NFSv4: Clean up nfs4_atomic_open
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / dir.c
blob17529b5bc551c8c55cbddb788ba4eb4b9b82cb6b
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 #include "fscache.h"
43 /* #define NFS_DEBUG_VERBOSE 1 */
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
103 #endif /* CONFIG_NFS_V3 */
105 #ifdef CONFIG_NFS_V4
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
126 #endif /* CONFIG_NFS_V4 */
129 * Open file
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
134 int res;
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
145 /* This is a mountpoint, so d_revalidate will never
146 * have been called, so we need to refresh the
147 * inode (for close-open consistency) ourselves.
149 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
151 return res;
154 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 unsigned long page_index;
159 __be32 *ptr;
160 u64 *dir_cookie;
161 loff_t current_index;
162 struct nfs_entry *entry;
163 decode_dirent_t decode;
164 int plus;
165 unsigned long timestamp;
166 unsigned long gencount;
167 int timestamp_valid;
168 } nfs_readdir_descriptor_t;
170 /* Now we cache directories properly, by stuffing the dirent
171 * data directly in the page cache.
173 * Inode invalidation due to refresh etc. takes care of
174 * _everything_, no sloppy entry flushing logic, no extraneous
175 * copying, network direct to page cache, the way it was meant
176 * to be.
178 * NOTE: Dirent information verification is done always by the
179 * page-in of the RPC reply, nowhere else, this simplies
180 * things substantially.
182 static
183 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
185 struct file *file = desc->file;
186 struct inode *inode = file->f_path.dentry->d_inode;
187 struct rpc_cred *cred = nfs_file_cred(file);
188 unsigned long timestamp, gencount;
189 int error;
191 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
192 __func__, (long long)desc->entry->cookie,
193 page->index);
195 again:
196 timestamp = jiffies;
197 gencount = nfs_inc_attr_generation_counter();
198 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
199 NFS_SERVER(inode)->dtsize, desc->plus);
200 if (error < 0) {
201 /* We requested READDIRPLUS, but the server doesn't grok it */
202 if (error == -ENOTSUPP && desc->plus) {
203 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
204 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
205 desc->plus = 0;
206 goto again;
208 goto error;
210 desc->timestamp = timestamp;
211 desc->gencount = gencount;
212 desc->timestamp_valid = 1;
213 SetPageUptodate(page);
214 /* Ensure consistent page alignment of the data.
215 * Note: assumes we have exclusive access to this mapping either
216 * through inode->i_mutex or some other mechanism.
218 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
219 /* Should never happen */
220 nfs_zap_mapping(inode, inode->i_mapping);
222 unlock_page(page);
223 return 0;
224 error:
225 unlock_page(page);
226 return -EIO;
229 static inline
230 int dir_decode(nfs_readdir_descriptor_t *desc)
232 __be32 *p = desc->ptr;
233 p = desc->decode(p, desc->entry, desc->plus);
234 if (IS_ERR(p))
235 return PTR_ERR(p);
236 desc->ptr = p;
237 if (desc->timestamp_valid) {
238 desc->entry->fattr->time_start = desc->timestamp;
239 desc->entry->fattr->gencount = desc->gencount;
240 } else
241 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
242 return 0;
245 static inline
246 void dir_page_release(nfs_readdir_descriptor_t *desc)
248 kunmap(desc->page);
249 page_cache_release(desc->page);
250 desc->page = NULL;
251 desc->ptr = NULL;
255 * Given a pointer to a buffer that has already been filled by a call
256 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
258 * If the end of the buffer has been reached, return -EAGAIN, if not,
259 * return the offset within the buffer of the next entry to be
260 * read.
262 static inline
263 int find_dirent(nfs_readdir_descriptor_t *desc)
265 struct nfs_entry *entry = desc->entry;
266 int loop_count = 0,
267 status;
269 while((status = dir_decode(desc)) == 0) {
270 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
271 __func__, (unsigned long long)entry->cookie);
272 if (entry->prev_cookie == *desc->dir_cookie)
273 break;
274 if (loop_count++ > 200) {
275 loop_count = 0;
276 schedule();
279 return status;
283 * Given a pointer to a buffer that has already been filled by a call
284 * to readdir, find the entry at offset 'desc->file->f_pos'.
286 * If the end of the buffer has been reached, return -EAGAIN, if not,
287 * return the offset within the buffer of the next entry to be
288 * read.
290 static inline
291 int find_dirent_index(nfs_readdir_descriptor_t *desc)
293 struct nfs_entry *entry = desc->entry;
294 int loop_count = 0,
295 status;
297 for(;;) {
298 status = dir_decode(desc);
299 if (status)
300 break;
302 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
303 (unsigned long long)entry->cookie, desc->current_index);
305 if (desc->file->f_pos == desc->current_index) {
306 *desc->dir_cookie = entry->cookie;
307 break;
309 desc->current_index++;
310 if (loop_count++ > 200) {
311 loop_count = 0;
312 schedule();
315 return status;
319 * Find the given page, and call find_dirent() or find_dirent_index in
320 * order to try to return the next entry.
322 static inline
323 int find_dirent_page(nfs_readdir_descriptor_t *desc)
325 struct inode *inode = desc->file->f_path.dentry->d_inode;
326 struct page *page;
327 int status;
329 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
330 __func__, desc->page_index,
331 (long long) *desc->dir_cookie);
333 /* If we find the page in the page_cache, we cannot be sure
334 * how fresh the data is, so we will ignore readdir_plus attributes.
336 desc->timestamp_valid = 0;
337 page = read_cache_page(inode->i_mapping, desc->page_index,
338 (filler_t *)nfs_readdir_filler, desc);
339 if (IS_ERR(page)) {
340 status = PTR_ERR(page);
341 goto out;
344 /* NOTE: Someone else may have changed the READDIRPLUS flag */
345 desc->page = page;
346 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
347 if (*desc->dir_cookie != 0)
348 status = find_dirent(desc);
349 else
350 status = find_dirent_index(desc);
351 if (status < 0)
352 dir_page_release(desc);
353 out:
354 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
355 return status;
359 * Recurse through the page cache pages, and return a
360 * filled nfs_entry structure of the next directory entry if possible.
362 * The target for the search is '*desc->dir_cookie' if non-0,
363 * 'desc->file->f_pos' otherwise
365 static inline
366 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
368 int loop_count = 0;
369 int res;
371 /* Always search-by-index from the beginning of the cache */
372 if (*desc->dir_cookie == 0) {
373 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
374 (long long)desc->file->f_pos);
375 desc->page_index = 0;
376 desc->entry->cookie = desc->entry->prev_cookie = 0;
377 desc->entry->eof = 0;
378 desc->current_index = 0;
379 } else
380 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
381 (unsigned long long)*desc->dir_cookie);
383 for (;;) {
384 res = find_dirent_page(desc);
385 if (res != -EAGAIN)
386 break;
387 /* Align to beginning of next page */
388 desc->page_index ++;
389 if (loop_count++ > 200) {
390 loop_count = 0;
391 schedule();
395 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
396 return res;
399 static inline unsigned int dt_type(struct inode *inode)
401 return (inode->i_mode >> 12) & 15;
404 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
407 * Once we've found the start of the dirent within a page: fill 'er up...
409 static
410 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
411 filldir_t filldir)
413 struct file *file = desc->file;
414 struct nfs_entry *entry = desc->entry;
415 struct dentry *dentry = NULL;
416 u64 fileid;
417 int loop_count = 0,
418 res;
420 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
421 (unsigned long long)entry->cookie);
423 for(;;) {
424 unsigned d_type = DT_UNKNOWN;
425 /* Note: entry->prev_cookie contains the cookie for
426 * retrieving the current dirent on the server */
427 fileid = entry->ino;
429 /* Get a dentry if we have one */
430 if (dentry != NULL)
431 dput(dentry);
432 dentry = nfs_readdir_lookup(desc);
434 /* Use readdirplus info */
435 if (dentry != NULL && dentry->d_inode != NULL) {
436 d_type = dt_type(dentry->d_inode);
437 fileid = NFS_FILEID(dentry->d_inode);
440 res = filldir(dirent, entry->name, entry->len,
441 file->f_pos, nfs_compat_user_ino64(fileid),
442 d_type);
443 if (res < 0)
444 break;
445 file->f_pos++;
446 *desc->dir_cookie = entry->cookie;
447 if (dir_decode(desc) != 0) {
448 desc->page_index ++;
449 break;
451 if (loop_count++ > 200) {
452 loop_count = 0;
453 schedule();
456 dir_page_release(desc);
457 if (dentry != NULL)
458 dput(dentry);
459 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
460 (unsigned long long)*desc->dir_cookie, res);
461 return res;
465 * If we cannot find a cookie in our cache, we suspect that this is
466 * because it points to a deleted file, so we ask the server to return
467 * whatever it thinks is the next entry. We then feed this to filldir.
468 * If all goes well, we should then be able to find our way round the
469 * cache on the next call to readdir_search_pagecache();
471 * NOTE: we cannot add the anonymous page to the pagecache because
472 * the data it contains might not be page aligned. Besides,
473 * we should already have a complete representation of the
474 * directory in the page cache by the time we get here.
476 static inline
477 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
478 filldir_t filldir)
480 struct file *file = desc->file;
481 struct inode *inode = file->f_path.dentry->d_inode;
482 struct rpc_cred *cred = nfs_file_cred(file);
483 struct page *page = NULL;
484 int status;
485 unsigned long timestamp, gencount;
487 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
488 (unsigned long long)*desc->dir_cookie);
490 page = alloc_page(GFP_HIGHUSER);
491 if (!page) {
492 status = -ENOMEM;
493 goto out;
495 timestamp = jiffies;
496 gencount = nfs_inc_attr_generation_counter();
497 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
498 *desc->dir_cookie, page,
499 NFS_SERVER(inode)->dtsize,
500 desc->plus);
501 desc->page = page;
502 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
503 if (status >= 0) {
504 desc->timestamp = timestamp;
505 desc->gencount = gencount;
506 desc->timestamp_valid = 1;
507 if ((status = dir_decode(desc)) == 0)
508 desc->entry->prev_cookie = *desc->dir_cookie;
509 } else
510 status = -EIO;
511 if (status < 0)
512 goto out_release;
514 status = nfs_do_filldir(desc, dirent, filldir);
516 /* Reset read descriptor so it searches the page cache from
517 * the start upon the next call to readdir_search_pagecache() */
518 desc->page_index = 0;
519 desc->entry->cookie = desc->entry->prev_cookie = 0;
520 desc->entry->eof = 0;
521 out:
522 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
523 __func__, status);
524 return status;
525 out_release:
526 dir_page_release(desc);
527 goto out;
530 /* The file offset position represents the dirent entry number. A
531 last cookie cache takes care of the common case of reading the
532 whole directory.
534 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
536 struct dentry *dentry = filp->f_path.dentry;
537 struct inode *inode = dentry->d_inode;
538 nfs_readdir_descriptor_t my_desc,
539 *desc = &my_desc;
540 struct nfs_entry my_entry;
541 int res = -ENOMEM;
543 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
544 dentry->d_parent->d_name.name, dentry->d_name.name,
545 (long long)filp->f_pos);
546 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
549 * filp->f_pos points to the dirent entry number.
550 * *desc->dir_cookie has the cookie for the next entry. We have
551 * to either find the entry with the appropriate number or
552 * revalidate the cookie.
554 memset(desc, 0, sizeof(*desc));
556 desc->file = filp;
557 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
558 desc->decode = NFS_PROTO(inode)->decode_dirent;
559 desc->plus = NFS_USE_READDIRPLUS(inode);
561 my_entry.cookie = my_entry.prev_cookie = 0;
562 my_entry.eof = 0;
563 my_entry.fh = nfs_alloc_fhandle();
564 my_entry.fattr = nfs_alloc_fattr();
565 if (my_entry.fh == NULL || my_entry.fattr == NULL)
566 goto out_alloc_failed;
568 desc->entry = &my_entry;
570 nfs_block_sillyrename(dentry);
571 res = nfs_revalidate_mapping(inode, filp->f_mapping);
572 if (res < 0)
573 goto out;
575 while(!desc->entry->eof) {
576 res = readdir_search_pagecache(desc);
578 if (res == -EBADCOOKIE) {
579 /* This means either end of directory */
580 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
581 /* Or that the server has 'lost' a cookie */
582 res = uncached_readdir(desc, dirent, filldir);
583 if (res >= 0)
584 continue;
586 res = 0;
587 break;
589 if (res == -ETOOSMALL && desc->plus) {
590 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
591 nfs_zap_caches(inode);
592 desc->plus = 0;
593 desc->entry->eof = 0;
594 continue;
596 if (res < 0)
597 break;
599 res = nfs_do_filldir(desc, dirent, filldir);
600 if (res < 0) {
601 res = 0;
602 break;
605 out:
606 nfs_unblock_sillyrename(dentry);
607 if (res > 0)
608 res = 0;
609 out_alloc_failed:
610 nfs_free_fattr(my_entry.fattr);
611 nfs_free_fhandle(my_entry.fh);
612 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
613 dentry->d_parent->d_name.name, dentry->d_name.name,
614 res);
615 return res;
618 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
620 struct dentry *dentry = filp->f_path.dentry;
621 struct inode *inode = dentry->d_inode;
623 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
624 dentry->d_parent->d_name.name,
625 dentry->d_name.name,
626 offset, origin);
628 mutex_lock(&inode->i_mutex);
629 switch (origin) {
630 case 1:
631 offset += filp->f_pos;
632 case 0:
633 if (offset >= 0)
634 break;
635 default:
636 offset = -EINVAL;
637 goto out;
639 if (offset != filp->f_pos) {
640 filp->f_pos = offset;
641 nfs_file_open_context(filp)->dir_cookie = 0;
643 out:
644 mutex_unlock(&inode->i_mutex);
645 return offset;
649 * All directory operations under NFS are synchronous, so fsync()
650 * is a dummy operation.
652 static int nfs_fsync_dir(struct file *filp, int datasync)
654 struct dentry *dentry = filp->f_path.dentry;
656 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
657 dentry->d_parent->d_name.name, dentry->d_name.name,
658 datasync);
660 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
661 return 0;
665 * nfs_force_lookup_revalidate - Mark the directory as having changed
666 * @dir - pointer to directory inode
668 * This forces the revalidation code in nfs_lookup_revalidate() to do a
669 * full lookup on all child dentries of 'dir' whenever a change occurs
670 * on the server that might have invalidated our dcache.
672 * The caller should be holding dir->i_lock
674 void nfs_force_lookup_revalidate(struct inode *dir)
676 NFS_I(dir)->cache_change_attribute++;
680 * A check for whether or not the parent directory has changed.
681 * In the case it has, we assume that the dentries are untrustworthy
682 * and may need to be looked up again.
684 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
686 if (IS_ROOT(dentry))
687 return 1;
688 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
689 return 0;
690 if (!nfs_verify_change_attribute(dir, dentry->d_time))
691 return 0;
692 /* Revalidate nfsi->cache_change_attribute before we declare a match */
693 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
694 return 0;
695 if (!nfs_verify_change_attribute(dir, dentry->d_time))
696 return 0;
697 return 1;
701 * Return the intent data that applies to this particular path component
703 * Note that the current set of intents only apply to the very last
704 * component of the path.
705 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
707 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
709 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
710 return 0;
711 return nd->flags & mask;
715 * Use intent information to check whether or not we're going to do
716 * an O_EXCL create using this path component.
718 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
720 if (NFS_PROTO(dir)->version == 2)
721 return 0;
722 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
726 * Inode and filehandle revalidation for lookups.
728 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
729 * or if the intent information indicates that we're about to open this
730 * particular file and the "nocto" mount flag is not set.
733 static inline
734 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
736 struct nfs_server *server = NFS_SERVER(inode);
738 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
739 return 0;
740 if (nd != NULL) {
741 /* VFS wants an on-the-wire revalidation */
742 if (nd->flags & LOOKUP_REVAL)
743 goto out_force;
744 /* This is an open(2) */
745 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
746 !(server->flags & NFS_MOUNT_NOCTO) &&
747 (S_ISREG(inode->i_mode) ||
748 S_ISDIR(inode->i_mode)))
749 goto out_force;
750 return 0;
752 return nfs_revalidate_inode(server, inode);
753 out_force:
754 return __nfs_revalidate_inode(server, inode);
758 * We judge how long we want to trust negative
759 * dentries by looking at the parent inode mtime.
761 * If parent mtime has changed, we revalidate, else we wait for a
762 * period corresponding to the parent's attribute cache timeout value.
764 static inline
765 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
766 struct nameidata *nd)
768 /* Don't revalidate a negative dentry if we're creating a new file */
769 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
770 return 0;
771 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
772 return 1;
773 return !nfs_check_verifier(dir, dentry);
777 * This is called every time the dcache has a lookup hit,
778 * and we should check whether we can really trust that
779 * lookup.
781 * NOTE! The hit can be a negative hit too, don't assume
782 * we have an inode!
784 * If the parent directory is seen to have changed, we throw out the
785 * cached dentry and do a new lookup.
787 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
789 struct inode *dir;
790 struct inode *inode;
791 struct dentry *parent;
792 struct nfs_fh *fhandle = NULL;
793 struct nfs_fattr *fattr = NULL;
794 int error;
796 parent = dget_parent(dentry);
797 dir = parent->d_inode;
798 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
799 inode = dentry->d_inode;
801 if (!inode) {
802 if (nfs_neg_need_reval(dir, dentry, nd))
803 goto out_bad;
804 goto out_valid;
807 if (is_bad_inode(inode)) {
808 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
809 __func__, dentry->d_parent->d_name.name,
810 dentry->d_name.name);
811 goto out_bad;
814 if (nfs_have_delegation(inode, FMODE_READ))
815 goto out_set_verifier;
817 /* Force a full look up iff the parent directory has changed */
818 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
819 if (nfs_lookup_verify_inode(inode, nd))
820 goto out_zap_parent;
821 goto out_valid;
824 if (NFS_STALE(inode))
825 goto out_bad;
827 error = -ENOMEM;
828 fhandle = nfs_alloc_fhandle();
829 fattr = nfs_alloc_fattr();
830 if (fhandle == NULL || fattr == NULL)
831 goto out_error;
833 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
834 if (error)
835 goto out_bad;
836 if (nfs_compare_fh(NFS_FH(inode), fhandle))
837 goto out_bad;
838 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
839 goto out_bad;
841 nfs_free_fattr(fattr);
842 nfs_free_fhandle(fhandle);
843 out_set_verifier:
844 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
845 out_valid:
846 dput(parent);
847 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
848 __func__, dentry->d_parent->d_name.name,
849 dentry->d_name.name);
850 return 1;
851 out_zap_parent:
852 nfs_zap_caches(dir);
853 out_bad:
854 nfs_mark_for_revalidate(dir);
855 if (inode && S_ISDIR(inode->i_mode)) {
856 /* Purge readdir caches. */
857 nfs_zap_caches(inode);
858 /* If we have submounts, don't unhash ! */
859 if (have_submounts(dentry))
860 goto out_valid;
861 if (dentry->d_flags & DCACHE_DISCONNECTED)
862 goto out_valid;
863 shrink_dcache_parent(dentry);
865 d_drop(dentry);
866 nfs_free_fattr(fattr);
867 nfs_free_fhandle(fhandle);
868 dput(parent);
869 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
870 __func__, dentry->d_parent->d_name.name,
871 dentry->d_name.name);
872 return 0;
873 out_error:
874 nfs_free_fattr(fattr);
875 nfs_free_fhandle(fhandle);
876 dput(parent);
877 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
878 __func__, dentry->d_parent->d_name.name,
879 dentry->d_name.name, error);
880 return error;
884 * This is called from dput() when d_count is going to 0.
886 static int nfs_dentry_delete(struct dentry *dentry)
888 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
889 dentry->d_parent->d_name.name, dentry->d_name.name,
890 dentry->d_flags);
892 /* Unhash any dentry with a stale inode */
893 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
894 return 1;
896 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
897 /* Unhash it, so that ->d_iput() would be called */
898 return 1;
900 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
901 /* Unhash it, so that ancestors of killed async unlink
902 * files will be cleaned up during umount */
903 return 1;
905 return 0;
909 static void nfs_drop_nlink(struct inode *inode)
911 spin_lock(&inode->i_lock);
912 if (inode->i_nlink > 0)
913 drop_nlink(inode);
914 spin_unlock(&inode->i_lock);
918 * Called when the dentry loses inode.
919 * We use it to clean up silly-renamed files.
921 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
923 if (S_ISDIR(inode->i_mode))
924 /* drop any readdir cache as it could easily be old */
925 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
927 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
928 drop_nlink(inode);
929 nfs_complete_unlink(dentry, inode);
931 iput(inode);
934 const struct dentry_operations nfs_dentry_operations = {
935 .d_revalidate = nfs_lookup_revalidate,
936 .d_delete = nfs_dentry_delete,
937 .d_iput = nfs_dentry_iput,
940 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
942 struct dentry *res;
943 struct dentry *parent;
944 struct inode *inode = NULL;
945 struct nfs_fh *fhandle = NULL;
946 struct nfs_fattr *fattr = NULL;
947 int error;
949 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
950 dentry->d_parent->d_name.name, dentry->d_name.name);
951 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
953 res = ERR_PTR(-ENAMETOOLONG);
954 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
955 goto out;
957 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
960 * If we're doing an exclusive create, optimize away the lookup
961 * but don't hash the dentry.
963 if (nfs_is_exclusive_create(dir, nd)) {
964 d_instantiate(dentry, NULL);
965 res = NULL;
966 goto out;
969 res = ERR_PTR(-ENOMEM);
970 fhandle = nfs_alloc_fhandle();
971 fattr = nfs_alloc_fattr();
972 if (fhandle == NULL || fattr == NULL)
973 goto out;
975 parent = dentry->d_parent;
976 /* Protect against concurrent sillydeletes */
977 nfs_block_sillyrename(parent);
978 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
979 if (error == -ENOENT)
980 goto no_entry;
981 if (error < 0) {
982 res = ERR_PTR(error);
983 goto out_unblock_sillyrename;
985 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
986 res = (struct dentry *)inode;
987 if (IS_ERR(res))
988 goto out_unblock_sillyrename;
990 no_entry:
991 res = d_materialise_unique(dentry, inode);
992 if (res != NULL) {
993 if (IS_ERR(res))
994 goto out_unblock_sillyrename;
995 dentry = res;
997 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
998 out_unblock_sillyrename:
999 nfs_unblock_sillyrename(parent);
1000 out:
1001 nfs_free_fattr(fattr);
1002 nfs_free_fhandle(fhandle);
1003 return res;
1006 #ifdef CONFIG_NFS_V4
1007 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1009 const struct dentry_operations nfs4_dentry_operations = {
1010 .d_revalidate = nfs_open_revalidate,
1011 .d_delete = nfs_dentry_delete,
1012 .d_iput = nfs_dentry_iput,
1016 * Use intent information to determine whether we need to substitute
1017 * the NFSv4-style stateful OPEN for the LOOKUP call
1019 static int is_atomic_open(struct nameidata *nd)
1021 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1022 return 0;
1023 /* NFS does not (yet) have a stateful open for directories */
1024 if (nd->flags & LOOKUP_DIRECTORY)
1025 return 0;
1026 /* Are we trying to write to a read only partition? */
1027 if (__mnt_is_readonly(nd->path.mnt) &&
1028 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1029 return 0;
1030 return 1;
1033 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1035 struct path path = {
1036 .mnt = nd->path.mnt,
1037 .dentry = dentry,
1039 struct nfs_open_context *ctx;
1040 struct rpc_cred *cred;
1041 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1043 cred = rpc_lookup_cred();
1044 if (IS_ERR(cred))
1045 return ERR_CAST(cred);
1046 ctx = alloc_nfs_open_context(&path, cred, fmode);
1047 put_rpccred(cred);
1048 if (ctx == NULL)
1049 return ERR_PTR(-ENOMEM);
1050 return ctx;
1053 static int do_open(struct inode *inode, struct file *filp)
1055 nfs_fscache_set_inode_cookie(inode, filp);
1056 return 0;
1059 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1061 struct file *filp;
1062 int ret = 0;
1064 /* If the open_intent is for execute, we have an extra check to make */
1065 if (ctx->mode & FMODE_EXEC) {
1066 ret = nfs_may_open(ctx->path.dentry->d_inode,
1067 ctx->cred,
1068 nd->intent.open.flags);
1069 if (ret < 0)
1070 goto out;
1072 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1073 if (IS_ERR(filp))
1074 ret = PTR_ERR(filp);
1075 else
1076 nfs_file_set_open_context(filp, ctx);
1077 out:
1078 put_nfs_open_context(ctx);
1079 return ret;
1082 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1084 struct nfs_open_context *ctx;
1085 struct iattr attr;
1086 struct dentry *res = NULL;
1087 int open_flags;
1088 int error;
1090 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1091 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1093 /* Check that we are indeed trying to open this file */
1094 if (!is_atomic_open(nd))
1095 goto no_open;
1097 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1098 res = ERR_PTR(-ENAMETOOLONG);
1099 goto out;
1101 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1103 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1104 * the dentry. */
1105 if (nd->flags & LOOKUP_EXCL) {
1106 d_instantiate(dentry, NULL);
1107 goto out;
1110 ctx = nameidata_to_nfs_open_context(dentry, nd);
1111 res = ERR_CAST(ctx);
1112 if (IS_ERR(ctx))
1113 goto out;
1115 open_flags = nd->intent.open.flags;
1116 if (nd->flags & LOOKUP_CREATE) {
1117 attr.ia_mode = nd->intent.open.create_mode;
1118 attr.ia_valid = ATTR_MODE;
1119 if (!IS_POSIXACL(dir))
1120 attr.ia_mode &= ~current_umask();
1121 } else {
1122 open_flags &= ~O_EXCL;
1123 attr.ia_valid = 0;
1124 BUG_ON(open_flags & O_CREAT);
1127 /* Open the file on the server */
1128 res = nfs4_atomic_open(dir, ctx, open_flags, &attr);
1129 if (IS_ERR(res)) {
1130 put_nfs_open_context(ctx);
1131 error = PTR_ERR(res);
1132 switch (error) {
1133 /* Make a negative dentry */
1134 case -ENOENT:
1135 res = NULL;
1136 goto out;
1137 /* This turned out not to be a regular file */
1138 case -EISDIR:
1139 case -ENOTDIR:
1140 goto no_open;
1141 case -ELOOP:
1142 if (!(nd->intent.open.flags & O_NOFOLLOW))
1143 goto no_open;
1144 /* case -EINVAL: */
1145 default:
1146 goto out;
1149 if (res != NULL)
1150 dentry = res;
1151 nfs_intent_set_file(nd, ctx);
1152 out:
1153 return res;
1154 no_open:
1155 return nfs_lookup(dir, dentry, nd);
1158 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1160 struct dentry *parent = NULL;
1161 struct inode *inode = dentry->d_inode;
1162 struct inode *dir;
1163 int openflags, ret = 0;
1165 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1166 goto no_open;
1167 parent = dget_parent(dentry);
1168 dir = parent->d_inode;
1169 /* We can't create new files in nfs_open_revalidate(), so we
1170 * optimize away revalidation of negative dentries.
1172 if (inode == NULL) {
1173 if (!nfs_neg_need_reval(dir, dentry, nd))
1174 ret = 1;
1175 goto out;
1178 /* NFS only supports OPEN on regular files */
1179 if (!S_ISREG(inode->i_mode))
1180 goto no_open_dput;
1181 openflags = nd->intent.open.flags;
1182 /* We cannot do exclusive creation on a positive dentry */
1183 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1184 goto no_open_dput;
1185 /* We can't create new files, or truncate existing ones here */
1186 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1189 * Note: we're not holding inode->i_mutex and so may be racing with
1190 * operations that change the directory. We therefore save the
1191 * change attribute *before* we do the RPC call.
1193 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1194 out:
1195 dput(parent);
1196 if (!ret)
1197 d_drop(dentry);
1198 return ret;
1199 no_open_dput:
1200 dput(parent);
1201 no_open:
1202 return nfs_lookup_revalidate(dentry, nd);
1204 #endif /* CONFIG_NFSV4 */
1206 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1208 struct dentry *parent = desc->file->f_path.dentry;
1209 struct inode *dir = parent->d_inode;
1210 struct nfs_entry *entry = desc->entry;
1211 struct dentry *dentry, *alias;
1212 struct qstr name = {
1213 .name = entry->name,
1214 .len = entry->len,
1216 struct inode *inode;
1217 unsigned long verf = nfs_save_change_attribute(dir);
1219 switch (name.len) {
1220 case 2:
1221 if (name.name[0] == '.' && name.name[1] == '.')
1222 return dget_parent(parent);
1223 break;
1224 case 1:
1225 if (name.name[0] == '.')
1226 return dget(parent);
1229 spin_lock(&dir->i_lock);
1230 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1231 spin_unlock(&dir->i_lock);
1232 return NULL;
1234 spin_unlock(&dir->i_lock);
1236 name.hash = full_name_hash(name.name, name.len);
1237 dentry = d_lookup(parent, &name);
1238 if (dentry != NULL) {
1239 /* Is this a positive dentry that matches the readdir info? */
1240 if (dentry->d_inode != NULL &&
1241 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1242 d_mountpoint(dentry))) {
1243 if (!desc->plus || entry->fh->size == 0)
1244 return dentry;
1245 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1246 entry->fh) == 0)
1247 goto out_renew;
1249 /* No, so d_drop to allow one to be created */
1250 d_drop(dentry);
1251 dput(dentry);
1253 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1254 return NULL;
1255 if (name.len > NFS_SERVER(dir)->namelen)
1256 return NULL;
1257 /* Note: caller is already holding the dir->i_mutex! */
1258 dentry = d_alloc(parent, &name);
1259 if (dentry == NULL)
1260 return NULL;
1261 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1262 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1263 if (IS_ERR(inode)) {
1264 dput(dentry);
1265 return NULL;
1268 alias = d_materialise_unique(dentry, inode);
1269 if (alias != NULL) {
1270 dput(dentry);
1271 if (IS_ERR(alias))
1272 return NULL;
1273 dentry = alias;
1276 out_renew:
1277 nfs_set_verifier(dentry, verf);
1278 return dentry;
1282 * Code common to create, mkdir, and mknod.
1284 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1285 struct nfs_fattr *fattr)
1287 struct dentry *parent = dget_parent(dentry);
1288 struct inode *dir = parent->d_inode;
1289 struct inode *inode;
1290 int error = -EACCES;
1292 d_drop(dentry);
1294 /* We may have been initialized further down */
1295 if (dentry->d_inode)
1296 goto out;
1297 if (fhandle->size == 0) {
1298 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1299 if (error)
1300 goto out_error;
1302 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1303 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1304 struct nfs_server *server = NFS_SB(dentry->d_sb);
1305 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1306 if (error < 0)
1307 goto out_error;
1309 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1310 error = PTR_ERR(inode);
1311 if (IS_ERR(inode))
1312 goto out_error;
1313 d_add(dentry, inode);
1314 out:
1315 dput(parent);
1316 return 0;
1317 out_error:
1318 nfs_mark_for_revalidate(dir);
1319 dput(parent);
1320 return error;
1324 * Following a failed create operation, we drop the dentry rather
1325 * than retain a negative dentry. This avoids a problem in the event
1326 * that the operation succeeded on the server, but an error in the
1327 * reply path made it appear to have failed.
1329 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1330 struct nameidata *nd)
1332 struct iattr attr;
1333 int error;
1334 int open_flags = 0;
1336 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1337 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1339 attr.ia_mode = mode;
1340 attr.ia_valid = ATTR_MODE;
1342 if ((nd->flags & LOOKUP_CREATE) != 0)
1343 open_flags = nd->intent.open.flags;
1345 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1346 if (error != 0)
1347 goto out_err;
1348 return 0;
1349 out_err:
1350 d_drop(dentry);
1351 return error;
1355 * See comments for nfs_proc_create regarding failed operations.
1357 static int
1358 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1360 struct iattr attr;
1361 int status;
1363 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1364 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1366 if (!new_valid_dev(rdev))
1367 return -EINVAL;
1369 attr.ia_mode = mode;
1370 attr.ia_valid = ATTR_MODE;
1372 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1373 if (status != 0)
1374 goto out_err;
1375 return 0;
1376 out_err:
1377 d_drop(dentry);
1378 return status;
1382 * See comments for nfs_proc_create regarding failed operations.
1384 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1386 struct iattr attr;
1387 int error;
1389 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1390 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1392 attr.ia_valid = ATTR_MODE;
1393 attr.ia_mode = mode | S_IFDIR;
1395 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1396 if (error != 0)
1397 goto out_err;
1398 return 0;
1399 out_err:
1400 d_drop(dentry);
1401 return error;
1404 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1406 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1407 d_delete(dentry);
1410 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1412 int error;
1414 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1415 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1417 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1418 /* Ensure the VFS deletes this inode */
1419 if (error == 0 && dentry->d_inode != NULL)
1420 clear_nlink(dentry->d_inode);
1421 else if (error == -ENOENT)
1422 nfs_dentry_handle_enoent(dentry);
1424 return error;
1427 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1429 static unsigned int sillycounter;
1430 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1431 const int countersize = sizeof(sillycounter)*2;
1432 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1433 char silly[slen+1];
1434 struct qstr qsilly;
1435 struct dentry *sdentry;
1436 int error = -EIO;
1438 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1439 dentry->d_parent->d_name.name, dentry->d_name.name,
1440 atomic_read(&dentry->d_count));
1441 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1444 * We don't allow a dentry to be silly-renamed twice.
1446 error = -EBUSY;
1447 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1448 goto out;
1450 sprintf(silly, ".nfs%*.*Lx",
1451 fileidsize, fileidsize,
1452 (unsigned long long)NFS_FILEID(dentry->d_inode));
1454 /* Return delegation in anticipation of the rename */
1455 nfs_inode_return_delegation(dentry->d_inode);
1457 sdentry = NULL;
1458 do {
1459 char *suffix = silly + slen - countersize;
1461 dput(sdentry);
1462 sillycounter++;
1463 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1465 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1466 dentry->d_name.name, silly);
1468 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1470 * N.B. Better to return EBUSY here ... it could be
1471 * dangerous to delete the file while it's in use.
1473 if (IS_ERR(sdentry))
1474 goto out;
1475 } while(sdentry->d_inode != NULL); /* need negative lookup */
1477 qsilly.name = silly;
1478 qsilly.len = strlen(silly);
1479 if (dentry->d_inode) {
1480 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1481 dir, &qsilly);
1482 nfs_mark_for_revalidate(dentry->d_inode);
1483 } else
1484 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1485 dir, &qsilly);
1486 if (!error) {
1487 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1488 d_move(dentry, sdentry);
1489 error = nfs_async_unlink(dir, dentry);
1490 /* If we return 0 we don't unlink */
1492 dput(sdentry);
1493 out:
1494 return error;
1498 * Remove a file after making sure there are no pending writes,
1499 * and after checking that the file has only one user.
1501 * We invalidate the attribute cache and free the inode prior to the operation
1502 * to avoid possible races if the server reuses the inode.
1504 static int nfs_safe_remove(struct dentry *dentry)
1506 struct inode *dir = dentry->d_parent->d_inode;
1507 struct inode *inode = dentry->d_inode;
1508 int error = -EBUSY;
1510 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1511 dentry->d_parent->d_name.name, dentry->d_name.name);
1513 /* If the dentry was sillyrenamed, we simply call d_delete() */
1514 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1515 error = 0;
1516 goto out;
1519 if (inode != NULL) {
1520 nfs_inode_return_delegation(inode);
1521 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1522 /* The VFS may want to delete this inode */
1523 if (error == 0)
1524 nfs_drop_nlink(inode);
1525 nfs_mark_for_revalidate(inode);
1526 } else
1527 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1528 if (error == -ENOENT)
1529 nfs_dentry_handle_enoent(dentry);
1530 out:
1531 return error;
1534 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1535 * belongs to an active ".nfs..." file and we return -EBUSY.
1537 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1539 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1541 int error;
1542 int need_rehash = 0;
1544 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1545 dir->i_ino, dentry->d_name.name);
1547 spin_lock(&dcache_lock);
1548 spin_lock(&dentry->d_lock);
1549 if (atomic_read(&dentry->d_count) > 1) {
1550 spin_unlock(&dentry->d_lock);
1551 spin_unlock(&dcache_lock);
1552 /* Start asynchronous writeout of the inode */
1553 write_inode_now(dentry->d_inode, 0);
1554 error = nfs_sillyrename(dir, dentry);
1555 return error;
1557 if (!d_unhashed(dentry)) {
1558 __d_drop(dentry);
1559 need_rehash = 1;
1561 spin_unlock(&dentry->d_lock);
1562 spin_unlock(&dcache_lock);
1563 error = nfs_safe_remove(dentry);
1564 if (!error || error == -ENOENT) {
1565 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1566 } else if (need_rehash)
1567 d_rehash(dentry);
1568 return error;
1572 * To create a symbolic link, most file systems instantiate a new inode,
1573 * add a page to it containing the path, then write it out to the disk
1574 * using prepare_write/commit_write.
1576 * Unfortunately the NFS client can't create the in-core inode first
1577 * because it needs a file handle to create an in-core inode (see
1578 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1579 * symlink request has completed on the server.
1581 * So instead we allocate a raw page, copy the symname into it, then do
1582 * the SYMLINK request with the page as the buffer. If it succeeds, we
1583 * now have a new file handle and can instantiate an in-core NFS inode
1584 * and move the raw page into its mapping.
1586 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1588 struct pagevec lru_pvec;
1589 struct page *page;
1590 char *kaddr;
1591 struct iattr attr;
1592 unsigned int pathlen = strlen(symname);
1593 int error;
1595 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1596 dir->i_ino, dentry->d_name.name, symname);
1598 if (pathlen > PAGE_SIZE)
1599 return -ENAMETOOLONG;
1601 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1602 attr.ia_valid = ATTR_MODE;
1604 page = alloc_page(GFP_HIGHUSER);
1605 if (!page)
1606 return -ENOMEM;
1608 kaddr = kmap_atomic(page, KM_USER0);
1609 memcpy(kaddr, symname, pathlen);
1610 if (pathlen < PAGE_SIZE)
1611 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1612 kunmap_atomic(kaddr, KM_USER0);
1614 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1615 if (error != 0) {
1616 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1617 dir->i_sb->s_id, dir->i_ino,
1618 dentry->d_name.name, symname, error);
1619 d_drop(dentry);
1620 __free_page(page);
1621 return error;
1625 * No big deal if we can't add this page to the page cache here.
1626 * READLINK will get the missing page from the server if needed.
1628 pagevec_init(&lru_pvec, 0);
1629 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1630 GFP_KERNEL)) {
1631 pagevec_add(&lru_pvec, page);
1632 pagevec_lru_add_file(&lru_pvec);
1633 SetPageUptodate(page);
1634 unlock_page(page);
1635 } else
1636 __free_page(page);
1638 return 0;
1641 static int
1642 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1644 struct inode *inode = old_dentry->d_inode;
1645 int error;
1647 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1648 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1649 dentry->d_parent->d_name.name, dentry->d_name.name);
1651 nfs_inode_return_delegation(inode);
1653 d_drop(dentry);
1654 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1655 if (error == 0) {
1656 atomic_inc(&inode->i_count);
1657 d_add(dentry, inode);
1659 return error;
1663 * RENAME
1664 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1665 * different file handle for the same inode after a rename (e.g. when
1666 * moving to a different directory). A fail-safe method to do so would
1667 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1668 * rename the old file using the sillyrename stuff. This way, the original
1669 * file in old_dir will go away when the last process iput()s the inode.
1671 * FIXED.
1673 * It actually works quite well. One needs to have the possibility for
1674 * at least one ".nfs..." file in each directory the file ever gets
1675 * moved or linked to which happens automagically with the new
1676 * implementation that only depends on the dcache stuff instead of
1677 * using the inode layer
1679 * Unfortunately, things are a little more complicated than indicated
1680 * above. For a cross-directory move, we want to make sure we can get
1681 * rid of the old inode after the operation. This means there must be
1682 * no pending writes (if it's a file), and the use count must be 1.
1683 * If these conditions are met, we can drop the dentries before doing
1684 * the rename.
1686 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1687 struct inode *new_dir, struct dentry *new_dentry)
1689 struct inode *old_inode = old_dentry->d_inode;
1690 struct inode *new_inode = new_dentry->d_inode;
1691 struct dentry *dentry = NULL, *rehash = NULL;
1692 int error = -EBUSY;
1694 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1695 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1696 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1697 atomic_read(&new_dentry->d_count));
1700 * For non-directories, check whether the target is busy and if so,
1701 * make a copy of the dentry and then do a silly-rename. If the
1702 * silly-rename succeeds, the copied dentry is hashed and becomes
1703 * the new target.
1705 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1707 * To prevent any new references to the target during the
1708 * rename, we unhash the dentry in advance.
1710 if (!d_unhashed(new_dentry)) {
1711 d_drop(new_dentry);
1712 rehash = new_dentry;
1715 if (atomic_read(&new_dentry->d_count) > 2) {
1716 int err;
1718 /* copy the target dentry's name */
1719 dentry = d_alloc(new_dentry->d_parent,
1720 &new_dentry->d_name);
1721 if (!dentry)
1722 goto out;
1724 /* silly-rename the existing target ... */
1725 err = nfs_sillyrename(new_dir, new_dentry);
1726 if (err)
1727 goto out;
1729 new_dentry = dentry;
1730 rehash = NULL;
1731 new_inode = NULL;
1735 nfs_inode_return_delegation(old_inode);
1736 if (new_inode != NULL)
1737 nfs_inode_return_delegation(new_inode);
1739 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1740 new_dir, &new_dentry->d_name);
1741 nfs_mark_for_revalidate(old_inode);
1742 out:
1743 if (rehash)
1744 d_rehash(rehash);
1745 if (!error) {
1746 if (new_inode != NULL)
1747 nfs_drop_nlink(new_inode);
1748 d_move(old_dentry, new_dentry);
1749 nfs_set_verifier(new_dentry,
1750 nfs_save_change_attribute(new_dir));
1751 } else if (error == -ENOENT)
1752 nfs_dentry_handle_enoent(old_dentry);
1754 /* new dentry created? */
1755 if (dentry)
1756 dput(dentry);
1757 return error;
1760 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1761 static LIST_HEAD(nfs_access_lru_list);
1762 static atomic_long_t nfs_access_nr_entries;
1764 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1766 put_rpccred(entry->cred);
1767 kfree(entry);
1768 smp_mb__before_atomic_dec();
1769 atomic_long_dec(&nfs_access_nr_entries);
1770 smp_mb__after_atomic_dec();
1773 static void nfs_access_free_list(struct list_head *head)
1775 struct nfs_access_entry *cache;
1777 while (!list_empty(head)) {
1778 cache = list_entry(head->next, struct nfs_access_entry, lru);
1779 list_del(&cache->lru);
1780 nfs_access_free_entry(cache);
1784 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1786 LIST_HEAD(head);
1787 struct nfs_inode *nfsi;
1788 struct nfs_access_entry *cache;
1790 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1791 return (nr_to_scan == 0) ? 0 : -1;
1793 spin_lock(&nfs_access_lru_lock);
1794 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1795 struct inode *inode;
1797 if (nr_to_scan-- == 0)
1798 break;
1799 inode = &nfsi->vfs_inode;
1800 spin_lock(&inode->i_lock);
1801 if (list_empty(&nfsi->access_cache_entry_lru))
1802 goto remove_lru_entry;
1803 cache = list_entry(nfsi->access_cache_entry_lru.next,
1804 struct nfs_access_entry, lru);
1805 list_move(&cache->lru, &head);
1806 rb_erase(&cache->rb_node, &nfsi->access_cache);
1807 if (!list_empty(&nfsi->access_cache_entry_lru))
1808 list_move_tail(&nfsi->access_cache_inode_lru,
1809 &nfs_access_lru_list);
1810 else {
1811 remove_lru_entry:
1812 list_del_init(&nfsi->access_cache_inode_lru);
1813 smp_mb__before_clear_bit();
1814 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1815 smp_mb__after_clear_bit();
1817 spin_unlock(&inode->i_lock);
1819 spin_unlock(&nfs_access_lru_lock);
1820 nfs_access_free_list(&head);
1821 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1824 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1826 struct rb_root *root_node = &nfsi->access_cache;
1827 struct rb_node *n;
1828 struct nfs_access_entry *entry;
1830 /* Unhook entries from the cache */
1831 while ((n = rb_first(root_node)) != NULL) {
1832 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1833 rb_erase(n, root_node);
1834 list_move(&entry->lru, head);
1836 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1839 void nfs_access_zap_cache(struct inode *inode)
1841 LIST_HEAD(head);
1843 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1844 return;
1845 /* Remove from global LRU init */
1846 spin_lock(&nfs_access_lru_lock);
1847 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1848 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1850 spin_lock(&inode->i_lock);
1851 __nfs_access_zap_cache(NFS_I(inode), &head);
1852 spin_unlock(&inode->i_lock);
1853 spin_unlock(&nfs_access_lru_lock);
1854 nfs_access_free_list(&head);
1857 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1859 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1860 struct nfs_access_entry *entry;
1862 while (n != NULL) {
1863 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1865 if (cred < entry->cred)
1866 n = n->rb_left;
1867 else if (cred > entry->cred)
1868 n = n->rb_right;
1869 else
1870 return entry;
1872 return NULL;
1875 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1877 struct nfs_inode *nfsi = NFS_I(inode);
1878 struct nfs_access_entry *cache;
1879 int err = -ENOENT;
1881 spin_lock(&inode->i_lock);
1882 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1883 goto out_zap;
1884 cache = nfs_access_search_rbtree(inode, cred);
1885 if (cache == NULL)
1886 goto out;
1887 if (!nfs_have_delegated_attributes(inode) &&
1888 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1889 goto out_stale;
1890 res->jiffies = cache->jiffies;
1891 res->cred = cache->cred;
1892 res->mask = cache->mask;
1893 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1894 err = 0;
1895 out:
1896 spin_unlock(&inode->i_lock);
1897 return err;
1898 out_stale:
1899 rb_erase(&cache->rb_node, &nfsi->access_cache);
1900 list_del(&cache->lru);
1901 spin_unlock(&inode->i_lock);
1902 nfs_access_free_entry(cache);
1903 return -ENOENT;
1904 out_zap:
1905 spin_unlock(&inode->i_lock);
1906 nfs_access_zap_cache(inode);
1907 return -ENOENT;
1910 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1912 struct nfs_inode *nfsi = NFS_I(inode);
1913 struct rb_root *root_node = &nfsi->access_cache;
1914 struct rb_node **p = &root_node->rb_node;
1915 struct rb_node *parent = NULL;
1916 struct nfs_access_entry *entry;
1918 spin_lock(&inode->i_lock);
1919 while (*p != NULL) {
1920 parent = *p;
1921 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1923 if (set->cred < entry->cred)
1924 p = &parent->rb_left;
1925 else if (set->cred > entry->cred)
1926 p = &parent->rb_right;
1927 else
1928 goto found;
1930 rb_link_node(&set->rb_node, parent, p);
1931 rb_insert_color(&set->rb_node, root_node);
1932 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1933 spin_unlock(&inode->i_lock);
1934 return;
1935 found:
1936 rb_replace_node(parent, &set->rb_node, root_node);
1937 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1938 list_del(&entry->lru);
1939 spin_unlock(&inode->i_lock);
1940 nfs_access_free_entry(entry);
1943 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1945 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1946 if (cache == NULL)
1947 return;
1948 RB_CLEAR_NODE(&cache->rb_node);
1949 cache->jiffies = set->jiffies;
1950 cache->cred = get_rpccred(set->cred);
1951 cache->mask = set->mask;
1953 nfs_access_add_rbtree(inode, cache);
1955 /* Update accounting */
1956 smp_mb__before_atomic_inc();
1957 atomic_long_inc(&nfs_access_nr_entries);
1958 smp_mb__after_atomic_inc();
1960 /* Add inode to global LRU list */
1961 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1962 spin_lock(&nfs_access_lru_lock);
1963 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1964 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1965 &nfs_access_lru_list);
1966 spin_unlock(&nfs_access_lru_lock);
1970 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1972 struct nfs_access_entry cache;
1973 int status;
1975 status = nfs_access_get_cached(inode, cred, &cache);
1976 if (status == 0)
1977 goto out;
1979 /* Be clever: ask server to check for all possible rights */
1980 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1981 cache.cred = cred;
1982 cache.jiffies = jiffies;
1983 status = NFS_PROTO(inode)->access(inode, &cache);
1984 if (status != 0) {
1985 if (status == -ESTALE) {
1986 nfs_zap_caches(inode);
1987 if (!S_ISDIR(inode->i_mode))
1988 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1990 return status;
1992 nfs_access_add_cache(inode, &cache);
1993 out:
1994 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1995 return 0;
1996 return -EACCES;
1999 static int nfs_open_permission_mask(int openflags)
2001 int mask = 0;
2003 if (openflags & FMODE_READ)
2004 mask |= MAY_READ;
2005 if (openflags & FMODE_WRITE)
2006 mask |= MAY_WRITE;
2007 if (openflags & FMODE_EXEC)
2008 mask |= MAY_EXEC;
2009 return mask;
2012 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2014 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2017 int nfs_permission(struct inode *inode, int mask)
2019 struct rpc_cred *cred;
2020 int res = 0;
2022 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2024 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2025 goto out;
2026 /* Is this sys_access() ? */
2027 if (mask & (MAY_ACCESS | MAY_CHDIR))
2028 goto force_lookup;
2030 switch (inode->i_mode & S_IFMT) {
2031 case S_IFLNK:
2032 goto out;
2033 case S_IFREG:
2034 /* NFSv4 has atomic_open... */
2035 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2036 && (mask & MAY_OPEN)
2037 && !(mask & MAY_EXEC))
2038 goto out;
2039 break;
2040 case S_IFDIR:
2042 * Optimize away all write operations, since the server
2043 * will check permissions when we perform the op.
2045 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2046 goto out;
2049 force_lookup:
2050 if (!NFS_PROTO(inode)->access)
2051 goto out_notsup;
2053 cred = rpc_lookup_cred();
2054 if (!IS_ERR(cred)) {
2055 res = nfs_do_access(inode, cred, mask);
2056 put_rpccred(cred);
2057 } else
2058 res = PTR_ERR(cred);
2059 out:
2060 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2061 res = -EACCES;
2063 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2064 inode->i_sb->s_id, inode->i_ino, mask, res);
2065 return res;
2066 out_notsup:
2067 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2068 if (res == 0)
2069 res = generic_permission(inode, mask, NULL);
2070 goto out;
2074 * Local variables:
2075 * version-control: t
2076 * kept-new-versions: 5
2077 * End: