings */
2392 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2394 if (netif_running(netdev
))
2396 data
[2] = e100_self_test(nic
);
2397 data
[3] = e100_loopback_test(nic
, lb_mac
);
2398 data
[4] = e100_loopback_test(nic
, lb_phy
);
2400 /* restore speed, duplex & autoneg settings */
2401 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2403 if (netif_running(netdev
))
2406 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2407 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2409 msleep_interruptible(4 * 1000);
2412 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2414 struct nic
*nic
= netdev_priv(netdev
);
2415 u16 led_reg
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OVERRIDE
:
2418 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2419 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2420 mod_timer(&nic
->blink_timer
, jiffies
);
2421 msleep_interruptible(data
* 1000);
2422 del_timer_sync(&nic
->blink_timer
);
2423 mdio_write(netdev
, nic
->mii
.phy_id
, led_reg
, 0);
2428 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2429 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2430 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2431 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2432 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2433 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2434 "tx_heartbeat_errors", "tx_window_errors",
2435 /* device-specific stats */
2436 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2437 "tx_flow_control_pause", "rx_flow_control_pause",
2438 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2440 #define E100_NET_STATS_LEN 21
2441 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2443 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2447 return E100_TEST_LEN
;
2449 return E100_STATS_LEN
;
2455 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2456 struct ethtool_stats
*stats
, u64
*data
)
2458 struct nic
*nic
= netdev_priv(netdev
);
2461 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2462 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2464 data
[i
++] = nic
->tx_deferred
;
2465 data
[i
++] = nic
->tx_single_collisions
;
2466 data
[i
++] = nic
->tx_multiple_collisions
;
2467 data
[i
++] = nic
->tx_fc_pause
;
2468 data
[i
++] = nic
->rx_fc_pause
;
2469 data
[i
++] = nic
->rx_fc_unsupported
;
2470 data
[i
++] = nic
->tx_tco_frames
;
2471 data
[i
++] = nic
->rx_tco_frames
;
2474 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2476 switch (stringset
) {
2478 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2481 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2486 static const struct ethtool_ops e100_ethtool_ops
= {
2487 .get_settings
= e100_get_settings
,
2488 .set_settings
= e100_set_settings
,
2489 .get_drvinfo
= e100_get_drvinfo
,
2490 .get_regs_len
= e100_get_regs_len
,
2491 .get_regs
= e100_get_regs
,
2492 .get_wol
= e100_get_wol
,
2493 .set_wol
= e100_set_wol
,
2494 .get_msglevel
= e100_get_msglevel
,
2495 .set_msglevel
= e100_set_msglevel
,
2496 .nway_reset
= e100_nway_reset
,
2497 .get_link
= e100_get_link
,
2498 .get_eeprom_len
= e100_get_eeprom_len
,
2499 .get_eeprom
= e100_get_eeprom
,
2500 .set_eeprom
= e100_set_eeprom
,
2501 .get_ringparam
= e100_get_ringparam
,
2502 .set_ringparam
= e100_set_ringparam
,
2503 .self_test
= e100_diag_test
,
2504 .get_strings
= e100_get_strings
,
2505 .phys_id
= e100_phys_id
,
2506 .get_ethtool_stats
= e100_get_ethtool_stats
,
2507 .get_sset_count
= e100_get_sset_count
,
2510 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2512 struct nic
*nic
= netdev_priv(netdev
);
2514 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2517 static int e100_alloc(struct nic
*nic
)
2519 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2521 return nic
->mem
? 0 : -ENOMEM
;
2524 static void e100_free(struct nic
*nic
)
2527 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2528 nic
->mem
, nic
->dma_addr
);
2533 static int e100_open(struct net_device
*netdev
)
2535 struct nic
*nic
= netdev_priv(netdev
);
2538 netif_carrier_off(netdev
);
2539 if ((err
= e100_up(nic
)))
2540 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2544 static int e100_close(struct net_device
*netdev
)
2546 e100_down(netdev_priv(netdev
));
2550 static const struct net_device_ops e100_netdev_ops
= {
2551 .ndo_open
= e100_open
,
2552 .ndo_stop
= e100_close
,
2553 .ndo_start_xmit
= e100_xmit_frame
,
2554 .ndo_validate_addr
= eth_validate_addr
,
2555 .ndo_set_multicast_list
= e100_set_multicast_list
,
2556 .ndo_set_mac_address
= e100_set_mac_address
,
2557 .ndo_change_mtu
= e100_change_mtu
,
2558 .ndo_do_ioctl
= e100_do_ioctl
,
2559 .ndo_tx_timeout
= e100_tx_timeout
,
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 .ndo_poll_controller
= e100_netpoll
,
2565 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2566 const struct pci_device_id
*ent
)
2568 struct net_device
*netdev
;
2572 if (!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2573 if (((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2574 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2578 netdev
->netdev_ops
= &e100_netdev_ops
;
2579 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2580 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2581 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2583 nic
= netdev_priv(netdev
);
2584 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2585 nic
->netdev
= netdev
;
2587 nic
->msg_enable
= (1 << debug
) - 1;
2588 pci_set_drvdata(pdev
, netdev
);
2590 if ((err
= pci_enable_device(pdev
))) {
2591 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2592 goto err_out_free_dev
;
2595 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2596 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2597 "base address, aborting.\n");
2599 goto err_out_disable_pdev
;
2602 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2603 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2604 goto err_out_disable_pdev
;
2607 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
2608 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2609 goto err_out_free_res
;
2612 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2615 DPRINTK(PROBE
, INFO
, "using i/o access mode\n");
2617 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2619 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2621 goto err_out_free_res
;
2624 if (ent
->driver_data
)
2629 e100_get_defaults(nic
);
2631 /* locks must be initialized before calling hw_reset */
2632 spin_lock_init(&nic
->cb_lock
);
2633 spin_lock_init(&nic
->cmd_lock
);
2634 spin_lock_init(&nic
->mdio_lock
);
2636 /* Reset the device before pci_set_master() in case device is in some
2637 * funky state and has an interrupt pending - hint: we don't have the
2638 * interrupt handler registered yet. */
2641 pci_set_master(pdev
);
2643 init_timer(&nic
->watchdog
);
2644 nic
->watchdog
.function
= e100_watchdog
;
2645 nic
->watchdog
.data
= (unsigned long)nic
;
2646 init_timer(&nic
->blink_timer
);
2647 nic
->blink_timer
.function
= e100_blink_led
;
2648 nic
->blink_timer
.data
= (unsigned long)nic
;
2650 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2652 if ((err
= e100_alloc(nic
))) {
2653 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2654 goto err_out_iounmap
;
2657 if ((err
= e100_eeprom_load(nic
)))
2662 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2663 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2664 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2665 if (!eeprom_bad_csum_allow
) {
2666 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2667 "EEPROM, aborting.\n");
2671 DPRINTK(PROBE
, ERR
, "Invalid MAC address from EEPROM, "
2672 "you MUST configure one.\n");
2676 /* Wol magic packet can be enabled from eeprom */
2677 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2678 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
)) {
2679 nic
->flags
|= wol_magic
;
2680 device_set_wakeup_enable(&pdev
->dev
, true);
2683 /* ack any pending wake events, disable PME */
2684 pci_pme_active(pdev
, false);
2686 strcpy(netdev
->name
, "eth%d");
2687 if ((err
= register_netdev(netdev
))) {
2688 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2692 DPRINTK(PROBE
, INFO
, "addr 0x%llx, irq %d, MAC addr %pM\n",
2693 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2694 pdev
->irq
, netdev
->dev_addr
);
2701 pci_iounmap(pdev
, nic
->csr
);
2703 pci_release_regions(pdev
);
2704 err_out_disable_pdev
:
2705 pci_disable_device(pdev
);
2707 pci_set_drvdata(pdev
, NULL
);
2708 free_netdev(netdev
);
2712 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2714 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2717 struct nic
*nic
= netdev_priv(netdev
);
2718 unregister_netdev(netdev
);
2720 pci_iounmap(pdev
, nic
->csr
);
2721 free_netdev(netdev
);
2722 pci_release_regions(pdev
);
2723 pci_disable_device(pdev
);
2724 pci_set_drvdata(pdev
, NULL
);
2728 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2729 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2730 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2731 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2733 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2734 struct nic
*nic
= netdev_priv(netdev
);
2736 if (netif_running(netdev
))
2738 netif_device_detach(netdev
);
2740 pci_save_state(pdev
);
2742 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2743 /* enable reverse auto-negotiation */
2744 if (nic
->phy
== phy_82552_v
) {
2745 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
2746 E100_82552_SMARTSPEED
);
2748 mdio_write(netdev
, nic
->mii
.phy_id
,
2749 E100_82552_SMARTSPEED
, smartspeed
|
2750 E100_82552_REV_ANEG
| E100_82552_ANEG_NOW
);
2752 if (pci_enable_wake(pdev
, PCI_D3cold
, true))
2753 pci_enable_wake(pdev
, PCI_D3hot
, true);
2755 pci_enable_wake(pdev
, PCI_D3hot
, false);
2758 pci_disable_device(pdev
);
2759 pci_set_power_state(pdev
, PCI_D3hot
);
2765 static int e100_resume(struct pci_dev
*pdev
)
2767 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2768 struct nic
*nic
= netdev_priv(netdev
);
2770 pci_set_power_state(pdev
, PCI_D0
);
2771 pci_restore_state(pdev
);
2772 /* ack any pending wake events, disable PME */
2773 pci_enable_wake(pdev
, 0, 0);
2775 /* disbale reverse auto-negotiation */
2776 if (nic
->phy
== phy_82552_v
) {
2777 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
2778 E100_82552_SMARTSPEED
);
2780 mdio_write(netdev
, nic
->mii
.phy_id
,
2781 E100_82552_SMARTSPEED
,
2782 smartspeed
& ~(E100_82552_REV_ANEG
));
2785 netif_device_attach(netdev
);
2786 if (netif_running(netdev
))
2791 #endif /* CONFIG_PM */
2793 static void e100_shutdown(struct pci_dev
*pdev
)
2795 e100_suspend(pdev
, PMSG_SUSPEND
);
2798 /* ------------------ PCI Error Recovery infrastructure -------------- */
2800 * e100_io_error_detected - called when PCI error is detected.
2801 * @pdev: Pointer to PCI device
2802 * @state: The current pci connection state
2804 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
2806 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2807 struct nic
*nic
= netdev_priv(netdev
);
2809 /* Similar to calling e100_down(), but avoids adapter I/O. */
2812 /* Detach; put netif into a state similar to hotplug unplug. */
2813 napi_enable(&nic
->napi
);
2814 netif_device_detach(netdev
);
2815 pci_disable_device(pdev
);
2817 /* Request a slot reset. */
2818 return PCI_ERS_RESULT_NEED_RESET
;
2822 * e100_io_slot_reset - called after the pci bus has been reset.
2823 * @pdev: Pointer to PCI device
2825 * Restart the card from scratch.
2827 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
2829 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2830 struct nic
*nic
= netdev_priv(netdev
);
2832 if (pci_enable_device(pdev
)) {
2833 printk(KERN_ERR
"e100: Cannot re-enable PCI device after reset.\n");
2834 return PCI_ERS_RESULT_DISCONNECT
;
2836 pci_set_master(pdev
);
2838 /* Only one device per card can do a reset */
2839 if (0 != PCI_FUNC(pdev
->devfn
))
2840 return PCI_ERS_RESULT_RECOVERED
;
2844 return PCI_ERS_RESULT_RECOVERED
;
2848 * e100_io_resume - resume normal operations
2849 * @pdev: Pointer to PCI device
2851 * Resume normal operations after an error recovery
2852 * sequence has been completed.
2854 static void e100_io_resume(struct pci_dev
*pdev
)
2856 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2857 struct nic
*nic
= netdev_priv(netdev
);
2859 /* ack any pending wake events, disable PME */
2860 pci_enable_wake(pdev
, 0, 0);
2862 netif_device_attach(netdev
);
2863 if (netif_running(netdev
)) {
2865 mod_timer(&nic
->watchdog
, jiffies
);
2869 static struct pci_error_handlers e100_err_handler
= {
2870 .error_detected
= e100_io_error_detected
,
2871 .slot_reset
= e100_io_slot_reset
,
2872 .resume
= e100_io_resume
,
2875 static struct pci_driver e100_driver
= {
2877 .id_table
= e100_id_table
,
2878 .probe
= e100_probe
,
2879 .remove
= __devexit_p(e100_remove
),
2881 /* Power Management hooks */
2882 .suspend
= e100_suspend
,
2883 .resume
= e100_resume
,
2885 .shutdown
= e100_shutdown
,
2886 .err_handler
= &e100_err_handler
,
2889 static int __init
e100_init_module(void)
2891 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2892 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2893 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2895 return pci_register_driver(&e100_driver
);
2898 static void __exit
e100_cleanup_module(void)
2900 pci_unregister_driver(&e100_driver
);
2903 module_init(e100_init_module
);
2904 module_exit(e100_cleanup_module
);