x86: smpboot - wakeup_secondary should be done via __cpuinit section
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / edac_core.h
blob6ad95c8d636315960d392be226078a9b13796cc6
1 /*
2 * Defines, structures, APIs for edac_core module
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35 #include <linux/sysdev.h>
36 #include <linux/workqueue.h>
38 #define EDAC_MC_LABEL_LEN 31
39 #define EDAC_DEVICE_NAME_LEN 31
40 #define EDAC_ATTRIB_VALUE_LEN 15
41 #define MC_PROC_NAME_MAX_LEN 7
43 #if PAGE_SHIFT < 20
44 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
45 #else /* PAGE_SHIFT > 20 */
46 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
47 #endif
49 #define edac_printk(level, prefix, fmt, arg...) \
50 printk(level "EDAC " prefix ": " fmt, ##arg)
52 #define edac_printk_verbose(level, prefix, fmt, arg...) \
53 printk(level "EDAC " prefix ": " "in %s, line at %d: " fmt, \
54 __FILE__, __LINE__, ##arg)
56 #define edac_mc_printk(mci, level, fmt, arg...) \
57 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
59 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
60 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
62 /* edac_device printk */
63 #define edac_device_printk(ctl, level, fmt, arg...) \
64 printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
66 /* edac_pci printk */
67 #define edac_pci_printk(ctl, level, fmt, arg...) \
68 printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
70 /* prefixes for edac_printk() and edac_mc_printk() */
71 #define EDAC_MC "MC"
72 #define EDAC_PCI "PCI"
73 #define EDAC_DEBUG "DEBUG"
75 #ifdef CONFIG_EDAC_DEBUG
76 extern int edac_debug_level;
78 #ifndef CONFIG_EDAC_DEBUG_VERBOSE
79 #define edac_debug_printk(level, fmt, arg...) \
80 do { \
81 if (level <= edac_debug_level) \
82 edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
83 } while (0)
84 #else /* CONFIG_EDAC_DEBUG_VERBOSE */
85 #define edac_debug_printk(level, fmt, arg...) \
86 do { \
87 if (level <= edac_debug_level) \
88 edac_printk_verbose(KERN_DEBUG, EDAC_DEBUG, fmt, \
89 ##arg); \
90 } while (0)
91 #endif
93 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
94 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
95 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
96 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
97 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
99 #else /* !CONFIG_EDAC_DEBUG */
101 #define debugf0( ... )
102 #define debugf1( ... )
103 #define debugf2( ... )
104 #define debugf3( ... )
105 #define debugf4( ... )
107 #endif /* !CONFIG_EDAC_DEBUG */
109 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
110 PCI_DEVICE_ID_ ## vend ## _ ## dev
112 #define edac_dev_name(dev) (dev)->dev_name
114 /* memory devices */
115 enum dev_type {
116 DEV_UNKNOWN = 0,
117 DEV_X1,
118 DEV_X2,
119 DEV_X4,
120 DEV_X8,
121 DEV_X16,
122 DEV_X32, /* Do these parts exist? */
123 DEV_X64 /* Do these parts exist? */
126 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
127 #define DEV_FLAG_X1 BIT(DEV_X1)
128 #define DEV_FLAG_X2 BIT(DEV_X2)
129 #define DEV_FLAG_X4 BIT(DEV_X4)
130 #define DEV_FLAG_X8 BIT(DEV_X8)
131 #define DEV_FLAG_X16 BIT(DEV_X16)
132 #define DEV_FLAG_X32 BIT(DEV_X32)
133 #define DEV_FLAG_X64 BIT(DEV_X64)
135 /* memory types */
136 enum mem_type {
137 MEM_EMPTY = 0, /* Empty csrow */
138 MEM_RESERVED, /* Reserved csrow type */
139 MEM_UNKNOWN, /* Unknown csrow type */
140 MEM_FPM, /* Fast page mode */
141 MEM_EDO, /* Extended data out */
142 MEM_BEDO, /* Burst Extended data out */
143 MEM_SDR, /* Single data rate SDRAM */
144 MEM_RDR, /* Registered single data rate SDRAM */
145 MEM_DDR, /* Double data rate SDRAM */
146 MEM_RDDR, /* Registered Double data rate SDRAM */
147 MEM_RMBS, /* Rambus DRAM */
148 MEM_DDR2, /* DDR2 RAM */
149 MEM_FB_DDR2, /* fully buffered DDR2 */
150 MEM_RDDR2, /* Registered DDR2 RAM */
151 MEM_XDR, /* Rambus XDR */
154 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
155 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
156 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
157 #define MEM_FLAG_FPM BIT(MEM_FPM)
158 #define MEM_FLAG_EDO BIT(MEM_EDO)
159 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
160 #define MEM_FLAG_SDR BIT(MEM_SDR)
161 #define MEM_FLAG_RDR BIT(MEM_RDR)
162 #define MEM_FLAG_DDR BIT(MEM_DDR)
163 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
164 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
165 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
166 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
167 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
168 #define MEM_FLAG_XDR BIT(MEM_XDR)
170 /* chipset Error Detection and Correction capabilities and mode */
171 enum edac_type {
172 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
173 EDAC_NONE, /* Doesnt support ECC */
174 EDAC_RESERVED, /* Reserved ECC type */
175 EDAC_PARITY, /* Detects parity errors */
176 EDAC_EC, /* Error Checking - no correction */
177 EDAC_SECDED, /* Single bit error correction, Double detection */
178 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
179 EDAC_S4ECD4ED, /* Chipkill x4 devices */
180 EDAC_S8ECD8ED, /* Chipkill x8 devices */
181 EDAC_S16ECD16ED, /* Chipkill x16 devices */
184 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
185 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
186 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
187 #define EDAC_FLAG_EC BIT(EDAC_EC)
188 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
189 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
190 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
191 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
192 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
194 /* scrubbing capabilities */
195 enum scrub_type {
196 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
197 SCRUB_NONE, /* No scrubber */
198 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
199 SCRUB_SW_SRC, /* Software scrub only errors */
200 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
201 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
202 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
203 SCRUB_HW_SRC, /* Hardware scrub only errors */
204 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
205 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
208 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
209 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
210 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
211 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
212 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
213 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
214 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
215 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
217 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
219 /* EDAC internal operation states */
220 #define OP_ALLOC 0x100
221 #define OP_RUNNING_POLL 0x201
222 #define OP_RUNNING_INTERRUPT 0x202
223 #define OP_RUNNING_POLL_INTR 0x203
224 #define OP_OFFLINE 0x300
227 * There are several things to be aware of that aren't at all obvious:
230 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
232 * These are some of the many terms that are thrown about that don't always
233 * mean what people think they mean (Inconceivable!). In the interest of
234 * creating a common ground for discussion, terms and their definitions
235 * will be established.
237 * Memory devices: The individual chip on a memory stick. These devices
238 * commonly output 4 and 8 bits each. Grouping several
239 * of these in parallel provides 64 bits which is common
240 * for a memory stick.
242 * Memory Stick: A printed circuit board that agregates multiple
243 * memory devices in parallel. This is the atomic
244 * memory component that is purchaseable by Joe consumer
245 * and loaded into a memory socket.
247 * Socket: A physical connector on the motherboard that accepts
248 * a single memory stick.
250 * Channel: Set of memory devices on a memory stick that must be
251 * grouped in parallel with one or more additional
252 * channels from other memory sticks. This parallel
253 * grouping of the output from multiple channels are
254 * necessary for the smallest granularity of memory access.
255 * Some memory controllers are capable of single channel -
256 * which means that memory sticks can be loaded
257 * individually. Other memory controllers are only
258 * capable of dual channel - which means that memory
259 * sticks must be loaded as pairs (see "socket set").
261 * Chip-select row: All of the memory devices that are selected together.
262 * for a single, minimum grain of memory access.
263 * This selects all of the parallel memory devices across
264 * all of the parallel channels. Common chip-select rows
265 * for single channel are 64 bits, for dual channel 128
266 * bits.
268 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
269 * Motherboards commonly drive two chip-select pins to
270 * a memory stick. A single-ranked stick, will occupy
271 * only one of those rows. The other will be unused.
273 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
274 * access different sets of memory devices. The two
275 * rows cannot be accessed concurrently.
277 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
278 * A double-sided stick has two chip-select rows which
279 * access different sets of memory devices. The two
280 * rows cannot be accessed concurrently. "Double-sided"
281 * is irrespective of the memory devices being mounted
282 * on both sides of the memory stick.
284 * Socket set: All of the memory sticks that are required for for
285 * a single memory access or all of the memory sticks
286 * spanned by a chip-select row. A single socket set
287 * has two chip-select rows and if double-sided sticks
288 * are used these will occupy those chip-select rows.
290 * Bank: This term is avoided because it is unclear when
291 * needing to distinguish between chip-select rows and
292 * socket sets.
294 * Controller pages:
296 * Physical pages:
298 * Virtual pages:
301 * STRUCTURE ORGANIZATION AND CHOICES
305 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
308 struct channel_info {
309 int chan_idx; /* channel index */
310 u32 ce_count; /* Correctable Errors for this CHANNEL */
311 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
312 struct csrow_info *csrow; /* the parent */
315 struct csrow_info {
316 unsigned long first_page; /* first page number in dimm */
317 unsigned long last_page; /* last page number in dimm */
318 unsigned long page_mask; /* used for interleaving -
319 * 0UL for non intlv
321 u32 nr_pages; /* number of pages in csrow */
322 u32 grain; /* granularity of reported error in bytes */
323 int csrow_idx; /* the chip-select row */
324 enum dev_type dtype; /* memory device type */
325 u32 ue_count; /* Uncorrectable Errors for this csrow */
326 u32 ce_count; /* Correctable Errors for this csrow */
327 enum mem_type mtype; /* memory csrow type */
328 enum edac_type edac_mode; /* EDAC mode for this csrow */
329 struct mem_ctl_info *mci; /* the parent */
331 struct kobject kobj; /* sysfs kobject for this csrow */
333 /* channel information for this csrow */
334 u32 nr_channels;
335 struct channel_info *channels;
338 /* mcidev_sysfs_attribute structure
339 * used for driver sysfs attributes and in mem_ctl_info
340 * sysfs top level entries
342 struct mcidev_sysfs_attribute {
343 struct attribute attr;
344 ssize_t (*show)(struct mem_ctl_info *,char *);
345 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
348 /* MEMORY controller information structure
350 struct mem_ctl_info {
351 struct list_head link; /* for global list of mem_ctl_info structs */
353 struct module *owner; /* Module owner of this control struct */
355 unsigned long mtype_cap; /* memory types supported by mc */
356 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
357 unsigned long edac_cap; /* configuration capabilities - this is
358 * closely related to edac_ctl_cap. The
359 * difference is that the controller may be
360 * capable of s4ecd4ed which would be listed
361 * in edac_ctl_cap, but if channels aren't
362 * capable of s4ecd4ed then the edac_cap would
363 * not have that capability.
365 unsigned long scrub_cap; /* chipset scrub capabilities */
366 enum scrub_type scrub_mode; /* current scrub mode */
368 /* Translates sdram memory scrub rate given in bytes/sec to the
369 internal representation and configures whatever else needs
370 to be configured.
372 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
374 /* Get the current sdram memory scrub rate from the internal
375 representation and converts it to the closest matching
376 bandwith in bytes/sec.
378 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
381 /* pointer to edac checking routine */
382 void (*edac_check) (struct mem_ctl_info * mci);
385 * Remaps memory pages: controller pages to physical pages.
386 * For most MC's, this will be NULL.
388 /* FIXME - why not send the phys page to begin with? */
389 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
390 unsigned long page);
391 int mc_idx;
392 int nr_csrows;
393 struct csrow_info *csrows;
395 * FIXME - what about controllers on other busses? - IDs must be
396 * unique. dev pointer should be sufficiently unique, but
397 * BUS:SLOT.FUNC numbers may not be unique.
399 struct device *dev;
400 const char *mod_name;
401 const char *mod_ver;
402 const char *ctl_name;
403 const char *dev_name;
404 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
405 void *pvt_info;
406 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
407 u32 ce_noinfo_count; /* Correctable Errors w/o info */
408 u32 ue_count; /* Total Uncorrectable Errors for this MC */
409 u32 ce_count; /* Total Correctable Errors for this MC */
410 unsigned long start_time; /* mci load start time (in jiffies) */
412 /* this stuff is for safe removal of mc devices from global list while
413 * NMI handlers may be traversing list
415 struct rcu_head rcu;
416 struct completion complete;
418 /* edac sysfs device control */
419 struct kobject edac_mci_kobj;
421 /* Additional top controller level attributes, but specified
422 * by the low level driver.
424 * Set by the low level driver to provide attributes at the
425 * controller level, same level as 'ue_count' and 'ce_count' above.
426 * An array of structures, NULL terminated
428 * If attributes are desired, then set to array of attributes
429 * If no attributes are desired, leave NULL
431 struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
433 /* work struct for this MC */
434 struct delayed_work work;
436 /* the internal state of this controller instance */
437 int op_state;
441 * The following are the structures to provide for a generic
442 * or abstract 'edac_device'. This set of structures and the
443 * code that implements the APIs for the same, provide for
444 * registering EDAC type devices which are NOT standard memory.
446 * CPU caches (L1 and L2)
447 * DMA engines
448 * Core CPU swithces
449 * Fabric switch units
450 * PCIe interface controllers
451 * other EDAC/ECC type devices that can be monitored for
452 * errors, etc.
454 * It allows for a 2 level set of hiearchry. For example:
456 * cache could be composed of L1, L2 and L3 levels of cache.
457 * Each CPU core would have its own L1 cache, while sharing
458 * L2 and maybe L3 caches.
460 * View them arranged, via the sysfs presentation:
461 * /sys/devices/system/edac/..
463 * mc/ <existing memory device directory>
464 * cpu/cpu0/.. <L1 and L2 block directory>
465 * /L1-cache/ce_count
466 * /ue_count
467 * /L2-cache/ce_count
468 * /ue_count
469 * cpu/cpu1/.. <L1 and L2 block directory>
470 * /L1-cache/ce_count
471 * /ue_count
472 * /L2-cache/ce_count
473 * /ue_count
474 * ...
476 * the L1 and L2 directories would be "edac_device_block's"
479 struct edac_device_counter {
480 u32 ue_count;
481 u32 ce_count;
484 /* forward reference */
485 struct edac_device_ctl_info;
486 struct edac_device_block;
488 /* edac_dev_sysfs_attribute structure
489 * used for driver sysfs attributes in mem_ctl_info
490 * for extra controls and attributes:
491 * like high level error Injection controls
493 struct edac_dev_sysfs_attribute {
494 struct attribute attr;
495 ssize_t (*show)(struct edac_device_ctl_info *, char *);
496 ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
499 /* edac_dev_sysfs_block_attribute structure
501 * used in leaf 'block' nodes for adding controls/attributes
503 * each block in each instance of the containing control structure
504 * can have an array of the following. The show and store functions
505 * will be filled in with the show/store function in the
506 * low level driver.
508 * The 'value' field will be the actual value field used for
509 * counting
511 struct edac_dev_sysfs_block_attribute {
512 struct attribute attr;
513 ssize_t (*show)(struct kobject *, struct attribute *, char *);
514 ssize_t (*store)(struct kobject *, struct attribute *,
515 const char *, size_t);
516 struct edac_device_block *block;
518 unsigned int value;
521 /* device block control structure */
522 struct edac_device_block {
523 struct edac_device_instance *instance; /* Up Pointer */
524 char name[EDAC_DEVICE_NAME_LEN + 1];
526 struct edac_device_counter counters; /* basic UE and CE counters */
528 int nr_attribs; /* how many attributes */
530 /* this block's attributes, could be NULL */
531 struct edac_dev_sysfs_block_attribute *block_attributes;
533 /* edac sysfs device control */
534 struct kobject kobj;
537 /* device instance control structure */
538 struct edac_device_instance {
539 struct edac_device_ctl_info *ctl; /* Up pointer */
540 char name[EDAC_DEVICE_NAME_LEN + 4];
542 struct edac_device_counter counters; /* instance counters */
544 u32 nr_blocks; /* how many blocks */
545 struct edac_device_block *blocks; /* block array */
547 /* edac sysfs device control */
548 struct kobject kobj;
553 * Abstract edac_device control info structure
556 struct edac_device_ctl_info {
557 /* for global list of edac_device_ctl_info structs */
558 struct list_head link;
560 struct module *owner; /* Module owner of this control struct */
562 int dev_idx;
564 /* Per instance controls for this edac_device */
565 int log_ue; /* boolean for logging UEs */
566 int log_ce; /* boolean for logging CEs */
567 int panic_on_ue; /* boolean for panic'ing on an UE */
568 unsigned poll_msec; /* number of milliseconds to poll interval */
569 unsigned long delay; /* number of jiffies for poll_msec */
571 /* Additional top controller level attributes, but specified
572 * by the low level driver.
574 * Set by the low level driver to provide attributes at the
575 * controller level, same level as 'ue_count' and 'ce_count' above.
576 * An array of structures, NULL terminated
578 * If attributes are desired, then set to array of attributes
579 * If no attributes are desired, leave NULL
581 struct edac_dev_sysfs_attribute *sysfs_attributes;
583 /* pointer to main 'edac' class in sysfs */
584 struct sysdev_class *edac_class;
586 /* the internal state of this controller instance */
587 int op_state;
588 /* work struct for this instance */
589 struct delayed_work work;
591 /* pointer to edac polling checking routine:
592 * If NOT NULL: points to polling check routine
593 * If NULL: Then assumes INTERRUPT operation, where
594 * MC driver will receive events
596 void (*edac_check) (struct edac_device_ctl_info * edac_dev);
598 struct device *dev; /* pointer to device structure */
600 const char *mod_name; /* module name */
601 const char *ctl_name; /* edac controller name */
602 const char *dev_name; /* pci/platform/etc... name */
604 void *pvt_info; /* pointer to 'private driver' info */
606 unsigned long start_time; /* edac_device load start time (jiffies) */
608 /* these are for safe removal of mc devices from global list while
609 * NMI handlers may be traversing list
611 struct rcu_head rcu;
612 struct completion removal_complete;
614 /* sysfs top name under 'edac' directory
615 * and instance name:
616 * cpu/cpu0/...
617 * cpu/cpu1/...
618 * cpu/cpu2/...
619 * ...
621 char name[EDAC_DEVICE_NAME_LEN + 1];
623 /* Number of instances supported on this control structure
624 * and the array of those instances
626 u32 nr_instances;
627 struct edac_device_instance *instances;
629 /* Event counters for the this whole EDAC Device */
630 struct edac_device_counter counters;
632 /* edac sysfs device control for the 'name'
633 * device this structure controls
635 struct kobject kobj;
638 /* To get from the instance's wq to the beginning of the ctl structure */
639 #define to_edac_mem_ctl_work(w) \
640 container_of(w, struct mem_ctl_info, work)
642 #define to_edac_device_ctl_work(w) \
643 container_of(w,struct edac_device_ctl_info,work)
646 * The alloc() and free() functions for the 'edac_device' control info
647 * structure. A MC driver will allocate one of these for each edac_device
648 * it is going to control/register with the EDAC CORE.
650 extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
651 unsigned sizeof_private,
652 char *edac_device_name, unsigned nr_instances,
653 char *edac_block_name, unsigned nr_blocks,
654 unsigned offset_value,
655 struct edac_dev_sysfs_block_attribute *block_attributes,
656 unsigned nr_attribs,
657 int device_index);
659 /* The offset value can be:
660 * -1 indicating no offset value
661 * 0 for zero-based block numbers
662 * 1 for 1-based block number
663 * other for other-based block number
665 #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
667 extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
669 #ifdef CONFIG_PCI
671 struct edac_pci_counter {
672 atomic_t pe_count;
673 atomic_t npe_count;
677 * Abstract edac_pci control info structure
680 struct edac_pci_ctl_info {
681 /* for global list of edac_pci_ctl_info structs */
682 struct list_head link;
684 int pci_idx;
686 struct sysdev_class *edac_class; /* pointer to class */
688 /* the internal state of this controller instance */
689 int op_state;
690 /* work struct for this instance */
691 struct delayed_work work;
693 /* pointer to edac polling checking routine:
694 * If NOT NULL: points to polling check routine
695 * If NULL: Then assumes INTERRUPT operation, where
696 * MC driver will receive events
698 void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
700 struct device *dev; /* pointer to device structure */
702 const char *mod_name; /* module name */
703 const char *ctl_name; /* edac controller name */
704 const char *dev_name; /* pci/platform/etc... name */
706 void *pvt_info; /* pointer to 'private driver' info */
708 unsigned long start_time; /* edac_pci load start time (jiffies) */
710 /* these are for safe removal of devices from global list while
711 * NMI handlers may be traversing list
713 struct rcu_head rcu;
714 struct completion complete;
716 /* sysfs top name under 'edac' directory
717 * and instance name:
718 * cpu/cpu0/...
719 * cpu/cpu1/...
720 * cpu/cpu2/...
721 * ...
723 char name[EDAC_DEVICE_NAME_LEN + 1];
725 /* Event counters for the this whole EDAC Device */
726 struct edac_pci_counter counters;
728 /* edac sysfs device control for the 'name'
729 * device this structure controls
731 struct kobject kobj;
732 struct completion kobj_complete;
735 #define to_edac_pci_ctl_work(w) \
736 container_of(w, struct edac_pci_ctl_info,work)
738 /* write all or some bits in a byte-register*/
739 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
740 u8 mask)
742 if (mask != 0xff) {
743 u8 buf;
745 pci_read_config_byte(pdev, offset, &buf);
746 value &= mask;
747 buf &= ~mask;
748 value |= buf;
751 pci_write_config_byte(pdev, offset, value);
754 /* write all or some bits in a word-register*/
755 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
756 u16 value, u16 mask)
758 if (mask != 0xffff) {
759 u16 buf;
761 pci_read_config_word(pdev, offset, &buf);
762 value &= mask;
763 buf &= ~mask;
764 value |= buf;
767 pci_write_config_word(pdev, offset, value);
771 * pci_write_bits32
773 * edac local routine to do pci_write_config_dword, but adds
774 * a mask parameter. If mask is all ones, ignore the mask.
775 * Otherwise utilize the mask to isolate specified bits
777 * write all or some bits in a dword-register
779 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
780 u32 value, u32 mask)
782 if (mask != 0xffffffff) {
783 u32 buf;
785 pci_read_config_dword(pdev, offset, &buf);
786 value &= mask;
787 buf &= ~mask;
788 value |= buf;
791 pci_write_config_dword(pdev, offset, value);
794 #endif /* CONFIG_PCI */
796 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
797 unsigned nr_chans, int edac_index);
798 extern int edac_mc_add_mc(struct mem_ctl_info *mci);
799 extern void edac_mc_free(struct mem_ctl_info *mci);
800 extern struct mem_ctl_info *edac_mc_find(int idx);
801 extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
802 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
803 unsigned long page);
806 * The no info errors are used when error overflows are reported.
807 * There are a limited number of error logging registers that can
808 * be exausted. When all registers are exhausted and an additional
809 * error occurs then an error overflow register records that an
810 * error occured and the type of error, but doesn't have any
811 * further information. The ce/ue versions make for cleaner
812 * reporting logic and function interface - reduces conditional
813 * statement clutter and extra function arguments.
815 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
816 unsigned long page_frame_number,
817 unsigned long offset_in_page,
818 unsigned long syndrome, int row, int channel,
819 const char *msg);
820 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
821 const char *msg);
822 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
823 unsigned long page_frame_number,
824 unsigned long offset_in_page, int row,
825 const char *msg);
826 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
827 const char *msg);
828 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
829 unsigned int channel0, unsigned int channel1,
830 char *msg);
831 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
832 unsigned int channel, char *msg);
835 * edac_device APIs
837 extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
838 extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
839 extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
840 int inst_nr, int block_nr, const char *msg);
841 extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
842 int inst_nr, int block_nr, const char *msg);
845 * edac_pci APIs
847 extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
848 const char *edac_pci_name);
850 extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
852 extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
853 unsigned long value);
855 extern int edac_pci_alloc_index(void);
856 extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
857 extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
859 extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
860 struct device *dev,
861 const char *mod_name);
863 extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
864 extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
865 extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
868 * edac misc APIs
870 extern char *edac_op_state_to_string(int op_state);
872 #endif /* _EDAC_CORE_H_ */