Staging: hv: rename struct NETVSC_DEVICE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / lguest / lguest.c
blob950cde6d6e58384083202b40af0921ef31e0e0ca
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <zlib.h>
38 #include <assert.h>
39 #include <sched.h>
40 #include <limits.h>
41 #include <stddef.h>
42 #include <signal.h>
43 #include "linux/lguest_launcher.h"
44 #include "linux/virtio_config.h"
45 #include "linux/virtio_net.h"
46 #include "linux/virtio_blk.h"
47 #include "linux/virtio_console.h"
48 #include "linux/virtio_rng.h"
49 #include "linux/virtio_ring.h"
50 #include "asm/bootparam.h"
51 /*L:110
52 * We can ignore the 42 include files we need for this program, but I do want
53 * to draw attention to the use of kernel-style types.
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
58 * use %llu in printf for any u64.
60 typedef unsigned long long u64;
61 typedef uint32_t u32;
62 typedef uint16_t u16;
63 typedef uint8_t u8;
64 /*:*/
66 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
67 #define BRIDGE_PFX "bridge:"
68 #ifndef SIOCBRADDIF
69 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
70 #endif
71 /* We can have up to 256 pages for devices. */
72 #define DEVICE_PAGES 256
73 /* This will occupy 3 pages: it must be a power of 2. */
74 #define VIRTQUEUE_NUM 256
76 /*L:120
77 * verbose is both a global flag and a macro. The C preprocessor allows
78 * this, and although I wouldn't recommend it, it works quite nicely here.
80 static bool verbose;
81 #define verbose(args...) \
82 do { if (verbose) printf(args); } while(0)
83 /*:*/
85 /* The pointer to the start of guest memory. */
86 static void *guest_base;
87 /* The maximum guest physical address allowed, and maximum possible. */
88 static unsigned long guest_limit, guest_max;
89 /* The /dev/lguest file descriptor. */
90 static int lguest_fd;
92 /* a per-cpu variable indicating whose vcpu is currently running */
93 static unsigned int __thread cpu_id;
95 /* This is our list of devices. */
96 struct device_list {
97 /* Counter to assign interrupt numbers. */
98 unsigned int next_irq;
100 /* Counter to print out convenient device numbers. */
101 unsigned int device_num;
103 /* The descriptor page for the devices. */
104 u8 *descpage;
106 /* A single linked list of devices. */
107 struct device *dev;
108 /* And a pointer to the last device for easy append. */
109 struct device *lastdev;
112 /* The list of Guest devices, based on command line arguments. */
113 static struct device_list devices;
115 /* The device structure describes a single device. */
116 struct device {
117 /* The linked-list pointer. */
118 struct device *next;
120 /* The device's descriptor, as mapped into the Guest. */
121 struct lguest_device_desc *desc;
123 /* We can't trust desc values once Guest has booted: we use these. */
124 unsigned int feature_len;
125 unsigned int num_vq;
127 /* The name of this device, for --verbose. */
128 const char *name;
130 /* Any queues attached to this device */
131 struct virtqueue *vq;
133 /* Is it operational */
134 bool running;
136 /* Device-specific data. */
137 void *priv;
140 /* The virtqueue structure describes a queue attached to a device. */
141 struct virtqueue {
142 struct virtqueue *next;
144 /* Which device owns me. */
145 struct device *dev;
147 /* The configuration for this queue. */
148 struct lguest_vqconfig config;
150 /* The actual ring of buffers. */
151 struct vring vring;
153 /* Last available index we saw. */
154 u16 last_avail_idx;
156 /* How many are used since we sent last irq? */
157 unsigned int pending_used;
159 /* Eventfd where Guest notifications arrive. */
160 int eventfd;
162 /* Function for the thread which is servicing this virtqueue. */
163 void (*service)(struct virtqueue *vq);
164 pid_t thread;
167 /* Remember the arguments to the program so we can "reboot" */
168 static char **main_args;
170 /* The original tty settings to restore on exit. */
171 static struct termios orig_term;
174 * We have to be careful with barriers: our devices are all run in separate
175 * threads and so we need to make sure that changes visible to the Guest happen
176 * in precise order.
178 #define wmb() __asm__ __volatile__("" : : : "memory")
179 #define mb() __asm__ __volatile__("" : : : "memory")
182 * Convert an iovec element to the given type.
184 * This is a fairly ugly trick: we need to know the size of the type and
185 * alignment requirement to check the pointer is kosher. It's also nice to
186 * have the name of the type in case we report failure.
188 * Typing those three things all the time is cumbersome and error prone, so we
189 * have a macro which sets them all up and passes to the real function.
191 #define convert(iov, type) \
192 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
194 static void *_convert(struct iovec *iov, size_t size, size_t align,
195 const char *name)
197 if (iov->iov_len != size)
198 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
199 if ((unsigned long)iov->iov_base % align != 0)
200 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
201 return iov->iov_base;
204 /* Wrapper for the last available index. Makes it easier to change. */
205 #define lg_last_avail(vq) ((vq)->last_avail_idx)
208 * The virtio configuration space is defined to be little-endian. x86 is
209 * little-endian too, but it's nice to be explicit so we have these helpers.
211 #define cpu_to_le16(v16) (v16)
212 #define cpu_to_le32(v32) (v32)
213 #define cpu_to_le64(v64) (v64)
214 #define le16_to_cpu(v16) (v16)
215 #define le32_to_cpu(v32) (v32)
216 #define le64_to_cpu(v64) (v64)
218 /* Is this iovec empty? */
219 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
221 unsigned int i;
223 for (i = 0; i < num_iov; i++)
224 if (iov[i].iov_len)
225 return false;
226 return true;
229 /* Take len bytes from the front of this iovec. */
230 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
232 unsigned int i;
234 for (i = 0; i < num_iov; i++) {
235 unsigned int used;
237 used = iov[i].iov_len < len ? iov[i].iov_len : len;
238 iov[i].iov_base += used;
239 iov[i].iov_len -= used;
240 len -= used;
242 assert(len == 0);
245 /* The device virtqueue descriptors are followed by feature bitmasks. */
246 static u8 *get_feature_bits(struct device *dev)
248 return (u8 *)(dev->desc + 1)
249 + dev->num_vq * sizeof(struct lguest_vqconfig);
252 /*L:100
253 * The Launcher code itself takes us out into userspace, that scary place where
254 * pointers run wild and free! Unfortunately, like most userspace programs,
255 * it's quite boring (which is why everyone likes to hack on the kernel!).
256 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
257 * you through this section. Or, maybe not.
259 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
260 * memory and stores it in "guest_base". In other words, Guest physical ==
261 * Launcher virtual with an offset.
263 * This can be tough to get your head around, but usually it just means that we
264 * use these trivial conversion functions when the Guest gives us it's
265 * "physical" addresses:
267 static void *from_guest_phys(unsigned long addr)
269 return guest_base + addr;
272 static unsigned long to_guest_phys(const void *addr)
274 return (addr - guest_base);
277 /*L:130
278 * Loading the Kernel.
280 * We start with couple of simple helper routines. open_or_die() avoids
281 * error-checking code cluttering the callers:
283 static int open_or_die(const char *name, int flags)
285 int fd = open(name, flags);
286 if (fd < 0)
287 err(1, "Failed to open %s", name);
288 return fd;
291 /* map_zeroed_pages() takes a number of pages. */
292 static void *map_zeroed_pages(unsigned int num)
294 int fd = open_or_die("/dev/zero", O_RDONLY);
295 void *addr;
298 * We use a private mapping (ie. if we write to the page, it will be
299 * copied).
301 addr = mmap(NULL, getpagesize() * num,
302 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
303 if (addr == MAP_FAILED)
304 err(1, "Mmaping %u pages of /dev/zero", num);
307 * One neat mmap feature is that you can close the fd, and it
308 * stays mapped.
310 close(fd);
312 return addr;
315 /* Get some more pages for a device. */
316 static void *get_pages(unsigned int num)
318 void *addr = from_guest_phys(guest_limit);
320 guest_limit += num * getpagesize();
321 if (guest_limit > guest_max)
322 errx(1, "Not enough memory for devices");
323 return addr;
327 * This routine is used to load the kernel or initrd. It tries mmap, but if
328 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
329 * it falls back to reading the memory in.
331 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
333 ssize_t r;
336 * We map writable even though for some segments are marked read-only.
337 * The kernel really wants to be writable: it patches its own
338 * instructions.
340 * MAP_PRIVATE means that the page won't be copied until a write is
341 * done to it. This allows us to share untouched memory between
342 * Guests.
344 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
345 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
346 return;
348 /* pread does a seek and a read in one shot: saves a few lines. */
349 r = pread(fd, addr, len, offset);
350 if (r != len)
351 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
355 * This routine takes an open vmlinux image, which is in ELF, and maps it into
356 * the Guest memory. ELF = Embedded Linking Format, which is the format used
357 * by all modern binaries on Linux including the kernel.
359 * The ELF headers give *two* addresses: a physical address, and a virtual
360 * address. We use the physical address; the Guest will map itself to the
361 * virtual address.
363 * We return the starting address.
365 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
367 Elf32_Phdr phdr[ehdr->e_phnum];
368 unsigned int i;
371 * Sanity checks on the main ELF header: an x86 executable with a
372 * reasonable number of correctly-sized program headers.
374 if (ehdr->e_type != ET_EXEC
375 || ehdr->e_machine != EM_386
376 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
377 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
378 errx(1, "Malformed elf header");
381 * An ELF executable contains an ELF header and a number of "program"
382 * headers which indicate which parts ("segments") of the program to
383 * load where.
386 /* We read in all the program headers at once: */
387 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
388 err(1, "Seeking to program headers");
389 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
390 err(1, "Reading program headers");
393 * Try all the headers: there are usually only three. A read-only one,
394 * a read-write one, and a "note" section which we don't load.
396 for (i = 0; i < ehdr->e_phnum; i++) {
397 /* If this isn't a loadable segment, we ignore it */
398 if (phdr[i].p_type != PT_LOAD)
399 continue;
401 verbose("Section %i: size %i addr %p\n",
402 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
404 /* We map this section of the file at its physical address. */
405 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
406 phdr[i].p_offset, phdr[i].p_filesz);
409 /* The entry point is given in the ELF header. */
410 return ehdr->e_entry;
413 /*L:150
414 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
415 * to jump into it and it will unpack itself. We used to have to perform some
416 * hairy magic because the unpacking code scared me.
418 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
419 * a small patch to jump over the tricky bits in the Guest, so now we just read
420 * the funky header so we know where in the file to load, and away we go!
422 static unsigned long load_bzimage(int fd)
424 struct boot_params boot;
425 int r;
426 /* Modern bzImages get loaded at 1M. */
427 void *p = from_guest_phys(0x100000);
430 * Go back to the start of the file and read the header. It should be
431 * a Linux boot header (see Documentation/x86/i386/boot.txt)
433 lseek(fd, 0, SEEK_SET);
434 read(fd, &boot, sizeof(boot));
436 /* Inside the setup_hdr, we expect the magic "HdrS" */
437 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
438 errx(1, "This doesn't look like a bzImage to me");
440 /* Skip over the extra sectors of the header. */
441 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
443 /* Now read everything into memory. in nice big chunks. */
444 while ((r = read(fd, p, 65536)) > 0)
445 p += r;
447 /* Finally, code32_start tells us where to enter the kernel. */
448 return boot.hdr.code32_start;
451 /*L:140
452 * Loading the kernel is easy when it's a "vmlinux", but most kernels
453 * come wrapped up in the self-decompressing "bzImage" format. With a little
454 * work, we can load those, too.
456 static unsigned long load_kernel(int fd)
458 Elf32_Ehdr hdr;
460 /* Read in the first few bytes. */
461 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
462 err(1, "Reading kernel");
464 /* If it's an ELF file, it starts with "\177ELF" */
465 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
466 return map_elf(fd, &hdr);
468 /* Otherwise we assume it's a bzImage, and try to load it. */
469 return load_bzimage(fd);
473 * This is a trivial little helper to align pages. Andi Kleen hated it because
474 * it calls getpagesize() twice: "it's dumb code."
476 * Kernel guys get really het up about optimization, even when it's not
477 * necessary. I leave this code as a reaction against that.
479 static inline unsigned long page_align(unsigned long addr)
481 /* Add upwards and truncate downwards. */
482 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
485 /*L:180
486 * An "initial ram disk" is a disk image loaded into memory along with the
487 * kernel which the kernel can use to boot from without needing any drivers.
488 * Most distributions now use this as standard: the initrd contains the code to
489 * load the appropriate driver modules for the current machine.
491 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
492 * kernels. He sent me this (and tells me when I break it).
494 static unsigned long load_initrd(const char *name, unsigned long mem)
496 int ifd;
497 struct stat st;
498 unsigned long len;
500 ifd = open_or_die(name, O_RDONLY);
501 /* fstat() is needed to get the file size. */
502 if (fstat(ifd, &st) < 0)
503 err(1, "fstat() on initrd '%s'", name);
506 * We map the initrd at the top of memory, but mmap wants it to be
507 * page-aligned, so we round the size up for that.
509 len = page_align(st.st_size);
510 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
512 * Once a file is mapped, you can close the file descriptor. It's a
513 * little odd, but quite useful.
515 close(ifd);
516 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
518 /* We return the initrd size. */
519 return len;
521 /*:*/
524 * Simple routine to roll all the commandline arguments together with spaces
525 * between them.
527 static void concat(char *dst, char *args[])
529 unsigned int i, len = 0;
531 for (i = 0; args[i]; i++) {
532 if (i) {
533 strcat(dst+len, " ");
534 len++;
536 strcpy(dst+len, args[i]);
537 len += strlen(args[i]);
539 /* In case it's empty. */
540 dst[len] = '\0';
543 /*L:185
544 * This is where we actually tell the kernel to initialize the Guest. We
545 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
546 * the base of Guest "physical" memory, the top physical page to allow and the
547 * entry point for the Guest.
549 static void tell_kernel(unsigned long start)
551 unsigned long args[] = { LHREQ_INITIALIZE,
552 (unsigned long)guest_base,
553 guest_limit / getpagesize(), start };
554 verbose("Guest: %p - %p (%#lx)\n",
555 guest_base, guest_base + guest_limit, guest_limit);
556 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
557 if (write(lguest_fd, args, sizeof(args)) < 0)
558 err(1, "Writing to /dev/lguest");
560 /*:*/
562 /*L:200
563 * Device Handling.
565 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
566 * We need to make sure it's not trying to reach into the Launcher itself, so
567 * we have a convenient routine which checks it and exits with an error message
568 * if something funny is going on:
570 static void *_check_pointer(unsigned long addr, unsigned int size,
571 unsigned int line)
574 * We have to separately check addr and addr+size, because size could
575 * be huge and addr + size might wrap around.
577 if (addr >= guest_limit || addr + size >= guest_limit)
578 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
580 * We return a pointer for the caller's convenience, now we know it's
581 * safe to use.
583 return from_guest_phys(addr);
585 /* A macro which transparently hands the line number to the real function. */
586 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
589 * Each buffer in the virtqueues is actually a chain of descriptors. This
590 * function returns the next descriptor in the chain, or vq->vring.num if we're
591 * at the end.
593 static unsigned next_desc(struct vring_desc *desc,
594 unsigned int i, unsigned int max)
596 unsigned int next;
598 /* If this descriptor says it doesn't chain, we're done. */
599 if (!(desc[i].flags & VRING_DESC_F_NEXT))
600 return max;
602 /* Check they're not leading us off end of descriptors. */
603 next = desc[i].next;
604 /* Make sure compiler knows to grab that: we don't want it changing! */
605 wmb();
607 if (next >= max)
608 errx(1, "Desc next is %u", next);
610 return next;
614 * This actually sends the interrupt for this virtqueue, if we've used a
615 * buffer.
617 static void trigger_irq(struct virtqueue *vq)
619 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
621 /* Don't inform them if nothing used. */
622 if (!vq->pending_used)
623 return;
624 vq->pending_used = 0;
626 /* If they don't want an interrupt, don't send one, unless empty. */
627 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
628 && lg_last_avail(vq) != vq->vring.avail->idx)
629 return;
631 /* Send the Guest an interrupt tell them we used something up. */
632 if (write(lguest_fd, buf, sizeof(buf)) != 0)
633 err(1, "Triggering irq %i", vq->config.irq);
637 * This looks in the virtqueue for the first available buffer, and converts
638 * it to an iovec for convenient access. Since descriptors consist of some
639 * number of output then some number of input descriptors, it's actually two
640 * iovecs, but we pack them into one and note how many of each there were.
642 * This function waits if necessary, and returns the descriptor number found.
644 static unsigned wait_for_vq_desc(struct virtqueue *vq,
645 struct iovec iov[],
646 unsigned int *out_num, unsigned int *in_num)
648 unsigned int i, head, max;
649 struct vring_desc *desc;
650 u16 last_avail = lg_last_avail(vq);
652 /* There's nothing available? */
653 while (last_avail == vq->vring.avail->idx) {
654 u64 event;
657 * Since we're about to sleep, now is a good time to tell the
658 * Guest about what we've used up to now.
660 trigger_irq(vq);
662 /* OK, now we need to know about added descriptors. */
663 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
666 * They could have slipped one in as we were doing that: make
667 * sure it's written, then check again.
669 mb();
670 if (last_avail != vq->vring.avail->idx) {
671 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
672 break;
675 /* Nothing new? Wait for eventfd to tell us they refilled. */
676 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
677 errx(1, "Event read failed?");
679 /* We don't need to be notified again. */
680 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
683 /* Check it isn't doing very strange things with descriptor numbers. */
684 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
685 errx(1, "Guest moved used index from %u to %u",
686 last_avail, vq->vring.avail->idx);
689 * Grab the next descriptor number they're advertising, and increment
690 * the index we've seen.
692 head = vq->vring.avail->ring[last_avail % vq->vring.num];
693 lg_last_avail(vq)++;
695 /* If their number is silly, that's a fatal mistake. */
696 if (head >= vq->vring.num)
697 errx(1, "Guest says index %u is available", head);
699 /* When we start there are none of either input nor output. */
700 *out_num = *in_num = 0;
702 max = vq->vring.num;
703 desc = vq->vring.desc;
704 i = head;
707 * If this is an indirect entry, then this buffer contains a descriptor
708 * table which we handle as if it's any normal descriptor chain.
710 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
711 if (desc[i].len % sizeof(struct vring_desc))
712 errx(1, "Invalid size for indirect buffer table");
714 max = desc[i].len / sizeof(struct vring_desc);
715 desc = check_pointer(desc[i].addr, desc[i].len);
716 i = 0;
719 do {
720 /* Grab the first descriptor, and check it's OK. */
721 iov[*out_num + *in_num].iov_len = desc[i].len;
722 iov[*out_num + *in_num].iov_base
723 = check_pointer(desc[i].addr, desc[i].len);
724 /* If this is an input descriptor, increment that count. */
725 if (desc[i].flags & VRING_DESC_F_WRITE)
726 (*in_num)++;
727 else {
729 * If it's an output descriptor, they're all supposed
730 * to come before any input descriptors.
732 if (*in_num)
733 errx(1, "Descriptor has out after in");
734 (*out_num)++;
737 /* If we've got too many, that implies a descriptor loop. */
738 if (*out_num + *in_num > max)
739 errx(1, "Looped descriptor");
740 } while ((i = next_desc(desc, i, max)) != max);
742 return head;
746 * After we've used one of their buffers, we tell the Guest about it. Sometime
747 * later we'll want to send them an interrupt using trigger_irq(); note that
748 * wait_for_vq_desc() does that for us if it has to wait.
750 static void add_used(struct virtqueue *vq, unsigned int head, int len)
752 struct vring_used_elem *used;
755 * The virtqueue contains a ring of used buffers. Get a pointer to the
756 * next entry in that used ring.
758 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
759 used->id = head;
760 used->len = len;
761 /* Make sure buffer is written before we update index. */
762 wmb();
763 vq->vring.used->idx++;
764 vq->pending_used++;
767 /* And here's the combo meal deal. Supersize me! */
768 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
770 add_used(vq, head, len);
771 trigger_irq(vq);
775 * The Console
777 * We associate some data with the console for our exit hack.
779 struct console_abort {
780 /* How many times have they hit ^C? */
781 int count;
782 /* When did they start? */
783 struct timeval start;
786 /* This is the routine which handles console input (ie. stdin). */
787 static void console_input(struct virtqueue *vq)
789 int len;
790 unsigned int head, in_num, out_num;
791 struct console_abort *abort = vq->dev->priv;
792 struct iovec iov[vq->vring.num];
794 /* Make sure there's a descriptor available. */
795 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
796 if (out_num)
797 errx(1, "Output buffers in console in queue?");
799 /* Read into it. This is where we usually wait. */
800 len = readv(STDIN_FILENO, iov, in_num);
801 if (len <= 0) {
802 /* Ran out of input? */
803 warnx("Failed to get console input, ignoring console.");
805 * For simplicity, dying threads kill the whole Launcher. So
806 * just nap here.
808 for (;;)
809 pause();
812 /* Tell the Guest we used a buffer. */
813 add_used_and_trigger(vq, head, len);
816 * Three ^C within one second? Exit.
818 * This is such a hack, but works surprisingly well. Each ^C has to
819 * be in a buffer by itself, so they can't be too fast. But we check
820 * that we get three within about a second, so they can't be too
821 * slow.
823 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
824 abort->count = 0;
825 return;
828 abort->count++;
829 if (abort->count == 1)
830 gettimeofday(&abort->start, NULL);
831 else if (abort->count == 3) {
832 struct timeval now;
833 gettimeofday(&now, NULL);
834 /* Kill all Launcher processes with SIGINT, like normal ^C */
835 if (now.tv_sec <= abort->start.tv_sec+1)
836 kill(0, SIGINT);
837 abort->count = 0;
841 /* This is the routine which handles console output (ie. stdout). */
842 static void console_output(struct virtqueue *vq)
844 unsigned int head, out, in;
845 struct iovec iov[vq->vring.num];
847 /* We usually wait in here, for the Guest to give us something. */
848 head = wait_for_vq_desc(vq, iov, &out, &in);
849 if (in)
850 errx(1, "Input buffers in console output queue?");
852 /* writev can return a partial write, so we loop here. */
853 while (!iov_empty(iov, out)) {
854 int len = writev(STDOUT_FILENO, iov, out);
855 if (len <= 0)
856 err(1, "Write to stdout gave %i", len);
857 iov_consume(iov, out, len);
861 * We're finished with that buffer: if we're going to sleep,
862 * wait_for_vq_desc() will prod the Guest with an interrupt.
864 add_used(vq, head, 0);
868 * The Network
870 * Handling output for network is also simple: we get all the output buffers
871 * and write them to /dev/net/tun.
873 struct net_info {
874 int tunfd;
877 static void net_output(struct virtqueue *vq)
879 struct net_info *net_info = vq->dev->priv;
880 unsigned int head, out, in;
881 struct iovec iov[vq->vring.num];
883 /* We usually wait in here for the Guest to give us a packet. */
884 head = wait_for_vq_desc(vq, iov, &out, &in);
885 if (in)
886 errx(1, "Input buffers in net output queue?");
888 * Send the whole thing through to /dev/net/tun. It expects the exact
889 * same format: what a coincidence!
891 if (writev(net_info->tunfd, iov, out) < 0)
892 errx(1, "Write to tun failed?");
895 * Done with that one; wait_for_vq_desc() will send the interrupt if
896 * all packets are processed.
898 add_used(vq, head, 0);
902 * Handling network input is a bit trickier, because I've tried to optimize it.
904 * First we have a helper routine which tells is if from this file descriptor
905 * (ie. the /dev/net/tun device) will block:
907 static bool will_block(int fd)
909 fd_set fdset;
910 struct timeval zero = { 0, 0 };
911 FD_ZERO(&fdset);
912 FD_SET(fd, &fdset);
913 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
917 * This handles packets coming in from the tun device to our Guest. Like all
918 * service routines, it gets called again as soon as it returns, so you don't
919 * see a while(1) loop here.
921 static void net_input(struct virtqueue *vq)
923 int len;
924 unsigned int head, out, in;
925 struct iovec iov[vq->vring.num];
926 struct net_info *net_info = vq->dev->priv;
929 * Get a descriptor to write an incoming packet into. This will also
930 * send an interrupt if they're out of descriptors.
932 head = wait_for_vq_desc(vq, iov, &out, &in);
933 if (out)
934 errx(1, "Output buffers in net input queue?");
937 * If it looks like we'll block reading from the tun device, send them
938 * an interrupt.
940 if (vq->pending_used && will_block(net_info->tunfd))
941 trigger_irq(vq);
944 * Read in the packet. This is where we normally wait (when there's no
945 * incoming network traffic).
947 len = readv(net_info->tunfd, iov, in);
948 if (len <= 0)
949 err(1, "Failed to read from tun.");
952 * Mark that packet buffer as used, but don't interrupt here. We want
953 * to wait until we've done as much work as we can.
955 add_used(vq, head, len);
957 /*:*/
959 /* This is the helper to create threads: run the service routine in a loop. */
960 static int do_thread(void *_vq)
962 struct virtqueue *vq = _vq;
964 for (;;)
965 vq->service(vq);
966 return 0;
970 * When a child dies, we kill our entire process group with SIGTERM. This
971 * also has the side effect that the shell restores the console for us!
973 static void kill_launcher(int signal)
975 kill(0, SIGTERM);
978 static void reset_device(struct device *dev)
980 struct virtqueue *vq;
982 verbose("Resetting device %s\n", dev->name);
984 /* Clear any features they've acked. */
985 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
987 /* We're going to be explicitly killing threads, so ignore them. */
988 signal(SIGCHLD, SIG_IGN);
990 /* Zero out the virtqueues, get rid of their threads */
991 for (vq = dev->vq; vq; vq = vq->next) {
992 if (vq->thread != (pid_t)-1) {
993 kill(vq->thread, SIGTERM);
994 waitpid(vq->thread, NULL, 0);
995 vq->thread = (pid_t)-1;
997 memset(vq->vring.desc, 0,
998 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
999 lg_last_avail(vq) = 0;
1001 dev->running = false;
1003 /* Now we care if threads die. */
1004 signal(SIGCHLD, (void *)kill_launcher);
1007 /*L:216
1008 * This actually creates the thread which services the virtqueue for a device.
1010 static void create_thread(struct virtqueue *vq)
1013 * Create stack for thread. Since the stack grows upwards, we point
1014 * the stack pointer to the end of this region.
1016 char *stack = malloc(32768);
1017 unsigned long args[] = { LHREQ_EVENTFD,
1018 vq->config.pfn*getpagesize(), 0 };
1020 /* Create a zero-initialized eventfd. */
1021 vq->eventfd = eventfd(0, 0);
1022 if (vq->eventfd < 0)
1023 err(1, "Creating eventfd");
1024 args[2] = vq->eventfd;
1027 * Attach an eventfd to this virtqueue: it will go off when the Guest
1028 * does an LHCALL_NOTIFY for this vq.
1030 if (write(lguest_fd, &args, sizeof(args)) != 0)
1031 err(1, "Attaching eventfd");
1034 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1035 * we get a signal if it dies.
1037 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1038 if (vq->thread == (pid_t)-1)
1039 err(1, "Creating clone");
1041 /* We close our local copy now the child has it. */
1042 close(vq->eventfd);
1045 static void start_device(struct device *dev)
1047 unsigned int i;
1048 struct virtqueue *vq;
1050 verbose("Device %s OK: offered", dev->name);
1051 for (i = 0; i < dev->feature_len; i++)
1052 verbose(" %02x", get_feature_bits(dev)[i]);
1053 verbose(", accepted");
1054 for (i = 0; i < dev->feature_len; i++)
1055 verbose(" %02x", get_feature_bits(dev)
1056 [dev->feature_len+i]);
1058 for (vq = dev->vq; vq; vq = vq->next) {
1059 if (vq->service)
1060 create_thread(vq);
1062 dev->running = true;
1065 static void cleanup_devices(void)
1067 struct device *dev;
1069 for (dev = devices.dev; dev; dev = dev->next)
1070 reset_device(dev);
1072 /* If we saved off the original terminal settings, restore them now. */
1073 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1074 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1077 /* When the Guest tells us they updated the status field, we handle it. */
1078 static void update_device_status(struct device *dev)
1080 /* A zero status is a reset, otherwise it's a set of flags. */
1081 if (dev->desc->status == 0)
1082 reset_device(dev);
1083 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1084 warnx("Device %s configuration FAILED", dev->name);
1085 if (dev->running)
1086 reset_device(dev);
1087 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1088 if (!dev->running)
1089 start_device(dev);
1093 /*L:215
1094 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1095 * particular, it's used to notify us of device status changes during boot.
1097 static void handle_output(unsigned long addr)
1099 struct device *i;
1101 /* Check each device. */
1102 for (i = devices.dev; i; i = i->next) {
1103 struct virtqueue *vq;
1106 * Notifications to device descriptors mean they updated the
1107 * device status.
1109 if (from_guest_phys(addr) == i->desc) {
1110 update_device_status(i);
1111 return;
1115 * Devices *can* be used before status is set to DRIVER_OK.
1116 * The original plan was that they would never do this: they
1117 * would always finish setting up their status bits before
1118 * actually touching the virtqueues. In practice, we allowed
1119 * them to, and they do (eg. the disk probes for partition
1120 * tables as part of initialization).
1122 * If we see this, we start the device: once it's running, we
1123 * expect the device to catch all the notifications.
1125 for (vq = i->vq; vq; vq = vq->next) {
1126 if (addr != vq->config.pfn*getpagesize())
1127 continue;
1128 if (i->running)
1129 errx(1, "Notification on running %s", i->name);
1130 /* This just calls create_thread() for each virtqueue */
1131 start_device(i);
1132 return;
1137 * Early console write is done using notify on a nul-terminated string
1138 * in Guest memory. It's also great for hacking debugging messages
1139 * into a Guest.
1141 if (addr >= guest_limit)
1142 errx(1, "Bad NOTIFY %#lx", addr);
1144 write(STDOUT_FILENO, from_guest_phys(addr),
1145 strnlen(from_guest_phys(addr), guest_limit - addr));
1148 /*L:190
1149 * Device Setup
1151 * All devices need a descriptor so the Guest knows it exists, and a "struct
1152 * device" so the Launcher can keep track of it. We have common helper
1153 * routines to allocate and manage them.
1157 * The layout of the device page is a "struct lguest_device_desc" followed by a
1158 * number of virtqueue descriptors, then two sets of feature bits, then an
1159 * array of configuration bytes. This routine returns the configuration
1160 * pointer.
1162 static u8 *device_config(const struct device *dev)
1164 return (void *)(dev->desc + 1)
1165 + dev->num_vq * sizeof(struct lguest_vqconfig)
1166 + dev->feature_len * 2;
1170 * This routine allocates a new "struct lguest_device_desc" from descriptor
1171 * table page just above the Guest's normal memory. It returns a pointer to
1172 * that descriptor.
1174 static struct lguest_device_desc *new_dev_desc(u16 type)
1176 struct lguest_device_desc d = { .type = type };
1177 void *p;
1179 /* Figure out where the next device config is, based on the last one. */
1180 if (devices.lastdev)
1181 p = device_config(devices.lastdev)
1182 + devices.lastdev->desc->config_len;
1183 else
1184 p = devices.descpage;
1186 /* We only have one page for all the descriptors. */
1187 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1188 errx(1, "Too many devices");
1190 /* p might not be aligned, so we memcpy in. */
1191 return memcpy(p, &d, sizeof(d));
1195 * Each device descriptor is followed by the description of its virtqueues. We
1196 * specify how many descriptors the virtqueue is to have.
1198 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1199 void (*service)(struct virtqueue *))
1201 unsigned int pages;
1202 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1203 void *p;
1205 /* First we need some memory for this virtqueue. */
1206 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1207 / getpagesize();
1208 p = get_pages(pages);
1210 /* Initialize the virtqueue */
1211 vq->next = NULL;
1212 vq->last_avail_idx = 0;
1213 vq->dev = dev;
1216 * This is the routine the service thread will run, and its Process ID
1217 * once it's running.
1219 vq->service = service;
1220 vq->thread = (pid_t)-1;
1222 /* Initialize the configuration. */
1223 vq->config.num = num_descs;
1224 vq->config.irq = devices.next_irq++;
1225 vq->config.pfn = to_guest_phys(p) / getpagesize();
1227 /* Initialize the vring. */
1228 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1231 * Append virtqueue to this device's descriptor. We use
1232 * device_config() to get the end of the device's current virtqueues;
1233 * we check that we haven't added any config or feature information
1234 * yet, otherwise we'd be overwriting them.
1236 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1237 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1238 dev->num_vq++;
1239 dev->desc->num_vq++;
1241 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1244 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1245 * second.
1247 for (i = &dev->vq; *i; i = &(*i)->next);
1248 *i = vq;
1252 * The first half of the feature bitmask is for us to advertise features. The
1253 * second half is for the Guest to accept features.
1255 static void add_feature(struct device *dev, unsigned bit)
1257 u8 *features = get_feature_bits(dev);
1259 /* We can't extend the feature bits once we've added config bytes */
1260 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1261 assert(dev->desc->config_len == 0);
1262 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1265 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1269 * This routine sets the configuration fields for an existing device's
1270 * descriptor. It only works for the last device, but that's OK because that's
1271 * how we use it.
1273 static void set_config(struct device *dev, unsigned len, const void *conf)
1275 /* Check we haven't overflowed our single page. */
1276 if (device_config(dev) + len > devices.descpage + getpagesize())
1277 errx(1, "Too many devices");
1279 /* Copy in the config information, and store the length. */
1280 memcpy(device_config(dev), conf, len);
1281 dev->desc->config_len = len;
1283 /* Size must fit in config_len field (8 bits)! */
1284 assert(dev->desc->config_len == len);
1288 * This routine does all the creation and setup of a new device, including
1289 * calling new_dev_desc() to allocate the descriptor and device memory. We
1290 * don't actually start the service threads until later.
1292 * See what I mean about userspace being boring?
1294 static struct device *new_device(const char *name, u16 type)
1296 struct device *dev = malloc(sizeof(*dev));
1298 /* Now we populate the fields one at a time. */
1299 dev->desc = new_dev_desc(type);
1300 dev->name = name;
1301 dev->vq = NULL;
1302 dev->feature_len = 0;
1303 dev->num_vq = 0;
1304 dev->running = false;
1307 * Append to device list. Prepending to a single-linked list is
1308 * easier, but the user expects the devices to be arranged on the bus
1309 * in command-line order. The first network device on the command line
1310 * is eth0, the first block device /dev/vda, etc.
1312 if (devices.lastdev)
1313 devices.lastdev->next = dev;
1314 else
1315 devices.dev = dev;
1316 devices.lastdev = dev;
1318 return dev;
1322 * Our first setup routine is the console. It's a fairly simple device, but
1323 * UNIX tty handling makes it uglier than it could be.
1325 static void setup_console(void)
1327 struct device *dev;
1329 /* If we can save the initial standard input settings... */
1330 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1331 struct termios term = orig_term;
1333 * Then we turn off echo, line buffering and ^C etc: We want a
1334 * raw input stream to the Guest.
1336 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1337 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1340 dev = new_device("console", VIRTIO_ID_CONSOLE);
1342 /* We store the console state in dev->priv, and initialize it. */
1343 dev->priv = malloc(sizeof(struct console_abort));
1344 ((struct console_abort *)dev->priv)->count = 0;
1347 * The console needs two virtqueues: the input then the output. When
1348 * they put something the input queue, we make sure we're listening to
1349 * stdin. When they put something in the output queue, we write it to
1350 * stdout.
1352 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1353 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1355 verbose("device %u: console\n", ++devices.device_num);
1357 /*:*/
1359 /*M:010
1360 * Inter-guest networking is an interesting area. Simplest is to have a
1361 * --sharenet=<name> option which opens or creates a named pipe. This can be
1362 * used to send packets to another guest in a 1:1 manner.
1364 * More sopisticated is to use one of the tools developed for project like UML
1365 * to do networking.
1367 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1368 * completely generic ("here's my vring, attach to your vring") and would work
1369 * for any traffic. Of course, namespace and permissions issues need to be
1370 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1371 * multiple inter-guest channels behind one interface, although it would
1372 * require some manner of hotplugging new virtio channels.
1374 * Finally, we could implement a virtio network switch in the kernel.
1377 static u32 str2ip(const char *ipaddr)
1379 unsigned int b[4];
1381 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1382 errx(1, "Failed to parse IP address '%s'", ipaddr);
1383 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1386 static void str2mac(const char *macaddr, unsigned char mac[6])
1388 unsigned int m[6];
1389 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1390 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1391 errx(1, "Failed to parse mac address '%s'", macaddr);
1392 mac[0] = m[0];
1393 mac[1] = m[1];
1394 mac[2] = m[2];
1395 mac[3] = m[3];
1396 mac[4] = m[4];
1397 mac[5] = m[5];
1401 * This code is "adapted" from libbridge: it attaches the Host end of the
1402 * network device to the bridge device specified by the command line.
1404 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1405 * dislike bridging), and I just try not to break it.
1407 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1409 int ifidx;
1410 struct ifreq ifr;
1412 if (!*br_name)
1413 errx(1, "must specify bridge name");
1415 ifidx = if_nametoindex(if_name);
1416 if (!ifidx)
1417 errx(1, "interface %s does not exist!", if_name);
1419 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1420 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1421 ifr.ifr_ifindex = ifidx;
1422 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1423 err(1, "can't add %s to bridge %s", if_name, br_name);
1427 * This sets up the Host end of the network device with an IP address, brings
1428 * it up so packets will flow, the copies the MAC address into the hwaddr
1429 * pointer.
1431 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1433 struct ifreq ifr;
1434 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1436 memset(&ifr, 0, sizeof(ifr));
1437 strcpy(ifr.ifr_name, tapif);
1439 /* Don't read these incantations. Just cut & paste them like I did! */
1440 sin->sin_family = AF_INET;
1441 sin->sin_addr.s_addr = htonl(ipaddr);
1442 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1443 err(1, "Setting %s interface address", tapif);
1444 ifr.ifr_flags = IFF_UP;
1445 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1446 err(1, "Bringing interface %s up", tapif);
1449 static int get_tun_device(char tapif[IFNAMSIZ])
1451 struct ifreq ifr;
1452 int netfd;
1454 /* Start with this zeroed. Messy but sure. */
1455 memset(&ifr, 0, sizeof(ifr));
1458 * We open the /dev/net/tun device and tell it we want a tap device. A
1459 * tap device is like a tun device, only somehow different. To tell
1460 * the truth, I completely blundered my way through this code, but it
1461 * works now!
1463 netfd = open_or_die("/dev/net/tun", O_RDWR);
1464 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1465 strcpy(ifr.ifr_name, "tap%d");
1466 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1467 err(1, "configuring /dev/net/tun");
1469 if (ioctl(netfd, TUNSETOFFLOAD,
1470 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1471 err(1, "Could not set features for tun device");
1474 * We don't need checksums calculated for packets coming in this
1475 * device: trust us!
1477 ioctl(netfd, TUNSETNOCSUM, 1);
1479 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1480 return netfd;
1483 /*L:195
1484 * Our network is a Host<->Guest network. This can either use bridging or
1485 * routing, but the principle is the same: it uses the "tun" device to inject
1486 * packets into the Host as if they came in from a normal network card. We
1487 * just shunt packets between the Guest and the tun device.
1489 static void setup_tun_net(char *arg)
1491 struct device *dev;
1492 struct net_info *net_info = malloc(sizeof(*net_info));
1493 int ipfd;
1494 u32 ip = INADDR_ANY;
1495 bool bridging = false;
1496 char tapif[IFNAMSIZ], *p;
1497 struct virtio_net_config conf;
1499 net_info->tunfd = get_tun_device(tapif);
1501 /* First we create a new network device. */
1502 dev = new_device("net", VIRTIO_ID_NET);
1503 dev->priv = net_info;
1505 /* Network devices need a recv and a send queue, just like console. */
1506 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1507 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1510 * We need a socket to perform the magic network ioctls to bring up the
1511 * tap interface, connect to the bridge etc. Any socket will do!
1513 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1514 if (ipfd < 0)
1515 err(1, "opening IP socket");
1517 /* If the command line was --tunnet=bridge:<name> do bridging. */
1518 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1519 arg += strlen(BRIDGE_PFX);
1520 bridging = true;
1523 /* A mac address may follow the bridge name or IP address */
1524 p = strchr(arg, ':');
1525 if (p) {
1526 str2mac(p+1, conf.mac);
1527 add_feature(dev, VIRTIO_NET_F_MAC);
1528 *p = '\0';
1531 /* arg is now either an IP address or a bridge name */
1532 if (bridging)
1533 add_to_bridge(ipfd, tapif, arg);
1534 else
1535 ip = str2ip(arg);
1537 /* Set up the tun device. */
1538 configure_device(ipfd, tapif, ip);
1540 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1541 /* Expect Guest to handle everything except UFO */
1542 add_feature(dev, VIRTIO_NET_F_CSUM);
1543 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1544 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1545 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1546 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1547 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1548 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1549 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1550 /* We handle indirect ring entries */
1551 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1552 set_config(dev, sizeof(conf), &conf);
1554 /* We don't need the socket any more; setup is done. */
1555 close(ipfd);
1557 devices.device_num++;
1559 if (bridging)
1560 verbose("device %u: tun %s attached to bridge: %s\n",
1561 devices.device_num, tapif, arg);
1562 else
1563 verbose("device %u: tun %s: %s\n",
1564 devices.device_num, tapif, arg);
1566 /*:*/
1568 /* This hangs off device->priv. */
1569 struct vblk_info {
1570 /* The size of the file. */
1571 off64_t len;
1573 /* The file descriptor for the file. */
1574 int fd;
1578 /*L:210
1579 * The Disk
1581 * The disk only has one virtqueue, so it only has one thread. It is really
1582 * simple: the Guest asks for a block number and we read or write that position
1583 * in the file.
1585 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1586 * slow: the Guest waits until the read is finished before running anything
1587 * else, even if it could have been doing useful work.
1589 * We could have used async I/O, except it's reputed to suck so hard that
1590 * characters actually go missing from your code when you try to use it.
1592 static void blk_request(struct virtqueue *vq)
1594 struct vblk_info *vblk = vq->dev->priv;
1595 unsigned int head, out_num, in_num, wlen;
1596 int ret;
1597 u8 *in;
1598 struct virtio_blk_outhdr *out;
1599 struct iovec iov[vq->vring.num];
1600 off64_t off;
1603 * Get the next request, where we normally wait. It triggers the
1604 * interrupt to acknowledge previously serviced requests (if any).
1606 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1609 * Every block request should contain at least one output buffer
1610 * (detailing the location on disk and the type of request) and one
1611 * input buffer (to hold the result).
1613 if (out_num == 0 || in_num == 0)
1614 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1615 head, out_num, in_num);
1617 out = convert(&iov[0], struct virtio_blk_outhdr);
1618 in = convert(&iov[out_num+in_num-1], u8);
1620 * For historical reasons, block operations are expressed in 512 byte
1621 * "sectors".
1623 off = out->sector * 512;
1626 * The block device implements "barriers", where the Guest indicates
1627 * that it wants all previous writes to occur before this write. We
1628 * don't have a way of asking our kernel to do a barrier, so we just
1629 * synchronize all the data in the file. Pretty poor, no?
1631 if (out->type & VIRTIO_BLK_T_BARRIER)
1632 fdatasync(vblk->fd);
1635 * In general the virtio block driver is allowed to try SCSI commands.
1636 * It'd be nice if we supported eject, for example, but we don't.
1638 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1639 fprintf(stderr, "Scsi commands unsupported\n");
1640 *in = VIRTIO_BLK_S_UNSUPP;
1641 wlen = sizeof(*in);
1642 } else if (out->type & VIRTIO_BLK_T_OUT) {
1644 * Write
1646 * Move to the right location in the block file. This can fail
1647 * if they try to write past end.
1649 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1650 err(1, "Bad seek to sector %llu", out->sector);
1652 ret = writev(vblk->fd, iov+1, out_num-1);
1653 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1656 * Grr... Now we know how long the descriptor they sent was, we
1657 * make sure they didn't try to write over the end of the block
1658 * file (possibly extending it).
1660 if (ret > 0 && off + ret > vblk->len) {
1661 /* Trim it back to the correct length */
1662 ftruncate64(vblk->fd, vblk->len);
1663 /* Die, bad Guest, die. */
1664 errx(1, "Write past end %llu+%u", off, ret);
1666 wlen = sizeof(*in);
1667 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1668 } else {
1670 * Read
1672 * Move to the right location in the block file. This can fail
1673 * if they try to read past end.
1675 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1676 err(1, "Bad seek to sector %llu", out->sector);
1678 ret = readv(vblk->fd, iov+1, in_num-1);
1679 verbose("READ from sector %llu: %i\n", out->sector, ret);
1680 if (ret >= 0) {
1681 wlen = sizeof(*in) + ret;
1682 *in = VIRTIO_BLK_S_OK;
1683 } else {
1684 wlen = sizeof(*in);
1685 *in = VIRTIO_BLK_S_IOERR;
1690 * OK, so we noted that it was pretty poor to use an fdatasync as a
1691 * barrier. But Christoph Hellwig points out that we need a sync
1692 * *afterwards* as well: "Barriers specify no reordering to the front
1693 * or the back." And Jens Axboe confirmed it, so here we are:
1695 if (out->type & VIRTIO_BLK_T_BARRIER)
1696 fdatasync(vblk->fd);
1698 /* Finished that request. */
1699 add_used(vq, head, wlen);
1702 /*L:198 This actually sets up a virtual block device. */
1703 static void setup_block_file(const char *filename)
1705 struct device *dev;
1706 struct vblk_info *vblk;
1707 struct virtio_blk_config conf;
1709 /* Creat the device. */
1710 dev = new_device("block", VIRTIO_ID_BLOCK);
1712 /* The device has one virtqueue, where the Guest places requests. */
1713 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1715 /* Allocate the room for our own bookkeeping */
1716 vblk = dev->priv = malloc(sizeof(*vblk));
1718 /* First we open the file and store the length. */
1719 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1720 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1722 /* We support barriers. */
1723 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1725 /* Tell Guest how many sectors this device has. */
1726 conf.capacity = cpu_to_le64(vblk->len / 512);
1729 * Tell Guest not to put in too many descriptors at once: two are used
1730 * for the in and out elements.
1732 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1733 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1735 /* Don't try to put whole struct: we have 8 bit limit. */
1736 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1738 verbose("device %u: virtblock %llu sectors\n",
1739 ++devices.device_num, le64_to_cpu(conf.capacity));
1742 /*L:211
1743 * Our random number generator device reads from /dev/random into the Guest's
1744 * input buffers. The usual case is that the Guest doesn't want random numbers
1745 * and so has no buffers although /dev/random is still readable, whereas
1746 * console is the reverse.
1748 * The same logic applies, however.
1750 struct rng_info {
1751 int rfd;
1754 static void rng_input(struct virtqueue *vq)
1756 int len;
1757 unsigned int head, in_num, out_num, totlen = 0;
1758 struct rng_info *rng_info = vq->dev->priv;
1759 struct iovec iov[vq->vring.num];
1761 /* First we need a buffer from the Guests's virtqueue. */
1762 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1763 if (out_num)
1764 errx(1, "Output buffers in rng?");
1767 * Just like the console write, we loop to cover the whole iovec.
1768 * In this case, short reads actually happen quite a bit.
1770 while (!iov_empty(iov, in_num)) {
1771 len = readv(rng_info->rfd, iov, in_num);
1772 if (len <= 0)
1773 err(1, "Read from /dev/random gave %i", len);
1774 iov_consume(iov, in_num, len);
1775 totlen += len;
1778 /* Tell the Guest about the new input. */
1779 add_used(vq, head, totlen);
1782 /*L:199
1783 * This creates a "hardware" random number device for the Guest.
1785 static void setup_rng(void)
1787 struct device *dev;
1788 struct rng_info *rng_info = malloc(sizeof(*rng_info));
1790 /* Our device's privat info simply contains the /dev/random fd. */
1791 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1793 /* Create the new device. */
1794 dev = new_device("rng", VIRTIO_ID_RNG);
1795 dev->priv = rng_info;
1797 /* The device has one virtqueue, where the Guest places inbufs. */
1798 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1800 verbose("device %u: rng\n", devices.device_num++);
1802 /* That's the end of device setup. */
1804 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1805 static void __attribute__((noreturn)) restart_guest(void)
1807 unsigned int i;
1810 * Since we don't track all open fds, we simply close everything beyond
1811 * stderr.
1813 for (i = 3; i < FD_SETSIZE; i++)
1814 close(i);
1816 /* Reset all the devices (kills all threads). */
1817 cleanup_devices();
1819 execv(main_args[0], main_args);
1820 err(1, "Could not exec %s", main_args[0]);
1823 /*L:220
1824 * Finally we reach the core of the Launcher which runs the Guest, serves
1825 * its input and output, and finally, lays it to rest.
1827 static void __attribute__((noreturn)) run_guest(void)
1829 for (;;) {
1830 unsigned long notify_addr;
1831 int readval;
1833 /* We read from the /dev/lguest device to run the Guest. */
1834 readval = pread(lguest_fd, &notify_addr,
1835 sizeof(notify_addr), cpu_id);
1837 /* One unsigned long means the Guest did HCALL_NOTIFY */
1838 if (readval == sizeof(notify_addr)) {
1839 verbose("Notify on address %#lx\n", notify_addr);
1840 handle_output(notify_addr);
1841 /* ENOENT means the Guest died. Reading tells us why. */
1842 } else if (errno == ENOENT) {
1843 char reason[1024] = { 0 };
1844 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1845 errx(1, "%s", reason);
1846 /* ERESTART means that we need to reboot the guest */
1847 } else if (errno == ERESTART) {
1848 restart_guest();
1849 /* Anything else means a bug or incompatible change. */
1850 } else
1851 err(1, "Running guest failed");
1854 /*L:240
1855 * This is the end of the Launcher. The good news: we are over halfway
1856 * through! The bad news: the most fiendish part of the code still lies ahead
1857 * of us.
1859 * Are you ready? Take a deep breath and join me in the core of the Host, in
1860 * "make Host".
1863 static struct option opts[] = {
1864 { "verbose", 0, NULL, 'v' },
1865 { "tunnet", 1, NULL, 't' },
1866 { "block", 1, NULL, 'b' },
1867 { "rng", 0, NULL, 'r' },
1868 { "initrd", 1, NULL, 'i' },
1869 { NULL },
1871 static void usage(void)
1873 errx(1, "Usage: lguest [--verbose] "
1874 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1875 "|--block=<filename>|--initrd=<filename>]...\n"
1876 "<mem-in-mb> vmlinux [args...]");
1879 /*L:105 The main routine is where the real work begins: */
1880 int main(int argc, char *argv[])
1882 /* Memory, code startpoint and size of the (optional) initrd. */
1883 unsigned long mem = 0, start, initrd_size = 0;
1884 /* Two temporaries. */
1885 int i, c;
1886 /* The boot information for the Guest. */
1887 struct boot_params *boot;
1888 /* If they specify an initrd file to load. */
1889 const char *initrd_name = NULL;
1891 /* Save the args: we "reboot" by execing ourselves again. */
1892 main_args = argv;
1895 * First we initialize the device list. We keep a pointer to the last
1896 * device, and the next interrupt number to use for devices (1:
1897 * remember that 0 is used by the timer).
1899 devices.lastdev = NULL;
1900 devices.next_irq = 1;
1902 /* We're CPU 0. In fact, that's the only CPU possible right now. */
1903 cpu_id = 0;
1906 * We need to know how much memory so we can set up the device
1907 * descriptor and memory pages for the devices as we parse the command
1908 * line. So we quickly look through the arguments to find the amount
1909 * of memory now.
1911 for (i = 1; i < argc; i++) {
1912 if (argv[i][0] != '-') {
1913 mem = atoi(argv[i]) * 1024 * 1024;
1915 * We start by mapping anonymous pages over all of
1916 * guest-physical memory range. This fills it with 0,
1917 * and ensures that the Guest won't be killed when it
1918 * tries to access it.
1920 guest_base = map_zeroed_pages(mem / getpagesize()
1921 + DEVICE_PAGES);
1922 guest_limit = mem;
1923 guest_max = mem + DEVICE_PAGES*getpagesize();
1924 devices.descpage = get_pages(1);
1925 break;
1929 /* The options are fairly straight-forward */
1930 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1931 switch (c) {
1932 case 'v':
1933 verbose = true;
1934 break;
1935 case 't':
1936 setup_tun_net(optarg);
1937 break;
1938 case 'b':
1939 setup_block_file(optarg);
1940 break;
1941 case 'r':
1942 setup_rng();
1943 break;
1944 case 'i':
1945 initrd_name = optarg;
1946 break;
1947 default:
1948 warnx("Unknown argument %s", argv[optind]);
1949 usage();
1953 * After the other arguments we expect memory and kernel image name,
1954 * followed by command line arguments for the kernel.
1956 if (optind + 2 > argc)
1957 usage();
1959 verbose("Guest base is at %p\n", guest_base);
1961 /* We always have a console device */
1962 setup_console();
1964 /* Now we load the kernel */
1965 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1967 /* Boot information is stashed at physical address 0 */
1968 boot = from_guest_phys(0);
1970 /* Map the initrd image if requested (at top of physical memory) */
1971 if (initrd_name) {
1972 initrd_size = load_initrd(initrd_name, mem);
1974 * These are the location in the Linux boot header where the
1975 * start and size of the initrd are expected to be found.
1977 boot->hdr.ramdisk_image = mem - initrd_size;
1978 boot->hdr.ramdisk_size = initrd_size;
1979 /* The bootloader type 0xFF means "unknown"; that's OK. */
1980 boot->hdr.type_of_loader = 0xFF;
1984 * The Linux boot header contains an "E820" memory map: ours is a
1985 * simple, single region.
1987 boot->e820_entries = 1;
1988 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1990 * The boot header contains a command line pointer: we put the command
1991 * line after the boot header.
1993 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1994 /* We use a simple helper to copy the arguments separated by spaces. */
1995 concat((char *)(boot + 1), argv+optind+2);
1997 /* Boot protocol version: 2.07 supports the fields for lguest. */
1998 boot->hdr.version = 0x207;
2000 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2001 boot->hdr.hardware_subarch = 1;
2003 /* Tell the entry path not to try to reload segment registers. */
2004 boot->hdr.loadflags |= KEEP_SEGMENTS;
2007 * We tell the kernel to initialize the Guest: this returns the open
2008 * /dev/lguest file descriptor.
2010 tell_kernel(start);
2012 /* Ensure that we terminate if a device-servicing child dies. */
2013 signal(SIGCHLD, kill_launcher);
2015 /* If we exit via err(), this kills all the threads, restores tty. */
2016 atexit(cleanup_devices);
2018 /* Finally, run the Guest. This doesn't return. */
2019 run_guest();
2021 /*:*/
2023 /*M:999
2024 * Mastery is done: you now know everything I do.
2026 * But surely you have seen code, features and bugs in your wanderings which
2027 * you now yearn to attack? That is the real game, and I look forward to you
2028 * patching and forking lguest into the Your-Name-Here-visor.
2030 * Farewell, and good coding!
2031 * Rusty Russell.