xen: split construction of p2m mfn tables from registration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob6e58acd4d00d91c722e6fbc4c1624ed85151e2fb
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/setup.h>
51 #include <asm/paravirt.h>
52 #include <asm/linkage.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
57 #include <xen/page.h>
58 #include <xen/interface/xen.h>
59 #include <xen/interface/version.h>
60 #include <xen/hvc-console.h>
62 #include "multicalls.h"
63 #include "mmu.h"
64 #include "debugfs.h"
66 #define MMU_UPDATE_HISTO 30
68 #ifdef CONFIG_XEN_DEBUG_FS
70 static struct {
71 u32 pgd_update;
72 u32 pgd_update_pinned;
73 u32 pgd_update_batched;
75 u32 pud_update;
76 u32 pud_update_pinned;
77 u32 pud_update_batched;
79 u32 pmd_update;
80 u32 pmd_update_pinned;
81 u32 pmd_update_batched;
83 u32 pte_update;
84 u32 pte_update_pinned;
85 u32 pte_update_batched;
87 u32 mmu_update;
88 u32 mmu_update_extended;
89 u32 mmu_update_histo[MMU_UPDATE_HISTO];
91 u32 prot_commit;
92 u32 prot_commit_batched;
94 u32 set_pte_at;
95 u32 set_pte_at_batched;
96 u32 set_pte_at_pinned;
97 u32 set_pte_at_current;
98 u32 set_pte_at_kernel;
99 } mmu_stats;
101 static u8 zero_stats;
103 static inline void check_zero(void)
105 if (unlikely(zero_stats)) {
106 memset(&mmu_stats, 0, sizeof(mmu_stats));
107 zero_stats = 0;
111 #define ADD_STATS(elem, val) \
112 do { check_zero(); mmu_stats.elem += (val); } while(0)
114 #else /* !CONFIG_XEN_DEBUG_FS */
116 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
118 #endif /* CONFIG_XEN_DEBUG_FS */
122 * Identity map, in addition to plain kernel map. This needs to be
123 * large enough to allocate page table pages to allocate the rest.
124 * Each page can map 2MB.
126 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
128 #ifdef CONFIG_X86_64
129 /* l3 pud for userspace vsyscall mapping */
130 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
131 #endif /* CONFIG_X86_64 */
134 * Note about cr3 (pagetable base) values:
136 * xen_cr3 contains the current logical cr3 value; it contains the
137 * last set cr3. This may not be the current effective cr3, because
138 * its update may be being lazily deferred. However, a vcpu looking
139 * at its own cr3 can use this value knowing that it everything will
140 * be self-consistent.
142 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
143 * hypercall to set the vcpu cr3 is complete (so it may be a little
144 * out of date, but it will never be set early). If one vcpu is
145 * looking at another vcpu's cr3 value, it should use this variable.
147 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
148 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
152 * Just beyond the highest usermode address. STACK_TOP_MAX has a
153 * redzone above it, so round it up to a PGD boundary.
155 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
158 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
159 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
161 /* Placeholder for holes in the address space */
162 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
163 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
165 /* Array of pointers to pages containing p2m entries */
166 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
167 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
169 /* Arrays of p2m arrays expressed in mfns used for save/restore */
170 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
172 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
173 __page_aligned_bss;
175 static inline unsigned p2m_top_index(unsigned long pfn)
177 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
178 return pfn / P2M_ENTRIES_PER_PAGE;
181 static inline unsigned p2m_index(unsigned long pfn)
183 return pfn % P2M_ENTRIES_PER_PAGE;
186 /* Build the parallel p2m_top_mfn structures */
187 static void __init xen_build_mfn_list_list(void)
189 unsigned pfn, idx;
191 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
192 unsigned topidx = p2m_top_index(pfn);
194 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
197 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
198 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
199 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
203 void xen_setup_mfn_list_list(void)
205 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
207 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
208 virt_to_mfn(p2m_top_mfn_list);
209 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
212 /* Set up p2m_top to point to the domain-builder provided p2m pages */
213 void __init xen_build_dynamic_phys_to_machine(void)
215 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
216 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
217 unsigned pfn;
219 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
220 unsigned topidx = p2m_top_index(pfn);
222 p2m_top[topidx] = &mfn_list[pfn];
225 xen_build_mfn_list_list();
228 unsigned long get_phys_to_machine(unsigned long pfn)
230 unsigned topidx, idx;
232 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
233 return INVALID_P2M_ENTRY;
235 topidx = p2m_top_index(pfn);
236 idx = p2m_index(pfn);
237 return p2m_top[topidx][idx];
239 EXPORT_SYMBOL_GPL(get_phys_to_machine);
241 /* install a new p2m_top page */
242 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
244 unsigned topidx = p2m_top_index(pfn);
245 unsigned long **pfnp, *mfnp;
246 unsigned i;
248 pfnp = &p2m_top[topidx];
249 mfnp = &p2m_top_mfn[topidx];
251 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
252 p[i] = INVALID_P2M_ENTRY;
254 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
255 *mfnp = virt_to_mfn(p);
256 return true;
259 return false;
262 static void alloc_p2m(unsigned long pfn)
264 unsigned long *p;
266 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
267 BUG_ON(p == NULL);
269 if (!install_p2mtop_page(pfn, p))
270 free_page((unsigned long)p);
273 /* Try to install p2m mapping; fail if intermediate bits missing */
274 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
276 unsigned topidx, idx;
278 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
279 BUG_ON(mfn != INVALID_P2M_ENTRY);
280 return true;
283 topidx = p2m_top_index(pfn);
284 if (p2m_top[topidx] == p2m_missing) {
285 if (mfn == INVALID_P2M_ENTRY)
286 return true;
287 return false;
290 idx = p2m_index(pfn);
291 p2m_top[topidx][idx] = mfn;
293 return true;
296 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
298 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
299 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
300 return;
303 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
304 alloc_p2m(pfn);
306 if (!__set_phys_to_machine(pfn, mfn))
307 BUG();
311 unsigned long arbitrary_virt_to_mfn(void *vaddr)
313 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
315 return PFN_DOWN(maddr.maddr);
318 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
320 unsigned long address = (unsigned long)vaddr;
321 unsigned int level;
322 pte_t *pte;
323 unsigned offset;
326 * if the PFN is in the linear mapped vaddr range, we can just use
327 * the (quick) virt_to_machine() p2m lookup
329 if (virt_addr_valid(vaddr))
330 return virt_to_machine(vaddr);
332 /* otherwise we have to do a (slower) full page-table walk */
334 pte = lookup_address(address, &level);
335 BUG_ON(pte == NULL);
336 offset = address & ~PAGE_MASK;
337 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
340 void make_lowmem_page_readonly(void *vaddr)
342 pte_t *pte, ptev;
343 unsigned long address = (unsigned long)vaddr;
344 unsigned int level;
346 pte = lookup_address(address, &level);
347 BUG_ON(pte == NULL);
349 ptev = pte_wrprotect(*pte);
351 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
352 BUG();
355 void make_lowmem_page_readwrite(void *vaddr)
357 pte_t *pte, ptev;
358 unsigned long address = (unsigned long)vaddr;
359 unsigned int level;
361 pte = lookup_address(address, &level);
362 BUG_ON(pte == NULL);
364 ptev = pte_mkwrite(*pte);
366 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
367 BUG();
371 static bool xen_page_pinned(void *ptr)
373 struct page *page = virt_to_page(ptr);
375 return PagePinned(page);
378 static void xen_extend_mmu_update(const struct mmu_update *update)
380 struct multicall_space mcs;
381 struct mmu_update *u;
383 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
385 if (mcs.mc != NULL) {
386 ADD_STATS(mmu_update_extended, 1);
387 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
389 mcs.mc->args[1]++;
391 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
392 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
393 else
394 ADD_STATS(mmu_update_histo[0], 1);
395 } else {
396 ADD_STATS(mmu_update, 1);
397 mcs = __xen_mc_entry(sizeof(*u));
398 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
399 ADD_STATS(mmu_update_histo[1], 1);
402 u = mcs.args;
403 *u = *update;
406 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
408 struct mmu_update u;
410 preempt_disable();
412 xen_mc_batch();
414 /* ptr may be ioremapped for 64-bit pagetable setup */
415 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
416 u.val = pmd_val_ma(val);
417 xen_extend_mmu_update(&u);
419 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
421 xen_mc_issue(PARAVIRT_LAZY_MMU);
423 preempt_enable();
426 void xen_set_pmd(pmd_t *ptr, pmd_t val)
428 ADD_STATS(pmd_update, 1);
430 /* If page is not pinned, we can just update the entry
431 directly */
432 if (!xen_page_pinned(ptr)) {
433 *ptr = val;
434 return;
437 ADD_STATS(pmd_update_pinned, 1);
439 xen_set_pmd_hyper(ptr, val);
443 * Associate a virtual page frame with a given physical page frame
444 * and protection flags for that frame.
446 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
448 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
451 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
452 pte_t *ptep, pte_t pteval)
454 /* updates to init_mm may be done without lock */
455 if (mm == &init_mm)
456 preempt_disable();
458 ADD_STATS(set_pte_at, 1);
459 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
460 ADD_STATS(set_pte_at_current, mm == current->mm);
461 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
463 if (mm == current->mm || mm == &init_mm) {
464 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
465 struct multicall_space mcs;
466 mcs = xen_mc_entry(0);
468 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
469 ADD_STATS(set_pte_at_batched, 1);
470 xen_mc_issue(PARAVIRT_LAZY_MMU);
471 goto out;
472 } else
473 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
474 goto out;
476 xen_set_pte(ptep, pteval);
478 out:
479 if (mm == &init_mm)
480 preempt_enable();
483 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
484 unsigned long addr, pte_t *ptep)
486 /* Just return the pte as-is. We preserve the bits on commit */
487 return *ptep;
490 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
491 pte_t *ptep, pte_t pte)
493 struct mmu_update u;
495 xen_mc_batch();
497 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
498 u.val = pte_val_ma(pte);
499 xen_extend_mmu_update(&u);
501 ADD_STATS(prot_commit, 1);
502 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
504 xen_mc_issue(PARAVIRT_LAZY_MMU);
507 /* Assume pteval_t is equivalent to all the other *val_t types. */
508 static pteval_t pte_mfn_to_pfn(pteval_t val)
510 if (val & _PAGE_PRESENT) {
511 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
512 pteval_t flags = val & PTE_FLAGS_MASK;
513 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
516 return val;
519 static pteval_t pte_pfn_to_mfn(pteval_t val)
521 if (val & _PAGE_PRESENT) {
522 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
523 pteval_t flags = val & PTE_FLAGS_MASK;
524 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
527 return val;
530 pteval_t xen_pte_val(pte_t pte)
532 return pte_mfn_to_pfn(pte.pte);
534 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
536 pgdval_t xen_pgd_val(pgd_t pgd)
538 return pte_mfn_to_pfn(pgd.pgd);
540 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
542 pte_t xen_make_pte(pteval_t pte)
544 pte = pte_pfn_to_mfn(pte);
545 return native_make_pte(pte);
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
549 pgd_t xen_make_pgd(pgdval_t pgd)
551 pgd = pte_pfn_to_mfn(pgd);
552 return native_make_pgd(pgd);
554 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
556 pmdval_t xen_pmd_val(pmd_t pmd)
558 return pte_mfn_to_pfn(pmd.pmd);
560 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
562 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
564 struct mmu_update u;
566 preempt_disable();
568 xen_mc_batch();
570 /* ptr may be ioremapped for 64-bit pagetable setup */
571 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
572 u.val = pud_val_ma(val);
573 xen_extend_mmu_update(&u);
575 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
577 xen_mc_issue(PARAVIRT_LAZY_MMU);
579 preempt_enable();
582 void xen_set_pud(pud_t *ptr, pud_t val)
584 ADD_STATS(pud_update, 1);
586 /* If page is not pinned, we can just update the entry
587 directly */
588 if (!xen_page_pinned(ptr)) {
589 *ptr = val;
590 return;
593 ADD_STATS(pud_update_pinned, 1);
595 xen_set_pud_hyper(ptr, val);
598 void xen_set_pte(pte_t *ptep, pte_t pte)
600 ADD_STATS(pte_update, 1);
601 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
602 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
604 #ifdef CONFIG_X86_PAE
605 ptep->pte_high = pte.pte_high;
606 smp_wmb();
607 ptep->pte_low = pte.pte_low;
608 #else
609 *ptep = pte;
610 #endif
613 #ifdef CONFIG_X86_PAE
614 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
616 set_64bit((u64 *)ptep, native_pte_val(pte));
619 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
621 ptep->pte_low = 0;
622 smp_wmb(); /* make sure low gets written first */
623 ptep->pte_high = 0;
626 void xen_pmd_clear(pmd_t *pmdp)
628 set_pmd(pmdp, __pmd(0));
630 #endif /* CONFIG_X86_PAE */
632 pmd_t xen_make_pmd(pmdval_t pmd)
634 pmd = pte_pfn_to_mfn(pmd);
635 return native_make_pmd(pmd);
637 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
639 #if PAGETABLE_LEVELS == 4
640 pudval_t xen_pud_val(pud_t pud)
642 return pte_mfn_to_pfn(pud.pud);
644 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
646 pud_t xen_make_pud(pudval_t pud)
648 pud = pte_pfn_to_mfn(pud);
650 return native_make_pud(pud);
652 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
654 pgd_t *xen_get_user_pgd(pgd_t *pgd)
656 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
657 unsigned offset = pgd - pgd_page;
658 pgd_t *user_ptr = NULL;
660 if (offset < pgd_index(USER_LIMIT)) {
661 struct page *page = virt_to_page(pgd_page);
662 user_ptr = (pgd_t *)page->private;
663 if (user_ptr)
664 user_ptr += offset;
667 return user_ptr;
670 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
672 struct mmu_update u;
674 u.ptr = virt_to_machine(ptr).maddr;
675 u.val = pgd_val_ma(val);
676 xen_extend_mmu_update(&u);
680 * Raw hypercall-based set_pgd, intended for in early boot before
681 * there's a page structure. This implies:
682 * 1. The only existing pagetable is the kernel's
683 * 2. It is always pinned
684 * 3. It has no user pagetable attached to it
686 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
688 preempt_disable();
690 xen_mc_batch();
692 __xen_set_pgd_hyper(ptr, val);
694 xen_mc_issue(PARAVIRT_LAZY_MMU);
696 preempt_enable();
699 void xen_set_pgd(pgd_t *ptr, pgd_t val)
701 pgd_t *user_ptr = xen_get_user_pgd(ptr);
703 ADD_STATS(pgd_update, 1);
705 /* If page is not pinned, we can just update the entry
706 directly */
707 if (!xen_page_pinned(ptr)) {
708 *ptr = val;
709 if (user_ptr) {
710 WARN_ON(xen_page_pinned(user_ptr));
711 *user_ptr = val;
713 return;
716 ADD_STATS(pgd_update_pinned, 1);
717 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
719 /* If it's pinned, then we can at least batch the kernel and
720 user updates together. */
721 xen_mc_batch();
723 __xen_set_pgd_hyper(ptr, val);
724 if (user_ptr)
725 __xen_set_pgd_hyper(user_ptr, val);
727 xen_mc_issue(PARAVIRT_LAZY_MMU);
729 #endif /* PAGETABLE_LEVELS == 4 */
732 * (Yet another) pagetable walker. This one is intended for pinning a
733 * pagetable. This means that it walks a pagetable and calls the
734 * callback function on each page it finds making up the page table,
735 * at every level. It walks the entire pagetable, but it only bothers
736 * pinning pte pages which are below limit. In the normal case this
737 * will be STACK_TOP_MAX, but at boot we need to pin up to
738 * FIXADDR_TOP.
740 * For 32-bit the important bit is that we don't pin beyond there,
741 * because then we start getting into Xen's ptes.
743 * For 64-bit, we must skip the Xen hole in the middle of the address
744 * space, just after the big x86-64 virtual hole.
746 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
747 int (*func)(struct mm_struct *mm, struct page *,
748 enum pt_level),
749 unsigned long limit)
751 int flush = 0;
752 unsigned hole_low, hole_high;
753 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
754 unsigned pgdidx, pudidx, pmdidx;
756 /* The limit is the last byte to be touched */
757 limit--;
758 BUG_ON(limit >= FIXADDR_TOP);
760 if (xen_feature(XENFEAT_auto_translated_physmap))
761 return 0;
764 * 64-bit has a great big hole in the middle of the address
765 * space, which contains the Xen mappings. On 32-bit these
766 * will end up making a zero-sized hole and so is a no-op.
768 hole_low = pgd_index(USER_LIMIT);
769 hole_high = pgd_index(PAGE_OFFSET);
771 pgdidx_limit = pgd_index(limit);
772 #if PTRS_PER_PUD > 1
773 pudidx_limit = pud_index(limit);
774 #else
775 pudidx_limit = 0;
776 #endif
777 #if PTRS_PER_PMD > 1
778 pmdidx_limit = pmd_index(limit);
779 #else
780 pmdidx_limit = 0;
781 #endif
783 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
784 pud_t *pud;
786 if (pgdidx >= hole_low && pgdidx < hole_high)
787 continue;
789 if (!pgd_val(pgd[pgdidx]))
790 continue;
792 pud = pud_offset(&pgd[pgdidx], 0);
794 if (PTRS_PER_PUD > 1) /* not folded */
795 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
797 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
798 pmd_t *pmd;
800 if (pgdidx == pgdidx_limit &&
801 pudidx > pudidx_limit)
802 goto out;
804 if (pud_none(pud[pudidx]))
805 continue;
807 pmd = pmd_offset(&pud[pudidx], 0);
809 if (PTRS_PER_PMD > 1) /* not folded */
810 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
812 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
813 struct page *pte;
815 if (pgdidx == pgdidx_limit &&
816 pudidx == pudidx_limit &&
817 pmdidx > pmdidx_limit)
818 goto out;
820 if (pmd_none(pmd[pmdidx]))
821 continue;
823 pte = pmd_page(pmd[pmdidx]);
824 flush |= (*func)(mm, pte, PT_PTE);
829 out:
830 /* Do the top level last, so that the callbacks can use it as
831 a cue to do final things like tlb flushes. */
832 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
834 return flush;
837 static int xen_pgd_walk(struct mm_struct *mm,
838 int (*func)(struct mm_struct *mm, struct page *,
839 enum pt_level),
840 unsigned long limit)
842 return __xen_pgd_walk(mm, mm->pgd, func, limit);
845 /* If we're using split pte locks, then take the page's lock and
846 return a pointer to it. Otherwise return NULL. */
847 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
849 spinlock_t *ptl = NULL;
851 #if USE_SPLIT_PTLOCKS
852 ptl = __pte_lockptr(page);
853 spin_lock_nest_lock(ptl, &mm->page_table_lock);
854 #endif
856 return ptl;
859 static void xen_pte_unlock(void *v)
861 spinlock_t *ptl = v;
862 spin_unlock(ptl);
865 static void xen_do_pin(unsigned level, unsigned long pfn)
867 struct mmuext_op *op;
868 struct multicall_space mcs;
870 mcs = __xen_mc_entry(sizeof(*op));
871 op = mcs.args;
872 op->cmd = level;
873 op->arg1.mfn = pfn_to_mfn(pfn);
874 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
877 static int xen_pin_page(struct mm_struct *mm, struct page *page,
878 enum pt_level level)
880 unsigned pgfl = TestSetPagePinned(page);
881 int flush;
883 if (pgfl)
884 flush = 0; /* already pinned */
885 else if (PageHighMem(page))
886 /* kmaps need flushing if we found an unpinned
887 highpage */
888 flush = 1;
889 else {
890 void *pt = lowmem_page_address(page);
891 unsigned long pfn = page_to_pfn(page);
892 struct multicall_space mcs = __xen_mc_entry(0);
893 spinlock_t *ptl;
895 flush = 0;
898 * We need to hold the pagetable lock between the time
899 * we make the pagetable RO and when we actually pin
900 * it. If we don't, then other users may come in and
901 * attempt to update the pagetable by writing it,
902 * which will fail because the memory is RO but not
903 * pinned, so Xen won't do the trap'n'emulate.
905 * If we're using split pte locks, we can't hold the
906 * entire pagetable's worth of locks during the
907 * traverse, because we may wrap the preempt count (8
908 * bits). The solution is to mark RO and pin each PTE
909 * page while holding the lock. This means the number
910 * of locks we end up holding is never more than a
911 * batch size (~32 entries, at present).
913 * If we're not using split pte locks, we needn't pin
914 * the PTE pages independently, because we're
915 * protected by the overall pagetable lock.
917 ptl = NULL;
918 if (level == PT_PTE)
919 ptl = xen_pte_lock(page, mm);
921 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
922 pfn_pte(pfn, PAGE_KERNEL_RO),
923 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
925 if (ptl) {
926 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
928 /* Queue a deferred unlock for when this batch
929 is completed. */
930 xen_mc_callback(xen_pte_unlock, ptl);
934 return flush;
937 /* This is called just after a mm has been created, but it has not
938 been used yet. We need to make sure that its pagetable is all
939 read-only, and can be pinned. */
940 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
942 vm_unmap_aliases();
944 xen_mc_batch();
946 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
947 /* re-enable interrupts for flushing */
948 xen_mc_issue(0);
950 kmap_flush_unused();
952 xen_mc_batch();
955 #ifdef CONFIG_X86_64
957 pgd_t *user_pgd = xen_get_user_pgd(pgd);
959 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
961 if (user_pgd) {
962 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
963 xen_do_pin(MMUEXT_PIN_L4_TABLE,
964 PFN_DOWN(__pa(user_pgd)));
967 #else /* CONFIG_X86_32 */
968 #ifdef CONFIG_X86_PAE
969 /* Need to make sure unshared kernel PMD is pinnable */
970 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
971 PT_PMD);
972 #endif
973 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
974 #endif /* CONFIG_X86_64 */
975 xen_mc_issue(0);
978 static void xen_pgd_pin(struct mm_struct *mm)
980 __xen_pgd_pin(mm, mm->pgd);
984 * On save, we need to pin all pagetables to make sure they get their
985 * mfns turned into pfns. Search the list for any unpinned pgds and pin
986 * them (unpinned pgds are not currently in use, probably because the
987 * process is under construction or destruction).
989 * Expected to be called in stop_machine() ("equivalent to taking
990 * every spinlock in the system"), so the locking doesn't really
991 * matter all that much.
993 void xen_mm_pin_all(void)
995 unsigned long flags;
996 struct page *page;
998 spin_lock_irqsave(&pgd_lock, flags);
1000 list_for_each_entry(page, &pgd_list, lru) {
1001 if (!PagePinned(page)) {
1002 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1003 SetPageSavePinned(page);
1007 spin_unlock_irqrestore(&pgd_lock, flags);
1011 * The init_mm pagetable is really pinned as soon as its created, but
1012 * that's before we have page structures to store the bits. So do all
1013 * the book-keeping now.
1015 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1016 enum pt_level level)
1018 SetPagePinned(page);
1019 return 0;
1022 void __init xen_mark_init_mm_pinned(void)
1024 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1027 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1028 enum pt_level level)
1030 unsigned pgfl = TestClearPagePinned(page);
1032 if (pgfl && !PageHighMem(page)) {
1033 void *pt = lowmem_page_address(page);
1034 unsigned long pfn = page_to_pfn(page);
1035 spinlock_t *ptl = NULL;
1036 struct multicall_space mcs;
1039 * Do the converse to pin_page. If we're using split
1040 * pte locks, we must be holding the lock for while
1041 * the pte page is unpinned but still RO to prevent
1042 * concurrent updates from seeing it in this
1043 * partially-pinned state.
1045 if (level == PT_PTE) {
1046 ptl = xen_pte_lock(page, mm);
1048 if (ptl)
1049 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1052 mcs = __xen_mc_entry(0);
1054 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1055 pfn_pte(pfn, PAGE_KERNEL),
1056 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1058 if (ptl) {
1059 /* unlock when batch completed */
1060 xen_mc_callback(xen_pte_unlock, ptl);
1064 return 0; /* never need to flush on unpin */
1067 /* Release a pagetables pages back as normal RW */
1068 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1070 xen_mc_batch();
1072 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1074 #ifdef CONFIG_X86_64
1076 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1078 if (user_pgd) {
1079 xen_do_pin(MMUEXT_UNPIN_TABLE,
1080 PFN_DOWN(__pa(user_pgd)));
1081 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1084 #endif
1086 #ifdef CONFIG_X86_PAE
1087 /* Need to make sure unshared kernel PMD is unpinned */
1088 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1089 PT_PMD);
1090 #endif
1092 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1094 xen_mc_issue(0);
1097 static void xen_pgd_unpin(struct mm_struct *mm)
1099 __xen_pgd_unpin(mm, mm->pgd);
1103 * On resume, undo any pinning done at save, so that the rest of the
1104 * kernel doesn't see any unexpected pinned pagetables.
1106 void xen_mm_unpin_all(void)
1108 unsigned long flags;
1109 struct page *page;
1111 spin_lock_irqsave(&pgd_lock, flags);
1113 list_for_each_entry(page, &pgd_list, lru) {
1114 if (PageSavePinned(page)) {
1115 BUG_ON(!PagePinned(page));
1116 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1117 ClearPageSavePinned(page);
1121 spin_unlock_irqrestore(&pgd_lock, flags);
1124 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1126 spin_lock(&next->page_table_lock);
1127 xen_pgd_pin(next);
1128 spin_unlock(&next->page_table_lock);
1131 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1133 spin_lock(&mm->page_table_lock);
1134 xen_pgd_pin(mm);
1135 spin_unlock(&mm->page_table_lock);
1139 #ifdef CONFIG_SMP
1140 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1141 we need to repoint it somewhere else before we can unpin it. */
1142 static void drop_other_mm_ref(void *info)
1144 struct mm_struct *mm = info;
1145 struct mm_struct *active_mm;
1147 active_mm = percpu_read(cpu_tlbstate.active_mm);
1149 if (active_mm == mm)
1150 leave_mm(smp_processor_id());
1152 /* If this cpu still has a stale cr3 reference, then make sure
1153 it has been flushed. */
1154 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) {
1155 load_cr3(swapper_pg_dir);
1156 arch_flush_lazy_cpu_mode();
1160 static void xen_drop_mm_ref(struct mm_struct *mm)
1162 cpumask_var_t mask;
1163 unsigned cpu;
1165 if (current->active_mm == mm) {
1166 if (current->mm == mm)
1167 load_cr3(swapper_pg_dir);
1168 else
1169 leave_mm(smp_processor_id());
1170 arch_flush_lazy_cpu_mode();
1173 /* Get the "official" set of cpus referring to our pagetable. */
1174 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1175 for_each_online_cpu(cpu) {
1176 if (!cpumask_test_cpu(cpu, &mm->cpu_vm_mask)
1177 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1178 continue;
1179 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1181 return;
1183 cpumask_copy(mask, &mm->cpu_vm_mask);
1185 /* It's possible that a vcpu may have a stale reference to our
1186 cr3, because its in lazy mode, and it hasn't yet flushed
1187 its set of pending hypercalls yet. In this case, we can
1188 look at its actual current cr3 value, and force it to flush
1189 if needed. */
1190 for_each_online_cpu(cpu) {
1191 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1192 cpumask_set_cpu(cpu, mask);
1195 if (!cpumask_empty(mask))
1196 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1197 free_cpumask_var(mask);
1199 #else
1200 static void xen_drop_mm_ref(struct mm_struct *mm)
1202 if (current->active_mm == mm)
1203 load_cr3(swapper_pg_dir);
1205 #endif
1208 * While a process runs, Xen pins its pagetables, which means that the
1209 * hypervisor forces it to be read-only, and it controls all updates
1210 * to it. This means that all pagetable updates have to go via the
1211 * hypervisor, which is moderately expensive.
1213 * Since we're pulling the pagetable down, we switch to use init_mm,
1214 * unpin old process pagetable and mark it all read-write, which
1215 * allows further operations on it to be simple memory accesses.
1217 * The only subtle point is that another CPU may be still using the
1218 * pagetable because of lazy tlb flushing. This means we need need to
1219 * switch all CPUs off this pagetable before we can unpin it.
1221 void xen_exit_mmap(struct mm_struct *mm)
1223 get_cpu(); /* make sure we don't move around */
1224 xen_drop_mm_ref(mm);
1225 put_cpu();
1227 spin_lock(&mm->page_table_lock);
1229 /* pgd may not be pinned in the error exit path of execve */
1230 if (xen_page_pinned(mm->pgd))
1231 xen_pgd_unpin(mm);
1233 spin_unlock(&mm->page_table_lock);
1236 static __init void xen_pagetable_setup_start(pgd_t *base)
1240 static __init void xen_pagetable_setup_done(pgd_t *base)
1242 xen_setup_shared_info();
1245 static void xen_write_cr2(unsigned long cr2)
1247 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1250 static unsigned long xen_read_cr2(void)
1252 return percpu_read(xen_vcpu)->arch.cr2;
1255 unsigned long xen_read_cr2_direct(void)
1257 return percpu_read(xen_vcpu_info.arch.cr2);
1260 static void xen_flush_tlb(void)
1262 struct mmuext_op *op;
1263 struct multicall_space mcs;
1265 preempt_disable();
1267 mcs = xen_mc_entry(sizeof(*op));
1269 op = mcs.args;
1270 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1271 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1273 xen_mc_issue(PARAVIRT_LAZY_MMU);
1275 preempt_enable();
1278 static void xen_flush_tlb_single(unsigned long addr)
1280 struct mmuext_op *op;
1281 struct multicall_space mcs;
1283 preempt_disable();
1285 mcs = xen_mc_entry(sizeof(*op));
1286 op = mcs.args;
1287 op->cmd = MMUEXT_INVLPG_LOCAL;
1288 op->arg1.linear_addr = addr & PAGE_MASK;
1289 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1291 xen_mc_issue(PARAVIRT_LAZY_MMU);
1293 preempt_enable();
1296 static void xen_flush_tlb_others(const struct cpumask *cpus,
1297 struct mm_struct *mm, unsigned long va)
1299 struct {
1300 struct mmuext_op op;
1301 DECLARE_BITMAP(mask, NR_CPUS);
1302 } *args;
1303 struct multicall_space mcs;
1305 BUG_ON(cpumask_empty(cpus));
1306 BUG_ON(!mm);
1308 mcs = xen_mc_entry(sizeof(*args));
1309 args = mcs.args;
1310 args->op.arg2.vcpumask = to_cpumask(args->mask);
1312 /* Remove us, and any offline CPUS. */
1313 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1314 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1316 if (va == TLB_FLUSH_ALL) {
1317 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1318 } else {
1319 args->op.cmd = MMUEXT_INVLPG_MULTI;
1320 args->op.arg1.linear_addr = va;
1323 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1325 xen_mc_issue(PARAVIRT_LAZY_MMU);
1328 static unsigned long xen_read_cr3(void)
1330 return percpu_read(xen_cr3);
1333 static void set_current_cr3(void *v)
1335 percpu_write(xen_current_cr3, (unsigned long)v);
1338 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1340 struct mmuext_op *op;
1341 struct multicall_space mcs;
1342 unsigned long mfn;
1344 if (cr3)
1345 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1346 else
1347 mfn = 0;
1349 WARN_ON(mfn == 0 && kernel);
1351 mcs = __xen_mc_entry(sizeof(*op));
1353 op = mcs.args;
1354 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1355 op->arg1.mfn = mfn;
1357 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1359 if (kernel) {
1360 percpu_write(xen_cr3, cr3);
1362 /* Update xen_current_cr3 once the batch has actually
1363 been submitted. */
1364 xen_mc_callback(set_current_cr3, (void *)cr3);
1368 static void xen_write_cr3(unsigned long cr3)
1370 BUG_ON(preemptible());
1372 xen_mc_batch(); /* disables interrupts */
1374 /* Update while interrupts are disabled, so its atomic with
1375 respect to ipis */
1376 percpu_write(xen_cr3, cr3);
1378 __xen_write_cr3(true, cr3);
1380 #ifdef CONFIG_X86_64
1382 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1383 if (user_pgd)
1384 __xen_write_cr3(false, __pa(user_pgd));
1385 else
1386 __xen_write_cr3(false, 0);
1388 #endif
1390 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1393 static int xen_pgd_alloc(struct mm_struct *mm)
1395 pgd_t *pgd = mm->pgd;
1396 int ret = 0;
1398 BUG_ON(PagePinned(virt_to_page(pgd)));
1400 #ifdef CONFIG_X86_64
1402 struct page *page = virt_to_page(pgd);
1403 pgd_t *user_pgd;
1405 BUG_ON(page->private != 0);
1407 ret = -ENOMEM;
1409 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1410 page->private = (unsigned long)user_pgd;
1412 if (user_pgd != NULL) {
1413 user_pgd[pgd_index(VSYSCALL_START)] =
1414 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1415 ret = 0;
1418 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1420 #endif
1422 return ret;
1425 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1427 #ifdef CONFIG_X86_64
1428 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1430 if (user_pgd)
1431 free_page((unsigned long)user_pgd);
1432 #endif
1435 #ifdef CONFIG_HIGHPTE
1436 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
1438 pgprot_t prot = PAGE_KERNEL;
1440 if (PagePinned(page))
1441 prot = PAGE_KERNEL_RO;
1443 if (0 && PageHighMem(page))
1444 printk("mapping highpte %lx type %d prot %s\n",
1445 page_to_pfn(page), type,
1446 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
1448 return kmap_atomic_prot(page, type, prot);
1450 #endif
1452 #ifdef CONFIG_X86_32
1453 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1455 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1456 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1457 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1458 pte_val_ma(pte));
1460 return pte;
1463 /* Init-time set_pte while constructing initial pagetables, which
1464 doesn't allow RO pagetable pages to be remapped RW */
1465 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1467 pte = mask_rw_pte(ptep, pte);
1469 xen_set_pte(ptep, pte);
1471 #endif
1473 /* Early in boot, while setting up the initial pagetable, assume
1474 everything is pinned. */
1475 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1477 #ifdef CONFIG_FLATMEM
1478 BUG_ON(mem_map); /* should only be used early */
1479 #endif
1480 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1483 /* Early release_pte assumes that all pts are pinned, since there's
1484 only init_mm and anything attached to that is pinned. */
1485 static void xen_release_pte_init(unsigned long pfn)
1487 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1490 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1492 struct mmuext_op op;
1493 op.cmd = cmd;
1494 op.arg1.mfn = pfn_to_mfn(pfn);
1495 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1496 BUG();
1499 /* This needs to make sure the new pte page is pinned iff its being
1500 attached to a pinned pagetable. */
1501 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1503 struct page *page = pfn_to_page(pfn);
1505 if (PagePinned(virt_to_page(mm->pgd))) {
1506 SetPagePinned(page);
1508 vm_unmap_aliases();
1509 if (!PageHighMem(page)) {
1510 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1511 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1512 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1513 } else {
1514 /* make sure there are no stray mappings of
1515 this page */
1516 kmap_flush_unused();
1521 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1523 xen_alloc_ptpage(mm, pfn, PT_PTE);
1526 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1528 xen_alloc_ptpage(mm, pfn, PT_PMD);
1531 /* This should never happen until we're OK to use struct page */
1532 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1534 struct page *page = pfn_to_page(pfn);
1536 if (PagePinned(page)) {
1537 if (!PageHighMem(page)) {
1538 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1539 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1540 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1542 ClearPagePinned(page);
1546 static void xen_release_pte(unsigned long pfn)
1548 xen_release_ptpage(pfn, PT_PTE);
1551 static void xen_release_pmd(unsigned long pfn)
1553 xen_release_ptpage(pfn, PT_PMD);
1556 #if PAGETABLE_LEVELS == 4
1557 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1559 xen_alloc_ptpage(mm, pfn, PT_PUD);
1562 static void xen_release_pud(unsigned long pfn)
1564 xen_release_ptpage(pfn, PT_PUD);
1566 #endif
1568 void __init xen_reserve_top(void)
1570 #ifdef CONFIG_X86_32
1571 unsigned long top = HYPERVISOR_VIRT_START;
1572 struct xen_platform_parameters pp;
1574 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1575 top = pp.virt_start;
1577 reserve_top_address(-top);
1578 #endif /* CONFIG_X86_32 */
1582 * Like __va(), but returns address in the kernel mapping (which is
1583 * all we have until the physical memory mapping has been set up.
1585 static void *__ka(phys_addr_t paddr)
1587 #ifdef CONFIG_X86_64
1588 return (void *)(paddr + __START_KERNEL_map);
1589 #else
1590 return __va(paddr);
1591 #endif
1594 /* Convert a machine address to physical address */
1595 static unsigned long m2p(phys_addr_t maddr)
1597 phys_addr_t paddr;
1599 maddr &= PTE_PFN_MASK;
1600 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1602 return paddr;
1605 /* Convert a machine address to kernel virtual */
1606 static void *m2v(phys_addr_t maddr)
1608 return __ka(m2p(maddr));
1611 static void set_page_prot(void *addr, pgprot_t prot)
1613 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1614 pte_t pte = pfn_pte(pfn, prot);
1616 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1617 BUG();
1620 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1622 unsigned pmdidx, pteidx;
1623 unsigned ident_pte;
1624 unsigned long pfn;
1626 ident_pte = 0;
1627 pfn = 0;
1628 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1629 pte_t *pte_page;
1631 /* Reuse or allocate a page of ptes */
1632 if (pmd_present(pmd[pmdidx]))
1633 pte_page = m2v(pmd[pmdidx].pmd);
1634 else {
1635 /* Check for free pte pages */
1636 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1637 break;
1639 pte_page = &level1_ident_pgt[ident_pte];
1640 ident_pte += PTRS_PER_PTE;
1642 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1645 /* Install mappings */
1646 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1647 pte_t pte;
1649 if (pfn > max_pfn_mapped)
1650 max_pfn_mapped = pfn;
1652 if (!pte_none(pte_page[pteidx]))
1653 continue;
1655 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1656 pte_page[pteidx] = pte;
1660 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1661 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1663 set_page_prot(pmd, PAGE_KERNEL_RO);
1666 #ifdef CONFIG_X86_64
1667 static void convert_pfn_mfn(void *v)
1669 pte_t *pte = v;
1670 int i;
1672 /* All levels are converted the same way, so just treat them
1673 as ptes. */
1674 for (i = 0; i < PTRS_PER_PTE; i++)
1675 pte[i] = xen_make_pte(pte[i].pte);
1679 * Set up the inital kernel pagetable.
1681 * We can construct this by grafting the Xen provided pagetable into
1682 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1683 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1684 * means that only the kernel has a physical mapping to start with -
1685 * but that's enough to get __va working. We need to fill in the rest
1686 * of the physical mapping once some sort of allocator has been set
1687 * up.
1689 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1690 unsigned long max_pfn)
1692 pud_t *l3;
1693 pmd_t *l2;
1695 /* Zap identity mapping */
1696 init_level4_pgt[0] = __pgd(0);
1698 /* Pre-constructed entries are in pfn, so convert to mfn */
1699 convert_pfn_mfn(init_level4_pgt);
1700 convert_pfn_mfn(level3_ident_pgt);
1701 convert_pfn_mfn(level3_kernel_pgt);
1703 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1704 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1706 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1707 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1709 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1710 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1711 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1713 /* Set up identity map */
1714 xen_map_identity_early(level2_ident_pgt, max_pfn);
1716 /* Make pagetable pieces RO */
1717 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1718 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1719 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1720 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1721 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1722 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1724 /* Pin down new L4 */
1725 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1726 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1728 /* Unpin Xen-provided one */
1729 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1731 /* Switch over */
1732 pgd = init_level4_pgt;
1735 * At this stage there can be no user pgd, and no page
1736 * structure to attach it to, so make sure we just set kernel
1737 * pgd.
1739 xen_mc_batch();
1740 __xen_write_cr3(true, __pa(pgd));
1741 xen_mc_issue(PARAVIRT_LAZY_CPU);
1743 reserve_early(__pa(xen_start_info->pt_base),
1744 __pa(xen_start_info->pt_base +
1745 xen_start_info->nr_pt_frames * PAGE_SIZE),
1746 "XEN PAGETABLES");
1748 return pgd;
1750 #else /* !CONFIG_X86_64 */
1751 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1753 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1754 unsigned long max_pfn)
1756 pmd_t *kernel_pmd;
1758 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1759 xen_start_info->nr_pt_frames * PAGE_SIZE +
1760 512*1024);
1762 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1763 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1765 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1767 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1768 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1769 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1771 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1772 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1773 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1775 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1777 xen_write_cr3(__pa(swapper_pg_dir));
1779 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1781 return swapper_pg_dir;
1783 #endif /* CONFIG_X86_64 */
1785 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1787 pte_t pte;
1789 phys >>= PAGE_SHIFT;
1791 switch (idx) {
1792 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1793 #ifdef CONFIG_X86_F00F_BUG
1794 case FIX_F00F_IDT:
1795 #endif
1796 #ifdef CONFIG_X86_32
1797 case FIX_WP_TEST:
1798 case FIX_VDSO:
1799 # ifdef CONFIG_HIGHMEM
1800 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1801 # endif
1802 #else
1803 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1804 #endif
1805 #ifdef CONFIG_X86_LOCAL_APIC
1806 case FIX_APIC_BASE: /* maps dummy local APIC */
1807 #endif
1808 pte = pfn_pte(phys, prot);
1809 break;
1811 default:
1812 pte = mfn_pte(phys, prot);
1813 break;
1816 __native_set_fixmap(idx, pte);
1818 #ifdef CONFIG_X86_64
1819 /* Replicate changes to map the vsyscall page into the user
1820 pagetable vsyscall mapping. */
1821 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1822 unsigned long vaddr = __fix_to_virt(idx);
1823 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1825 #endif
1828 __init void xen_post_allocator_init(void)
1830 pv_mmu_ops.set_pte = xen_set_pte;
1831 pv_mmu_ops.set_pmd = xen_set_pmd;
1832 pv_mmu_ops.set_pud = xen_set_pud;
1833 #if PAGETABLE_LEVELS == 4
1834 pv_mmu_ops.set_pgd = xen_set_pgd;
1835 #endif
1837 /* This will work as long as patching hasn't happened yet
1838 (which it hasn't) */
1839 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1840 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1841 pv_mmu_ops.release_pte = xen_release_pte;
1842 pv_mmu_ops.release_pmd = xen_release_pmd;
1843 #if PAGETABLE_LEVELS == 4
1844 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1845 pv_mmu_ops.release_pud = xen_release_pud;
1846 #endif
1848 #ifdef CONFIG_X86_64
1849 SetPagePinned(virt_to_page(level3_user_vsyscall));
1850 #endif
1851 xen_mark_init_mm_pinned();
1854 const struct pv_mmu_ops xen_mmu_ops __initdata = {
1855 .pagetable_setup_start = xen_pagetable_setup_start,
1856 .pagetable_setup_done = xen_pagetable_setup_done,
1858 .read_cr2 = xen_read_cr2,
1859 .write_cr2 = xen_write_cr2,
1861 .read_cr3 = xen_read_cr3,
1862 .write_cr3 = xen_write_cr3,
1864 .flush_tlb_user = xen_flush_tlb,
1865 .flush_tlb_kernel = xen_flush_tlb,
1866 .flush_tlb_single = xen_flush_tlb_single,
1867 .flush_tlb_others = xen_flush_tlb_others,
1869 .pte_update = paravirt_nop,
1870 .pte_update_defer = paravirt_nop,
1872 .pgd_alloc = xen_pgd_alloc,
1873 .pgd_free = xen_pgd_free,
1875 .alloc_pte = xen_alloc_pte_init,
1876 .release_pte = xen_release_pte_init,
1877 .alloc_pmd = xen_alloc_pte_init,
1878 .alloc_pmd_clone = paravirt_nop,
1879 .release_pmd = xen_release_pte_init,
1881 #ifdef CONFIG_HIGHPTE
1882 .kmap_atomic_pte = xen_kmap_atomic_pte,
1883 #endif
1885 #ifdef CONFIG_X86_64
1886 .set_pte = xen_set_pte,
1887 #else
1888 .set_pte = xen_set_pte_init,
1889 #endif
1890 .set_pte_at = xen_set_pte_at,
1891 .set_pmd = xen_set_pmd_hyper,
1893 .ptep_modify_prot_start = __ptep_modify_prot_start,
1894 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1896 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1897 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1899 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1900 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1902 #ifdef CONFIG_X86_PAE
1903 .set_pte_atomic = xen_set_pte_atomic,
1904 .pte_clear = xen_pte_clear,
1905 .pmd_clear = xen_pmd_clear,
1906 #endif /* CONFIG_X86_PAE */
1907 .set_pud = xen_set_pud_hyper,
1909 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1910 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1912 #if PAGETABLE_LEVELS == 4
1913 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1914 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1915 .set_pgd = xen_set_pgd_hyper,
1917 .alloc_pud = xen_alloc_pte_init,
1918 .release_pud = xen_release_pte_init,
1919 #endif /* PAGETABLE_LEVELS == 4 */
1921 .activate_mm = xen_activate_mm,
1922 .dup_mmap = xen_dup_mmap,
1923 .exit_mmap = xen_exit_mmap,
1925 .lazy_mode = {
1926 .enter = paravirt_enter_lazy_mmu,
1927 .leave = xen_leave_lazy,
1930 .set_fixmap = xen_set_fixmap,
1934 #ifdef CONFIG_XEN_DEBUG_FS
1936 static struct dentry *d_mmu_debug;
1938 static int __init xen_mmu_debugfs(void)
1940 struct dentry *d_xen = xen_init_debugfs();
1942 if (d_xen == NULL)
1943 return -ENOMEM;
1945 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1947 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1949 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1950 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1951 &mmu_stats.pgd_update_pinned);
1952 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1953 &mmu_stats.pgd_update_pinned);
1955 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1956 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1957 &mmu_stats.pud_update_pinned);
1958 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1959 &mmu_stats.pud_update_pinned);
1961 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1962 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1963 &mmu_stats.pmd_update_pinned);
1964 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1965 &mmu_stats.pmd_update_pinned);
1967 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1968 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1969 // &mmu_stats.pte_update_pinned);
1970 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1971 &mmu_stats.pte_update_pinned);
1973 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1974 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1975 &mmu_stats.mmu_update_extended);
1976 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1977 mmu_stats.mmu_update_histo, 20);
1979 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1980 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1981 &mmu_stats.set_pte_at_batched);
1982 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1983 &mmu_stats.set_pte_at_current);
1984 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1985 &mmu_stats.set_pte_at_kernel);
1987 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1988 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1989 &mmu_stats.prot_commit_batched);
1991 return 0;
1993 fs_initcall(xen_mmu_debugfs);
1995 #endif /* CONFIG_XEN_DEBUG_FS */