KVM: SVM: remove unnecessary is_nested check from svm_cpu_run
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / svm.c
bloba1cfa7d57ab90d6d67b7cd4dd23a6547b0e15693
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
30 #include <asm/desc.h>
32 #include <asm/virtext.h>
33 #include "trace.h"
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
51 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
52 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68 MSR_FS_BASE,
69 #endif
70 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
75 struct kvm_vcpu;
77 struct nested_state {
78 struct vmcb *hsave;
79 u64 hsave_msr;
80 u64 vmcb;
82 /* These are the merged vectors */
83 u32 *msrpm;
85 /* gpa pointers to the real vectors */
86 u64 vmcb_msrpm;
88 /* cache for intercepts of the guest */
89 u16 intercept_cr_read;
90 u16 intercept_cr_write;
91 u16 intercept_dr_read;
92 u16 intercept_dr_write;
93 u32 intercept_exceptions;
94 u64 intercept;
98 struct vcpu_svm {
99 struct kvm_vcpu vcpu;
100 struct vmcb *vmcb;
101 unsigned long vmcb_pa;
102 struct svm_cpu_data *svm_data;
103 uint64_t asid_generation;
104 uint64_t sysenter_esp;
105 uint64_t sysenter_eip;
107 u64 next_rip;
109 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
110 u64 host_gs_base;
112 u32 *msrpm;
114 struct nested_state nested;
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled = true;
120 #else
121 static bool npt_enabled = false;
122 #endif
123 static int npt = 1;
125 module_param(npt, int, S_IRUGO);
127 static int nested = 0;
128 module_param(nested, int, S_IRUGO);
130 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
131 static void svm_complete_interrupts(struct vcpu_svm *svm);
133 static int nested_svm_exit_handled(struct vcpu_svm *svm);
134 static int nested_svm_vmexit(struct vcpu_svm *svm);
135 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
136 bool has_error_code, u32 error_code);
138 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
140 return container_of(vcpu, struct vcpu_svm, vcpu);
143 static inline bool is_nested(struct vcpu_svm *svm)
145 return svm->nested.vmcb;
148 static inline void enable_gif(struct vcpu_svm *svm)
150 svm->vcpu.arch.hflags |= HF_GIF_MASK;
153 static inline void disable_gif(struct vcpu_svm *svm)
155 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
158 static inline bool gif_set(struct vcpu_svm *svm)
160 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
163 static unsigned long iopm_base;
165 struct kvm_ldttss_desc {
166 u16 limit0;
167 u16 base0;
168 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
169 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
170 u32 base3;
171 u32 zero1;
172 } __attribute__((packed));
174 struct svm_cpu_data {
175 int cpu;
177 u64 asid_generation;
178 u32 max_asid;
179 u32 next_asid;
180 struct kvm_ldttss_desc *tss_desc;
182 struct page *save_area;
185 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
186 static uint32_t svm_features;
188 struct svm_init_data {
189 int cpu;
190 int r;
193 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
199 #define MAX_INST_SIZE 15
201 static inline u32 svm_has(u32 feat)
203 return svm_features & feat;
206 static inline void clgi(void)
208 asm volatile (__ex(SVM_CLGI));
211 static inline void stgi(void)
213 asm volatile (__ex(SVM_STGI));
216 static inline void invlpga(unsigned long addr, u32 asid)
218 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
221 static inline void force_new_asid(struct kvm_vcpu *vcpu)
223 to_svm(vcpu)->asid_generation--;
226 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
228 force_new_asid(vcpu);
231 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
233 if (!npt_enabled && !(efer & EFER_LMA))
234 efer &= ~EFER_LME;
236 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
237 vcpu->arch.shadow_efer = efer;
240 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
241 bool has_error_code, u32 error_code)
243 struct vcpu_svm *svm = to_svm(vcpu);
245 /* If we are within a nested VM we'd better #VMEXIT and let the
246 guest handle the exception */
247 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
248 return;
250 svm->vmcb->control.event_inj = nr
251 | SVM_EVTINJ_VALID
252 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
253 | SVM_EVTINJ_TYPE_EXEPT;
254 svm->vmcb->control.event_inj_err = error_code;
257 static int is_external_interrupt(u32 info)
259 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
260 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
263 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
265 struct vcpu_svm *svm = to_svm(vcpu);
266 u32 ret = 0;
268 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
269 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
270 return ret & mask;
273 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
275 struct vcpu_svm *svm = to_svm(vcpu);
277 if (mask == 0)
278 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
279 else
280 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
284 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
286 struct vcpu_svm *svm = to_svm(vcpu);
288 if (!svm->next_rip) {
289 if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) !=
290 EMULATE_DONE)
291 printk(KERN_DEBUG "%s: NOP\n", __func__);
292 return;
294 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
295 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
296 __func__, kvm_rip_read(vcpu), svm->next_rip);
298 kvm_rip_write(vcpu, svm->next_rip);
299 svm_set_interrupt_shadow(vcpu, 0);
302 static int has_svm(void)
304 const char *msg;
306 if (!cpu_has_svm(&msg)) {
307 printk(KERN_INFO "has_svm: %s\n", msg);
308 return 0;
311 return 1;
314 static void svm_hardware_disable(void *garbage)
316 cpu_svm_disable();
319 static void svm_hardware_enable(void *garbage)
322 struct svm_cpu_data *svm_data;
323 uint64_t efer;
324 struct descriptor_table gdt_descr;
325 struct desc_struct *gdt;
326 int me = raw_smp_processor_id();
328 if (!has_svm()) {
329 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
330 return;
332 svm_data = per_cpu(svm_data, me);
334 if (!svm_data) {
335 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
336 me);
337 return;
340 svm_data->asid_generation = 1;
341 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
342 svm_data->next_asid = svm_data->max_asid + 1;
344 kvm_get_gdt(&gdt_descr);
345 gdt = (struct desc_struct *)gdt_descr.base;
346 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
348 rdmsrl(MSR_EFER, efer);
349 wrmsrl(MSR_EFER, efer | EFER_SVME);
351 wrmsrl(MSR_VM_HSAVE_PA,
352 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
355 static void svm_cpu_uninit(int cpu)
357 struct svm_cpu_data *svm_data
358 = per_cpu(svm_data, raw_smp_processor_id());
360 if (!svm_data)
361 return;
363 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
364 __free_page(svm_data->save_area);
365 kfree(svm_data);
368 static int svm_cpu_init(int cpu)
370 struct svm_cpu_data *svm_data;
371 int r;
373 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
374 if (!svm_data)
375 return -ENOMEM;
376 svm_data->cpu = cpu;
377 svm_data->save_area = alloc_page(GFP_KERNEL);
378 r = -ENOMEM;
379 if (!svm_data->save_area)
380 goto err_1;
382 per_cpu(svm_data, cpu) = svm_data;
384 return 0;
386 err_1:
387 kfree(svm_data);
388 return r;
392 static void set_msr_interception(u32 *msrpm, unsigned msr,
393 int read, int write)
395 int i;
397 for (i = 0; i < NUM_MSR_MAPS; i++) {
398 if (msr >= msrpm_ranges[i] &&
399 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
400 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
401 msrpm_ranges[i]) * 2;
403 u32 *base = msrpm + (msr_offset / 32);
404 u32 msr_shift = msr_offset % 32;
405 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
406 *base = (*base & ~(0x3 << msr_shift)) |
407 (mask << msr_shift);
408 return;
411 BUG();
414 static void svm_vcpu_init_msrpm(u32 *msrpm)
416 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
418 #ifdef CONFIG_X86_64
419 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
420 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
421 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
422 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
423 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
424 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
425 #endif
426 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
427 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
430 static void svm_enable_lbrv(struct vcpu_svm *svm)
432 u32 *msrpm = svm->msrpm;
434 svm->vmcb->control.lbr_ctl = 1;
435 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
436 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
437 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
438 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
441 static void svm_disable_lbrv(struct vcpu_svm *svm)
443 u32 *msrpm = svm->msrpm;
445 svm->vmcb->control.lbr_ctl = 0;
446 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
447 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
448 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
449 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
452 static __init int svm_hardware_setup(void)
454 int cpu;
455 struct page *iopm_pages;
456 void *iopm_va;
457 int r;
459 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
461 if (!iopm_pages)
462 return -ENOMEM;
464 iopm_va = page_address(iopm_pages);
465 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
466 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
468 if (boot_cpu_has(X86_FEATURE_NX))
469 kvm_enable_efer_bits(EFER_NX);
471 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
472 kvm_enable_efer_bits(EFER_FFXSR);
474 if (nested) {
475 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
476 kvm_enable_efer_bits(EFER_SVME);
479 for_each_online_cpu(cpu) {
480 r = svm_cpu_init(cpu);
481 if (r)
482 goto err;
485 svm_features = cpuid_edx(SVM_CPUID_FUNC);
487 if (!svm_has(SVM_FEATURE_NPT))
488 npt_enabled = false;
490 if (npt_enabled && !npt) {
491 printk(KERN_INFO "kvm: Nested Paging disabled\n");
492 npt_enabled = false;
495 if (npt_enabled) {
496 printk(KERN_INFO "kvm: Nested Paging enabled\n");
497 kvm_enable_tdp();
498 } else
499 kvm_disable_tdp();
501 return 0;
503 err:
504 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
505 iopm_base = 0;
506 return r;
509 static __exit void svm_hardware_unsetup(void)
511 int cpu;
513 for_each_online_cpu(cpu)
514 svm_cpu_uninit(cpu);
516 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
517 iopm_base = 0;
520 static void init_seg(struct vmcb_seg *seg)
522 seg->selector = 0;
523 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
524 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
525 seg->limit = 0xffff;
526 seg->base = 0;
529 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
531 seg->selector = 0;
532 seg->attrib = SVM_SELECTOR_P_MASK | type;
533 seg->limit = 0xffff;
534 seg->base = 0;
537 static void init_vmcb(struct vcpu_svm *svm)
539 struct vmcb_control_area *control = &svm->vmcb->control;
540 struct vmcb_save_area *save = &svm->vmcb->save;
542 control->intercept_cr_read = INTERCEPT_CR0_MASK |
543 INTERCEPT_CR3_MASK |
544 INTERCEPT_CR4_MASK;
546 control->intercept_cr_write = INTERCEPT_CR0_MASK |
547 INTERCEPT_CR3_MASK |
548 INTERCEPT_CR4_MASK |
549 INTERCEPT_CR8_MASK;
551 control->intercept_dr_read = INTERCEPT_DR0_MASK |
552 INTERCEPT_DR1_MASK |
553 INTERCEPT_DR2_MASK |
554 INTERCEPT_DR3_MASK;
556 control->intercept_dr_write = INTERCEPT_DR0_MASK |
557 INTERCEPT_DR1_MASK |
558 INTERCEPT_DR2_MASK |
559 INTERCEPT_DR3_MASK |
560 INTERCEPT_DR5_MASK |
561 INTERCEPT_DR7_MASK;
563 control->intercept_exceptions = (1 << PF_VECTOR) |
564 (1 << UD_VECTOR) |
565 (1 << MC_VECTOR);
568 control->intercept = (1ULL << INTERCEPT_INTR) |
569 (1ULL << INTERCEPT_NMI) |
570 (1ULL << INTERCEPT_SMI) |
571 (1ULL << INTERCEPT_CPUID) |
572 (1ULL << INTERCEPT_INVD) |
573 (1ULL << INTERCEPT_HLT) |
574 (1ULL << INTERCEPT_INVLPG) |
575 (1ULL << INTERCEPT_INVLPGA) |
576 (1ULL << INTERCEPT_IOIO_PROT) |
577 (1ULL << INTERCEPT_MSR_PROT) |
578 (1ULL << INTERCEPT_TASK_SWITCH) |
579 (1ULL << INTERCEPT_SHUTDOWN) |
580 (1ULL << INTERCEPT_VMRUN) |
581 (1ULL << INTERCEPT_VMMCALL) |
582 (1ULL << INTERCEPT_VMLOAD) |
583 (1ULL << INTERCEPT_VMSAVE) |
584 (1ULL << INTERCEPT_STGI) |
585 (1ULL << INTERCEPT_CLGI) |
586 (1ULL << INTERCEPT_SKINIT) |
587 (1ULL << INTERCEPT_WBINVD) |
588 (1ULL << INTERCEPT_MONITOR) |
589 (1ULL << INTERCEPT_MWAIT);
591 control->iopm_base_pa = iopm_base;
592 control->msrpm_base_pa = __pa(svm->msrpm);
593 control->tsc_offset = 0;
594 control->int_ctl = V_INTR_MASKING_MASK;
596 init_seg(&save->es);
597 init_seg(&save->ss);
598 init_seg(&save->ds);
599 init_seg(&save->fs);
600 init_seg(&save->gs);
602 save->cs.selector = 0xf000;
603 /* Executable/Readable Code Segment */
604 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
605 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
606 save->cs.limit = 0xffff;
608 * cs.base should really be 0xffff0000, but vmx can't handle that, so
609 * be consistent with it.
611 * Replace when we have real mode working for vmx.
613 save->cs.base = 0xf0000;
615 save->gdtr.limit = 0xffff;
616 save->idtr.limit = 0xffff;
618 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
619 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
621 save->efer = EFER_SVME;
622 save->dr6 = 0xffff0ff0;
623 save->dr7 = 0x400;
624 save->rflags = 2;
625 save->rip = 0x0000fff0;
626 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
629 * cr0 val on cpu init should be 0x60000010, we enable cpu
630 * cache by default. the orderly way is to enable cache in bios.
632 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
633 save->cr4 = X86_CR4_PAE;
634 /* rdx = ?? */
636 if (npt_enabled) {
637 /* Setup VMCB for Nested Paging */
638 control->nested_ctl = 1;
639 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
640 (1ULL << INTERCEPT_INVLPG));
641 control->intercept_exceptions &= ~(1 << PF_VECTOR);
642 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
643 INTERCEPT_CR3_MASK);
644 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
645 INTERCEPT_CR3_MASK);
646 save->g_pat = 0x0007040600070406ULL;
647 /* enable caching because the QEMU Bios doesn't enable it */
648 save->cr0 = X86_CR0_ET;
649 save->cr3 = 0;
650 save->cr4 = 0;
652 force_new_asid(&svm->vcpu);
654 svm->nested.vmcb = 0;
655 svm->vcpu.arch.hflags = 0;
657 enable_gif(svm);
660 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
662 struct vcpu_svm *svm = to_svm(vcpu);
664 init_vmcb(svm);
666 if (!kvm_vcpu_is_bsp(vcpu)) {
667 kvm_rip_write(vcpu, 0);
668 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
669 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
671 vcpu->arch.regs_avail = ~0;
672 vcpu->arch.regs_dirty = ~0;
674 return 0;
677 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
679 struct vcpu_svm *svm;
680 struct page *page;
681 struct page *msrpm_pages;
682 struct page *hsave_page;
683 struct page *nested_msrpm_pages;
684 int err;
686 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
687 if (!svm) {
688 err = -ENOMEM;
689 goto out;
692 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
693 if (err)
694 goto free_svm;
696 page = alloc_page(GFP_KERNEL);
697 if (!page) {
698 err = -ENOMEM;
699 goto uninit;
702 err = -ENOMEM;
703 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
704 if (!msrpm_pages)
705 goto uninit;
707 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
708 if (!nested_msrpm_pages)
709 goto uninit;
711 svm->msrpm = page_address(msrpm_pages);
712 svm_vcpu_init_msrpm(svm->msrpm);
714 hsave_page = alloc_page(GFP_KERNEL);
715 if (!hsave_page)
716 goto uninit;
717 svm->nested.hsave = page_address(hsave_page);
719 svm->nested.msrpm = page_address(nested_msrpm_pages);
721 svm->vmcb = page_address(page);
722 clear_page(svm->vmcb);
723 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
724 svm->asid_generation = 0;
725 init_vmcb(svm);
727 fx_init(&svm->vcpu);
728 svm->vcpu.fpu_active = 1;
729 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
730 if (kvm_vcpu_is_bsp(&svm->vcpu))
731 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
733 return &svm->vcpu;
735 uninit:
736 kvm_vcpu_uninit(&svm->vcpu);
737 free_svm:
738 kmem_cache_free(kvm_vcpu_cache, svm);
739 out:
740 return ERR_PTR(err);
743 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
745 struct vcpu_svm *svm = to_svm(vcpu);
747 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
748 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
749 __free_page(virt_to_page(svm->nested.hsave));
750 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
751 kvm_vcpu_uninit(vcpu);
752 kmem_cache_free(kvm_vcpu_cache, svm);
755 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
757 struct vcpu_svm *svm = to_svm(vcpu);
758 int i;
760 if (unlikely(cpu != vcpu->cpu)) {
761 u64 tsc_this, delta;
764 * Make sure that the guest sees a monotonically
765 * increasing TSC.
767 rdtscll(tsc_this);
768 delta = vcpu->arch.host_tsc - tsc_this;
769 svm->vmcb->control.tsc_offset += delta;
770 vcpu->cpu = cpu;
771 kvm_migrate_timers(vcpu);
772 svm->asid_generation = 0;
775 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
776 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
779 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
781 struct vcpu_svm *svm = to_svm(vcpu);
782 int i;
784 ++vcpu->stat.host_state_reload;
785 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
786 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
788 rdtscll(vcpu->arch.host_tsc);
791 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
793 return to_svm(vcpu)->vmcb->save.rflags;
796 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
798 to_svm(vcpu)->vmcb->save.rflags = rflags;
801 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
803 switch (reg) {
804 case VCPU_EXREG_PDPTR:
805 BUG_ON(!npt_enabled);
806 load_pdptrs(vcpu, vcpu->arch.cr3);
807 break;
808 default:
809 BUG();
813 static void svm_set_vintr(struct vcpu_svm *svm)
815 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
818 static void svm_clear_vintr(struct vcpu_svm *svm)
820 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
823 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
825 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
827 switch (seg) {
828 case VCPU_SREG_CS: return &save->cs;
829 case VCPU_SREG_DS: return &save->ds;
830 case VCPU_SREG_ES: return &save->es;
831 case VCPU_SREG_FS: return &save->fs;
832 case VCPU_SREG_GS: return &save->gs;
833 case VCPU_SREG_SS: return &save->ss;
834 case VCPU_SREG_TR: return &save->tr;
835 case VCPU_SREG_LDTR: return &save->ldtr;
837 BUG();
838 return NULL;
841 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
843 struct vmcb_seg *s = svm_seg(vcpu, seg);
845 return s->base;
848 static void svm_get_segment(struct kvm_vcpu *vcpu,
849 struct kvm_segment *var, int seg)
851 struct vmcb_seg *s = svm_seg(vcpu, seg);
853 var->base = s->base;
854 var->limit = s->limit;
855 var->selector = s->selector;
856 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
857 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
858 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
859 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
860 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
861 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
862 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
863 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
865 /* AMD's VMCB does not have an explicit unusable field, so emulate it
866 * for cross vendor migration purposes by "not present"
868 var->unusable = !var->present || (var->type == 0);
870 switch (seg) {
871 case VCPU_SREG_CS:
873 * SVM always stores 0 for the 'G' bit in the CS selector in
874 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
875 * Intel's VMENTRY has a check on the 'G' bit.
877 var->g = s->limit > 0xfffff;
878 break;
879 case VCPU_SREG_TR:
881 * Work around a bug where the busy flag in the tr selector
882 * isn't exposed
884 var->type |= 0x2;
885 break;
886 case VCPU_SREG_DS:
887 case VCPU_SREG_ES:
888 case VCPU_SREG_FS:
889 case VCPU_SREG_GS:
891 * The accessed bit must always be set in the segment
892 * descriptor cache, although it can be cleared in the
893 * descriptor, the cached bit always remains at 1. Since
894 * Intel has a check on this, set it here to support
895 * cross-vendor migration.
897 if (!var->unusable)
898 var->type |= 0x1;
899 break;
900 case VCPU_SREG_SS:
901 /* On AMD CPUs sometimes the DB bit in the segment
902 * descriptor is left as 1, although the whole segment has
903 * been made unusable. Clear it here to pass an Intel VMX
904 * entry check when cross vendor migrating.
906 if (var->unusable)
907 var->db = 0;
908 break;
912 static int svm_get_cpl(struct kvm_vcpu *vcpu)
914 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
916 return save->cpl;
919 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
921 struct vcpu_svm *svm = to_svm(vcpu);
923 dt->limit = svm->vmcb->save.idtr.limit;
924 dt->base = svm->vmcb->save.idtr.base;
927 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
929 struct vcpu_svm *svm = to_svm(vcpu);
931 svm->vmcb->save.idtr.limit = dt->limit;
932 svm->vmcb->save.idtr.base = dt->base ;
935 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
937 struct vcpu_svm *svm = to_svm(vcpu);
939 dt->limit = svm->vmcb->save.gdtr.limit;
940 dt->base = svm->vmcb->save.gdtr.base;
943 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
945 struct vcpu_svm *svm = to_svm(vcpu);
947 svm->vmcb->save.gdtr.limit = dt->limit;
948 svm->vmcb->save.gdtr.base = dt->base ;
951 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
955 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
957 struct vcpu_svm *svm = to_svm(vcpu);
959 #ifdef CONFIG_X86_64
960 if (vcpu->arch.shadow_efer & EFER_LME) {
961 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
962 vcpu->arch.shadow_efer |= EFER_LMA;
963 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
966 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
967 vcpu->arch.shadow_efer &= ~EFER_LMA;
968 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
971 #endif
972 if (npt_enabled)
973 goto set;
975 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
976 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
977 vcpu->fpu_active = 1;
980 vcpu->arch.cr0 = cr0;
981 cr0 |= X86_CR0_PG | X86_CR0_WP;
982 if (!vcpu->fpu_active) {
983 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
984 cr0 |= X86_CR0_TS;
986 set:
988 * re-enable caching here because the QEMU bios
989 * does not do it - this results in some delay at
990 * reboot
992 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
993 svm->vmcb->save.cr0 = cr0;
996 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
998 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
999 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1001 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1002 force_new_asid(vcpu);
1004 vcpu->arch.cr4 = cr4;
1005 if (!npt_enabled)
1006 cr4 |= X86_CR4_PAE;
1007 cr4 |= host_cr4_mce;
1008 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1011 static void svm_set_segment(struct kvm_vcpu *vcpu,
1012 struct kvm_segment *var, int seg)
1014 struct vcpu_svm *svm = to_svm(vcpu);
1015 struct vmcb_seg *s = svm_seg(vcpu, seg);
1017 s->base = var->base;
1018 s->limit = var->limit;
1019 s->selector = var->selector;
1020 if (var->unusable)
1021 s->attrib = 0;
1022 else {
1023 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1024 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1025 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1026 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1027 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1028 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1029 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1030 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1032 if (seg == VCPU_SREG_CS)
1033 svm->vmcb->save.cpl
1034 = (svm->vmcb->save.cs.attrib
1035 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1039 static void update_db_intercept(struct kvm_vcpu *vcpu)
1041 struct vcpu_svm *svm = to_svm(vcpu);
1043 svm->vmcb->control.intercept_exceptions &=
1044 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1046 if (vcpu->arch.singlestep)
1047 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1049 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1050 if (vcpu->guest_debug &
1051 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1052 svm->vmcb->control.intercept_exceptions |=
1053 1 << DB_VECTOR;
1054 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1055 svm->vmcb->control.intercept_exceptions |=
1056 1 << BP_VECTOR;
1057 } else
1058 vcpu->guest_debug = 0;
1061 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1063 int old_debug = vcpu->guest_debug;
1064 struct vcpu_svm *svm = to_svm(vcpu);
1066 vcpu->guest_debug = dbg->control;
1068 update_db_intercept(vcpu);
1070 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1071 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1072 else
1073 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1075 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1076 svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1077 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1078 svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1080 return 0;
1083 static void load_host_msrs(struct kvm_vcpu *vcpu)
1085 #ifdef CONFIG_X86_64
1086 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1087 #endif
1090 static void save_host_msrs(struct kvm_vcpu *vcpu)
1092 #ifdef CONFIG_X86_64
1093 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1094 #endif
1097 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1099 if (svm_data->next_asid > svm_data->max_asid) {
1100 ++svm_data->asid_generation;
1101 svm_data->next_asid = 1;
1102 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1105 svm->asid_generation = svm_data->asid_generation;
1106 svm->vmcb->control.asid = svm_data->next_asid++;
1109 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1111 struct vcpu_svm *svm = to_svm(vcpu);
1112 unsigned long val;
1114 switch (dr) {
1115 case 0 ... 3:
1116 val = vcpu->arch.db[dr];
1117 break;
1118 case 6:
1119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 val = vcpu->arch.dr6;
1121 else
1122 val = svm->vmcb->save.dr6;
1123 break;
1124 case 7:
1125 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126 val = vcpu->arch.dr7;
1127 else
1128 val = svm->vmcb->save.dr7;
1129 break;
1130 default:
1131 val = 0;
1134 return val;
1137 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1138 int *exception)
1140 struct vcpu_svm *svm = to_svm(vcpu);
1142 *exception = 0;
1144 switch (dr) {
1145 case 0 ... 3:
1146 vcpu->arch.db[dr] = value;
1147 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1148 vcpu->arch.eff_db[dr] = value;
1149 return;
1150 case 4 ... 5:
1151 if (vcpu->arch.cr4 & X86_CR4_DE)
1152 *exception = UD_VECTOR;
1153 return;
1154 case 6:
1155 if (value & 0xffffffff00000000ULL) {
1156 *exception = GP_VECTOR;
1157 return;
1159 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1160 return;
1161 case 7:
1162 if (value & 0xffffffff00000000ULL) {
1163 *exception = GP_VECTOR;
1164 return;
1166 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1167 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1168 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1169 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1171 return;
1172 default:
1173 /* FIXME: Possible case? */
1174 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1175 __func__, dr);
1176 *exception = UD_VECTOR;
1177 return;
1181 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1183 u64 fault_address;
1184 u32 error_code;
1186 fault_address = svm->vmcb->control.exit_info_2;
1187 error_code = svm->vmcb->control.exit_info_1;
1189 trace_kvm_page_fault(fault_address, error_code);
1191 * FIXME: Tis shouldn't be necessary here, but there is a flush
1192 * missing in the MMU code. Until we find this bug, flush the
1193 * complete TLB here on an NPF
1195 if (npt_enabled)
1196 svm_flush_tlb(&svm->vcpu);
1197 else {
1198 if (kvm_event_needs_reinjection(&svm->vcpu))
1199 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1201 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1204 static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1206 if (!(svm->vcpu.guest_debug &
1207 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1208 !svm->vcpu.arch.singlestep) {
1209 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1210 return 1;
1213 if (svm->vcpu.arch.singlestep) {
1214 svm->vcpu.arch.singlestep = false;
1215 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1216 svm->vmcb->save.rflags &=
1217 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1218 update_db_intercept(&svm->vcpu);
1221 if (svm->vcpu.guest_debug &
1222 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1223 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1224 kvm_run->debug.arch.pc =
1225 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1226 kvm_run->debug.arch.exception = DB_VECTOR;
1227 return 0;
1230 return 1;
1233 static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1235 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1236 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1237 kvm_run->debug.arch.exception = BP_VECTOR;
1238 return 0;
1241 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1243 int er;
1245 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1246 if (er != EMULATE_DONE)
1247 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1248 return 1;
1251 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1253 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1254 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1255 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1256 svm->vcpu.fpu_active = 1;
1258 return 1;
1261 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1264 * On an #MC intercept the MCE handler is not called automatically in
1265 * the host. So do it by hand here.
1267 asm volatile (
1268 "int $0x12\n");
1269 /* not sure if we ever come back to this point */
1271 return 1;
1274 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1277 * VMCB is undefined after a SHUTDOWN intercept
1278 * so reinitialize it.
1280 clear_page(svm->vmcb);
1281 init_vmcb(svm);
1283 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1284 return 0;
1287 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1289 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1290 int size, in, string;
1291 unsigned port;
1293 ++svm->vcpu.stat.io_exits;
1295 svm->next_rip = svm->vmcb->control.exit_info_2;
1297 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1299 if (string) {
1300 if (emulate_instruction(&svm->vcpu,
1301 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1302 return 0;
1303 return 1;
1306 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1307 port = io_info >> 16;
1308 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1310 skip_emulated_instruction(&svm->vcpu);
1311 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1314 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1316 return 1;
1319 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1321 ++svm->vcpu.stat.irq_exits;
1322 return 1;
1325 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1327 return 1;
1330 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1332 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1333 skip_emulated_instruction(&svm->vcpu);
1334 return kvm_emulate_halt(&svm->vcpu);
1337 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1339 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1340 skip_emulated_instruction(&svm->vcpu);
1341 kvm_emulate_hypercall(&svm->vcpu);
1342 return 1;
1345 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1347 if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1348 || !is_paging(&svm->vcpu)) {
1349 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1350 return 1;
1353 if (svm->vmcb->save.cpl) {
1354 kvm_inject_gp(&svm->vcpu, 0);
1355 return 1;
1358 return 0;
1361 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1362 bool has_error_code, u32 error_code)
1364 if (!is_nested(svm))
1365 return 0;
1367 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1368 svm->vmcb->control.exit_code_hi = 0;
1369 svm->vmcb->control.exit_info_1 = error_code;
1370 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1372 return nested_svm_exit_handled(svm);
1375 static inline int nested_svm_intr(struct vcpu_svm *svm)
1377 if (is_nested(svm)) {
1378 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1379 return 0;
1381 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1382 return 0;
1384 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1386 if (nested_svm_exit_handled(svm)) {
1387 nsvm_printk("VMexit -> INTR\n");
1388 return 1;
1392 return 0;
1395 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1397 struct page *page;
1399 down_read(&current->mm->mmap_sem);
1400 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1401 up_read(&current->mm->mmap_sem);
1403 if (is_error_page(page))
1404 goto error;
1406 return kmap_atomic(page, idx);
1408 error:
1409 kvm_release_page_clean(page);
1410 kvm_inject_gp(&svm->vcpu, 0);
1412 return NULL;
1415 static void nested_svm_unmap(void *addr, enum km_type idx)
1417 struct page *page;
1419 if (!addr)
1420 return;
1422 page = kmap_atomic_to_page(addr);
1424 kunmap_atomic(addr, idx);
1425 kvm_release_page_dirty(page);
1428 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1430 u32 param = svm->vmcb->control.exit_info_1 & 1;
1431 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1432 bool ret = false;
1433 u32 t0, t1;
1434 u8 *msrpm;
1436 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1437 return false;
1439 msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1441 if (!msrpm)
1442 goto out;
1444 switch (msr) {
1445 case 0 ... 0x1fff:
1446 t0 = (msr * 2) % 8;
1447 t1 = msr / 8;
1448 break;
1449 case 0xc0000000 ... 0xc0001fff:
1450 t0 = (8192 + msr - 0xc0000000) * 2;
1451 t1 = (t0 / 8);
1452 t0 %= 8;
1453 break;
1454 case 0xc0010000 ... 0xc0011fff:
1455 t0 = (16384 + msr - 0xc0010000) * 2;
1456 t1 = (t0 / 8);
1457 t0 %= 8;
1458 break;
1459 default:
1460 ret = true;
1461 goto out;
1464 ret = msrpm[t1] & ((1 << param) << t0);
1466 out:
1467 nested_svm_unmap(msrpm, KM_USER0);
1469 return ret;
1472 static int nested_svm_exit_special(struct vcpu_svm *svm)
1474 u32 exit_code = svm->vmcb->control.exit_code;
1476 switch (exit_code) {
1477 case SVM_EXIT_INTR:
1478 case SVM_EXIT_NMI:
1479 return NESTED_EXIT_HOST;
1480 /* For now we are always handling NPFs when using them */
1481 case SVM_EXIT_NPF:
1482 if (npt_enabled)
1483 return NESTED_EXIT_HOST;
1484 break;
1485 /* When we're shadowing, trap PFs */
1486 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1487 if (!npt_enabled)
1488 return NESTED_EXIT_HOST;
1489 break;
1490 default:
1491 break;
1494 return NESTED_EXIT_CONTINUE;
1498 * If this function returns true, this #vmexit was already handled
1500 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1502 u32 exit_code = svm->vmcb->control.exit_code;
1503 int vmexit = NESTED_EXIT_HOST;
1505 switch (exit_code) {
1506 case SVM_EXIT_MSR:
1507 vmexit = nested_svm_exit_handled_msr(svm);
1508 break;
1509 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1510 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1511 if (svm->nested.intercept_cr_read & cr_bits)
1512 vmexit = NESTED_EXIT_DONE;
1513 break;
1515 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1516 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1517 if (svm->nested.intercept_cr_write & cr_bits)
1518 vmexit = NESTED_EXIT_DONE;
1519 break;
1521 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1522 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1523 if (svm->nested.intercept_dr_read & dr_bits)
1524 vmexit = NESTED_EXIT_DONE;
1525 break;
1527 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1528 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1529 if (svm->nested.intercept_dr_write & dr_bits)
1530 vmexit = NESTED_EXIT_DONE;
1531 break;
1533 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1534 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1535 if (svm->nested.intercept_exceptions & excp_bits)
1536 vmexit = NESTED_EXIT_DONE;
1537 break;
1539 default: {
1540 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1541 nsvm_printk("exit code: 0x%x\n", exit_code);
1542 if (svm->nested.intercept & exit_bits)
1543 vmexit = NESTED_EXIT_DONE;
1547 if (vmexit == NESTED_EXIT_DONE) {
1548 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1549 nested_svm_vmexit(svm);
1552 return vmexit;
1555 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1557 struct vmcb_control_area *dst = &dst_vmcb->control;
1558 struct vmcb_control_area *from = &from_vmcb->control;
1560 dst->intercept_cr_read = from->intercept_cr_read;
1561 dst->intercept_cr_write = from->intercept_cr_write;
1562 dst->intercept_dr_read = from->intercept_dr_read;
1563 dst->intercept_dr_write = from->intercept_dr_write;
1564 dst->intercept_exceptions = from->intercept_exceptions;
1565 dst->intercept = from->intercept;
1566 dst->iopm_base_pa = from->iopm_base_pa;
1567 dst->msrpm_base_pa = from->msrpm_base_pa;
1568 dst->tsc_offset = from->tsc_offset;
1569 dst->asid = from->asid;
1570 dst->tlb_ctl = from->tlb_ctl;
1571 dst->int_ctl = from->int_ctl;
1572 dst->int_vector = from->int_vector;
1573 dst->int_state = from->int_state;
1574 dst->exit_code = from->exit_code;
1575 dst->exit_code_hi = from->exit_code_hi;
1576 dst->exit_info_1 = from->exit_info_1;
1577 dst->exit_info_2 = from->exit_info_2;
1578 dst->exit_int_info = from->exit_int_info;
1579 dst->exit_int_info_err = from->exit_int_info_err;
1580 dst->nested_ctl = from->nested_ctl;
1581 dst->event_inj = from->event_inj;
1582 dst->event_inj_err = from->event_inj_err;
1583 dst->nested_cr3 = from->nested_cr3;
1584 dst->lbr_ctl = from->lbr_ctl;
1587 static int nested_svm_vmexit(struct vcpu_svm *svm)
1589 struct vmcb *nested_vmcb;
1590 struct vmcb *hsave = svm->nested.hsave;
1591 struct vmcb *vmcb = svm->vmcb;
1593 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1594 if (!nested_vmcb)
1595 return 1;
1597 /* Give the current vmcb to the guest */
1598 disable_gif(svm);
1600 nested_vmcb->save.es = vmcb->save.es;
1601 nested_vmcb->save.cs = vmcb->save.cs;
1602 nested_vmcb->save.ss = vmcb->save.ss;
1603 nested_vmcb->save.ds = vmcb->save.ds;
1604 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1605 nested_vmcb->save.idtr = vmcb->save.idtr;
1606 if (npt_enabled)
1607 nested_vmcb->save.cr3 = vmcb->save.cr3;
1608 nested_vmcb->save.cr2 = vmcb->save.cr2;
1609 nested_vmcb->save.rflags = vmcb->save.rflags;
1610 nested_vmcb->save.rip = vmcb->save.rip;
1611 nested_vmcb->save.rsp = vmcb->save.rsp;
1612 nested_vmcb->save.rax = vmcb->save.rax;
1613 nested_vmcb->save.dr7 = vmcb->save.dr7;
1614 nested_vmcb->save.dr6 = vmcb->save.dr6;
1615 nested_vmcb->save.cpl = vmcb->save.cpl;
1617 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1618 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1619 nested_vmcb->control.int_state = vmcb->control.int_state;
1620 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1621 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1622 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1623 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1624 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1625 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1626 nested_vmcb->control.tlb_ctl = 0;
1627 nested_vmcb->control.event_inj = 0;
1628 nested_vmcb->control.event_inj_err = 0;
1630 /* We always set V_INTR_MASKING and remember the old value in hflags */
1631 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1632 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1634 /* Restore the original control entries */
1635 copy_vmcb_control_area(vmcb, hsave);
1637 /* Kill any pending exceptions */
1638 if (svm->vcpu.arch.exception.pending == true)
1639 nsvm_printk("WARNING: Pending Exception\n");
1641 kvm_clear_exception_queue(&svm->vcpu);
1642 kvm_clear_interrupt_queue(&svm->vcpu);
1644 /* Restore selected save entries */
1645 svm->vmcb->save.es = hsave->save.es;
1646 svm->vmcb->save.cs = hsave->save.cs;
1647 svm->vmcb->save.ss = hsave->save.ss;
1648 svm->vmcb->save.ds = hsave->save.ds;
1649 svm->vmcb->save.gdtr = hsave->save.gdtr;
1650 svm->vmcb->save.idtr = hsave->save.idtr;
1651 svm->vmcb->save.rflags = hsave->save.rflags;
1652 svm_set_efer(&svm->vcpu, hsave->save.efer);
1653 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1654 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1655 if (npt_enabled) {
1656 svm->vmcb->save.cr3 = hsave->save.cr3;
1657 svm->vcpu.arch.cr3 = hsave->save.cr3;
1658 } else {
1659 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1661 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1662 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1663 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1664 svm->vmcb->save.dr7 = 0;
1665 svm->vmcb->save.cpl = 0;
1666 svm->vmcb->control.exit_int_info = 0;
1668 /* Exit nested SVM mode */
1669 svm->nested.vmcb = 0;
1671 nested_svm_unmap(nested_vmcb, KM_USER0);
1673 kvm_mmu_reset_context(&svm->vcpu);
1674 kvm_mmu_load(&svm->vcpu);
1676 return 0;
1679 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1681 u32 *nested_msrpm;
1682 int i;
1684 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1685 if (!nested_msrpm)
1686 return false;
1688 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1689 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1691 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1693 nested_svm_unmap(nested_msrpm, KM_USER0);
1695 return true;
1698 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1700 struct vmcb *nested_vmcb;
1701 struct vmcb *hsave = svm->nested.hsave;
1702 struct vmcb *vmcb = svm->vmcb;
1704 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1705 if (!nested_vmcb)
1706 return false;
1708 /* nested_vmcb is our indicator if nested SVM is activated */
1709 svm->nested.vmcb = svm->vmcb->save.rax;
1711 /* Clear internal status */
1712 kvm_clear_exception_queue(&svm->vcpu);
1713 kvm_clear_interrupt_queue(&svm->vcpu);
1715 /* Save the old vmcb, so we don't need to pick what we save, but
1716 can restore everything when a VMEXIT occurs */
1717 hsave->save.es = vmcb->save.es;
1718 hsave->save.cs = vmcb->save.cs;
1719 hsave->save.ss = vmcb->save.ss;
1720 hsave->save.ds = vmcb->save.ds;
1721 hsave->save.gdtr = vmcb->save.gdtr;
1722 hsave->save.idtr = vmcb->save.idtr;
1723 hsave->save.efer = svm->vcpu.arch.shadow_efer;
1724 hsave->save.cr0 = svm->vcpu.arch.cr0;
1725 hsave->save.cr4 = svm->vcpu.arch.cr4;
1726 hsave->save.rflags = vmcb->save.rflags;
1727 hsave->save.rip = svm->next_rip;
1728 hsave->save.rsp = vmcb->save.rsp;
1729 hsave->save.rax = vmcb->save.rax;
1730 if (npt_enabled)
1731 hsave->save.cr3 = vmcb->save.cr3;
1732 else
1733 hsave->save.cr3 = svm->vcpu.arch.cr3;
1735 copy_vmcb_control_area(hsave, vmcb);
1737 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1738 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1739 else
1740 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1742 /* Load the nested guest state */
1743 svm->vmcb->save.es = nested_vmcb->save.es;
1744 svm->vmcb->save.cs = nested_vmcb->save.cs;
1745 svm->vmcb->save.ss = nested_vmcb->save.ss;
1746 svm->vmcb->save.ds = nested_vmcb->save.ds;
1747 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1748 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1749 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1750 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1751 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1752 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1753 if (npt_enabled) {
1754 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1755 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1756 } else {
1757 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1758 kvm_mmu_reset_context(&svm->vcpu);
1760 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1761 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1762 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1763 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1764 /* In case we don't even reach vcpu_run, the fields are not updated */
1765 svm->vmcb->save.rax = nested_vmcb->save.rax;
1766 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1767 svm->vmcb->save.rip = nested_vmcb->save.rip;
1768 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1769 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1770 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1772 /* We don't want a nested guest to be more powerful than the guest,
1773 so all intercepts are ORed */
1774 svm->vmcb->control.intercept_cr_read |=
1775 nested_vmcb->control.intercept_cr_read;
1776 svm->vmcb->control.intercept_cr_write |=
1777 nested_vmcb->control.intercept_cr_write;
1778 svm->vmcb->control.intercept_dr_read |=
1779 nested_vmcb->control.intercept_dr_read;
1780 svm->vmcb->control.intercept_dr_write |=
1781 nested_vmcb->control.intercept_dr_write;
1782 svm->vmcb->control.intercept_exceptions |=
1783 nested_vmcb->control.intercept_exceptions;
1785 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1787 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1789 /* cache intercepts */
1790 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1791 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1792 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1793 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1794 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1795 svm->nested.intercept = nested_vmcb->control.intercept;
1797 force_new_asid(&svm->vcpu);
1798 svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
1799 svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
1800 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1801 if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1802 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1803 nested_vmcb->control.int_ctl);
1805 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1806 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1807 else
1808 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1810 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1811 nested_vmcb->control.exit_int_info,
1812 nested_vmcb->control.int_state);
1814 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1815 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1816 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1817 if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1818 nsvm_printk("Injecting Event: 0x%x\n",
1819 nested_vmcb->control.event_inj);
1820 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1821 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1823 nested_svm_unmap(nested_vmcb, KM_USER0);
1825 enable_gif(svm);
1827 return true;
1830 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1832 to_vmcb->save.fs = from_vmcb->save.fs;
1833 to_vmcb->save.gs = from_vmcb->save.gs;
1834 to_vmcb->save.tr = from_vmcb->save.tr;
1835 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1836 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1837 to_vmcb->save.star = from_vmcb->save.star;
1838 to_vmcb->save.lstar = from_vmcb->save.lstar;
1839 to_vmcb->save.cstar = from_vmcb->save.cstar;
1840 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1841 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1842 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1843 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1846 static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1848 struct vmcb *nested_vmcb;
1850 if (nested_svm_check_permissions(svm))
1851 return 1;
1853 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1854 skip_emulated_instruction(&svm->vcpu);
1856 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1857 if (!nested_vmcb)
1858 return 1;
1860 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1861 nested_svm_unmap(nested_vmcb, KM_USER0);
1863 return 1;
1866 static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1868 struct vmcb *nested_vmcb;
1870 if (nested_svm_check_permissions(svm))
1871 return 1;
1873 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1874 skip_emulated_instruction(&svm->vcpu);
1876 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1877 if (!nested_vmcb)
1878 return 1;
1880 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1881 nested_svm_unmap(nested_vmcb, KM_USER0);
1883 return 1;
1886 static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1888 nsvm_printk("VMrun\n");
1890 if (nested_svm_check_permissions(svm))
1891 return 1;
1893 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1894 skip_emulated_instruction(&svm->vcpu);
1896 if (!nested_svm_vmrun(svm))
1897 return 1;
1899 if (!nested_svm_vmrun_msrpm(svm))
1900 goto failed;
1902 return 1;
1904 failed:
1906 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1907 svm->vmcb->control.exit_code_hi = 0;
1908 svm->vmcb->control.exit_info_1 = 0;
1909 svm->vmcb->control.exit_info_2 = 0;
1911 nested_svm_vmexit(svm);
1913 return 1;
1916 static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1918 if (nested_svm_check_permissions(svm))
1919 return 1;
1921 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1922 skip_emulated_instruction(&svm->vcpu);
1924 enable_gif(svm);
1926 return 1;
1929 static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1931 if (nested_svm_check_permissions(svm))
1932 return 1;
1934 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1935 skip_emulated_instruction(&svm->vcpu);
1937 disable_gif(svm);
1939 /* After a CLGI no interrupts should come */
1940 svm_clear_vintr(svm);
1941 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1943 return 1;
1946 static int invlpga_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1948 struct kvm_vcpu *vcpu = &svm->vcpu;
1949 nsvm_printk("INVLPGA\n");
1951 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1952 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1954 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1955 skip_emulated_instruction(&svm->vcpu);
1956 return 1;
1959 static int invalid_op_interception(struct vcpu_svm *svm,
1960 struct kvm_run *kvm_run)
1962 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1963 return 1;
1966 static int task_switch_interception(struct vcpu_svm *svm,
1967 struct kvm_run *kvm_run)
1969 u16 tss_selector;
1970 int reason;
1971 int int_type = svm->vmcb->control.exit_int_info &
1972 SVM_EXITINTINFO_TYPE_MASK;
1973 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1974 uint32_t type =
1975 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1976 uint32_t idt_v =
1977 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1979 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1981 if (svm->vmcb->control.exit_info_2 &
1982 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1983 reason = TASK_SWITCH_IRET;
1984 else if (svm->vmcb->control.exit_info_2 &
1985 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1986 reason = TASK_SWITCH_JMP;
1987 else if (idt_v)
1988 reason = TASK_SWITCH_GATE;
1989 else
1990 reason = TASK_SWITCH_CALL;
1992 if (reason == TASK_SWITCH_GATE) {
1993 switch (type) {
1994 case SVM_EXITINTINFO_TYPE_NMI:
1995 svm->vcpu.arch.nmi_injected = false;
1996 break;
1997 case SVM_EXITINTINFO_TYPE_EXEPT:
1998 kvm_clear_exception_queue(&svm->vcpu);
1999 break;
2000 case SVM_EXITINTINFO_TYPE_INTR:
2001 kvm_clear_interrupt_queue(&svm->vcpu);
2002 break;
2003 default:
2004 break;
2008 if (reason != TASK_SWITCH_GATE ||
2009 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2010 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2011 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2012 skip_emulated_instruction(&svm->vcpu);
2014 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2017 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2019 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2020 kvm_emulate_cpuid(&svm->vcpu);
2021 return 1;
2024 static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2026 ++svm->vcpu.stat.nmi_window_exits;
2027 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2028 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2029 return 1;
2032 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2034 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
2035 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2036 return 1;
2039 static int emulate_on_interception(struct vcpu_svm *svm,
2040 struct kvm_run *kvm_run)
2042 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
2043 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2044 return 1;
2047 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2049 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2050 /* instruction emulation calls kvm_set_cr8() */
2051 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
2052 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2053 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2054 return 1;
2056 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2057 return 1;
2058 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2059 return 0;
2062 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2064 struct vcpu_svm *svm = to_svm(vcpu);
2066 switch (ecx) {
2067 case MSR_IA32_TSC: {
2068 u64 tsc;
2070 rdtscll(tsc);
2071 *data = svm->vmcb->control.tsc_offset + tsc;
2072 break;
2074 case MSR_K6_STAR:
2075 *data = svm->vmcb->save.star;
2076 break;
2077 #ifdef CONFIG_X86_64
2078 case MSR_LSTAR:
2079 *data = svm->vmcb->save.lstar;
2080 break;
2081 case MSR_CSTAR:
2082 *data = svm->vmcb->save.cstar;
2083 break;
2084 case MSR_KERNEL_GS_BASE:
2085 *data = svm->vmcb->save.kernel_gs_base;
2086 break;
2087 case MSR_SYSCALL_MASK:
2088 *data = svm->vmcb->save.sfmask;
2089 break;
2090 #endif
2091 case MSR_IA32_SYSENTER_CS:
2092 *data = svm->vmcb->save.sysenter_cs;
2093 break;
2094 case MSR_IA32_SYSENTER_EIP:
2095 *data = svm->sysenter_eip;
2096 break;
2097 case MSR_IA32_SYSENTER_ESP:
2098 *data = svm->sysenter_esp;
2099 break;
2100 /* Nobody will change the following 5 values in the VMCB so
2101 we can safely return them on rdmsr. They will always be 0
2102 until LBRV is implemented. */
2103 case MSR_IA32_DEBUGCTLMSR:
2104 *data = svm->vmcb->save.dbgctl;
2105 break;
2106 case MSR_IA32_LASTBRANCHFROMIP:
2107 *data = svm->vmcb->save.br_from;
2108 break;
2109 case MSR_IA32_LASTBRANCHTOIP:
2110 *data = svm->vmcb->save.br_to;
2111 break;
2112 case MSR_IA32_LASTINTFROMIP:
2113 *data = svm->vmcb->save.last_excp_from;
2114 break;
2115 case MSR_IA32_LASTINTTOIP:
2116 *data = svm->vmcb->save.last_excp_to;
2117 break;
2118 case MSR_VM_HSAVE_PA:
2119 *data = svm->nested.hsave_msr;
2120 break;
2121 case MSR_VM_CR:
2122 *data = 0;
2123 break;
2124 case MSR_IA32_UCODE_REV:
2125 *data = 0x01000065;
2126 break;
2127 default:
2128 return kvm_get_msr_common(vcpu, ecx, data);
2130 return 0;
2133 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2135 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2136 u64 data;
2138 if (svm_get_msr(&svm->vcpu, ecx, &data))
2139 kvm_inject_gp(&svm->vcpu, 0);
2140 else {
2141 trace_kvm_msr_read(ecx, data);
2143 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2144 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2145 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2146 skip_emulated_instruction(&svm->vcpu);
2148 return 1;
2151 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2153 struct vcpu_svm *svm = to_svm(vcpu);
2155 switch (ecx) {
2156 case MSR_IA32_TSC: {
2157 u64 tsc;
2159 rdtscll(tsc);
2160 svm->vmcb->control.tsc_offset = data - tsc;
2161 break;
2163 case MSR_K6_STAR:
2164 svm->vmcb->save.star = data;
2165 break;
2166 #ifdef CONFIG_X86_64
2167 case MSR_LSTAR:
2168 svm->vmcb->save.lstar = data;
2169 break;
2170 case MSR_CSTAR:
2171 svm->vmcb->save.cstar = data;
2172 break;
2173 case MSR_KERNEL_GS_BASE:
2174 svm->vmcb->save.kernel_gs_base = data;
2175 break;
2176 case MSR_SYSCALL_MASK:
2177 svm->vmcb->save.sfmask = data;
2178 break;
2179 #endif
2180 case MSR_IA32_SYSENTER_CS:
2181 svm->vmcb->save.sysenter_cs = data;
2182 break;
2183 case MSR_IA32_SYSENTER_EIP:
2184 svm->sysenter_eip = data;
2185 svm->vmcb->save.sysenter_eip = data;
2186 break;
2187 case MSR_IA32_SYSENTER_ESP:
2188 svm->sysenter_esp = data;
2189 svm->vmcb->save.sysenter_esp = data;
2190 break;
2191 case MSR_IA32_DEBUGCTLMSR:
2192 if (!svm_has(SVM_FEATURE_LBRV)) {
2193 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2194 __func__, data);
2195 break;
2197 if (data & DEBUGCTL_RESERVED_BITS)
2198 return 1;
2200 svm->vmcb->save.dbgctl = data;
2201 if (data & (1ULL<<0))
2202 svm_enable_lbrv(svm);
2203 else
2204 svm_disable_lbrv(svm);
2205 break;
2206 case MSR_VM_HSAVE_PA:
2207 svm->nested.hsave_msr = data;
2208 break;
2209 case MSR_VM_CR:
2210 case MSR_VM_IGNNE:
2211 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2212 break;
2213 default:
2214 return kvm_set_msr_common(vcpu, ecx, data);
2216 return 0;
2219 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2221 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2222 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2223 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2225 trace_kvm_msr_write(ecx, data);
2227 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2228 if (svm_set_msr(&svm->vcpu, ecx, data))
2229 kvm_inject_gp(&svm->vcpu, 0);
2230 else
2231 skip_emulated_instruction(&svm->vcpu);
2232 return 1;
2235 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
2237 if (svm->vmcb->control.exit_info_1)
2238 return wrmsr_interception(svm, kvm_run);
2239 else
2240 return rdmsr_interception(svm, kvm_run);
2243 static int interrupt_window_interception(struct vcpu_svm *svm,
2244 struct kvm_run *kvm_run)
2246 svm_clear_vintr(svm);
2247 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2249 * If the user space waits to inject interrupts, exit as soon as
2250 * possible
2252 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2253 kvm_run->request_interrupt_window &&
2254 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2255 ++svm->vcpu.stat.irq_window_exits;
2256 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2257 return 0;
2260 return 1;
2263 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
2264 struct kvm_run *kvm_run) = {
2265 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2266 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2267 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2268 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2269 /* for now: */
2270 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2271 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2272 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2273 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2274 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2275 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2276 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2277 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2278 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2279 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2280 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2281 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2282 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2283 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2284 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2285 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2286 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2287 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2288 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2289 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2290 [SVM_EXIT_INTR] = intr_interception,
2291 [SVM_EXIT_NMI] = nmi_interception,
2292 [SVM_EXIT_SMI] = nop_on_interception,
2293 [SVM_EXIT_INIT] = nop_on_interception,
2294 [SVM_EXIT_VINTR] = interrupt_window_interception,
2295 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2296 [SVM_EXIT_CPUID] = cpuid_interception,
2297 [SVM_EXIT_IRET] = iret_interception,
2298 [SVM_EXIT_INVD] = emulate_on_interception,
2299 [SVM_EXIT_HLT] = halt_interception,
2300 [SVM_EXIT_INVLPG] = invlpg_interception,
2301 [SVM_EXIT_INVLPGA] = invlpga_interception,
2302 [SVM_EXIT_IOIO] = io_interception,
2303 [SVM_EXIT_MSR] = msr_interception,
2304 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2305 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2306 [SVM_EXIT_VMRUN] = vmrun_interception,
2307 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2308 [SVM_EXIT_VMLOAD] = vmload_interception,
2309 [SVM_EXIT_VMSAVE] = vmsave_interception,
2310 [SVM_EXIT_STGI] = stgi_interception,
2311 [SVM_EXIT_CLGI] = clgi_interception,
2312 [SVM_EXIT_SKINIT] = invalid_op_interception,
2313 [SVM_EXIT_WBINVD] = emulate_on_interception,
2314 [SVM_EXIT_MONITOR] = invalid_op_interception,
2315 [SVM_EXIT_MWAIT] = invalid_op_interception,
2316 [SVM_EXIT_NPF] = pf_interception,
2319 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2321 struct vcpu_svm *svm = to_svm(vcpu);
2322 u32 exit_code = svm->vmcb->control.exit_code;
2324 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2326 if (is_nested(svm)) {
2327 int vmexit;
2329 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2330 exit_code, svm->vmcb->control.exit_info_1,
2331 svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2333 vmexit = nested_svm_exit_special(svm);
2335 if (vmexit == NESTED_EXIT_CONTINUE)
2336 vmexit = nested_svm_exit_handled(svm);
2338 if (vmexit == NESTED_EXIT_DONE)
2339 return 1;
2342 svm_complete_interrupts(svm);
2344 if (npt_enabled) {
2345 int mmu_reload = 0;
2346 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2347 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2348 mmu_reload = 1;
2350 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2351 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2352 if (mmu_reload) {
2353 kvm_mmu_reset_context(vcpu);
2354 kvm_mmu_load(vcpu);
2359 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2360 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2361 kvm_run->fail_entry.hardware_entry_failure_reason
2362 = svm->vmcb->control.exit_code;
2363 return 0;
2366 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2367 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2368 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2369 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2370 "exit_code 0x%x\n",
2371 __func__, svm->vmcb->control.exit_int_info,
2372 exit_code);
2374 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2375 || !svm_exit_handlers[exit_code]) {
2376 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2377 kvm_run->hw.hardware_exit_reason = exit_code;
2378 return 0;
2381 return svm_exit_handlers[exit_code](svm, kvm_run);
2384 static void reload_tss(struct kvm_vcpu *vcpu)
2386 int cpu = raw_smp_processor_id();
2388 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2389 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2390 load_TR_desc();
2393 static void pre_svm_run(struct vcpu_svm *svm)
2395 int cpu = raw_smp_processor_id();
2397 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2399 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2400 /* FIXME: handle wraparound of asid_generation */
2401 if (svm->asid_generation != svm_data->asid_generation)
2402 new_asid(svm, svm_data);
2405 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2407 struct vcpu_svm *svm = to_svm(vcpu);
2409 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2410 vcpu->arch.hflags |= HF_NMI_MASK;
2411 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2412 ++vcpu->stat.nmi_injections;
2415 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2417 struct vmcb_control_area *control;
2419 trace_kvm_inj_virq(irq);
2421 ++svm->vcpu.stat.irq_injections;
2422 control = &svm->vmcb->control;
2423 control->int_vector = irq;
2424 control->int_ctl &= ~V_INTR_PRIO_MASK;
2425 control->int_ctl |= V_IRQ_MASK |
2426 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2429 static void svm_set_irq(struct kvm_vcpu *vcpu)
2431 struct vcpu_svm *svm = to_svm(vcpu);
2433 BUG_ON(!(gif_set(svm)));
2435 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2436 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2439 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2441 struct vcpu_svm *svm = to_svm(vcpu);
2443 if (irr == -1)
2444 return;
2446 if (tpr >= irr)
2447 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2450 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2452 struct vcpu_svm *svm = to_svm(vcpu);
2453 struct vmcb *vmcb = svm->vmcb;
2454 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2455 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2458 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2460 struct vcpu_svm *svm = to_svm(vcpu);
2461 struct vmcb *vmcb = svm->vmcb;
2462 return (vmcb->save.rflags & X86_EFLAGS_IF) &&
2463 !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2464 gif_set(svm) &&
2465 !is_nested(svm);
2468 static void enable_irq_window(struct kvm_vcpu *vcpu)
2470 struct vcpu_svm *svm = to_svm(vcpu);
2471 nsvm_printk("Trying to open IRQ window\n");
2473 nested_svm_intr(svm);
2475 /* In case GIF=0 we can't rely on the CPU to tell us when
2476 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2477 * The next time we get that intercept, this function will be
2478 * called again though and we'll get the vintr intercept. */
2479 if (gif_set(svm)) {
2480 svm_set_vintr(svm);
2481 svm_inject_irq(svm, 0x0);
2485 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2487 struct vcpu_svm *svm = to_svm(vcpu);
2489 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2490 == HF_NMI_MASK)
2491 return; /* IRET will cause a vm exit */
2493 /* Something prevents NMI from been injected. Single step over
2494 possible problem (IRET or exception injection or interrupt
2495 shadow) */
2496 vcpu->arch.singlestep = true;
2497 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2498 update_db_intercept(vcpu);
2501 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2503 return 0;
2506 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2508 force_new_asid(vcpu);
2511 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2515 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2517 struct vcpu_svm *svm = to_svm(vcpu);
2519 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2520 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2521 kvm_set_cr8(vcpu, cr8);
2525 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2527 struct vcpu_svm *svm = to_svm(vcpu);
2528 u64 cr8;
2530 cr8 = kvm_get_cr8(vcpu);
2531 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2532 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2535 static void svm_complete_interrupts(struct vcpu_svm *svm)
2537 u8 vector;
2538 int type;
2539 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2541 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2542 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2544 svm->vcpu.arch.nmi_injected = false;
2545 kvm_clear_exception_queue(&svm->vcpu);
2546 kvm_clear_interrupt_queue(&svm->vcpu);
2548 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2549 return;
2551 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2552 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2554 switch (type) {
2555 case SVM_EXITINTINFO_TYPE_NMI:
2556 svm->vcpu.arch.nmi_injected = true;
2557 break;
2558 case SVM_EXITINTINFO_TYPE_EXEPT:
2559 /* In case of software exception do not reinject an exception
2560 vector, but re-execute and instruction instead */
2561 if (is_nested(svm))
2562 break;
2563 if (kvm_exception_is_soft(vector))
2564 break;
2565 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2566 u32 err = svm->vmcb->control.exit_int_info_err;
2567 kvm_queue_exception_e(&svm->vcpu, vector, err);
2569 } else
2570 kvm_queue_exception(&svm->vcpu, vector);
2571 break;
2572 case SVM_EXITINTINFO_TYPE_INTR:
2573 kvm_queue_interrupt(&svm->vcpu, vector, false);
2574 break;
2575 default:
2576 break;
2580 #ifdef CONFIG_X86_64
2581 #define R "r"
2582 #else
2583 #define R "e"
2584 #endif
2586 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2588 struct vcpu_svm *svm = to_svm(vcpu);
2589 u16 fs_selector;
2590 u16 gs_selector;
2591 u16 ldt_selector;
2593 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2594 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2595 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2597 pre_svm_run(svm);
2599 sync_lapic_to_cr8(vcpu);
2601 save_host_msrs(vcpu);
2602 fs_selector = kvm_read_fs();
2603 gs_selector = kvm_read_gs();
2604 ldt_selector = kvm_read_ldt();
2605 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2606 /* required for live migration with NPT */
2607 if (npt_enabled)
2608 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2610 clgi();
2612 local_irq_enable();
2614 asm volatile (
2615 "push %%"R"bp; \n\t"
2616 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2617 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2618 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2619 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2620 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2621 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2622 #ifdef CONFIG_X86_64
2623 "mov %c[r8](%[svm]), %%r8 \n\t"
2624 "mov %c[r9](%[svm]), %%r9 \n\t"
2625 "mov %c[r10](%[svm]), %%r10 \n\t"
2626 "mov %c[r11](%[svm]), %%r11 \n\t"
2627 "mov %c[r12](%[svm]), %%r12 \n\t"
2628 "mov %c[r13](%[svm]), %%r13 \n\t"
2629 "mov %c[r14](%[svm]), %%r14 \n\t"
2630 "mov %c[r15](%[svm]), %%r15 \n\t"
2631 #endif
2633 /* Enter guest mode */
2634 "push %%"R"ax \n\t"
2635 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2636 __ex(SVM_VMLOAD) "\n\t"
2637 __ex(SVM_VMRUN) "\n\t"
2638 __ex(SVM_VMSAVE) "\n\t"
2639 "pop %%"R"ax \n\t"
2641 /* Save guest registers, load host registers */
2642 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2643 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2644 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2645 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2646 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2647 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2648 #ifdef CONFIG_X86_64
2649 "mov %%r8, %c[r8](%[svm]) \n\t"
2650 "mov %%r9, %c[r9](%[svm]) \n\t"
2651 "mov %%r10, %c[r10](%[svm]) \n\t"
2652 "mov %%r11, %c[r11](%[svm]) \n\t"
2653 "mov %%r12, %c[r12](%[svm]) \n\t"
2654 "mov %%r13, %c[r13](%[svm]) \n\t"
2655 "mov %%r14, %c[r14](%[svm]) \n\t"
2656 "mov %%r15, %c[r15](%[svm]) \n\t"
2657 #endif
2658 "pop %%"R"bp"
2660 : [svm]"a"(svm),
2661 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2662 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2663 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2664 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2665 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2666 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2667 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2668 #ifdef CONFIG_X86_64
2669 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2670 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2671 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2672 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2673 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2674 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2675 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2676 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2677 #endif
2678 : "cc", "memory"
2679 , R"bx", R"cx", R"dx", R"si", R"di"
2680 #ifdef CONFIG_X86_64
2681 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2682 #endif
2685 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2686 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2687 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2688 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2690 kvm_load_fs(fs_selector);
2691 kvm_load_gs(gs_selector);
2692 kvm_load_ldt(ldt_selector);
2693 load_host_msrs(vcpu);
2695 reload_tss(vcpu);
2697 local_irq_disable();
2699 stgi();
2701 sync_cr8_to_lapic(vcpu);
2703 svm->next_rip = 0;
2705 if (npt_enabled) {
2706 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2707 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2711 #undef R
2713 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2715 struct vcpu_svm *svm = to_svm(vcpu);
2717 if (npt_enabled) {
2718 svm->vmcb->control.nested_cr3 = root;
2719 force_new_asid(vcpu);
2720 return;
2723 svm->vmcb->save.cr3 = root;
2724 force_new_asid(vcpu);
2726 if (vcpu->fpu_active) {
2727 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2728 svm->vmcb->save.cr0 |= X86_CR0_TS;
2729 vcpu->fpu_active = 0;
2733 static int is_disabled(void)
2735 u64 vm_cr;
2737 rdmsrl(MSR_VM_CR, vm_cr);
2738 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2739 return 1;
2741 return 0;
2744 static void
2745 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2748 * Patch in the VMMCALL instruction:
2750 hypercall[0] = 0x0f;
2751 hypercall[1] = 0x01;
2752 hypercall[2] = 0xd9;
2755 static void svm_check_processor_compat(void *rtn)
2757 *(int *)rtn = 0;
2760 static bool svm_cpu_has_accelerated_tpr(void)
2762 return false;
2765 static int get_npt_level(void)
2767 #ifdef CONFIG_X86_64
2768 return PT64_ROOT_LEVEL;
2769 #else
2770 return PT32E_ROOT_LEVEL;
2771 #endif
2774 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2776 return 0;
2779 static const struct trace_print_flags svm_exit_reasons_str[] = {
2780 { SVM_EXIT_READ_CR0, "read_cr0" },
2781 { SVM_EXIT_READ_CR3, "read_cr3" },
2782 { SVM_EXIT_READ_CR4, "read_cr4" },
2783 { SVM_EXIT_READ_CR8, "read_cr8" },
2784 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2785 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2786 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2787 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2788 { SVM_EXIT_READ_DR0, "read_dr0" },
2789 { SVM_EXIT_READ_DR1, "read_dr1" },
2790 { SVM_EXIT_READ_DR2, "read_dr2" },
2791 { SVM_EXIT_READ_DR3, "read_dr3" },
2792 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2793 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2794 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2795 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2796 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2797 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2798 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2799 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2800 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2801 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2802 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2803 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2804 { SVM_EXIT_INTR, "interrupt" },
2805 { SVM_EXIT_NMI, "nmi" },
2806 { SVM_EXIT_SMI, "smi" },
2807 { SVM_EXIT_INIT, "init" },
2808 { SVM_EXIT_VINTR, "vintr" },
2809 { SVM_EXIT_CPUID, "cpuid" },
2810 { SVM_EXIT_INVD, "invd" },
2811 { SVM_EXIT_HLT, "hlt" },
2812 { SVM_EXIT_INVLPG, "invlpg" },
2813 { SVM_EXIT_INVLPGA, "invlpga" },
2814 { SVM_EXIT_IOIO, "io" },
2815 { SVM_EXIT_MSR, "msr" },
2816 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2817 { SVM_EXIT_SHUTDOWN, "shutdown" },
2818 { SVM_EXIT_VMRUN, "vmrun" },
2819 { SVM_EXIT_VMMCALL, "hypercall" },
2820 { SVM_EXIT_VMLOAD, "vmload" },
2821 { SVM_EXIT_VMSAVE, "vmsave" },
2822 { SVM_EXIT_STGI, "stgi" },
2823 { SVM_EXIT_CLGI, "clgi" },
2824 { SVM_EXIT_SKINIT, "skinit" },
2825 { SVM_EXIT_WBINVD, "wbinvd" },
2826 { SVM_EXIT_MONITOR, "monitor" },
2827 { SVM_EXIT_MWAIT, "mwait" },
2828 { SVM_EXIT_NPF, "npf" },
2829 { -1, NULL }
2832 static bool svm_gb_page_enable(void)
2834 return true;
2837 static struct kvm_x86_ops svm_x86_ops = {
2838 .cpu_has_kvm_support = has_svm,
2839 .disabled_by_bios = is_disabled,
2840 .hardware_setup = svm_hardware_setup,
2841 .hardware_unsetup = svm_hardware_unsetup,
2842 .check_processor_compatibility = svm_check_processor_compat,
2843 .hardware_enable = svm_hardware_enable,
2844 .hardware_disable = svm_hardware_disable,
2845 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2847 .vcpu_create = svm_create_vcpu,
2848 .vcpu_free = svm_free_vcpu,
2849 .vcpu_reset = svm_vcpu_reset,
2851 .prepare_guest_switch = svm_prepare_guest_switch,
2852 .vcpu_load = svm_vcpu_load,
2853 .vcpu_put = svm_vcpu_put,
2855 .set_guest_debug = svm_guest_debug,
2856 .get_msr = svm_get_msr,
2857 .set_msr = svm_set_msr,
2858 .get_segment_base = svm_get_segment_base,
2859 .get_segment = svm_get_segment,
2860 .set_segment = svm_set_segment,
2861 .get_cpl = svm_get_cpl,
2862 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2863 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2864 .set_cr0 = svm_set_cr0,
2865 .set_cr3 = svm_set_cr3,
2866 .set_cr4 = svm_set_cr4,
2867 .set_efer = svm_set_efer,
2868 .get_idt = svm_get_idt,
2869 .set_idt = svm_set_idt,
2870 .get_gdt = svm_get_gdt,
2871 .set_gdt = svm_set_gdt,
2872 .get_dr = svm_get_dr,
2873 .set_dr = svm_set_dr,
2874 .cache_reg = svm_cache_reg,
2875 .get_rflags = svm_get_rflags,
2876 .set_rflags = svm_set_rflags,
2878 .tlb_flush = svm_flush_tlb,
2880 .run = svm_vcpu_run,
2881 .handle_exit = handle_exit,
2882 .skip_emulated_instruction = skip_emulated_instruction,
2883 .set_interrupt_shadow = svm_set_interrupt_shadow,
2884 .get_interrupt_shadow = svm_get_interrupt_shadow,
2885 .patch_hypercall = svm_patch_hypercall,
2886 .set_irq = svm_set_irq,
2887 .set_nmi = svm_inject_nmi,
2888 .queue_exception = svm_queue_exception,
2889 .interrupt_allowed = svm_interrupt_allowed,
2890 .nmi_allowed = svm_nmi_allowed,
2891 .enable_nmi_window = enable_nmi_window,
2892 .enable_irq_window = enable_irq_window,
2893 .update_cr8_intercept = update_cr8_intercept,
2895 .set_tss_addr = svm_set_tss_addr,
2896 .get_tdp_level = get_npt_level,
2897 .get_mt_mask = svm_get_mt_mask,
2899 .exit_reasons_str = svm_exit_reasons_str,
2900 .gb_page_enable = svm_gb_page_enable,
2903 static int __init svm_init(void)
2905 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2906 THIS_MODULE);
2909 static void __exit svm_exit(void)
2911 kvm_exit();
2914 module_init(svm_init)
2915 module_exit(svm_exit)