2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init
ath9k_init(void)
37 module_init(ath9k_init
);
39 static void __exit
ath9k_exit(void)
43 module_exit(ath9k_exit
);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
49 ath9k_hw_private_ops(ah
)->init_cal_settings(ah
);
52 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
54 ath9k_hw_private_ops(ah
)->init_mode_regs(ah
);
57 static u32
ath9k_hw_compute_pll_control(struct ath_hw
*ah
,
58 struct ath9k_channel
*chan
)
60 return ath9k_hw_private_ops(ah
)->compute_pll_control(ah
, chan
);
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
65 if (!ath9k_hw_private_ops(ah
)->init_mode_gain_regs
)
68 ath9k_hw_private_ops(ah
)->init_mode_gain_regs(ah
);
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw
*ah
)
73 /* You will not have this callback if using the old ANI */
74 if (!ath9k_hw_private_ops(ah
)->ani_cache_ini_regs
)
77 ath9k_hw_private_ops(ah
)->ani_cache_ini_regs(ah
);
80 /********************/
81 /* Helper Functions */
82 /********************/
84 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
86 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
87 struct ath_common
*common
= ath9k_hw_common(ah
);
88 unsigned int clockrate
;
90 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
93 else if (!ah
->curchan
) /* should really check for CCK instead */
94 clockrate
= ATH9K_CLOCK_RATE_CCK
;
95 else if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
96 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
97 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
98 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
100 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
102 if (conf_is_ht40(conf
))
106 if (IS_CHAN_HALF_RATE(ah
->curchan
))
108 if (IS_CHAN_QUARTER_RATE(ah
->curchan
))
112 common
->clockrate
= clockrate
;
115 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
117 struct ath_common
*common
= ath9k_hw_common(ah
);
119 return usecs
* common
->clockrate
;
122 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
126 BUG_ON(timeout
< AH_TIME_QUANTUM
);
128 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
129 if ((REG_READ(ah
, reg
) & mask
) == val
)
132 udelay(AH_TIME_QUANTUM
);
135 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_ANY
,
136 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
141 EXPORT_SYMBOL(ath9k_hw_wait
);
143 void ath9k_hw_write_array(struct ath_hw
*ah
, struct ar5416IniArray
*array
,
144 int column
, unsigned int *writecnt
)
148 ENABLE_REGWRITE_BUFFER(ah
);
149 for (r
= 0; r
< array
->ia_rows
; r
++) {
150 REG_WRITE(ah
, INI_RA(array
, r
, 0),
151 INI_RA(array
, r
, column
));
154 REGWRITE_BUFFER_FLUSH(ah
);
157 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
162 for (i
= 0, retval
= 0; i
< n
; i
++) {
163 retval
= (retval
<< 1) | (val
& 1);
169 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
171 u32 frameLen
, u16 rateix
,
174 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
180 case WLAN_RC_PHY_CCK
:
181 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
184 numBits
= frameLen
<< 3;
185 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
187 case WLAN_RC_PHY_OFDM
:
188 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
189 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
190 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
191 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
192 txTime
= OFDM_SIFS_TIME_QUARTER
193 + OFDM_PREAMBLE_TIME_QUARTER
194 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
195 } else if (ah
->curchan
&&
196 IS_CHAN_HALF_RATE(ah
->curchan
)) {
197 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
198 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
199 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
200 txTime
= OFDM_SIFS_TIME_HALF
+
201 OFDM_PREAMBLE_TIME_HALF
202 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
204 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
205 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
206 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
207 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
208 + (numSymbols
* OFDM_SYMBOL_TIME
);
212 ath_err(ath9k_hw_common(ah
),
213 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
220 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
222 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
223 struct ath9k_channel
*chan
,
224 struct chan_centers
*centers
)
228 if (!IS_CHAN_HT40(chan
)) {
229 centers
->ctl_center
= centers
->ext_center
=
230 centers
->synth_center
= chan
->channel
;
234 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
235 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
236 centers
->synth_center
=
237 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
240 centers
->synth_center
=
241 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
245 centers
->ctl_center
=
246 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
247 /* 25 MHz spacing is supported by hw but not on upper layers */
248 centers
->ext_center
=
249 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
256 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
260 switch (ah
->hw_version
.devid
) {
261 case AR5416_AR9100_DEVID
:
262 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
264 case AR9300_DEVID_AR9330
:
265 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
266 if (ah
->get_mac_revision
) {
267 ah
->hw_version
.macRev
= ah
->get_mac_revision();
269 val
= REG_READ(ah
, AR_SREV
);
270 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
273 case AR9300_DEVID_AR9340
:
274 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
275 val
= REG_READ(ah
, AR_SREV
);
276 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
280 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
283 val
= REG_READ(ah
, AR_SREV
);
284 ah
->hw_version
.macVersion
=
285 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
286 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
288 if (AR_SREV_9480(ah
))
289 ah
->is_pciexpress
= true;
291 ah
->is_pciexpress
= (val
&
292 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
294 if (!AR_SREV_9100(ah
))
295 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
297 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
299 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
300 ah
->is_pciexpress
= true;
304 /************************************/
305 /* HW Attach, Detach, Init Routines */
306 /************************************/
308 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
310 if (!AR_SREV_5416(ah
))
313 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
314 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
315 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
316 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
317 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
318 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
319 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
320 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
321 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
323 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
326 static void ath9k_hw_aspm_init(struct ath_hw
*ah
)
328 struct ath_common
*common
= ath9k_hw_common(ah
);
330 if (common
->bus_ops
->aspm_init
)
331 common
->bus_ops
->aspm_init(common
);
334 /* This should work for all families including legacy */
335 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
337 struct ath_common
*common
= ath9k_hw_common(ah
);
338 u32 regAddr
[2] = { AR_STA_ID0
};
340 static const u32 patternData
[4] = {
341 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
345 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
347 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
351 for (i
= 0; i
< loop_max
; i
++) {
352 u32 addr
= regAddr
[i
];
355 regHold
[i
] = REG_READ(ah
, addr
);
356 for (j
= 0; j
< 0x100; j
++) {
357 wrData
= (j
<< 16) | j
;
358 REG_WRITE(ah
, addr
, wrData
);
359 rdData
= REG_READ(ah
, addr
);
360 if (rdData
!= wrData
) {
362 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
363 addr
, wrData
, rdData
);
367 for (j
= 0; j
< 4; j
++) {
368 wrData
= patternData
[j
];
369 REG_WRITE(ah
, addr
, wrData
);
370 rdData
= REG_READ(ah
, addr
);
371 if (wrData
!= rdData
) {
373 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
374 addr
, wrData
, rdData
);
378 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
385 static void ath9k_hw_init_config(struct ath_hw
*ah
)
389 ah
->config
.dma_beacon_response_time
= 2;
390 ah
->config
.sw_beacon_response_time
= 10;
391 ah
->config
.additional_swba_backoff
= 0;
392 ah
->config
.ack_6mb
= 0x0;
393 ah
->config
.cwm_ignore_extcca
= 0;
394 ah
->config
.pcie_clock_req
= 0;
395 ah
->config
.pcie_waen
= 0;
396 ah
->config
.analog_shiftreg
= 1;
397 ah
->config
.enable_ani
= true;
399 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
400 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
401 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
404 /* PAPRD needs some more work to be enabled */
405 ah
->config
.paprd_disable
= 1;
407 ah
->config
.rx_intr_mitigation
= true;
408 ah
->config
.pcieSerDesWrite
= true;
411 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
412 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
413 * This means we use it for all AR5416 devices, and the few
414 * minor PCI AR9280 devices out there.
416 * Serialization is required because these devices do not handle
417 * well the case of two concurrent reads/writes due to the latency
418 * involved. During one read/write another read/write can be issued
419 * on another CPU while the previous read/write may still be working
420 * on our hardware, if we hit this case the hardware poops in a loop.
421 * We prevent this by serializing reads and writes.
423 * This issue is not present on PCI-Express devices or pre-AR5416
424 * devices (legacy, 802.11abg).
426 if (num_possible_cpus() > 1)
427 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
430 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
432 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
434 regulatory
->country_code
= CTRY_DEFAULT
;
435 regulatory
->power_limit
= MAX_RATE_POWER
;
437 ah
->hw_version
.magic
= AR5416_MAGIC
;
438 ah
->hw_version
.subvendorid
= 0;
441 ah
->sta_id1_defaults
=
442 AR_STA_ID1_CRPT_MIC_ENABLE
|
443 AR_STA_ID1_MCAST_KSRCH
;
444 if (AR_SREV_9100(ah
))
445 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
446 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
447 ah
->slottime
= ATH9K_SLOT_TIME_9
;
448 ah
->globaltxtimeout
= (u32
) -1;
449 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
452 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
454 struct ath_common
*common
= ath9k_hw_common(ah
);
458 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
461 for (i
= 0; i
< 3; i
++) {
462 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
464 common
->macaddr
[2 * i
] = eeval
>> 8;
465 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
467 if (sum
== 0 || sum
== 0xffff * 3)
468 return -EADDRNOTAVAIL
;
473 static int ath9k_hw_post_init(struct ath_hw
*ah
)
475 struct ath_common
*common
= ath9k_hw_common(ah
);
478 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
479 if (!ath9k_hw_chip_test(ah
))
483 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
484 ecode
= ar9002_hw_rf_claim(ah
);
489 ecode
= ath9k_hw_eeprom_init(ah
);
493 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_CONFIG
,
494 "Eeprom VER: %d, REV: %d\n",
495 ah
->eep_ops
->get_eeprom_ver(ah
),
496 ah
->eep_ops
->get_eeprom_rev(ah
));
498 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
500 ath_err(ath9k_hw_common(ah
),
501 "Failed allocating banks for external radio\n");
502 ath9k_hw_rf_free_ext_banks(ah
);
506 if (!AR_SREV_9100(ah
) && !AR_SREV_9340(ah
)) {
507 ath9k_hw_ani_setup(ah
);
508 ath9k_hw_ani_init(ah
);
514 static void ath9k_hw_attach_ops(struct ath_hw
*ah
)
516 if (AR_SREV_9300_20_OR_LATER(ah
))
517 ar9003_hw_attach_ops(ah
);
519 ar9002_hw_attach_ops(ah
);
522 /* Called for all hardware families */
523 static int __ath9k_hw_init(struct ath_hw
*ah
)
525 struct ath_common
*common
= ath9k_hw_common(ah
);
528 ath9k_hw_read_revisions(ah
);
531 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532 * We need to do this to avoid RMW of this register. We cannot
533 * read the reg when chip is asleep.
535 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
536 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
537 AR_WA_ASPM_TIMER_BASED_DISABLE
);
539 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
540 ath_err(common
, "Couldn't reset chip\n");
544 ath9k_hw_init_defaults(ah
);
545 ath9k_hw_init_config(ah
);
547 ath9k_hw_attach_ops(ah
);
549 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
550 ath_err(common
, "Couldn't wakeup chip\n");
554 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
555 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
556 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
557 !ah
->is_pciexpress
)) {
558 ah
->config
.serialize_regmode
=
561 ah
->config
.serialize_regmode
=
566 ath_dbg(common
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
567 ah
->config
.serialize_regmode
);
569 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
570 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
572 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
574 switch (ah
->hw_version
.macVersion
) {
575 case AR_SREV_VERSION_5416_PCI
:
576 case AR_SREV_VERSION_5416_PCIE
:
577 case AR_SREV_VERSION_9160
:
578 case AR_SREV_VERSION_9100
:
579 case AR_SREV_VERSION_9280
:
580 case AR_SREV_VERSION_9285
:
581 case AR_SREV_VERSION_9287
:
582 case AR_SREV_VERSION_9271
:
583 case AR_SREV_VERSION_9300
:
584 case AR_SREV_VERSION_9330
:
585 case AR_SREV_VERSION_9485
:
586 case AR_SREV_VERSION_9340
:
587 case AR_SREV_VERSION_9480
:
591 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
592 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
596 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
598 ah
->is_pciexpress
= false;
600 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
601 ath9k_hw_init_cal_settings(ah
);
603 ah
->ani_function
= ATH9K_ANI_ALL
;
604 if (AR_SREV_9280_20_OR_LATER(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
605 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
606 if (!AR_SREV_9300_20_OR_LATER(ah
))
607 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
609 ath9k_hw_init_mode_regs(ah
);
611 if (!ah
->is_pciexpress
)
612 ath9k_hw_disablepcie(ah
);
614 if (!AR_SREV_9300_20_OR_LATER(ah
))
615 ar9002_hw_cck_chan14_spread(ah
);
617 r
= ath9k_hw_post_init(ah
);
621 ath9k_hw_init_mode_gain_regs(ah
);
622 r
= ath9k_hw_fill_cap_info(ah
);
626 if (ah
->is_pciexpress
)
627 ath9k_hw_aspm_init(ah
);
629 r
= ath9k_hw_init_macaddr(ah
);
631 ath_err(common
, "Failed to initialize MAC address\n");
635 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
636 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
638 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
640 if (AR_SREV_9330(ah
))
641 ah
->bb_watchdog_timeout_ms
= 85;
643 ah
->bb_watchdog_timeout_ms
= 25;
645 common
->state
= ATH_HW_INITIALIZED
;
650 int ath9k_hw_init(struct ath_hw
*ah
)
653 struct ath_common
*common
= ath9k_hw_common(ah
);
655 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
656 switch (ah
->hw_version
.devid
) {
657 case AR5416_DEVID_PCI
:
658 case AR5416_DEVID_PCIE
:
659 case AR5416_AR9100_DEVID
:
660 case AR9160_DEVID_PCI
:
661 case AR9280_DEVID_PCI
:
662 case AR9280_DEVID_PCIE
:
663 case AR9285_DEVID_PCIE
:
664 case AR9287_DEVID_PCI
:
665 case AR9287_DEVID_PCIE
:
666 case AR2427_DEVID_PCIE
:
667 case AR9300_DEVID_PCIE
:
668 case AR9300_DEVID_AR9485_PCIE
:
669 case AR9300_DEVID_AR9330
:
670 case AR9300_DEVID_AR9340
:
671 case AR9300_DEVID_AR9580
:
672 case AR9300_DEVID_AR9480
:
675 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
677 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
678 ah
->hw_version
.devid
);
682 ret
= __ath9k_hw_init(ah
);
685 "Unable to initialize hardware; initialization status: %d\n",
692 EXPORT_SYMBOL(ath9k_hw_init
);
694 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
696 ENABLE_REGWRITE_BUFFER(ah
);
698 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
699 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
701 REG_WRITE(ah
, AR_QOS_NO_ACK
,
702 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
703 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
704 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
706 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
707 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
708 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
709 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
710 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
712 REGWRITE_BUFFER_FLUSH(ah
);
715 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
717 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
719 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
721 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0)
724 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
726 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
728 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
729 struct ath9k_channel
*chan
)
733 if (AR_SREV_9485(ah
)) {
735 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
736 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
737 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
738 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
739 AR_CH0_DPLL2_KD
, 0x40);
740 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
741 AR_CH0_DPLL2_KI
, 0x4);
743 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
744 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
745 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
746 AR_CH0_BB_DPLL1_NINI
, 0x58);
747 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
748 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
750 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
751 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
752 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
753 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
754 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
755 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
757 /* program BB PLL phase_shift to 0x6 */
758 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
759 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
761 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
762 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
764 } else if (AR_SREV_9330(ah
)) {
765 u32 ddr_dpll2
, pll_control2
, kd
;
767 if (ah
->is_clk_25mhz
) {
768 ddr_dpll2
= 0x18e82f01;
769 pll_control2
= 0xe04a3d;
772 ddr_dpll2
= 0x19e82f01;
773 pll_control2
= 0x886666;
777 /* program DDR PLL ki and kd value */
778 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
780 /* program DDR PLL phase_shift */
781 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
782 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
784 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
787 /* program refdiv, nint, frac to RTC register */
788 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
790 /* program BB PLL kd and ki value */
791 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
792 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
794 /* program BB PLL phase_shift */
795 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
796 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
797 } else if (AR_SREV_9340(ah
)) {
798 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
800 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
803 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
806 if (ah
->is_clk_25mhz
) {
808 pll2_divfrac
= 0x1eb85;
816 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
817 regval
|= (0x1 << 16);
818 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
821 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
822 (pll2_divint
<< 18) | pll2_divfrac
);
825 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
826 regval
= (regval
& 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
827 (0x4 << 26) | (0x18 << 19);
828 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
829 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
830 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
834 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
836 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
838 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
))
841 /* Switch the core clock for ar9271 to 117Mhz */
842 if (AR_SREV_9271(ah
)) {
844 REG_WRITE(ah
, 0x50040, 0x304);
847 udelay(RTC_PLL_SETTLE_DELAY
);
849 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
851 if (AR_SREV_9340(ah
)) {
852 if (ah
->is_clk_25mhz
) {
853 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x17c << 1);
854 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f3d7);
855 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e7ae);
857 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x261 << 1);
858 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f400);
859 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e800);
865 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
866 enum nl80211_iftype opmode
)
868 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
869 u32 imr_reg
= AR_IMR_TXERR
|
875 if (AR_SREV_9340(ah
))
876 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
878 if (AR_SREV_9300_20_OR_LATER(ah
)) {
879 imr_reg
|= AR_IMR_RXOK_HP
;
880 if (ah
->config
.rx_intr_mitigation
)
881 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
883 imr_reg
|= AR_IMR_RXOK_LP
;
886 if (ah
->config
.rx_intr_mitigation
)
887 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
889 imr_reg
|= AR_IMR_RXOK
;
892 if (ah
->config
.tx_intr_mitigation
)
893 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
895 imr_reg
|= AR_IMR_TXOK
;
897 if (opmode
== NL80211_IFTYPE_AP
)
898 imr_reg
|= AR_IMR_MIB
;
900 ENABLE_REGWRITE_BUFFER(ah
);
902 REG_WRITE(ah
, AR_IMR
, imr_reg
);
903 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
904 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
906 if (!AR_SREV_9100(ah
)) {
907 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
908 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
909 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
912 REGWRITE_BUFFER_FLUSH(ah
);
914 if (AR_SREV_9300_20_OR_LATER(ah
)) {
915 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
916 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
917 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
918 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
922 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
924 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
925 val
= min(val
, (u32
) 0xFFFF);
926 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
929 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
931 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
932 val
= min(val
, (u32
) 0xFFFF);
933 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
936 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
938 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
939 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
940 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
943 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
945 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
946 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
947 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
950 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
953 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_XMIT
,
954 "bad global tx timeout %u\n", tu
);
955 ah
->globaltxtimeout
= (u32
) -1;
958 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
959 ah
->globaltxtimeout
= tu
;
964 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
966 struct ath_common
*common
= ath9k_hw_common(ah
);
967 struct ieee80211_conf
*conf
= &common
->hw
->conf
;
968 const struct ath9k_channel
*chan
= ah
->curchan
;
969 int acktimeout
, ctstimeout
;
972 int rx_lat
= 0, tx_lat
= 0, eifs
= 0;
975 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
981 if (ah
->misc_mode
!= 0)
982 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
984 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
990 if (IS_CHAN_HALF_RATE(chan
)) {
994 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
999 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1001 rx_lat
= (rx_lat
* 4) - 1;
1003 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1009 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1010 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1011 reg
= AR_USEC_ASYNC_FIFO
;
1013 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1015 reg
= REG_READ(ah
, AR_USEC
);
1017 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1018 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1020 slottime
= ah
->slottime
;
1021 if (IS_CHAN_5GHZ(chan
))
1027 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1028 acktimeout
= slottime
+ sifstime
+ 3 * ah
->coverage_class
;
1029 ctstimeout
= acktimeout
;
1032 * Workaround for early ACK timeouts, add an offset to match the
1033 * initval's 64us ack timeout value.
1034 * This was initially only meant to work around an issue with delayed
1035 * BA frames in some implementations, but it has been found to fix ACK
1036 * timeout issues in other cases as well.
1038 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
1039 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1041 ath9k_hw_set_sifs_time(ah
, sifstime
);
1042 ath9k_hw_setslottime(ah
, slottime
);
1043 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1044 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1045 if (ah
->globaltxtimeout
!= (u32
) -1)
1046 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1048 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1049 REG_RMW(ah
, AR_USEC
,
1050 (common
->clockrate
- 1) |
1051 SM(rx_lat
, AR_USEC_RX_LAT
) |
1052 SM(tx_lat
, AR_USEC_TX_LAT
),
1053 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1056 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1058 void ath9k_hw_deinit(struct ath_hw
*ah
)
1060 struct ath_common
*common
= ath9k_hw_common(ah
);
1062 if (common
->state
< ATH_HW_INITIALIZED
)
1065 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1068 ath9k_hw_rf_free_ext_banks(ah
);
1070 EXPORT_SYMBOL(ath9k_hw_deinit
);
1076 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1078 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1080 if (IS_CHAN_B(chan
))
1082 else if (IS_CHAN_G(chan
))
1090 /****************************************/
1091 /* Reset and Channel Switching Routines */
1092 /****************************************/
1094 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1096 struct ath_common
*common
= ath9k_hw_common(ah
);
1098 ENABLE_REGWRITE_BUFFER(ah
);
1101 * set AHB_MODE not to do cacheline prefetches
1103 if (!AR_SREV_9300_20_OR_LATER(ah
))
1104 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1107 * let mac dma reads be in 128 byte chunks
1109 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1111 REGWRITE_BUFFER_FLUSH(ah
);
1114 * Restore TX Trigger Level to its pre-reset value.
1115 * The initial value depends on whether aggregation is enabled, and is
1116 * adjusted whenever underruns are detected.
1118 if (!AR_SREV_9300_20_OR_LATER(ah
))
1119 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1121 ENABLE_REGWRITE_BUFFER(ah
);
1124 * let mac dma writes be in 128 byte chunks
1126 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1129 * Setup receive FIFO threshold to hold off TX activities
1131 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1133 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1134 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1135 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1137 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1138 ah
->caps
.rx_status_len
);
1142 * reduce the number of usable entries in PCU TXBUF to avoid
1143 * wrap around issues.
1145 if (AR_SREV_9285(ah
)) {
1146 /* For AR9285 the number of Fifos are reduced to half.
1147 * So set the usable tx buf size also to half to
1148 * avoid data/delimiter underruns
1150 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1151 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1152 } else if (!AR_SREV_9271(ah
)) {
1153 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1154 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1157 REGWRITE_BUFFER_FLUSH(ah
);
1159 if (AR_SREV_9300_20_OR_LATER(ah
))
1160 ath9k_hw_reset_txstatus_ring(ah
);
1163 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1165 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1166 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1169 case NL80211_IFTYPE_ADHOC
:
1170 case NL80211_IFTYPE_MESH_POINT
:
1171 set
|= AR_STA_ID1_ADHOC
;
1172 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1174 case NL80211_IFTYPE_AP
:
1175 set
|= AR_STA_ID1_STA_AP
;
1177 case NL80211_IFTYPE_STATION
:
1178 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1181 if (!ah
->is_monitoring
)
1185 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1188 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1189 u32
*coef_mantissa
, u32
*coef_exponent
)
1191 u32 coef_exp
, coef_man
;
1193 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1194 if ((coef_scaled
>> coef_exp
) & 0x1)
1197 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1199 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1201 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1202 *coef_exponent
= coef_exp
- 16;
1205 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1210 if (AR_SREV_9100(ah
)) {
1211 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1212 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1213 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1216 ENABLE_REGWRITE_BUFFER(ah
);
1218 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1219 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1223 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1224 AR_RTC_FORCE_WAKE_ON_INT
);
1226 if (AR_SREV_9100(ah
)) {
1227 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1228 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1230 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1232 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1233 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1235 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1238 if (!AR_SREV_9300_20_OR_LATER(ah
))
1240 REG_WRITE(ah
, AR_RC
, val
);
1242 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1243 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1245 rst_flags
= AR_RTC_RC_MAC_WARM
;
1246 if (type
== ATH9K_RESET_COLD
)
1247 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1250 if (AR_SREV_9330(ah
)) {
1255 * call external reset function to reset WMAC if:
1256 * - doing a cold reset
1257 * - we have pending frames in the TX queues
1260 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1261 npend
= ath9k_hw_numtxpending(ah
, i
);
1266 if (ah
->external_reset
&&
1267 (npend
|| type
== ATH9K_RESET_COLD
)) {
1270 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1271 "reset MAC via external reset\n");
1273 reset_err
= ah
->external_reset();
1275 ath_err(ath9k_hw_common(ah
),
1276 "External reset failed, err=%d\n",
1281 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1285 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1287 REGWRITE_BUFFER_FLUSH(ah
);
1291 REG_WRITE(ah
, AR_RTC_RC
, 0);
1292 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1293 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1294 "RTC stuck in MAC reset\n");
1298 if (!AR_SREV_9100(ah
))
1299 REG_WRITE(ah
, AR_RC
, 0);
1301 if (AR_SREV_9100(ah
))
1307 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1309 ENABLE_REGWRITE_BUFFER(ah
);
1311 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1312 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1316 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1317 AR_RTC_FORCE_WAKE_ON_INT
);
1319 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1320 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1322 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1324 REGWRITE_BUFFER_FLUSH(ah
);
1326 if (!AR_SREV_9300_20_OR_LATER(ah
))
1329 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1330 REG_WRITE(ah
, AR_RC
, 0);
1332 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1334 if (!ath9k_hw_wait(ah
,
1339 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1340 "RTC not waking up\n");
1344 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1347 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1350 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1351 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1355 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1356 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1359 case ATH9K_RESET_POWER_ON
:
1360 return ath9k_hw_set_reset_power_on(ah
);
1361 case ATH9K_RESET_WARM
:
1362 case ATH9K_RESET_COLD
:
1363 return ath9k_hw_set_reset(ah
, type
);
1369 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1370 struct ath9k_channel
*chan
)
1372 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1373 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1375 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1378 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1381 ah
->chip_fullsleep
= false;
1382 ath9k_hw_init_pll(ah
, chan
);
1383 ath9k_hw_set_rfmode(ah
, chan
);
1388 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1389 struct ath9k_channel
*chan
)
1391 struct ath_common
*common
= ath9k_hw_common(ah
);
1395 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1396 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1397 ath_dbg(common
, ATH_DBG_QUEUE
,
1398 "Transmit frames pending on queue %d\n", qnum
);
1403 if (!ath9k_hw_rfbus_req(ah
)) {
1404 ath_err(common
, "Could not kill baseband RX\n");
1408 ath9k_hw_set_channel_regs(ah
, chan
);
1410 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1412 ath_err(common
, "Failed to set channel\n");
1415 ath9k_hw_set_clockrate(ah
);
1416 ath9k_hw_apply_txpower(ah
, chan
);
1417 ath9k_hw_rfbus_done(ah
);
1419 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1420 ath9k_hw_set_delta_slope(ah
, chan
);
1422 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1427 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1429 u32 gpio_mask
= ah
->gpio_mask
;
1432 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1433 if (!(gpio_mask
& 1))
1436 ath9k_hw_cfg_output(ah
, i
, AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1437 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1441 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1446 if (AR_SREV_9285_12_OR_LATER(ah
))
1450 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1452 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1455 switch (reg
& 0x7E000B00) {
1463 } while (count
-- > 0);
1467 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1469 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1470 struct ath9k_hw_cal_data
*caldata
, bool bChannelChange
)
1472 struct ath_common
*common
= ath9k_hw_common(ah
);
1474 struct ath9k_channel
*curchan
= ah
->curchan
;
1480 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1483 if (curchan
&& !ah
->chip_fullsleep
)
1484 ath9k_hw_getnf(ah
, curchan
);
1486 ah
->caldata
= caldata
;
1488 (chan
->channel
!= caldata
->channel
||
1489 (chan
->channelFlags
& ~CHANNEL_CW_INT
) !=
1490 (caldata
->channelFlags
& ~CHANNEL_CW_INT
))) {
1491 /* Operating channel changed, reset channel calibration data */
1492 memset(caldata
, 0, sizeof(*caldata
));
1493 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1495 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
);
1497 if ((AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
) ||
1498 (AR_SREV_9300_20_OR_LATER(ah
) && IS_CHAN_5GHZ(chan
)))
1499 bChannelChange
= false;
1501 if (bChannelChange
&&
1502 (ah
->chip_fullsleep
!= true) &&
1503 (ah
->curchan
!= NULL
) &&
1504 (chan
->channel
!= ah
->curchan
->channel
) &&
1505 ((chan
->channelFlags
& CHANNEL_ALL
) ==
1506 (ah
->curchan
->channelFlags
& CHANNEL_ALL
))) {
1507 if (ath9k_hw_channel_change(ah
, chan
)) {
1508 ath9k_hw_loadnf(ah
, ah
->curchan
);
1509 ath9k_hw_start_nfcal(ah
, true);
1510 if (AR_SREV_9271(ah
))
1511 ar9002_hw_load_ani_reg(ah
, chan
);
1516 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1517 if (saveDefAntenna
== 0)
1520 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1522 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1523 if (AR_SREV_9100(ah
) ||
1524 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
1525 tsf
= ath9k_hw_gettsf64(ah
);
1527 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1528 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1529 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1531 ath9k_hw_mark_phy_inactive(ah
);
1533 ah
->paprd_table_write_done
= false;
1535 /* Only required on the first reset */
1536 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1538 AR9271_RESET_POWER_DOWN_CONTROL
,
1539 AR9271_RADIO_RF_RST
);
1543 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1544 ath_err(common
, "Chip reset failed\n");
1548 /* Only required on the first reset */
1549 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1550 ah
->htc_reset_init
= false;
1552 AR9271_RESET_POWER_DOWN_CONTROL
,
1553 AR9271_GATE_MAC_CTL
);
1559 ath9k_hw_settsf64(ah
, tsf
);
1561 if (AR_SREV_9280_20_OR_LATER(ah
))
1562 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1564 if (!AR_SREV_9300_20_OR_LATER(ah
))
1565 ar9002_hw_enable_async_fifo(ah
);
1567 r
= ath9k_hw_process_ini(ah
, chan
);
1572 * Some AR91xx SoC devices frequently fail to accept TSF writes
1573 * right after the chip reset. When that happens, write a new
1574 * value after the initvals have been applied, with an offset
1575 * based on measured time difference
1577 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1579 ath9k_hw_settsf64(ah
, tsf
);
1582 /* Setup MFP options for CCMP */
1583 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1584 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1585 * frames when constructing CCMP AAD. */
1586 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1588 ah
->sw_mgmt_crypto
= false;
1589 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1590 /* Disable hardware crypto for management frames */
1591 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1592 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1593 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1594 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1595 ah
->sw_mgmt_crypto
= true;
1597 ah
->sw_mgmt_crypto
= true;
1599 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1600 ath9k_hw_set_delta_slope(ah
, chan
);
1602 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1603 ah
->eep_ops
->set_board_values(ah
, chan
);
1605 ENABLE_REGWRITE_BUFFER(ah
);
1607 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
1608 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
1610 | AR_STA_ID1_RTS_USE_DEF
1612 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
1613 | ah
->sta_id1_defaults
);
1614 ath_hw_setbssidmask(common
);
1615 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1616 ath9k_hw_write_associd(ah
);
1617 REG_WRITE(ah
, AR_ISR
, ~0);
1618 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1620 REGWRITE_BUFFER_FLUSH(ah
);
1622 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1624 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1628 ath9k_hw_set_clockrate(ah
);
1630 ENABLE_REGWRITE_BUFFER(ah
);
1632 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1633 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1635 REGWRITE_BUFFER_FLUSH(ah
);
1638 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1639 ath9k_hw_resettxqueue(ah
, i
);
1641 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1642 ath9k_hw_ani_cache_ini_regs(ah
);
1643 ath9k_hw_init_qos(ah
);
1645 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1646 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1648 ath9k_hw_init_global_settings(ah
);
1650 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1651 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1652 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1653 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1654 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1655 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1656 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
1659 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1661 ath9k_hw_set_dma(ah
);
1663 REG_WRITE(ah
, AR_OBS
, 8);
1665 if (ah
->config
.rx_intr_mitigation
) {
1666 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
1667 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
1670 if (ah
->config
.tx_intr_mitigation
) {
1671 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1672 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1675 ath9k_hw_init_bb(ah
, chan
);
1677 if (!ath9k_hw_init_cal(ah
, chan
))
1680 ENABLE_REGWRITE_BUFFER(ah
);
1682 ath9k_hw_restore_chainmask(ah
);
1683 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1685 REGWRITE_BUFFER_FLUSH(ah
);
1688 * For big endian systems turn on swapping for descriptors
1690 if (AR_SREV_9100(ah
)) {
1692 mask
= REG_READ(ah
, AR_CFG
);
1693 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1694 ath_dbg(common
, ATH_DBG_RESET
,
1695 "CFG Byte Swap Set 0x%x\n", mask
);
1698 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1699 REG_WRITE(ah
, AR_CFG
, mask
);
1700 ath_dbg(common
, ATH_DBG_RESET
,
1701 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
1704 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1705 /* Configure AR9271 target WLAN */
1706 if (AR_SREV_9271(ah
))
1707 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1709 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1712 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
))
1713 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1715 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1719 if (ah
->btcoex_hw
.enabled
)
1720 ath9k_hw_btcoex_enable(ah
);
1722 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1723 ar9003_hw_bb_watchdog_config(ah
);
1725 ar9003_hw_disable_phy_restart(ah
);
1728 ath9k_hw_apply_gpio_override(ah
);
1732 EXPORT_SYMBOL(ath9k_hw_reset
);
1734 /******************************/
1735 /* Power Management (Chipset) */
1736 /******************************/
1739 * Notify Power Mgt is disabled in self-generated frames.
1740 * If requested, force chip to sleep.
1742 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
1744 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1746 if (AR_SREV_9480(ah
)) {
1747 REG_WRITE(ah
, AR_TIMER_MODE
,
1748 REG_READ(ah
, AR_TIMER_MODE
) & 0xFFFFFF00);
1749 REG_WRITE(ah
, AR_NDP2_TIMER_MODE
, REG_READ(ah
,
1750 AR_NDP2_TIMER_MODE
) & 0xFFFFFF00);
1751 REG_WRITE(ah
, AR_SLP32_INC
,
1752 REG_READ(ah
, AR_SLP32_INC
) & 0xFFF00000);
1753 /* xxx Required for WLAN only case ? */
1754 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
1759 * Clear the RTC force wake bit to allow the
1760 * mac to go to sleep.
1762 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
1764 if (AR_SREV_9480(ah
))
1767 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1768 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1770 /* Shutdown chip. Active low */
1771 if (!AR_SREV_5416(ah
) &&
1772 !AR_SREV_9271(ah
) && !AR_SREV_9480_10(ah
)) {
1773 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
1778 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1779 if (!AR_SREV_9480(ah
))
1780 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1784 * Notify Power Management is enabled in self-generating
1785 * frames. If request, set power mode of chip to
1786 * auto/normal. Duration in units of 128us (1/8 TU).
1788 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
1792 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1794 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1796 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1797 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1798 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1799 AR_RTC_FORCE_WAKE_ON_INT
);
1802 /* When chip goes into network sleep, it could be waken
1803 * up by MCI_INT interrupt caused by BT's HW messages
1804 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1805 * rate (~100us). This will cause chip to leave and
1806 * re-enter network sleep mode frequently, which in
1807 * consequence will have WLAN MCI HW to generate lots of
1808 * SYS_WAKING and SYS_SLEEPING messages which will make
1809 * BT CPU to busy to process.
1811 if (AR_SREV_9480(ah
)) {
1812 val
= REG_READ(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
) &
1813 ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK
;
1814 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, val
);
1817 * Clear the RTC force wake bit to allow the
1818 * mac to go to sleep.
1820 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1821 AR_RTC_FORCE_WAKE_EN
);
1823 if (AR_SREV_9480(ah
))
1828 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1829 if (AR_SREV_9300_20_OR_LATER(ah
))
1830 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1833 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
1838 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1839 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1840 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1845 if ((REG_READ(ah
, AR_RTC_STATUS
) &
1846 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
1847 if (ath9k_hw_set_reset_reg(ah
,
1848 ATH9K_RESET_POWER_ON
) != true) {
1851 if (!AR_SREV_9300_20_OR_LATER(ah
))
1852 ath9k_hw_init_pll(ah
, NULL
);
1854 if (AR_SREV_9100(ah
))
1855 REG_SET_BIT(ah
, AR_RTC_RESET
,
1858 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1859 AR_RTC_FORCE_WAKE_EN
);
1862 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
1863 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
1864 if (val
== AR_RTC_STATUS_ON
)
1867 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1868 AR_RTC_FORCE_WAKE_EN
);
1871 ath_err(ath9k_hw_common(ah
),
1872 "Failed to wakeup in %uus\n",
1873 POWER_UP_TIME
/ 20);
1878 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1883 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
1885 struct ath_common
*common
= ath9k_hw_common(ah
);
1886 int status
= true, setChip
= true;
1887 static const char *modes
[] = {
1894 if (ah
->power_mode
== mode
)
1897 ath_dbg(common
, ATH_DBG_RESET
, "%s -> %s\n",
1898 modes
[ah
->power_mode
], modes
[mode
]);
1901 case ATH9K_PM_AWAKE
:
1902 status
= ath9k_hw_set_power_awake(ah
, setChip
);
1904 case ATH9K_PM_FULL_SLEEP
:
1905 ath9k_set_power_sleep(ah
, setChip
);
1906 ah
->chip_fullsleep
= true;
1908 case ATH9K_PM_NETWORK_SLEEP
:
1909 ath9k_set_power_network_sleep(ah
, setChip
);
1912 ath_err(common
, "Unknown power mode %u\n", mode
);
1915 ah
->power_mode
= mode
;
1918 * XXX: If this warning never comes up after a while then
1919 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1920 * ath9k_hw_setpower() return type void.
1923 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
1924 ATH_DBG_WARN_ON_ONCE(!status
);
1928 EXPORT_SYMBOL(ath9k_hw_setpower
);
1930 /*******************/
1931 /* Beacon Handling */
1932 /*******************/
1934 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
1938 ENABLE_REGWRITE_BUFFER(ah
);
1940 switch (ah
->opmode
) {
1941 case NL80211_IFTYPE_ADHOC
:
1942 case NL80211_IFTYPE_MESH_POINT
:
1943 REG_SET_BIT(ah
, AR_TXCFG
,
1944 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
1945 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
, next_beacon
+
1946 TU_TO_USEC(ah
->atim_window
? ah
->atim_window
: 1));
1947 flags
|= AR_NDP_TIMER_EN
;
1948 case NL80211_IFTYPE_AP
:
1949 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
1950 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
1951 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
1952 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
1953 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
1955 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
1958 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_BEACON
,
1959 "%s: unsupported opmode: %d\n",
1960 __func__
, ah
->opmode
);
1965 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
1966 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
1967 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
1968 REG_WRITE(ah
, AR_NDP_PERIOD
, beacon_period
);
1970 REGWRITE_BUFFER_FLUSH(ah
);
1972 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
1974 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
1976 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
1977 const struct ath9k_beacon_state
*bs
)
1979 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
1980 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1981 struct ath_common
*common
= ath9k_hw_common(ah
);
1983 ENABLE_REGWRITE_BUFFER(ah
);
1985 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
1987 REG_WRITE(ah
, AR_BEACON_PERIOD
,
1988 TU_TO_USEC(bs
->bs_intval
));
1989 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
1990 TU_TO_USEC(bs
->bs_intval
));
1992 REGWRITE_BUFFER_FLUSH(ah
);
1994 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
1995 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
1997 beaconintval
= bs
->bs_intval
;
1999 if (bs
->bs_sleepduration
> beaconintval
)
2000 beaconintval
= bs
->bs_sleepduration
;
2002 dtimperiod
= bs
->bs_dtimperiod
;
2003 if (bs
->bs_sleepduration
> dtimperiod
)
2004 dtimperiod
= bs
->bs_sleepduration
;
2006 if (beaconintval
== dtimperiod
)
2007 nextTbtt
= bs
->bs_nextdtim
;
2009 nextTbtt
= bs
->bs_nexttbtt
;
2011 ath_dbg(common
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
2012 ath_dbg(common
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
2013 ath_dbg(common
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
2014 ath_dbg(common
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
2016 ENABLE_REGWRITE_BUFFER(ah
);
2018 REG_WRITE(ah
, AR_NEXT_DTIM
,
2019 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
2020 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
2022 REG_WRITE(ah
, AR_SLEEP1
,
2023 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2024 | AR_SLEEP1_ASSUME_DTIM
);
2026 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2027 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2029 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2031 REG_WRITE(ah
, AR_SLEEP2
,
2032 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2034 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
2035 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
2037 REGWRITE_BUFFER_FLUSH(ah
);
2039 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2040 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2043 /* TSF Out of Range Threshold */
2044 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2046 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2048 /*******************/
2049 /* HW Capabilities */
2050 /*******************/
2052 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2054 eeprom_chainmask
&= chip_chainmask
;
2055 if (eeprom_chainmask
)
2056 return eeprom_chainmask
;
2058 return chip_chainmask
;
2061 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2063 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2064 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2065 struct ath_common
*common
= ath9k_hw_common(ah
);
2066 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
2067 unsigned int chip_chainmask
;
2070 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2072 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2073 regulatory
->current_rd
= eeval
;
2075 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2076 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2077 if (regulatory
->current_rd
== 0x64 ||
2078 regulatory
->current_rd
== 0x65)
2079 regulatory
->current_rd
+= 5;
2080 else if (regulatory
->current_rd
== 0x41)
2081 regulatory
->current_rd
= 0x43;
2082 ath_dbg(common
, ATH_DBG_REGULATORY
,
2083 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
2086 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2087 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
2089 "no band has been marked as supported in EEPROM\n");
2093 if (eeval
& AR5416_OPFLAGS_11A
)
2094 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2096 if (eeval
& AR5416_OPFLAGS_11G
)
2097 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2099 if (AR_SREV_9485(ah
) || AR_SREV_9285(ah
) || AR_SREV_9330(ah
))
2101 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2103 else if (!AR_SREV_9300_20_OR_LATER(ah
) || AR_SREV_9340(ah
))
2108 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2110 * For AR9271 we will temporarilly uses the rx chainmax as read from
2113 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2114 !(eeval
& AR5416_OPFLAGS_11A
) &&
2115 !(AR_SREV_9271(ah
)))
2116 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2117 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2118 else if (AR_SREV_9100(ah
))
2119 pCap
->rx_chainmask
= 0x7;
2121 /* Use rx_chainmask from EEPROM. */
2122 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2124 pCap
->tx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->tx_chainmask
);
2125 pCap
->rx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->rx_chainmask
);
2126 ah
->txchainmask
= pCap
->tx_chainmask
;
2127 ah
->rxchainmask
= pCap
->rx_chainmask
;
2129 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2131 /* enable key search for every frame in an aggregate */
2132 if (AR_SREV_9300_20_OR_LATER(ah
))
2133 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2135 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2137 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2138 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2140 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2142 if (AR_SREV_9271(ah
))
2143 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2144 else if (AR_DEVID_7010(ah
))
2145 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2146 else if (AR_SREV_9300_20_OR_LATER(ah
))
2147 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2148 else if (AR_SREV_9287_11_OR_LATER(ah
))
2149 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2150 else if (AR_SREV_9285_12_OR_LATER(ah
))
2151 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2152 else if (AR_SREV_9280_20_OR_LATER(ah
))
2153 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
2155 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2157 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
2158 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
2159 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2161 pCap
->rts_aggr_limit
= (8 * 1024);
2164 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2165 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2166 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2168 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2169 ah
->rfkill_polarity
=
2170 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2172 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2175 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2176 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2178 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2180 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2181 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2183 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2185 if (common
->btcoex_enabled
) {
2186 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2187 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
2188 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9300
;
2189 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9300
;
2190 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO_9300
;
2191 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
2192 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9280
;
2193 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9280
;
2195 if (AR_SREV_9285(ah
)) {
2196 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
2197 btcoex_hw
->btpriority_gpio
=
2198 ATH_BTPRIORITY_GPIO_9285
;
2200 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
2204 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
2207 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2208 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2209 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
))
2210 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2212 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2213 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2214 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2215 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2216 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2217 if (!ah
->config
.paprd_disable
&&
2218 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2219 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2221 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2222 if (AR_SREV_9280_20(ah
))
2223 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2226 if (AR_SREV_9300_20_OR_LATER(ah
))
2227 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2229 if (AR_SREV_9300_20_OR_LATER(ah
))
2230 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2232 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2233 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2235 if (AR_SREV_9285(ah
))
2236 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2238 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2239 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1))
2240 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2242 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2243 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2244 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2248 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
)) {
2249 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2251 * enable the diversity-combining algorithm only when
2252 * both enable_lna_div and enable_fast_div are set
2253 * Table for Diversity
2254 * ant_div_alt_lnaconf bit 0-1
2255 * ant_div_main_lnaconf bit 2-3
2256 * ant_div_alt_gaintb bit 4
2257 * ant_div_main_gaintb bit 5
2258 * enable_ant_div_lnadiv bit 6
2259 * enable_ant_fast_div bit 7
2261 if ((ant_div_ctl1
>> 0x6) == 0x3)
2262 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2265 if (AR_SREV_9485_10(ah
)) {
2266 pCap
->pcie_lcr_extsync_en
= true;
2267 pCap
->pcie_lcr_offset
= 0x80;
2270 tx_chainmask
= pCap
->tx_chainmask
;
2271 rx_chainmask
= pCap
->rx_chainmask
;
2272 while (tx_chainmask
|| rx_chainmask
) {
2273 if (tx_chainmask
& BIT(0))
2274 pCap
->max_txchains
++;
2275 if (rx_chainmask
& BIT(0))
2276 pCap
->max_rxchains
++;
2285 /****************************/
2286 /* GPIO / RFKILL / Antennae */
2287 /****************************/
2289 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2293 u32 gpio_shift
, tmp
;
2296 addr
= AR_GPIO_OUTPUT_MUX3
;
2298 addr
= AR_GPIO_OUTPUT_MUX2
;
2300 addr
= AR_GPIO_OUTPUT_MUX1
;
2302 gpio_shift
= (gpio
% 6) * 5;
2304 if (AR_SREV_9280_20_OR_LATER(ah
)
2305 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2306 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2307 (0x1f << gpio_shift
));
2309 tmp
= REG_READ(ah
, addr
);
2310 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2311 tmp
&= ~(0x1f << gpio_shift
);
2312 tmp
|= (type
<< gpio_shift
);
2313 REG_WRITE(ah
, addr
, tmp
);
2317 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2321 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2323 if (AR_DEVID_7010(ah
)) {
2325 REG_RMW(ah
, AR7010_GPIO_OE
,
2326 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2327 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2331 gpio_shift
= gpio
<< 1;
2334 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2335 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2337 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2339 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2341 #define MS_REG_READ(x, y) \
2342 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2344 if (gpio
>= ah
->caps
.num_gpio_pins
)
2347 if (AR_DEVID_7010(ah
)) {
2349 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2350 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2351 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2352 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2353 AR_GPIO_BIT(gpio
)) != 0;
2354 else if (AR_SREV_9271(ah
))
2355 return MS_REG_READ(AR9271
, gpio
) != 0;
2356 else if (AR_SREV_9287_11_OR_LATER(ah
))
2357 return MS_REG_READ(AR9287
, gpio
) != 0;
2358 else if (AR_SREV_9285_12_OR_LATER(ah
))
2359 return MS_REG_READ(AR9285
, gpio
) != 0;
2360 else if (AR_SREV_9280_20_OR_LATER(ah
))
2361 return MS_REG_READ(AR928X
, gpio
) != 0;
2363 return MS_REG_READ(AR
, gpio
) != 0;
2365 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2367 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2372 if (AR_DEVID_7010(ah
)) {
2374 REG_RMW(ah
, AR7010_GPIO_OE
,
2375 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2376 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2380 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2381 gpio_shift
= 2 * gpio
;
2384 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2385 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2387 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2389 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2391 if (AR_DEVID_7010(ah
)) {
2393 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2398 if (AR_SREV_9271(ah
))
2401 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2404 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2406 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
2408 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
2410 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
2412 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2414 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2416 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2418 /*********************/
2419 /* General Operation */
2420 /*********************/
2422 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2424 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2425 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2427 if (phybits
& AR_PHY_ERR_RADAR
)
2428 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2429 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2430 bits
|= ATH9K_RX_FILTER_PHYERR
;
2434 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2436 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2440 ENABLE_REGWRITE_BUFFER(ah
);
2442 if (AR_SREV_9480(ah
))
2443 bits
|= ATH9K_RX_FILTER_CONTROL_WRAPPER
;
2445 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2448 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2449 phybits
|= AR_PHY_ERR_RADAR
;
2450 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2451 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2452 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2455 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2457 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2459 REGWRITE_BUFFER_FLUSH(ah
);
2461 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2463 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2465 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2468 ath9k_hw_init_pll(ah
, NULL
);
2471 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2473 bool ath9k_hw_disable(struct ath_hw
*ah
)
2475 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2478 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2481 ath9k_hw_init_pll(ah
, NULL
);
2484 EXPORT_SYMBOL(ath9k_hw_disable
);
2486 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2488 enum eeprom_param gain_param
;
2490 if (IS_CHAN_2GHZ(chan
))
2491 gain_param
= EEP_ANTENNA_GAIN_2G
;
2493 gain_param
= EEP_ANTENNA_GAIN_5G
;
2495 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2498 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2500 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2501 struct ieee80211_channel
*channel
;
2502 int chan_pwr
, new_pwr
, max_gain
;
2503 int ant_gain
, ant_reduction
= 0;
2508 channel
= chan
->chan
;
2509 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2510 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2511 max_gain
= chan_pwr
- new_pwr
+ channel
->max_antenna_gain
* 2;
2513 ant_gain
= get_antenna_gain(ah
, chan
);
2514 if (ant_gain
> max_gain
)
2515 ant_reduction
= ant_gain
- max_gain
;
2517 ah
->eep_ops
->set_txpower(ah
, chan
,
2518 ath9k_regd_get_ctl(reg
, chan
),
2519 ant_reduction
, new_pwr
, false);
2522 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2524 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2525 struct ath9k_channel
*chan
= ah
->curchan
;
2526 struct ieee80211_channel
*channel
= chan
->chan
;
2528 reg
->power_limit
= min_t(int, limit
, MAX_RATE_POWER
);
2530 channel
->max_power
= MAX_RATE_POWER
/ 2;
2532 ath9k_hw_apply_txpower(ah
, chan
);
2535 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2537 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2539 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2541 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2543 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2545 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2547 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2548 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2550 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2552 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2554 struct ath_common
*common
= ath9k_hw_common(ah
);
2556 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2557 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2558 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2560 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2562 #define ATH9K_MAX_TSF_READ 10
2564 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2566 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2569 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2570 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2571 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2572 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2573 if (tsf_upper2
== tsf_upper1
)
2575 tsf_upper1
= tsf_upper2
;
2578 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2580 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2582 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2584 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2586 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2587 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2589 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2591 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2593 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2594 AH_TSF_WRITE_TIMEOUT
))
2595 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
2596 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2598 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2600 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2602 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
2605 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2607 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2609 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2611 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
2613 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
2616 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
2617 macmode
= AR_2040_JOINED_RX_CLEAR
;
2621 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2624 /* HW Generic timers configuration */
2626 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2628 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2629 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2630 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2631 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2632 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2633 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2634 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2635 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2636 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2637 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2638 AR_NDP2_TIMER_MODE
, 0x0002},
2639 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2640 AR_NDP2_TIMER_MODE
, 0x0004},
2641 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2642 AR_NDP2_TIMER_MODE
, 0x0008},
2643 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2644 AR_NDP2_TIMER_MODE
, 0x0010},
2645 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2646 AR_NDP2_TIMER_MODE
, 0x0020},
2647 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2648 AR_NDP2_TIMER_MODE
, 0x0040},
2649 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2650 AR_NDP2_TIMER_MODE
, 0x0080}
2653 /* HW generic timer primitives */
2655 /* compute and clear index of rightmost 1 */
2656 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
2666 return timer_table
->gen_timer_index
[b
];
2669 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2671 return REG_READ(ah
, AR_TSF_L32
);
2673 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
2675 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2676 void (*trigger
)(void *),
2677 void (*overflow
)(void *),
2681 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2682 struct ath_gen_timer
*timer
;
2684 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2686 if (timer
== NULL
) {
2687 ath_err(ath9k_hw_common(ah
),
2688 "Failed to allocate memory for hw timer[%d]\n",
2693 /* allocate a hardware generic timer slot */
2694 timer_table
->timers
[timer_index
] = timer
;
2695 timer
->index
= timer_index
;
2696 timer
->trigger
= trigger
;
2697 timer
->overflow
= overflow
;
2702 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2704 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2705 struct ath_gen_timer
*timer
,
2709 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2710 u32 tsf
, timer_next
;
2712 BUG_ON(!timer_period
);
2714 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2716 tsf
= ath9k_hw_gettsf32(ah
);
2718 timer_next
= tsf
+ trig_timeout
;
2720 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_HWTIMER
,
2721 "current tsf %x period %x timer_next %x\n",
2722 tsf
, timer_period
, timer_next
);
2725 * Program generic timer registers
2727 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2729 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2731 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2732 gen_tmr_configuration
[timer
->index
].mode_mask
);
2734 if (AR_SREV_9480(ah
)) {
2736 * Starting from AR9480, each generic timer can select which tsf
2737 * to use. But we still follow the old rule, 0 - 7 use tsf and
2740 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
2741 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2742 (1 << timer
->index
));
2744 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2745 (1 << timer
->index
));
2748 /* Enable both trigger and thresh interrupt masks */
2749 REG_SET_BIT(ah
, AR_IMR_S5
,
2750 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2751 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2753 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
2755 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2757 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2759 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
2760 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
2764 /* Clear generic timer enable bits. */
2765 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2766 gen_tmr_configuration
[timer
->index
].mode_mask
);
2768 /* Disable both trigger and thresh interrupt masks */
2769 REG_CLR_BIT(ah
, AR_IMR_S5
,
2770 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2771 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2773 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2775 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
2777 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2779 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2781 /* free the hardware generic timer slot */
2782 timer_table
->timers
[timer
->index
] = NULL
;
2785 EXPORT_SYMBOL(ath_gen_timer_free
);
2788 * Generic Timer Interrupts handling
2790 void ath_gen_timer_isr(struct ath_hw
*ah
)
2792 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2793 struct ath_gen_timer
*timer
;
2794 struct ath_common
*common
= ath9k_hw_common(ah
);
2795 u32 trigger_mask
, thresh_mask
, index
;
2797 /* get hardware generic timer interrupt status */
2798 trigger_mask
= ah
->intr_gen_timer_trigger
;
2799 thresh_mask
= ah
->intr_gen_timer_thresh
;
2800 trigger_mask
&= timer_table
->timer_mask
.val
;
2801 thresh_mask
&= timer_table
->timer_mask
.val
;
2803 trigger_mask
&= ~thresh_mask
;
2805 while (thresh_mask
) {
2806 index
= rightmost_index(timer_table
, &thresh_mask
);
2807 timer
= timer_table
->timers
[index
];
2809 ath_dbg(common
, ATH_DBG_HWTIMER
,
2810 "TSF overflow for Gen timer %d\n", index
);
2811 timer
->overflow(timer
->arg
);
2814 while (trigger_mask
) {
2815 index
= rightmost_index(timer_table
, &trigger_mask
);
2816 timer
= timer_table
->timers
[index
];
2818 ath_dbg(common
, ATH_DBG_HWTIMER
,
2819 "Gen timer[%d] trigger\n", index
);
2820 timer
->trigger(timer
->arg
);
2823 EXPORT_SYMBOL(ath_gen_timer_isr
);
2829 void ath9k_hw_htc_resetinit(struct ath_hw
*ah
)
2831 ah
->htc_reset_init
= true;
2833 EXPORT_SYMBOL(ath9k_hw_htc_resetinit
);
2838 } ath_mac_bb_names
[] = {
2839 /* Devices with external radios */
2840 { AR_SREV_VERSION_5416_PCI
, "5416" },
2841 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2842 { AR_SREV_VERSION_9100
, "9100" },
2843 { AR_SREV_VERSION_9160
, "9160" },
2844 /* Single-chip solutions */
2845 { AR_SREV_VERSION_9280
, "9280" },
2846 { AR_SREV_VERSION_9285
, "9285" },
2847 { AR_SREV_VERSION_9287
, "9287" },
2848 { AR_SREV_VERSION_9271
, "9271" },
2849 { AR_SREV_VERSION_9300
, "9300" },
2850 { AR_SREV_VERSION_9330
, "9330" },
2851 { AR_SREV_VERSION_9340
, "9340" },
2852 { AR_SREV_VERSION_9485
, "9485" },
2853 { AR_SREV_VERSION_9480
, "9480" },
2856 /* For devices with external radios */
2860 } ath_rf_names
[] = {
2862 { AR_RAD5133_SREV_MAJOR
, "5133" },
2863 { AR_RAD5122_SREV_MAJOR
, "5122" },
2864 { AR_RAD2133_SREV_MAJOR
, "2133" },
2865 { AR_RAD2122_SREV_MAJOR
, "2122" }
2869 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2871 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
2875 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2876 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2877 return ath_mac_bb_names
[i
].name
;
2885 * Return the RF name. "????" is returned if the RF is unknown.
2886 * Used for devices with external radios.
2888 static const char *ath9k_hw_rf_name(u16 rf_version
)
2892 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2893 if (ath_rf_names
[i
].version
== rf_version
) {
2894 return ath_rf_names
[i
].name
;
2901 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
2905 /* chipsets >= AR9280 are single-chip */
2906 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2907 used
= snprintf(hw_name
, len
,
2908 "Atheros AR%s Rev:%x",
2909 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2910 ah
->hw_version
.macRev
);
2913 used
= snprintf(hw_name
, len
,
2914 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2915 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2916 ah
->hw_version
.macRev
,
2917 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
2918 AR_RADIO_SREV_MAJOR
)),
2919 ah
->hw_version
.phyRev
);
2922 hw_name
[used
] = '\0';
2924 EXPORT_SYMBOL(ath9k_hw_name
);