1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl
[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
129 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
130 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
131 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
132 static irqreturn_t
e1000_intr(int irq
, void *data
);
133 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
143 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
144 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
146 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
147 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
148 static void e1000_tx_timeout(struct net_device
*dev
);
149 static void e1000_reset_task(struct work_struct
*work
);
150 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
152 struct sk_buff
*skb
);
154 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
155 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
156 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
157 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
159 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
161 static int e1000_resume(struct pci_dev
*pdev
);
163 static void e1000_shutdown(struct pci_dev
*pdev
);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device
*netdev
);
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
172 module_param(copybreak
, uint
, 0644);
173 MODULE_PARM_DESC(copybreak
,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
177 pci_channel_state_t state
);
178 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
179 static void e1000_io_resume(struct pci_dev
*pdev
);
181 static struct pci_error_handlers e1000_err_handler
= {
182 .error_detected
= e1000_io_error_detected
,
183 .slot_reset
= e1000_io_slot_reset
,
184 .resume
= e1000_io_resume
,
187 static struct pci_driver e1000_driver
= {
188 .name
= e1000_driver_name
,
189 .id_table
= e1000_pci_tbl
,
190 .probe
= e1000_probe
,
191 .remove
= __devexit_p(e1000_remove
),
193 /* Power Managment Hooks */
194 .suspend
= e1000_suspend
,
195 .resume
= e1000_resume
,
197 .shutdown
= e1000_shutdown
,
198 .err_handler
= &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION
);
206 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
207 module_param(debug
, int, 0);
208 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init
e1000_init_module(void)
220 printk(KERN_INFO
"%s - version %s\n",
221 e1000_driver_string
, e1000_driver_version
);
223 printk(KERN_INFO
"%s\n", e1000_copyright
);
225 ret
= pci_register_driver(&e1000_driver
);
226 if (copybreak
!= COPYBREAK_DEFAULT
) {
228 printk(KERN_INFO
"e1000: copybreak disabled\n");
230 printk(KERN_INFO
"e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak
);
236 module_init(e1000_init_module
);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
245 static void __exit
e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver
);
250 module_exit(e1000_exit_module
);
252 static int e1000_request_irq(struct e1000_adapter
*adapter
)
254 struct e1000_hw
*hw
= &adapter
->hw
;
255 struct net_device
*netdev
= adapter
->netdev
;
256 irq_handler_t handler
= e1000_intr
;
257 int irq_flags
= IRQF_SHARED
;
260 if (hw
->mac_type
>= e1000_82571
) {
261 adapter
->have_msi
= !pci_enable_msi(adapter
->pdev
);
262 if (adapter
->have_msi
) {
263 handler
= e1000_intr_msi
;
268 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
271 if (adapter
->have_msi
)
272 pci_disable_msi(adapter
->pdev
);
274 "Unable to allocate interrupt Error: %d\n", err
);
280 static void e1000_free_irq(struct e1000_adapter
*adapter
)
282 struct net_device
*netdev
= adapter
->netdev
;
284 free_irq(adapter
->pdev
->irq
, netdev
);
286 if (adapter
->have_msi
)
287 pci_disable_msi(adapter
->pdev
);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
297 struct e1000_hw
*hw
= &adapter
->hw
;
301 synchronize_irq(adapter
->pdev
->irq
);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
313 ew32(IMS
, IMS_ENABLE_MASK
);
317 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
319 struct e1000_hw
*hw
= &adapter
->hw
;
320 struct net_device
*netdev
= adapter
->netdev
;
321 u16 vid
= hw
->mng_cookie
.vlan_id
;
322 u16 old_vid
= adapter
->mng_vlan_id
;
323 if (adapter
->vlgrp
) {
324 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
325 if (hw
->mng_cookie
.status
&
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
327 e1000_vlan_rx_add_vid(netdev
, vid
);
328 adapter
->mng_vlan_id
= vid
;
330 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
332 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
334 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
335 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
337 adapter
->mng_vlan_id
= vid
;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
356 struct e1000_hw
*hw
= &adapter
->hw
;
358 /* Let firmware taken over control of h/w */
359 switch (hw
->mac_type
) {
362 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
366 case e1000_80003es2lan
:
368 ctrl_ext
= er32(CTRL_EXT
);
369 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
391 struct e1000_hw
*hw
= &adapter
->hw
;
393 /* Let firmware know the driver has taken over */
394 switch (hw
->mac_type
) {
397 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
401 case e1000_80003es2lan
:
403 ctrl_ext
= er32(CTRL_EXT
);
404 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
411 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
413 struct e1000_hw
*hw
= &adapter
->hw
;
415 if (adapter
->en_mng_pt
) {
416 u32 manc
= er32(MANC
);
418 /* disable hardware interception of ARP */
419 manc
&= ~(E1000_MANC_ARP_EN
);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw
->has_manc2h
) {
425 u32 manc2h
= er32(MANC2H
);
427 manc
|= E1000_MANC_EN_MNG2HOST
;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h
|= E1000_MNG2HOST_PORT_623
;
431 manc2h
|= E1000_MNG2HOST_PORT_664
;
432 ew32(MANC2H
, manc2h
);
439 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
441 struct e1000_hw
*hw
= &adapter
->hw
;
443 if (adapter
->en_mng_pt
) {
444 u32 manc
= er32(MANC
);
446 /* re-enable hardware interception of ARP */
447 manc
|= E1000_MANC_ARP_EN
;
450 manc
&= ~E1000_MANC_EN_MNG2HOST
;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter
*adapter
)
465 struct net_device
*netdev
= adapter
->netdev
;
468 e1000_set_rx_mode(netdev
);
470 e1000_restore_vlan(adapter
);
471 e1000_init_manageability(adapter
);
473 e1000_configure_tx(adapter
);
474 e1000_setup_rctl(adapter
);
475 e1000_configure_rx(adapter
);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
480 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
481 adapter
->alloc_rx_buf(adapter
, ring
,
482 E1000_DESC_UNUSED(ring
));
485 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
488 int e1000_up(struct e1000_adapter
*adapter
)
490 struct e1000_hw
*hw
= &adapter
->hw
;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter
);
495 clear_bit(__E1000_DOWN
, &adapter
->flags
);
497 napi_enable(&adapter
->napi
);
499 e1000_irq_enable(adapter
);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS
, E1000_ICS_LSC
);
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
518 struct e1000_hw
*hw
= &adapter
->hw
;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw
->media_type
== e1000_media_type_copper
) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
526 mii_reg
&= ~MII_CR_POWER_DOWN
;
527 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
531 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
533 struct e1000_hw
*hw
= &adapter
->hw
;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
539 * (c) SoL/IDER session is active */
540 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
541 hw
->media_type
== e1000_media_type_copper
) {
544 switch (hw
->mac_type
) {
547 case e1000_82545_rev_3
:
549 case e1000_82546_rev_3
:
551 case e1000_82541_rev_2
:
553 case e1000_82547_rev_2
:
554 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
560 case e1000_80003es2lan
:
562 if (e1000_check_mng_mode(hw
) ||
563 e1000_check_phy_reset_block(hw
))
569 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
570 mii_reg
|= MII_CR_POWER_DOWN
;
571 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
578 void e1000_down(struct e1000_adapter
*adapter
)
580 struct net_device
*netdev
= adapter
->netdev
;
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN
, &adapter
->flags
);
586 napi_disable(&adapter
->napi
);
588 e1000_irq_disable(adapter
);
590 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
591 del_timer_sync(&adapter
->watchdog_timer
);
592 del_timer_sync(&adapter
->phy_info_timer
);
594 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
595 adapter
->link_speed
= 0;
596 adapter
->link_duplex
= 0;
597 netif_carrier_off(netdev
);
598 netif_stop_queue(netdev
);
600 e1000_reset(adapter
);
601 e1000_clean_all_tx_rings(adapter
);
602 e1000_clean_all_rx_rings(adapter
);
605 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
612 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
615 void e1000_reset(struct e1000_adapter
*adapter
)
617 struct e1000_hw
*hw
= &adapter
->hw
;
618 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
619 u16 fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
620 bool legacy_pba_adjust
= false;
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
626 switch (hw
->mac_type
) {
627 case e1000_82542_rev2_0
:
628 case e1000_82542_rev2_1
:
633 case e1000_82541_rev_2
:
634 legacy_pba_adjust
= true;
638 case e1000_82545_rev_3
:
640 case e1000_82546_rev_3
:
644 case e1000_82547_rev_2
:
645 legacy_pba_adjust
= true;
650 case e1000_80003es2lan
:
658 case e1000_undefined
:
663 if (legacy_pba_adjust
) {
664 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
665 pba
-= 8; /* allocate more FIFO for Tx */
667 if (hw
->mac_type
== e1000_82547
) {
668 adapter
->tx_fifo_head
= 0;
669 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
670 adapter
->tx_fifo_size
=
671 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
672 atomic_set(&adapter
->tx_fifo_stall
, 0);
674 } else if (hw
->max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
675 /* adjust PBA for jumbo frames */
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space
= pba
>> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
692 min_tx_space
= min_rx_space
;
694 min_tx_space
= ALIGN(min_tx_space
, 1024);
696 min_rx_space
= ALIGN(min_rx_space
, 1024);
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space
< min_tx_space
&&
703 ((min_tx_space
- tx_space
) < pba
)) {
704 pba
= pba
- (min_tx_space
- tx_space
);
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw
->mac_type
) {
708 case e1000_82545
... e1000_82546_rev_3
:
709 pba
&= ~(E1000_PBA_8K
- 1);
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba
< min_rx_space
) {
718 switch (hw
->mac_type
) {
720 /* ERT enabled in e1000_configure_rx */
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
740 if (pba
< E1000_PBA_16K
)
741 fc_high_water_mark
= (pba
* 1024) - 1600;
743 hw
->fc_high_water
= fc_high_water_mark
;
744 hw
->fc_low_water
= fc_high_water_mark
- 8;
745 if (hw
->mac_type
== e1000_80003es2lan
)
746 hw
->fc_pause_time
= 0xFFFF;
748 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
750 hw
->fc
= hw
->original_fc
;
752 /* Allow time for pending master requests to run */
754 if (hw
->mac_type
>= e1000_82544
)
757 if (e1000_init_hw(hw
))
758 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter
);
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw
->mac_type
>= e1000_82544
&&
763 hw
->mac_type
<= e1000_82547_rev_2
&&
765 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
766 u32 ctrl
= er32(CTRL
);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl
&= ~E1000_CTRL_SWDPIN3
;
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
777 e1000_reset_adaptive(hw
);
778 e1000_phy_get_info(hw
, &adapter
->phy_info
);
780 if (!adapter
->smart_power_down
&&
781 (hw
->mac_type
== e1000_82571
||
782 hw
->mac_type
== e1000_82572
)) {
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
789 phy_data
&= ~IGP02E1000_PM_SPD
;
790 e1000_write_phy_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
794 e1000_release_manageability(adapter
);
798 * Dump the eeprom for users having checksum issues
800 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
802 struct net_device
*netdev
= adapter
->netdev
;
803 struct ethtool_eeprom eeprom
;
804 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
807 u16 csum_old
, csum_new
= 0;
809 eeprom
.len
= ops
->get_eeprom_len(netdev
);
812 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
814 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
819 ops
->get_eeprom(netdev
, &eeprom
, data
);
821 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
822 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
823 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
824 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
825 csum_new
= EEPROM_SUM
- csum_new
;
827 printk(KERN_ERR
"/*********************/\n");
828 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
829 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
831 printk(KERN_ERR
"Offset Values\n");
832 printk(KERN_ERR
"======== ======\n");
833 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
835 printk(KERN_ERR
"Include this output when contacting your support "
837 printk(KERN_ERR
"This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR
"EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR
"and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR
"to enable this network device.\n");
847 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR
"or Intel Customer Support.\n");
850 printk(KERN_ERR
"/*********************/\n");
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
859 * Return true if an adapter needs ioport resources
861 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
863 switch (pdev
->device
) {
864 case E1000_DEV_ID_82540EM
:
865 case E1000_DEV_ID_82540EM_LOM
:
866 case E1000_DEV_ID_82540EP
:
867 case E1000_DEV_ID_82540EP_LOM
:
868 case E1000_DEV_ID_82540EP_LP
:
869 case E1000_DEV_ID_82541EI
:
870 case E1000_DEV_ID_82541EI_MOBILE
:
871 case E1000_DEV_ID_82541ER
:
872 case E1000_DEV_ID_82541ER_LOM
:
873 case E1000_DEV_ID_82541GI
:
874 case E1000_DEV_ID_82541GI_LF
:
875 case E1000_DEV_ID_82541GI_MOBILE
:
876 case E1000_DEV_ID_82544EI_COPPER
:
877 case E1000_DEV_ID_82544EI_FIBER
:
878 case E1000_DEV_ID_82544GC_COPPER
:
879 case E1000_DEV_ID_82544GC_LOM
:
880 case E1000_DEV_ID_82545EM_COPPER
:
881 case E1000_DEV_ID_82545EM_FIBER
:
882 case E1000_DEV_ID_82546EB_COPPER
:
883 case E1000_DEV_ID_82546EB_FIBER
:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
891 static const struct net_device_ops e1000_netdev_ops
= {
892 .ndo_open
= e1000_open
,
893 .ndo_stop
= e1000_close
,
894 .ndo_start_xmit
= e1000_xmit_frame
,
895 .ndo_get_stats
= e1000_get_stats
,
896 .ndo_set_rx_mode
= e1000_set_rx_mode
,
897 .ndo_set_mac_address
= e1000_set_mac
,
898 .ndo_tx_timeout
= e1000_tx_timeout
,
899 .ndo_change_mtu
= e1000_change_mtu
,
900 .ndo_do_ioctl
= e1000_ioctl
,
901 .ndo_validate_addr
= eth_validate_addr
,
903 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
904 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
905 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller
= e1000_netpoll
,
912 * e1000_probe - Device Initialization Routine
913 * @pdev: PCI device information struct
914 * @ent: entry in e1000_pci_tbl
916 * Returns 0 on success, negative on failure
918 * e1000_probe initializes an adapter identified by a pci_dev structure.
919 * The OS initialization, configuring of the adapter private structure,
920 * and a hardware reset occur.
922 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
923 const struct pci_device_id
*ent
)
925 struct net_device
*netdev
;
926 struct e1000_adapter
*adapter
;
929 static int cards_found
= 0;
930 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
931 int i
, err
, pci_using_dac
;
933 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
934 int bars
, need_ioport
;
936 /* do not allocate ioport bars when not needed */
937 need_ioport
= e1000_is_need_ioport(pdev
);
939 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
940 err
= pci_enable_device(pdev
);
942 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
943 err
= pci_enable_device_mem(pdev
);
948 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
) &&
949 !pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
)) {
952 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
954 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
956 E1000_ERR("No usable DMA configuration, "
964 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
968 pci_set_master(pdev
);
971 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
973 goto err_alloc_etherdev
;
975 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
977 pci_set_drvdata(pdev
, netdev
);
978 adapter
= netdev_priv(netdev
);
979 adapter
->netdev
= netdev
;
980 adapter
->pdev
= pdev
;
981 adapter
->msg_enable
= (1 << debug
) - 1;
982 adapter
->bars
= bars
;
983 adapter
->need_ioport
= need_ioport
;
989 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
993 if (adapter
->need_ioport
) {
994 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
995 if (pci_resource_len(pdev
, i
) == 0)
997 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
998 hw
->io_base
= pci_resource_start(pdev
, i
);
1004 netdev
->netdev_ops
= &e1000_netdev_ops
;
1005 e1000_set_ethtool_ops(netdev
);
1006 netdev
->watchdog_timeo
= 5 * HZ
;
1007 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1009 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1011 adapter
->bd_number
= cards_found
;
1013 /* setup the private structure */
1015 err
= e1000_sw_init(adapter
);
1020 /* Flash BAR mapping must happen after e1000_sw_init
1021 * because it depends on mac_type */
1022 if ((hw
->mac_type
== e1000_ich8lan
) &&
1023 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
1024 hw
->flash_address
= pci_ioremap_bar(pdev
, 1);
1025 if (!hw
->flash_address
)
1029 if (e1000_check_phy_reset_block(hw
))
1030 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
1032 if (hw
->mac_type
>= e1000_82543
) {
1033 netdev
->features
= NETIF_F_SG
|
1035 NETIF_F_HW_VLAN_TX
|
1036 NETIF_F_HW_VLAN_RX
|
1037 NETIF_F_HW_VLAN_FILTER
;
1038 if (hw
->mac_type
== e1000_ich8lan
)
1039 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
1042 if ((hw
->mac_type
>= e1000_82544
) &&
1043 (hw
->mac_type
!= e1000_82547
))
1044 netdev
->features
|= NETIF_F_TSO
;
1046 if (hw
->mac_type
> e1000_82547_rev_2
)
1047 netdev
->features
|= NETIF_F_TSO6
;
1049 netdev
->features
|= NETIF_F_HIGHDMA
;
1051 netdev
->vlan_features
|= NETIF_F_TSO
;
1052 netdev
->vlan_features
|= NETIF_F_TSO6
;
1053 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1054 netdev
->vlan_features
|= NETIF_F_SG
;
1056 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1058 /* initialize eeprom parameters */
1059 if (e1000_init_eeprom_params(hw
)) {
1060 E1000_ERR("EEPROM initialization failed\n");
1064 /* before reading the EEPROM, reset the controller to
1065 * put the device in a known good starting state */
1069 /* make sure the EEPROM is good */
1070 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1071 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1072 e1000_dump_eeprom(adapter
);
1074 * set MAC address to all zeroes to invalidate and temporary
1075 * disable this device for the user. This blocks regular
1076 * traffic while still permitting ethtool ioctls from reaching
1077 * the hardware as well as allowing the user to run the
1078 * interface after manually setting a hw addr using
1081 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1083 /* copy the MAC address out of the EEPROM */
1084 if (e1000_read_mac_addr(hw
))
1085 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1087 /* don't block initalization here due to bad MAC address */
1088 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1089 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1091 if (!is_valid_ether_addr(netdev
->perm_addr
))
1092 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1094 e1000_get_bus_info(hw
);
1096 init_timer(&adapter
->tx_fifo_stall_timer
);
1097 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1098 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1100 init_timer(&adapter
->watchdog_timer
);
1101 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1102 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1104 init_timer(&adapter
->phy_info_timer
);
1105 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1106 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1108 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1110 e1000_check_options(adapter
);
1112 /* Initial Wake on LAN setting
1113 * If APM wake is enabled in the EEPROM,
1114 * enable the ACPI Magic Packet filter
1117 switch (hw
->mac_type
) {
1118 case e1000_82542_rev2_0
:
1119 case e1000_82542_rev2_1
:
1123 e1000_read_eeprom(hw
,
1124 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1125 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1128 e1000_read_eeprom(hw
,
1129 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1130 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1133 case e1000_82546_rev_3
:
1135 case e1000_80003es2lan
:
1136 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1137 e1000_read_eeprom(hw
,
1138 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1143 e1000_read_eeprom(hw
,
1144 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1147 if (eeprom_data
& eeprom_apme_mask
)
1148 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port */
1153 switch (pdev
->device
) {
1154 case E1000_DEV_ID_82546GB_PCIE
:
1155 adapter
->eeprom_wol
= 0;
1157 case E1000_DEV_ID_82546EB_FIBER
:
1158 case E1000_DEV_ID_82546GB_FIBER
:
1159 case E1000_DEV_ID_82571EB_FIBER
:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting */
1162 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1163 adapter
->eeprom_wol
= 0;
1165 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1166 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1167 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1169 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1170 /* if quad port adapter, disable WoL on all but port A */
1171 if (global_quad_port_a
!= 0)
1172 adapter
->eeprom_wol
= 0;
1174 adapter
->quad_port_a
= 1;
1175 /* Reset for multiple quad port adapters */
1176 if (++global_quad_port_a
== 4)
1177 global_quad_port_a
= 0;
1181 /* initialize the wol settings based on the eeprom settings */
1182 adapter
->wol
= adapter
->eeprom_wol
;
1183 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1185 /* print bus type/speed/width info */
1186 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1187 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1188 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1189 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1190 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1191 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1192 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1193 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1194 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1195 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1196 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1199 printk("%pM\n", netdev
->dev_addr
);
1201 if (hw
->bus_type
== e1000_bus_type_pci_express
) {
1202 DPRINTK(PROBE
, WARNING
, "This device (id %04x:%04x) will no "
1203 "longer be supported by this driver in the future.\n",
1204 pdev
->vendor
, pdev
->device
);
1205 DPRINTK(PROBE
, WARNING
, "please use the \"e1000e\" "
1206 "driver instead.\n");
1209 /* reset the hardware with the new settings */
1210 e1000_reset(adapter
);
1212 /* If the controller is 82573 and f/w is AMT, do not set
1213 * DRV_LOAD until the interface is up. For all other cases,
1214 * let the f/w know that the h/w is now under the control
1216 if (hw
->mac_type
!= e1000_82573
||
1217 !e1000_check_mng_mode(hw
))
1218 e1000_get_hw_control(adapter
);
1220 /* tell the stack to leave us alone until e1000_open() is called */
1221 netif_carrier_off(netdev
);
1222 netif_stop_queue(netdev
);
1224 strcpy(netdev
->name
, "eth%d");
1225 err
= register_netdev(netdev
);
1229 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1235 e1000_release_hw_control(adapter
);
1237 if (!e1000_check_phy_reset_block(hw
))
1238 e1000_phy_hw_reset(hw
);
1240 if (hw
->flash_address
)
1241 iounmap(hw
->flash_address
);
1243 kfree(adapter
->tx_ring
);
1244 kfree(adapter
->rx_ring
);
1246 iounmap(hw
->hw_addr
);
1248 free_netdev(netdev
);
1250 pci_release_selected_regions(pdev
, bars
);
1253 pci_disable_device(pdev
);
1258 * e1000_remove - Device Removal Routine
1259 * @pdev: PCI device information struct
1261 * e1000_remove is called by the PCI subsystem to alert the driver
1262 * that it should release a PCI device. The could be caused by a
1263 * Hot-Plug event, or because the driver is going to be removed from
1267 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1269 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1270 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1271 struct e1000_hw
*hw
= &adapter
->hw
;
1273 cancel_work_sync(&adapter
->reset_task
);
1275 e1000_release_manageability(adapter
);
1277 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1278 * would have already happened in close and is redundant. */
1279 e1000_release_hw_control(adapter
);
1281 unregister_netdev(netdev
);
1283 if (!e1000_check_phy_reset_block(hw
))
1284 e1000_phy_hw_reset(hw
);
1286 kfree(adapter
->tx_ring
);
1287 kfree(adapter
->rx_ring
);
1289 iounmap(hw
->hw_addr
);
1290 if (hw
->flash_address
)
1291 iounmap(hw
->flash_address
);
1292 pci_release_selected_regions(pdev
, adapter
->bars
);
1294 free_netdev(netdev
);
1296 pci_disable_device(pdev
);
1300 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301 * @adapter: board private structure to initialize
1303 * e1000_sw_init initializes the Adapter private data structure.
1304 * Fields are initialized based on PCI device information and
1305 * OS network device settings (MTU size).
1308 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1310 struct e1000_hw
*hw
= &adapter
->hw
;
1311 struct net_device
*netdev
= adapter
->netdev
;
1312 struct pci_dev
*pdev
= adapter
->pdev
;
1314 /* PCI config space info */
1316 hw
->vendor_id
= pdev
->vendor
;
1317 hw
->device_id
= pdev
->device
;
1318 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1319 hw
->subsystem_id
= pdev
->subsystem_device
;
1320 hw
->revision_id
= pdev
->revision
;
1322 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1324 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1325 hw
->max_frame_size
= netdev
->mtu
+
1326 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1327 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1329 /* identify the MAC */
1331 if (e1000_set_mac_type(hw
)) {
1332 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1336 switch (hw
->mac_type
) {
1341 case e1000_82541_rev_2
:
1342 case e1000_82547_rev_2
:
1343 hw
->phy_init_script
= 1;
1347 e1000_set_media_type(hw
);
1349 hw
->wait_autoneg_complete
= false;
1350 hw
->tbi_compatibility_en
= true;
1351 hw
->adaptive_ifs
= true;
1353 /* Copper options */
1355 if (hw
->media_type
== e1000_media_type_copper
) {
1356 hw
->mdix
= AUTO_ALL_MODES
;
1357 hw
->disable_polarity_correction
= false;
1358 hw
->master_slave
= E1000_MASTER_SLAVE
;
1361 adapter
->num_tx_queues
= 1;
1362 adapter
->num_rx_queues
= 1;
1364 if (e1000_alloc_queues(adapter
)) {
1365 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1369 /* Explicitly disable IRQ since the NIC can be in any state. */
1370 e1000_irq_disable(adapter
);
1372 spin_lock_init(&adapter
->stats_lock
);
1374 set_bit(__E1000_DOWN
, &adapter
->flags
);
1380 * e1000_alloc_queues - Allocate memory for all rings
1381 * @adapter: board private structure to initialize
1383 * We allocate one ring per queue at run-time since we don't know the
1384 * number of queues at compile-time.
1387 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1389 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1390 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1391 if (!adapter
->tx_ring
)
1394 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1395 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1396 if (!adapter
->rx_ring
) {
1397 kfree(adapter
->tx_ring
);
1401 return E1000_SUCCESS
;
1405 * e1000_open - Called when a network interface is made active
1406 * @netdev: network interface device structure
1408 * Returns 0 on success, negative value on failure
1410 * The open entry point is called when a network interface is made
1411 * active by the system (IFF_UP). At this point all resources needed
1412 * for transmit and receive operations are allocated, the interrupt
1413 * handler is registered with the OS, the watchdog timer is started,
1414 * and the stack is notified that the interface is ready.
1417 static int e1000_open(struct net_device
*netdev
)
1419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1420 struct e1000_hw
*hw
= &adapter
->hw
;
1423 /* disallow open during test */
1424 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1427 /* allocate transmit descriptors */
1428 err
= e1000_setup_all_tx_resources(adapter
);
1432 /* allocate receive descriptors */
1433 err
= e1000_setup_all_rx_resources(adapter
);
1437 e1000_power_up_phy(adapter
);
1439 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1440 if ((hw
->mng_cookie
.status
&
1441 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1442 e1000_update_mng_vlan(adapter
);
1445 /* If AMT is enabled, let the firmware know that the network
1446 * interface is now open */
1447 if (hw
->mac_type
== e1000_82573
&&
1448 e1000_check_mng_mode(hw
))
1449 e1000_get_hw_control(adapter
);
1451 /* before we allocate an interrupt, we must be ready to handle it.
1452 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453 * as soon as we call pci_request_irq, so we have to setup our
1454 * clean_rx handler before we do so. */
1455 e1000_configure(adapter
);
1457 err
= e1000_request_irq(adapter
);
1461 /* From here on the code is the same as e1000_up() */
1462 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1464 napi_enable(&adapter
->napi
);
1466 e1000_irq_enable(adapter
);
1468 netif_start_queue(netdev
);
1470 /* fire a link status change interrupt to start the watchdog */
1471 ew32(ICS
, E1000_ICS_LSC
);
1473 return E1000_SUCCESS
;
1476 e1000_release_hw_control(adapter
);
1477 e1000_power_down_phy(adapter
);
1478 e1000_free_all_rx_resources(adapter
);
1480 e1000_free_all_tx_resources(adapter
);
1482 e1000_reset(adapter
);
1488 * e1000_close - Disables a network interface
1489 * @netdev: network interface device structure
1491 * Returns 0, this is not allowed to fail
1493 * The close entry point is called when an interface is de-activated
1494 * by the OS. The hardware is still under the drivers control, but
1495 * needs to be disabled. A global MAC reset is issued to stop the
1496 * hardware, and all transmit and receive resources are freed.
1499 static int e1000_close(struct net_device
*netdev
)
1501 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1502 struct e1000_hw
*hw
= &adapter
->hw
;
1504 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1505 e1000_down(adapter
);
1506 e1000_power_down_phy(adapter
);
1507 e1000_free_irq(adapter
);
1509 e1000_free_all_tx_resources(adapter
);
1510 e1000_free_all_rx_resources(adapter
);
1512 /* kill manageability vlan ID if supported, but not if a vlan with
1513 * the same ID is registered on the host OS (let 8021q kill it) */
1514 if ((hw
->mng_cookie
.status
&
1515 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1517 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1518 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1521 /* If AMT is enabled, let the firmware know that the network
1522 * interface is now closed */
1523 if (hw
->mac_type
== e1000_82573
&&
1524 e1000_check_mng_mode(hw
))
1525 e1000_release_hw_control(adapter
);
1531 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532 * @adapter: address of board private structure
1533 * @start: address of beginning of memory
1534 * @len: length of memory
1536 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1539 struct e1000_hw
*hw
= &adapter
->hw
;
1540 unsigned long begin
= (unsigned long)start
;
1541 unsigned long end
= begin
+ len
;
1543 /* First rev 82545 and 82546 need to not allow any memory
1544 * write location to cross 64k boundary due to errata 23 */
1545 if (hw
->mac_type
== e1000_82545
||
1546 hw
->mac_type
== e1000_82546
) {
1547 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1554 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555 * @adapter: board private structure
1556 * @txdr: tx descriptor ring (for a specific queue) to setup
1558 * Return 0 on success, negative on failure
1561 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1562 struct e1000_tx_ring
*txdr
)
1564 struct pci_dev
*pdev
= adapter
->pdev
;
1567 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1568 txdr
->buffer_info
= vmalloc(size
);
1569 if (!txdr
->buffer_info
) {
1571 "Unable to allocate memory for the transmit descriptor ring\n");
1574 memset(txdr
->buffer_info
, 0, size
);
1576 /* round up to nearest 4K */
1578 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1579 txdr
->size
= ALIGN(txdr
->size
, 4096);
1581 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1584 vfree(txdr
->buffer_info
);
1586 "Unable to allocate memory for the transmit descriptor ring\n");
1590 /* Fix for errata 23, can't cross 64kB boundary */
1591 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1592 void *olddesc
= txdr
->desc
;
1593 dma_addr_t olddma
= txdr
->dma
;
1594 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1595 "at %p\n", txdr
->size
, txdr
->desc
);
1596 /* Try again, without freeing the previous */
1597 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1598 /* Failed allocation, critical failure */
1600 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1601 goto setup_tx_desc_die
;
1604 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1606 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1608 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1610 "Unable to allocate aligned memory "
1611 "for the transmit descriptor ring\n");
1612 vfree(txdr
->buffer_info
);
1615 /* Free old allocation, new allocation was successful */
1616 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1619 memset(txdr
->desc
, 0, txdr
->size
);
1621 txdr
->next_to_use
= 0;
1622 txdr
->next_to_clean
= 0;
1628 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629 * (Descriptors) for all queues
1630 * @adapter: board private structure
1632 * Return 0 on success, negative on failure
1635 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1639 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1640 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1643 "Allocation for Tx Queue %u failed\n", i
);
1644 for (i
-- ; i
>= 0; i
--)
1645 e1000_free_tx_resources(adapter
,
1646 &adapter
->tx_ring
[i
]);
1655 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656 * @adapter: board private structure
1658 * Configure the Tx unit of the MAC after a reset.
1661 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1664 struct e1000_hw
*hw
= &adapter
->hw
;
1665 u32 tdlen
, tctl
, tipg
, tarc
;
1668 /* Setup the HW Tx Head and Tail descriptor pointers */
1670 switch (adapter
->num_tx_queues
) {
1673 tdba
= adapter
->tx_ring
[0].dma
;
1674 tdlen
= adapter
->tx_ring
[0].count
*
1675 sizeof(struct e1000_tx_desc
);
1677 ew32(TDBAH
, (tdba
>> 32));
1678 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1681 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1682 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1686 /* Set the default values for the Tx Inter Packet Gap timer */
1687 if (hw
->mac_type
<= e1000_82547_rev_2
&&
1688 (hw
->media_type
== e1000_media_type_fiber
||
1689 hw
->media_type
== e1000_media_type_internal_serdes
))
1690 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1692 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1694 switch (hw
->mac_type
) {
1695 case e1000_82542_rev2_0
:
1696 case e1000_82542_rev2_1
:
1697 tipg
= DEFAULT_82542_TIPG_IPGT
;
1698 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1699 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1701 case e1000_80003es2lan
:
1702 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1703 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1706 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1707 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1710 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1711 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1714 /* Set the Tx Interrupt Delay register */
1716 ew32(TIDV
, adapter
->tx_int_delay
);
1717 if (hw
->mac_type
>= e1000_82540
)
1718 ew32(TADV
, adapter
->tx_abs_int_delay
);
1720 /* Program the Transmit Control Register */
1723 tctl
&= ~E1000_TCTL_CT
;
1724 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1725 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1727 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1729 /* set the speed mode bit, we'll clear it if we're not at
1730 * gigabit link later */
1733 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1742 e1000_config_collision_dist(hw
);
1744 /* Setup Transmit Descriptor Settings for eop descriptor */
1745 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1747 /* only set IDE if we are delaying interrupts using the timers */
1748 if (adapter
->tx_int_delay
)
1749 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1751 if (hw
->mac_type
< e1000_82543
)
1752 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1754 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1756 /* Cache if we're 82544 running in PCI-X because we'll
1757 * need this to apply a workaround later in the send path. */
1758 if (hw
->mac_type
== e1000_82544
&&
1759 hw
->bus_type
== e1000_bus_type_pcix
)
1760 adapter
->pcix_82544
= 1;
1767 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768 * @adapter: board private structure
1769 * @rxdr: rx descriptor ring (for a specific queue) to setup
1771 * Returns 0 on success, negative on failure
1774 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1775 struct e1000_rx_ring
*rxdr
)
1777 struct e1000_hw
*hw
= &adapter
->hw
;
1778 struct pci_dev
*pdev
= adapter
->pdev
;
1781 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1782 rxdr
->buffer_info
= vmalloc(size
);
1783 if (!rxdr
->buffer_info
) {
1785 "Unable to allocate memory for the receive descriptor ring\n");
1788 memset(rxdr
->buffer_info
, 0, size
);
1790 if (hw
->mac_type
<= e1000_82547_rev_2
)
1791 desc_len
= sizeof(struct e1000_rx_desc
);
1793 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1795 /* Round up to nearest 4K */
1797 rxdr
->size
= rxdr
->count
* desc_len
;
1798 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1800 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1804 "Unable to allocate memory for the receive descriptor ring\n");
1806 vfree(rxdr
->buffer_info
);
1810 /* Fix for errata 23, can't cross 64kB boundary */
1811 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1812 void *olddesc
= rxdr
->desc
;
1813 dma_addr_t olddma
= rxdr
->dma
;
1814 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1815 "at %p\n", rxdr
->size
, rxdr
->desc
);
1816 /* Try again, without freeing the previous */
1817 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1818 /* Failed allocation, critical failure */
1820 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1822 "Unable to allocate memory "
1823 "for the receive descriptor ring\n");
1824 goto setup_rx_desc_die
;
1827 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1829 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1831 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1833 "Unable to allocate aligned memory "
1834 "for the receive descriptor ring\n");
1835 goto setup_rx_desc_die
;
1837 /* Free old allocation, new allocation was successful */
1838 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1841 memset(rxdr
->desc
, 0, rxdr
->size
);
1843 rxdr
->next_to_clean
= 0;
1844 rxdr
->next_to_use
= 0;
1850 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851 * (Descriptors) for all queues
1852 * @adapter: board private structure
1854 * Return 0 on success, negative on failure
1857 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1861 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1862 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1865 "Allocation for Rx Queue %u failed\n", i
);
1866 for (i
-- ; i
>= 0; i
--)
1867 e1000_free_rx_resources(adapter
,
1868 &adapter
->rx_ring
[i
]);
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1882 struct e1000_hw
*hw
= &adapter
->hw
;
1887 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1889 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1890 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1891 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1893 if (hw
->tbi_compatibility_on
== 1)
1894 rctl
|= E1000_RCTL_SBP
;
1896 rctl
&= ~E1000_RCTL_SBP
;
1898 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1899 rctl
&= ~E1000_RCTL_LPE
;
1901 rctl
|= E1000_RCTL_LPE
;
1903 /* Setup buffer sizes */
1904 rctl
&= ~E1000_RCTL_SZ_4096
;
1905 rctl
|= E1000_RCTL_BSEX
;
1906 switch (adapter
->rx_buffer_len
) {
1907 case E1000_RXBUFFER_256
:
1908 rctl
|= E1000_RCTL_SZ_256
;
1909 rctl
&= ~E1000_RCTL_BSEX
;
1911 case E1000_RXBUFFER_512
:
1912 rctl
|= E1000_RCTL_SZ_512
;
1913 rctl
&= ~E1000_RCTL_BSEX
;
1915 case E1000_RXBUFFER_1024
:
1916 rctl
|= E1000_RCTL_SZ_1024
;
1917 rctl
&= ~E1000_RCTL_BSEX
;
1919 case E1000_RXBUFFER_2048
:
1921 rctl
|= E1000_RCTL_SZ_2048
;
1922 rctl
&= ~E1000_RCTL_BSEX
;
1924 case E1000_RXBUFFER_4096
:
1925 rctl
|= E1000_RCTL_SZ_4096
;
1927 case E1000_RXBUFFER_8192
:
1928 rctl
|= E1000_RCTL_SZ_8192
;
1930 case E1000_RXBUFFER_16384
:
1931 rctl
|= E1000_RCTL_SZ_16384
;
1939 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1940 * @adapter: board private structure
1942 * Configure the Rx unit of the MAC after a reset.
1945 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1948 struct e1000_hw
*hw
= &adapter
->hw
;
1949 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
1951 rdlen
= adapter
->rx_ring
[0].count
*
1952 sizeof(struct e1000_rx_desc
);
1953 adapter
->clean_rx
= e1000_clean_rx_irq
;
1954 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1956 /* disable receives while setting up the descriptors */
1958 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1960 /* set the Receive Delay Timer Register */
1961 ew32(RDTR
, adapter
->rx_int_delay
);
1963 if (hw
->mac_type
>= e1000_82540
) {
1964 ew32(RADV
, adapter
->rx_abs_int_delay
);
1965 if (adapter
->itr_setting
!= 0)
1966 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1969 if (hw
->mac_type
>= e1000_82571
) {
1970 ctrl_ext
= er32(CTRL_EXT
);
1971 /* Reset delay timers after every interrupt */
1972 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1973 /* Auto-Mask interrupts upon ICR access */
1974 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1975 ew32(IAM
, 0xffffffff);
1976 ew32(CTRL_EXT
, ctrl_ext
);
1977 E1000_WRITE_FLUSH();
1980 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1981 * the Base and Length of the Rx Descriptor Ring */
1982 switch (adapter
->num_rx_queues
) {
1985 rdba
= adapter
->rx_ring
[0].dma
;
1987 ew32(RDBAH
, (rdba
>> 32));
1988 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1991 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1992 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1996 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1997 if (hw
->mac_type
>= e1000_82543
) {
1998 rxcsum
= er32(RXCSUM
);
1999 if (adapter
->rx_csum
)
2000 rxcsum
|= E1000_RXCSUM_TUOFL
;
2002 /* don't need to clear IPPCSE as it defaults to 0 */
2003 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2004 ew32(RXCSUM
, rxcsum
);
2007 /* Enable Receives */
2012 * e1000_free_tx_resources - Free Tx Resources per Queue
2013 * @adapter: board private structure
2014 * @tx_ring: Tx descriptor ring for a specific queue
2016 * Free all transmit software resources
2019 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2020 struct e1000_tx_ring
*tx_ring
)
2022 struct pci_dev
*pdev
= adapter
->pdev
;
2024 e1000_clean_tx_ring(adapter
, tx_ring
);
2026 vfree(tx_ring
->buffer_info
);
2027 tx_ring
->buffer_info
= NULL
;
2029 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2031 tx_ring
->desc
= NULL
;
2035 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2036 * @adapter: board private structure
2038 * Free all transmit software resources
2041 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2045 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2046 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2049 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2050 struct e1000_buffer
*buffer_info
)
2052 buffer_info
->dma
= 0;
2053 if (buffer_info
->skb
) {
2054 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2056 dev_kfree_skb_any(buffer_info
->skb
);
2057 buffer_info
->skb
= NULL
;
2059 buffer_info
->time_stamp
= 0;
2060 /* buffer_info must be completely set up in the transmit path */
2064 * e1000_clean_tx_ring - Free Tx Buffers
2065 * @adapter: board private structure
2066 * @tx_ring: ring to be cleaned
2069 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2070 struct e1000_tx_ring
*tx_ring
)
2072 struct e1000_hw
*hw
= &adapter
->hw
;
2073 struct e1000_buffer
*buffer_info
;
2077 /* Free all the Tx ring sk_buffs */
2079 for (i
= 0; i
< tx_ring
->count
; i
++) {
2080 buffer_info
= &tx_ring
->buffer_info
[i
];
2081 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2084 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2085 memset(tx_ring
->buffer_info
, 0, size
);
2087 /* Zero out the descriptor ring */
2089 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2091 tx_ring
->next_to_use
= 0;
2092 tx_ring
->next_to_clean
= 0;
2093 tx_ring
->last_tx_tso
= 0;
2095 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2096 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2100 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2101 * @adapter: board private structure
2104 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2108 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2109 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2113 * e1000_free_rx_resources - Free Rx Resources
2114 * @adapter: board private structure
2115 * @rx_ring: ring to clean the resources from
2117 * Free all receive software resources
2120 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2121 struct e1000_rx_ring
*rx_ring
)
2123 struct pci_dev
*pdev
= adapter
->pdev
;
2125 e1000_clean_rx_ring(adapter
, rx_ring
);
2127 vfree(rx_ring
->buffer_info
);
2128 rx_ring
->buffer_info
= NULL
;
2130 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2132 rx_ring
->desc
= NULL
;
2136 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2137 * @adapter: board private structure
2139 * Free all receive software resources
2142 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2146 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2147 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2151 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2152 * @adapter: board private structure
2153 * @rx_ring: ring to free buffers from
2156 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2157 struct e1000_rx_ring
*rx_ring
)
2159 struct e1000_hw
*hw
= &adapter
->hw
;
2160 struct e1000_buffer
*buffer_info
;
2161 struct pci_dev
*pdev
= adapter
->pdev
;
2165 /* Free all the Rx ring sk_buffs */
2166 for (i
= 0; i
< rx_ring
->count
; i
++) {
2167 buffer_info
= &rx_ring
->buffer_info
[i
];
2168 if (buffer_info
->skb
) {
2169 pci_unmap_single(pdev
,
2171 buffer_info
->length
,
2172 PCI_DMA_FROMDEVICE
);
2174 dev_kfree_skb(buffer_info
->skb
);
2175 buffer_info
->skb
= NULL
;
2179 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2180 memset(rx_ring
->buffer_info
, 0, size
);
2182 /* Zero out the descriptor ring */
2184 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2186 rx_ring
->next_to_clean
= 0;
2187 rx_ring
->next_to_use
= 0;
2189 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2190 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2194 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2195 * @adapter: board private structure
2198 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2202 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2203 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2206 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2207 * and memory write and invalidate disabled for certain operations
2209 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2211 struct e1000_hw
*hw
= &adapter
->hw
;
2212 struct net_device
*netdev
= adapter
->netdev
;
2215 e1000_pci_clear_mwi(hw
);
2218 rctl
|= E1000_RCTL_RST
;
2220 E1000_WRITE_FLUSH();
2223 if (netif_running(netdev
))
2224 e1000_clean_all_rx_rings(adapter
);
2227 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2229 struct e1000_hw
*hw
= &adapter
->hw
;
2230 struct net_device
*netdev
= adapter
->netdev
;
2234 rctl
&= ~E1000_RCTL_RST
;
2236 E1000_WRITE_FLUSH();
2239 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2240 e1000_pci_set_mwi(hw
);
2242 if (netif_running(netdev
)) {
2243 /* No need to loop, because 82542 supports only 1 queue */
2244 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2245 e1000_configure_rx(adapter
);
2246 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2251 * e1000_set_mac - Change the Ethernet Address of the NIC
2252 * @netdev: network interface device structure
2253 * @p: pointer to an address structure
2255 * Returns 0 on success, negative on failure
2258 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2260 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2261 struct e1000_hw
*hw
= &adapter
->hw
;
2262 struct sockaddr
*addr
= p
;
2264 if (!is_valid_ether_addr(addr
->sa_data
))
2265 return -EADDRNOTAVAIL
;
2267 /* 82542 2.0 needs to be in reset to write receive address registers */
2269 if (hw
->mac_type
== e1000_82542_rev2_0
)
2270 e1000_enter_82542_rst(adapter
);
2272 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2273 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2275 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2277 /* With 82571 controllers, LAA may be overwritten (with the default)
2278 * due to controller reset from the other port. */
2279 if (hw
->mac_type
== e1000_82571
) {
2280 /* activate the work around */
2281 hw
->laa_is_present
= 1;
2283 /* Hold a copy of the LAA in RAR[14] This is done so that
2284 * between the time RAR[0] gets clobbered and the time it
2285 * gets fixed (in e1000_watchdog), the actual LAA is in one
2286 * of the RARs and no incoming packets directed to this port
2287 * are dropped. Eventaully the LAA will be in RAR[0] and
2289 e1000_rar_set(hw
, hw
->mac_addr
,
2290 E1000_RAR_ENTRIES
- 1);
2293 if (hw
->mac_type
== e1000_82542_rev2_0
)
2294 e1000_leave_82542_rst(adapter
);
2300 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2301 * @netdev: network interface device structure
2303 * The set_rx_mode entry point is called whenever the unicast or multicast
2304 * address lists or the network interface flags are updated. This routine is
2305 * responsible for configuring the hardware for proper unicast, multicast,
2306 * promiscuous mode, and all-multi behavior.
2309 static void e1000_set_rx_mode(struct net_device
*netdev
)
2311 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2312 struct e1000_hw
*hw
= &adapter
->hw
;
2313 struct dev_addr_list
*uc_ptr
;
2314 struct dev_addr_list
*mc_ptr
;
2317 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2318 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2319 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2320 E1000_NUM_MTA_REGISTERS
;
2322 if (hw
->mac_type
== e1000_ich8lan
)
2323 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2325 /* reserve RAR[14] for LAA over-write work-around */
2326 if (hw
->mac_type
== e1000_82571
)
2329 /* Check for Promiscuous and All Multicast modes */
2333 if (netdev
->flags
& IFF_PROMISC
) {
2334 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2335 rctl
&= ~E1000_RCTL_VFE
;
2337 if (netdev
->flags
& IFF_ALLMULTI
) {
2338 rctl
|= E1000_RCTL_MPE
;
2340 rctl
&= ~E1000_RCTL_MPE
;
2342 if (adapter
->hw
.mac_type
!= e1000_ich8lan
)
2343 rctl
|= E1000_RCTL_VFE
;
2347 if (netdev
->uc_count
> rar_entries
- 1) {
2348 rctl
|= E1000_RCTL_UPE
;
2349 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2350 rctl
&= ~E1000_RCTL_UPE
;
2351 uc_ptr
= netdev
->uc_list
;
2356 /* 82542 2.0 needs to be in reset to write receive address registers */
2358 if (hw
->mac_type
== e1000_82542_rev2_0
)
2359 e1000_enter_82542_rst(adapter
);
2361 /* load the first 14 addresses into the exact filters 1-14. Unicast
2362 * addresses take precedence to avoid disabling unicast filtering
2365 * RAR 0 is used for the station MAC adddress
2366 * if there are not 14 addresses, go ahead and clear the filters
2367 * -- with 82571 controllers only 0-13 entries are filled here
2369 mc_ptr
= netdev
->mc_list
;
2371 for (i
= 1; i
< rar_entries
; i
++) {
2373 e1000_rar_set(hw
, uc_ptr
->da_addr
, i
);
2374 uc_ptr
= uc_ptr
->next
;
2375 } else if (mc_ptr
) {
2376 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
);
2377 mc_ptr
= mc_ptr
->next
;
2379 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2380 E1000_WRITE_FLUSH();
2381 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2382 E1000_WRITE_FLUSH();
2385 WARN_ON(uc_ptr
!= NULL
);
2387 /* clear the old settings from the multicast hash table */
2389 for (i
= 0; i
< mta_reg_count
; i
++) {
2390 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2391 E1000_WRITE_FLUSH();
2394 /* load any remaining addresses into the hash table */
2396 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2397 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2398 e1000_mta_set(hw
, hash_value
);
2401 if (hw
->mac_type
== e1000_82542_rev2_0
)
2402 e1000_leave_82542_rst(adapter
);
2405 /* Need to wait a few seconds after link up to get diagnostic information from
2408 static void e1000_update_phy_info(unsigned long data
)
2410 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2411 struct e1000_hw
*hw
= &adapter
->hw
;
2412 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2416 * e1000_82547_tx_fifo_stall - Timer Call-back
2417 * @data: pointer to adapter cast into an unsigned long
2420 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2422 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2423 struct e1000_hw
*hw
= &adapter
->hw
;
2424 struct net_device
*netdev
= adapter
->netdev
;
2427 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2428 if ((er32(TDT
) == er32(TDH
)) &&
2429 (er32(TDFT
) == er32(TDFH
)) &&
2430 (er32(TDFTS
) == er32(TDFHS
))) {
2432 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2433 ew32(TDFT
, adapter
->tx_head_addr
);
2434 ew32(TDFH
, adapter
->tx_head_addr
);
2435 ew32(TDFTS
, adapter
->tx_head_addr
);
2436 ew32(TDFHS
, adapter
->tx_head_addr
);
2438 E1000_WRITE_FLUSH();
2440 adapter
->tx_fifo_head
= 0;
2441 atomic_set(&adapter
->tx_fifo_stall
, 0);
2442 netif_wake_queue(netdev
);
2444 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2450 * e1000_watchdog - Timer Call-back
2451 * @data: pointer to adapter cast into an unsigned long
2453 static void e1000_watchdog(unsigned long data
)
2455 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2456 struct e1000_hw
*hw
= &adapter
->hw
;
2457 struct net_device
*netdev
= adapter
->netdev
;
2458 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2462 ret_val
= e1000_check_for_link(hw
);
2463 if ((ret_val
== E1000_ERR_PHY
) &&
2464 (hw
->phy_type
== e1000_phy_igp_3
) &&
2465 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2466 /* See e1000_kumeran_lock_loss_workaround() */
2468 "Gigabit has been disabled, downgrading speed\n");
2471 if (hw
->mac_type
== e1000_82573
) {
2472 e1000_enable_tx_pkt_filtering(hw
);
2473 if (adapter
->mng_vlan_id
!= hw
->mng_cookie
.vlan_id
)
2474 e1000_update_mng_vlan(adapter
);
2477 if ((hw
->media_type
== e1000_media_type_internal_serdes
) &&
2478 !(er32(TXCW
) & E1000_TXCW_ANE
))
2479 link
= !hw
->serdes_link_down
;
2481 link
= er32(STATUS
) & E1000_STATUS_LU
;
2484 if (!netif_carrier_ok(netdev
)) {
2487 e1000_get_speed_and_duplex(hw
,
2488 &adapter
->link_speed
,
2489 &adapter
->link_duplex
);
2492 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2493 "Flow Control: %s\n",
2495 adapter
->link_speed
,
2496 adapter
->link_duplex
== FULL_DUPLEX
?
2497 "Full Duplex" : "Half Duplex",
2498 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2499 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2500 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2501 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2503 /* tweak tx_queue_len according to speed/duplex
2504 * and adjust the timeout factor */
2505 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2506 adapter
->tx_timeout_factor
= 1;
2507 switch (adapter
->link_speed
) {
2510 netdev
->tx_queue_len
= 10;
2511 adapter
->tx_timeout_factor
= 8;
2515 netdev
->tx_queue_len
= 100;
2516 /* maybe add some timeout factor ? */
2520 if ((hw
->mac_type
== e1000_82571
||
2521 hw
->mac_type
== e1000_82572
) &&
2524 tarc0
= er32(TARC0
);
2525 tarc0
&= ~(1 << 21);
2529 /* disable TSO for pcie and 10/100 speeds, to avoid
2530 * some hardware issues */
2531 if (!adapter
->tso_force
&&
2532 hw
->bus_type
== e1000_bus_type_pci_express
){
2533 switch (adapter
->link_speed
) {
2537 "10/100 speed: disabling TSO\n");
2538 netdev
->features
&= ~NETIF_F_TSO
;
2539 netdev
->features
&= ~NETIF_F_TSO6
;
2542 netdev
->features
|= NETIF_F_TSO
;
2543 netdev
->features
|= NETIF_F_TSO6
;
2551 /* enable transmits in the hardware, need to do this
2552 * after setting TARC0 */
2554 tctl
|= E1000_TCTL_EN
;
2557 netif_carrier_on(netdev
);
2558 netif_wake_queue(netdev
);
2559 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2560 adapter
->smartspeed
= 0;
2562 /* make sure the receive unit is started */
2563 if (hw
->rx_needs_kicking
) {
2564 u32 rctl
= er32(RCTL
);
2565 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
2569 if (netif_carrier_ok(netdev
)) {
2570 adapter
->link_speed
= 0;
2571 adapter
->link_duplex
= 0;
2572 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2574 netif_carrier_off(netdev
);
2575 netif_stop_queue(netdev
);
2576 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2578 /* 80003ES2LAN workaround--
2579 * For packet buffer work-around on link down event;
2580 * disable receives in the ISR and
2581 * reset device here in the watchdog
2583 if (hw
->mac_type
== e1000_80003es2lan
)
2585 schedule_work(&adapter
->reset_task
);
2588 e1000_smartspeed(adapter
);
2591 e1000_update_stats(adapter
);
2593 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2594 adapter
->tpt_old
= adapter
->stats
.tpt
;
2595 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2596 adapter
->colc_old
= adapter
->stats
.colc
;
2598 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2599 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2600 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2601 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2603 e1000_update_adaptive(hw
);
2605 if (!netif_carrier_ok(netdev
)) {
2606 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2607 /* We've lost link, so the controller stops DMA,
2608 * but we've got queued Tx work that's never going
2609 * to get done, so reset controller to flush Tx.
2610 * (Do the reset outside of interrupt context). */
2611 adapter
->tx_timeout_count
++;
2612 schedule_work(&adapter
->reset_task
);
2616 /* Cause software interrupt to ensure rx ring is cleaned */
2617 ew32(ICS
, E1000_ICS_RXDMT0
);
2619 /* Force detection of hung controller every watchdog period */
2620 adapter
->detect_tx_hung
= true;
2622 /* With 82571 controllers, LAA may be overwritten due to controller
2623 * reset from the other port. Set the appropriate LAA in RAR[0] */
2624 if (hw
->mac_type
== e1000_82571
&& hw
->laa_is_present
)
2625 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2627 /* Reset the timer */
2628 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2631 enum latency_range
{
2635 latency_invalid
= 255
2639 * e1000_update_itr - update the dynamic ITR value based on statistics
2640 * Stores a new ITR value based on packets and byte
2641 * counts during the last interrupt. The advantage of per interrupt
2642 * computation is faster updates and more accurate ITR for the current
2643 * traffic pattern. Constants in this function were computed
2644 * based on theoretical maximum wire speed and thresholds were set based
2645 * on testing data as well as attempting to minimize response time
2646 * while increasing bulk throughput.
2647 * this functionality is controlled by the InterruptThrottleRate module
2648 * parameter (see e1000_param.c)
2649 * @adapter: pointer to adapter
2650 * @itr_setting: current adapter->itr
2651 * @packets: the number of packets during this measurement interval
2652 * @bytes: the number of bytes during this measurement interval
2654 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2655 u16 itr_setting
, int packets
, int bytes
)
2657 unsigned int retval
= itr_setting
;
2658 struct e1000_hw
*hw
= &adapter
->hw
;
2660 if (unlikely(hw
->mac_type
< e1000_82540
))
2661 goto update_itr_done
;
2664 goto update_itr_done
;
2666 switch (itr_setting
) {
2667 case lowest_latency
:
2668 /* jumbo frames get bulk treatment*/
2669 if (bytes
/packets
> 8000)
2670 retval
= bulk_latency
;
2671 else if ((packets
< 5) && (bytes
> 512))
2672 retval
= low_latency
;
2674 case low_latency
: /* 50 usec aka 20000 ints/s */
2675 if (bytes
> 10000) {
2676 /* jumbo frames need bulk latency setting */
2677 if (bytes
/packets
> 8000)
2678 retval
= bulk_latency
;
2679 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2680 retval
= bulk_latency
;
2681 else if ((packets
> 35))
2682 retval
= lowest_latency
;
2683 } else if (bytes
/packets
> 2000)
2684 retval
= bulk_latency
;
2685 else if (packets
<= 2 && bytes
< 512)
2686 retval
= lowest_latency
;
2688 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2689 if (bytes
> 25000) {
2691 retval
= low_latency
;
2692 } else if (bytes
< 6000) {
2693 retval
= low_latency
;
2702 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2704 struct e1000_hw
*hw
= &adapter
->hw
;
2706 u32 new_itr
= adapter
->itr
;
2708 if (unlikely(hw
->mac_type
< e1000_82540
))
2711 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2712 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2718 adapter
->tx_itr
= e1000_update_itr(adapter
,
2720 adapter
->total_tx_packets
,
2721 adapter
->total_tx_bytes
);
2722 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2723 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2724 adapter
->tx_itr
= low_latency
;
2726 adapter
->rx_itr
= e1000_update_itr(adapter
,
2728 adapter
->total_rx_packets
,
2729 adapter
->total_rx_bytes
);
2730 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2731 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2732 adapter
->rx_itr
= low_latency
;
2734 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2736 switch (current_itr
) {
2737 /* counts and packets in update_itr are dependent on these numbers */
2738 case lowest_latency
:
2742 new_itr
= 20000; /* aka hwitr = ~200 */
2752 if (new_itr
!= adapter
->itr
) {
2753 /* this attempts to bias the interrupt rate towards Bulk
2754 * by adding intermediate steps when interrupt rate is
2756 new_itr
= new_itr
> adapter
->itr
?
2757 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2759 adapter
->itr
= new_itr
;
2760 ew32(ITR
, 1000000000 / (new_itr
* 256));
2766 #define E1000_TX_FLAGS_CSUM 0x00000001
2767 #define E1000_TX_FLAGS_VLAN 0x00000002
2768 #define E1000_TX_FLAGS_TSO 0x00000004
2769 #define E1000_TX_FLAGS_IPV4 0x00000008
2770 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2771 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2773 static int e1000_tso(struct e1000_adapter
*adapter
,
2774 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2776 struct e1000_context_desc
*context_desc
;
2777 struct e1000_buffer
*buffer_info
;
2780 u16 ipcse
= 0, tucse
, mss
;
2781 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2784 if (skb_is_gso(skb
)) {
2785 if (skb_header_cloned(skb
)) {
2786 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2791 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2792 mss
= skb_shinfo(skb
)->gso_size
;
2793 if (skb
->protocol
== htons(ETH_P_IP
)) {
2794 struct iphdr
*iph
= ip_hdr(skb
);
2797 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2801 cmd_length
= E1000_TXD_CMD_IP
;
2802 ipcse
= skb_transport_offset(skb
) - 1;
2803 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2804 ipv6_hdr(skb
)->payload_len
= 0;
2805 tcp_hdr(skb
)->check
=
2806 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2807 &ipv6_hdr(skb
)->daddr
,
2811 ipcss
= skb_network_offset(skb
);
2812 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2813 tucss
= skb_transport_offset(skb
);
2814 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2817 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2818 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2820 i
= tx_ring
->next_to_use
;
2821 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2822 buffer_info
= &tx_ring
->buffer_info
[i
];
2824 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2825 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2826 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2827 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2828 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2829 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2830 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2831 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2832 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2834 buffer_info
->time_stamp
= jiffies
;
2835 buffer_info
->next_to_watch
= i
;
2837 if (++i
== tx_ring
->count
) i
= 0;
2838 tx_ring
->next_to_use
= i
;
2845 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2846 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2848 struct e1000_context_desc
*context_desc
;
2849 struct e1000_buffer
*buffer_info
;
2852 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2854 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2857 switch (skb
->protocol
) {
2858 case cpu_to_be16(ETH_P_IP
):
2859 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2860 cmd_len
|= E1000_TXD_CMD_TCP
;
2862 case cpu_to_be16(ETH_P_IPV6
):
2863 /* XXX not handling all IPV6 headers */
2864 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2865 cmd_len
|= E1000_TXD_CMD_TCP
;
2868 if (unlikely(net_ratelimit()))
2869 DPRINTK(DRV
, WARNING
,
2870 "checksum_partial proto=%x!\n", skb
->protocol
);
2874 css
= skb_transport_offset(skb
);
2876 i
= tx_ring
->next_to_use
;
2877 buffer_info
= &tx_ring
->buffer_info
[i
];
2878 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2880 context_desc
->lower_setup
.ip_config
= 0;
2881 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2882 context_desc
->upper_setup
.tcp_fields
.tucso
=
2883 css
+ skb
->csum_offset
;
2884 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2885 context_desc
->tcp_seg_setup
.data
= 0;
2886 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2888 buffer_info
->time_stamp
= jiffies
;
2889 buffer_info
->next_to_watch
= i
;
2891 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2892 tx_ring
->next_to_use
= i
;
2897 #define E1000_MAX_TXD_PWR 12
2898 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2900 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2901 struct e1000_tx_ring
*tx_ring
,
2902 struct sk_buff
*skb
, unsigned int first
,
2903 unsigned int max_per_txd
, unsigned int nr_frags
,
2906 struct e1000_hw
*hw
= &adapter
->hw
;
2907 struct e1000_buffer
*buffer_info
;
2908 unsigned int len
= skb_headlen(skb
);
2909 unsigned int offset
, size
, count
= 0, i
;
2913 i
= tx_ring
->next_to_use
;
2915 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2916 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2920 map
= skb_shinfo(skb
)->dma_maps
;
2924 buffer_info
= &tx_ring
->buffer_info
[i
];
2925 size
= min(len
, max_per_txd
);
2926 /* Workaround for Controller erratum --
2927 * descriptor for non-tso packet in a linear SKB that follows a
2928 * tso gets written back prematurely before the data is fully
2929 * DMA'd to the controller */
2930 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2932 tx_ring
->last_tx_tso
= 0;
2936 /* Workaround for premature desc write-backs
2937 * in TSO mode. Append 4-byte sentinel desc */
2938 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2940 /* work-around for errata 10 and it applies
2941 * to all controllers in PCI-X mode
2942 * The fix is to make sure that the first descriptor of a
2943 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2945 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2946 (size
> 2015) && count
== 0))
2949 /* Workaround for potential 82544 hang in PCI-X. Avoid
2950 * terminating buffers within evenly-aligned dwords. */
2951 if (unlikely(adapter
->pcix_82544
&&
2952 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2956 buffer_info
->length
= size
;
2957 buffer_info
->dma
= map
[0] + offset
;
2958 buffer_info
->time_stamp
= jiffies
;
2959 buffer_info
->next_to_watch
= i
;
2966 if (unlikely(i
== tx_ring
->count
))
2971 for (f
= 0; f
< nr_frags
; f
++) {
2972 struct skb_frag_struct
*frag
;
2974 frag
= &skb_shinfo(skb
)->frags
[f
];
2980 if (unlikely(i
== tx_ring
->count
))
2983 buffer_info
= &tx_ring
->buffer_info
[i
];
2984 size
= min(len
, max_per_txd
);
2985 /* Workaround for premature desc write-backs
2986 * in TSO mode. Append 4-byte sentinel desc */
2987 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2989 /* Workaround for potential 82544 hang in PCI-X.
2990 * Avoid terminating buffers within evenly-aligned
2992 if (unlikely(adapter
->pcix_82544
&&
2993 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
2997 buffer_info
->length
= size
;
2998 buffer_info
->dma
= map
[f
+ 1] + offset
;
2999 buffer_info
->time_stamp
= jiffies
;
3000 buffer_info
->next_to_watch
= i
;
3008 tx_ring
->buffer_info
[i
].skb
= skb
;
3009 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3014 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3015 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
3018 struct e1000_hw
*hw
= &adapter
->hw
;
3019 struct e1000_tx_desc
*tx_desc
= NULL
;
3020 struct e1000_buffer
*buffer_info
;
3021 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3024 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3025 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3027 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3029 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3030 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3033 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3034 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3035 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3038 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3039 txd_lower
|= E1000_TXD_CMD_VLE
;
3040 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3043 i
= tx_ring
->next_to_use
;
3046 buffer_info
= &tx_ring
->buffer_info
[i
];
3047 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3048 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3049 tx_desc
->lower
.data
=
3050 cpu_to_le32(txd_lower
| buffer_info
->length
);
3051 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3052 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3055 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3057 /* Force memory writes to complete before letting h/w
3058 * know there are new descriptors to fetch. (Only
3059 * applicable for weak-ordered memory model archs,
3060 * such as IA-64). */
3063 tx_ring
->next_to_use
= i
;
3064 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3065 /* we need this if more than one processor can write to our tail
3066 * at a time, it syncronizes IO on IA64/Altix systems */
3071 * 82547 workaround to avoid controller hang in half-duplex environment.
3072 * The workaround is to avoid queuing a large packet that would span
3073 * the internal Tx FIFO ring boundary by notifying the stack to resend
3074 * the packet at a later time. This gives the Tx FIFO an opportunity to
3075 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3076 * to the beginning of the Tx FIFO.
3079 #define E1000_FIFO_HDR 0x10
3080 #define E1000_82547_PAD_LEN 0x3E0
3082 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3083 struct sk_buff
*skb
)
3085 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3086 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3088 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3090 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3091 goto no_fifo_stall_required
;
3093 if (atomic_read(&adapter
->tx_fifo_stall
))
3096 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3097 atomic_set(&adapter
->tx_fifo_stall
, 1);
3101 no_fifo_stall_required
:
3102 adapter
->tx_fifo_head
+= skb_fifo_len
;
3103 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3104 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3108 #define MINIMUM_DHCP_PACKET_SIZE 282
3109 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3110 struct sk_buff
*skb
)
3112 struct e1000_hw
*hw
= &adapter
->hw
;
3114 if (vlan_tx_tag_present(skb
)) {
3115 if (!((vlan_tx_tag_get(skb
) == hw
->mng_cookie
.vlan_id
) &&
3116 ( hw
->mng_cookie
.status
&
3117 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3120 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3121 struct ethhdr
*eth
= (struct ethhdr
*)skb
->data
;
3122 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3123 const struct iphdr
*ip
=
3124 (struct iphdr
*)((u8
*)skb
->data
+14);
3125 if (IPPROTO_UDP
== ip
->protocol
) {
3126 struct udphdr
*udp
=
3127 (struct udphdr
*)((u8
*)ip
+
3129 if (ntohs(udp
->dest
) == 67) {
3130 offset
= (u8
*)udp
+ 8 - skb
->data
;
3131 length
= skb
->len
- offset
;
3133 return e1000_mng_write_dhcp_info(hw
,
3143 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3145 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3146 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3148 netif_stop_queue(netdev
);
3149 /* Herbert's original patch had:
3150 * smp_mb__after_netif_stop_queue();
3151 * but since that doesn't exist yet, just open code it. */
3154 /* We need to check again in a case another CPU has just
3155 * made room available. */
3156 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3160 netif_start_queue(netdev
);
3161 ++adapter
->restart_queue
;
3165 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3166 struct e1000_tx_ring
*tx_ring
, int size
)
3168 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3170 return __e1000_maybe_stop_tx(netdev
, size
);
3173 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3174 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3176 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3177 struct e1000_hw
*hw
= &adapter
->hw
;
3178 struct e1000_tx_ring
*tx_ring
;
3179 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3180 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3181 unsigned int tx_flags
= 0;
3182 unsigned int len
= skb
->len
- skb
->data_len
;
3183 unsigned int nr_frags
;
3189 /* This goes back to the question of how to logically map a tx queue
3190 * to a flow. Right now, performance is impacted slightly negatively
3191 * if using multiple tx queues. If the stack breaks away from a
3192 * single qdisc implementation, we can look at this again. */
3193 tx_ring
= adapter
->tx_ring
;
3195 if (unlikely(skb
->len
<= 0)) {
3196 dev_kfree_skb_any(skb
);
3197 return NETDEV_TX_OK
;
3200 /* 82571 and newer doesn't need the workaround that limited descriptor
3202 if (hw
->mac_type
>= e1000_82571
)
3205 mss
= skb_shinfo(skb
)->gso_size
;
3206 /* The controller does a simple calculation to
3207 * make sure there is enough room in the FIFO before
3208 * initiating the DMA for each buffer. The calc is:
3209 * 4 = ceil(buffer len/mss). To make sure we don't
3210 * overrun the FIFO, adjust the max buffer len if mss
3214 max_per_txd
= min(mss
<< 2, max_per_txd
);
3215 max_txd_pwr
= fls(max_per_txd
) - 1;
3217 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3218 * points to just header, pull a few bytes of payload from
3219 * frags into skb->data */
3220 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3221 if (skb
->data_len
&& hdr_len
== len
) {
3222 switch (hw
->mac_type
) {
3223 unsigned int pull_size
;
3225 /* Make sure we have room to chop off 4 bytes,
3226 * and that the end alignment will work out to
3227 * this hardware's requirements
3228 * NOTE: this is a TSO only workaround
3229 * if end byte alignment not correct move us
3230 * into the next dword */
3231 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3238 pull_size
= min((unsigned int)4, skb
->data_len
);
3239 if (!__pskb_pull_tail(skb
, pull_size
)) {
3241 "__pskb_pull_tail failed.\n");
3242 dev_kfree_skb_any(skb
);
3243 return NETDEV_TX_OK
;
3245 len
= skb
->len
- skb
->data_len
;
3254 /* reserve a descriptor for the offload context */
3255 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3259 /* Controller Erratum workaround */
3260 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3263 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3265 if (adapter
->pcix_82544
)
3268 /* work-around for errata 10 and it applies to all controllers
3269 * in PCI-X mode, so add one more descriptor to the count
3271 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3275 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3276 for (f
= 0; f
< nr_frags
; f
++)
3277 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3279 if (adapter
->pcix_82544
)
3283 if (hw
->tx_pkt_filtering
&&
3284 (hw
->mac_type
== e1000_82573
))
3285 e1000_transfer_dhcp_info(adapter
, skb
);
3287 /* need: count + 2 desc gap to keep tail from touching
3288 * head, otherwise try next time */
3289 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3290 return NETDEV_TX_BUSY
;
3292 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3293 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3294 netif_stop_queue(netdev
);
3295 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3296 return NETDEV_TX_BUSY
;
3300 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3301 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3302 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3305 first
= tx_ring
->next_to_use
;
3307 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3309 dev_kfree_skb_any(skb
);
3310 return NETDEV_TX_OK
;
3314 tx_ring
->last_tx_tso
= 1;
3315 tx_flags
|= E1000_TX_FLAGS_TSO
;
3316 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3317 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3319 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3320 * 82571 hardware supports TSO capabilities for IPv6 as well...
3321 * no longer assume, we must. */
3322 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3323 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3325 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3329 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3330 netdev
->trans_start
= jiffies
;
3331 /* Make sure there is space in the ring for the next send. */
3332 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3335 dev_kfree_skb_any(skb
);
3336 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3337 tx_ring
->next_to_use
= first
;
3340 return NETDEV_TX_OK
;
3344 * e1000_tx_timeout - Respond to a Tx Hang
3345 * @netdev: network interface device structure
3348 static void e1000_tx_timeout(struct net_device
*netdev
)
3350 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3352 /* Do the reset outside of interrupt context */
3353 adapter
->tx_timeout_count
++;
3354 schedule_work(&adapter
->reset_task
);
3357 static void e1000_reset_task(struct work_struct
*work
)
3359 struct e1000_adapter
*adapter
=
3360 container_of(work
, struct e1000_adapter
, reset_task
);
3362 e1000_reinit_locked(adapter
);
3366 * e1000_get_stats - Get System Network Statistics
3367 * @netdev: network interface device structure
3369 * Returns the address of the device statistics structure.
3370 * The statistics are actually updated from the timer callback.
3373 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3375 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3377 /* only return the current stats */
3378 return &adapter
->net_stats
;
3382 * e1000_change_mtu - Change the Maximum Transfer Unit
3383 * @netdev: network interface device structure
3384 * @new_mtu: new value for maximum frame size
3386 * Returns 0 on success, negative on failure
3389 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3391 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3392 struct e1000_hw
*hw
= &adapter
->hw
;
3393 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3394 u16 eeprom_data
= 0;
3396 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3397 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3398 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3402 /* Adapter-specific max frame size limits. */
3403 switch (hw
->mac_type
) {
3404 case e1000_undefined
... e1000_82542_rev2_1
:
3406 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3407 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3412 /* Jumbo Frames not supported if:
3413 * - this is not an 82573L device
3414 * - ASPM is enabled in any way (0x1A bits 3:2) */
3415 e1000_read_eeprom(hw
, EEPROM_INIT_3GIO_3
, 1,
3417 if ((hw
->device_id
!= E1000_DEV_ID_82573L
) ||
3418 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3419 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3421 "Jumbo Frames not supported.\n");
3426 /* ERT will be enabled later to enable wire speed receives */
3428 /* fall through to get support */
3431 case e1000_80003es2lan
:
3432 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3433 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3434 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3439 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3443 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3444 * means we reserve 2 more, this pushes us to allocate from the next
3446 * i.e. RXBUFFER_2048 --> size-4096 slab */
3448 if (max_frame
<= E1000_RXBUFFER_256
)
3449 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3450 else if (max_frame
<= E1000_RXBUFFER_512
)
3451 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3452 else if (max_frame
<= E1000_RXBUFFER_1024
)
3453 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3454 else if (max_frame
<= E1000_RXBUFFER_2048
)
3455 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3456 else if (max_frame
<= E1000_RXBUFFER_4096
)
3457 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3458 else if (max_frame
<= E1000_RXBUFFER_8192
)
3459 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3460 else if (max_frame
<= E1000_RXBUFFER_16384
)
3461 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3463 /* adjust allocation if LPE protects us, and we aren't using SBP */
3464 if (!hw
->tbi_compatibility_on
&&
3465 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3466 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3467 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3469 netdev
->mtu
= new_mtu
;
3470 hw
->max_frame_size
= max_frame
;
3472 if (netif_running(netdev
))
3473 e1000_reinit_locked(adapter
);
3479 * e1000_update_stats - Update the board statistics counters
3480 * @adapter: board private structure
3483 void e1000_update_stats(struct e1000_adapter
*adapter
)
3485 struct e1000_hw
*hw
= &adapter
->hw
;
3486 struct pci_dev
*pdev
= adapter
->pdev
;
3487 unsigned long flags
;
3490 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3493 * Prevent stats update while adapter is being reset, or if the pci
3494 * connection is down.
3496 if (adapter
->link_speed
== 0)
3498 if (pci_channel_offline(pdev
))
3501 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3503 /* these counters are modified from e1000_tbi_adjust_stats,
3504 * called from the interrupt context, so they must only
3505 * be written while holding adapter->stats_lock
3508 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3509 adapter
->stats
.gprc
+= er32(GPRC
);
3510 adapter
->stats
.gorcl
+= er32(GORCL
);
3511 adapter
->stats
.gorch
+= er32(GORCH
);
3512 adapter
->stats
.bprc
+= er32(BPRC
);
3513 adapter
->stats
.mprc
+= er32(MPRC
);
3514 adapter
->stats
.roc
+= er32(ROC
);
3516 if (hw
->mac_type
!= e1000_ich8lan
) {
3517 adapter
->stats
.prc64
+= er32(PRC64
);
3518 adapter
->stats
.prc127
+= er32(PRC127
);
3519 adapter
->stats
.prc255
+= er32(PRC255
);
3520 adapter
->stats
.prc511
+= er32(PRC511
);
3521 adapter
->stats
.prc1023
+= er32(PRC1023
);
3522 adapter
->stats
.prc1522
+= er32(PRC1522
);
3525 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3526 adapter
->stats
.mpc
+= er32(MPC
);
3527 adapter
->stats
.scc
+= er32(SCC
);
3528 adapter
->stats
.ecol
+= er32(ECOL
);
3529 adapter
->stats
.mcc
+= er32(MCC
);
3530 adapter
->stats
.latecol
+= er32(LATECOL
);
3531 adapter
->stats
.dc
+= er32(DC
);
3532 adapter
->stats
.sec
+= er32(SEC
);
3533 adapter
->stats
.rlec
+= er32(RLEC
);
3534 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3535 adapter
->stats
.xontxc
+= er32(XONTXC
);
3536 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3537 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3538 adapter
->stats
.fcruc
+= er32(FCRUC
);
3539 adapter
->stats
.gptc
+= er32(GPTC
);
3540 adapter
->stats
.gotcl
+= er32(GOTCL
);
3541 adapter
->stats
.gotch
+= er32(GOTCH
);
3542 adapter
->stats
.rnbc
+= er32(RNBC
);
3543 adapter
->stats
.ruc
+= er32(RUC
);
3544 adapter
->stats
.rfc
+= er32(RFC
);
3545 adapter
->stats
.rjc
+= er32(RJC
);
3546 adapter
->stats
.torl
+= er32(TORL
);
3547 adapter
->stats
.torh
+= er32(TORH
);
3548 adapter
->stats
.totl
+= er32(TOTL
);
3549 adapter
->stats
.toth
+= er32(TOTH
);
3550 adapter
->stats
.tpr
+= er32(TPR
);
3552 if (hw
->mac_type
!= e1000_ich8lan
) {
3553 adapter
->stats
.ptc64
+= er32(PTC64
);
3554 adapter
->stats
.ptc127
+= er32(PTC127
);
3555 adapter
->stats
.ptc255
+= er32(PTC255
);
3556 adapter
->stats
.ptc511
+= er32(PTC511
);
3557 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3558 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3561 adapter
->stats
.mptc
+= er32(MPTC
);
3562 adapter
->stats
.bptc
+= er32(BPTC
);
3564 /* used for adaptive IFS */
3566 hw
->tx_packet_delta
= er32(TPT
);
3567 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3568 hw
->collision_delta
= er32(COLC
);
3569 adapter
->stats
.colc
+= hw
->collision_delta
;
3571 if (hw
->mac_type
>= e1000_82543
) {
3572 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3573 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3574 adapter
->stats
.tncrs
+= er32(TNCRS
);
3575 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3576 adapter
->stats
.tsctc
+= er32(TSCTC
);
3577 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3579 if (hw
->mac_type
> e1000_82547_rev_2
) {
3580 adapter
->stats
.iac
+= er32(IAC
);
3581 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
3583 if (hw
->mac_type
!= e1000_ich8lan
) {
3584 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
3585 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
3586 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
3587 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
3588 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
3589 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
3590 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
3594 /* Fill out the OS statistics structure */
3595 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3596 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3600 /* RLEC on some newer hardware can be incorrect so build
3601 * our own version based on RUC and ROC */
3602 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3603 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3604 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3605 adapter
->stats
.cexterr
;
3606 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3607 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3608 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3609 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3610 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3613 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3614 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3615 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3616 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3617 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3618 if (hw
->bad_tx_carr_stats_fd
&&
3619 adapter
->link_duplex
== FULL_DUPLEX
) {
3620 adapter
->net_stats
.tx_carrier_errors
= 0;
3621 adapter
->stats
.tncrs
= 0;
3624 /* Tx Dropped needs to be maintained elsewhere */
3627 if (hw
->media_type
== e1000_media_type_copper
) {
3628 if ((adapter
->link_speed
== SPEED_1000
) &&
3629 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3630 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3631 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3634 if ((hw
->mac_type
<= e1000_82546
) &&
3635 (hw
->phy_type
== e1000_phy_m88
) &&
3636 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3637 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3640 /* Management Stats */
3641 if (hw
->has_smbus
) {
3642 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3643 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3644 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3647 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3651 * e1000_intr_msi - Interrupt Handler
3652 * @irq: interrupt number
3653 * @data: pointer to a network interface device structure
3656 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
3658 struct net_device
*netdev
= data
;
3659 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3660 struct e1000_hw
*hw
= &adapter
->hw
;
3661 u32 icr
= er32(ICR
);
3663 /* in NAPI mode read ICR disables interrupts using IAM */
3665 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3666 hw
->get_link_status
= 1;
3667 /* 80003ES2LAN workaround-- For packet buffer work-around on
3668 * link down event; disable receives here in the ISR and reset
3669 * adapter in watchdog */
3670 if (netif_carrier_ok(netdev
) &&
3671 (hw
->mac_type
== e1000_80003es2lan
)) {
3672 /* disable receives */
3673 u32 rctl
= er32(RCTL
);
3674 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3676 /* guard against interrupt when we're going down */
3677 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3678 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3681 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3682 adapter
->total_tx_bytes
= 0;
3683 adapter
->total_tx_packets
= 0;
3684 adapter
->total_rx_bytes
= 0;
3685 adapter
->total_rx_packets
= 0;
3686 __napi_schedule(&adapter
->napi
);
3688 e1000_irq_enable(adapter
);
3694 * e1000_intr - Interrupt Handler
3695 * @irq: interrupt number
3696 * @data: pointer to a network interface device structure
3699 static irqreturn_t
e1000_intr(int irq
, void *data
)
3701 struct net_device
*netdev
= data
;
3702 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3703 struct e1000_hw
*hw
= &adapter
->hw
;
3704 u32 rctl
, icr
= er32(ICR
);
3706 if (unlikely((!icr
) || test_bit(__E1000_RESETTING
, &adapter
->flags
)))
3707 return IRQ_NONE
; /* Not our interrupt */
3709 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3710 * not set, then the adapter didn't send an interrupt */
3711 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3712 !(icr
& E1000_ICR_INT_ASSERTED
)))
3715 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3716 * need for the IMC write */
3718 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3719 hw
->get_link_status
= 1;
3720 /* 80003ES2LAN workaround--
3721 * For packet buffer work-around on link down event;
3722 * disable receives here in the ISR and
3723 * reset adapter in watchdog
3725 if (netif_carrier_ok(netdev
) &&
3726 (hw
->mac_type
== e1000_80003es2lan
)) {
3727 /* disable receives */
3729 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3731 /* guard against interrupt when we're going down */
3732 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3733 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3736 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3737 /* disable interrupts, without the synchronize_irq bit */
3739 E1000_WRITE_FLUSH();
3741 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3742 adapter
->total_tx_bytes
= 0;
3743 adapter
->total_tx_packets
= 0;
3744 adapter
->total_rx_bytes
= 0;
3745 adapter
->total_rx_packets
= 0;
3746 __napi_schedule(&adapter
->napi
);
3748 /* this really should not happen! if it does it is basically a
3749 * bug, but not a hard error, so enable ints and continue */
3750 e1000_irq_enable(adapter
);
3756 * e1000_clean - NAPI Rx polling callback
3757 * @adapter: board private structure
3759 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3761 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3762 struct net_device
*poll_dev
= adapter
->netdev
;
3763 int tx_cleaned
= 0, work_done
= 0;
3765 adapter
= netdev_priv(poll_dev
);
3767 tx_cleaned
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3769 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3770 &work_done
, budget
);
3775 /* If budget not fully consumed, exit the polling mode */
3776 if (work_done
< budget
) {
3777 if (likely(adapter
->itr_setting
& 3))
3778 e1000_set_itr(adapter
);
3779 napi_complete(napi
);
3780 e1000_irq_enable(adapter
);
3787 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3788 * @adapter: board private structure
3790 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3791 struct e1000_tx_ring
*tx_ring
)
3793 struct e1000_hw
*hw
= &adapter
->hw
;
3794 struct net_device
*netdev
= adapter
->netdev
;
3795 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3796 struct e1000_buffer
*buffer_info
;
3797 unsigned int i
, eop
;
3798 unsigned int count
= 0;
3800 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3802 i
= tx_ring
->next_to_clean
;
3803 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3804 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3806 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3807 (count
< tx_ring
->count
)) {
3808 for (cleaned
= false; !cleaned
; count
++) {
3809 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3810 buffer_info
= &tx_ring
->buffer_info
[i
];
3811 cleaned
= (i
== eop
);
3814 struct sk_buff
*skb
= buffer_info
->skb
;
3815 unsigned int segs
, bytecount
;
3816 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3817 /* multiply data chunks by size of headers */
3818 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3820 total_tx_packets
+= segs
;
3821 total_tx_bytes
+= bytecount
;
3823 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3824 tx_desc
->upper
.data
= 0;
3826 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3829 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3830 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3833 tx_ring
->next_to_clean
= i
;
3835 #define TX_WAKE_THRESHOLD 32
3836 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
3837 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3838 /* Make sure that anybody stopping the queue after this
3839 * sees the new next_to_clean.
3842 if (netif_queue_stopped(netdev
)) {
3843 netif_wake_queue(netdev
);
3844 ++adapter
->restart_queue
;
3848 if (adapter
->detect_tx_hung
) {
3849 /* Detect a transmit hang in hardware, this serializes the
3850 * check with the clearing of time_stamp and movement of i */
3851 adapter
->detect_tx_hung
= false;
3852 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3853 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3854 (adapter
->tx_timeout_factor
* HZ
))
3855 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3857 /* detected Tx unit hang */
3858 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3862 " next_to_use <%x>\n"
3863 " next_to_clean <%x>\n"
3864 "buffer_info[next_to_clean]\n"
3865 " time_stamp <%lx>\n"
3866 " next_to_watch <%x>\n"
3868 " next_to_watch.status <%x>\n",
3869 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3870 sizeof(struct e1000_tx_ring
)),
3871 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3872 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3873 tx_ring
->next_to_use
,
3874 tx_ring
->next_to_clean
,
3875 tx_ring
->buffer_info
[i
].time_stamp
,
3878 eop_desc
->upper
.fields
.status
);
3879 netif_stop_queue(netdev
);
3882 adapter
->total_tx_bytes
+= total_tx_bytes
;
3883 adapter
->total_tx_packets
+= total_tx_packets
;
3884 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
3885 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
3886 return (count
< tx_ring
->count
);
3890 * e1000_rx_checksum - Receive Checksum Offload for 82543
3891 * @adapter: board private structure
3892 * @status_err: receive descriptor status and error fields
3893 * @csum: receive descriptor csum field
3894 * @sk_buff: socket buffer with received data
3897 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3898 u32 csum
, struct sk_buff
*skb
)
3900 struct e1000_hw
*hw
= &adapter
->hw
;
3901 u16 status
= (u16
)status_err
;
3902 u8 errors
= (u8
)(status_err
>> 24);
3903 skb
->ip_summed
= CHECKSUM_NONE
;
3905 /* 82543 or newer only */
3906 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3907 /* Ignore Checksum bit is set */
3908 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3909 /* TCP/UDP checksum error bit is set */
3910 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3911 /* let the stack verify checksum errors */
3912 adapter
->hw_csum_err
++;
3915 /* TCP/UDP Checksum has not been calculated */
3916 if (hw
->mac_type
<= e1000_82547_rev_2
) {
3917 if (!(status
& E1000_RXD_STAT_TCPCS
))
3920 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3923 /* It must be a TCP or UDP packet with a valid checksum */
3924 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3925 /* TCP checksum is good */
3926 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3927 } else if (hw
->mac_type
> e1000_82547_rev_2
) {
3928 /* IP fragment with UDP payload */
3929 /* Hardware complements the payload checksum, so we undo it
3930 * and then put the value in host order for further stack use.
3932 __sum16 sum
= (__force __sum16
)htons(csum
);
3933 skb
->csum
= csum_unfold(~sum
);
3934 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3936 adapter
->hw_csum_good
++;
3940 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3941 * @adapter: board private structure
3943 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3944 struct e1000_rx_ring
*rx_ring
,
3945 int *work_done
, int work_to_do
)
3947 struct e1000_hw
*hw
= &adapter
->hw
;
3948 struct net_device
*netdev
= adapter
->netdev
;
3949 struct pci_dev
*pdev
= adapter
->pdev
;
3950 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3951 struct e1000_buffer
*buffer_info
, *next_buffer
;
3952 unsigned long flags
;
3956 int cleaned_count
= 0;
3957 bool cleaned
= false;
3958 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3960 i
= rx_ring
->next_to_clean
;
3961 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3962 buffer_info
= &rx_ring
->buffer_info
[i
];
3964 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3965 struct sk_buff
*skb
;
3968 if (*work_done
>= work_to_do
)
3972 status
= rx_desc
->status
;
3973 skb
= buffer_info
->skb
;
3974 buffer_info
->skb
= NULL
;
3976 prefetch(skb
->data
- NET_IP_ALIGN
);
3978 if (++i
== rx_ring
->count
) i
= 0;
3979 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3982 next_buffer
= &rx_ring
->buffer_info
[i
];
3986 pci_unmap_single(pdev
,
3988 buffer_info
->length
,
3989 PCI_DMA_FROMDEVICE
);
3991 length
= le16_to_cpu(rx_desc
->length
);
3993 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
3994 /* All receives must fit into a single buffer */
3995 E1000_DBG("%s: Receive packet consumed multiple"
3996 " buffers\n", netdev
->name
);
3998 buffer_info
->skb
= skb
;
4002 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4003 last_byte
= *(skb
->data
+ length
- 1);
4004 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4006 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4007 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4009 spin_unlock_irqrestore(&adapter
->stats_lock
,
4014 buffer_info
->skb
= skb
;
4019 /* adjust length to remove Ethernet CRC, this must be
4020 * done after the TBI_ACCEPT workaround above */
4023 /* probably a little skewed due to removing CRC */
4024 total_rx_bytes
+= length
;
4027 /* code added for copybreak, this should improve
4028 * performance for small packets with large amounts
4029 * of reassembly being done in the stack */
4030 if (length
< copybreak
) {
4031 struct sk_buff
*new_skb
=
4032 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4034 skb_reserve(new_skb
, NET_IP_ALIGN
);
4035 skb_copy_to_linear_data_offset(new_skb
,
4041 /* save the skb in buffer_info as good */
4042 buffer_info
->skb
= skb
;
4045 /* else just continue with the old one */
4047 /* end copybreak code */
4048 skb_put(skb
, length
);
4050 /* Receive Checksum Offload */
4051 e1000_rx_checksum(adapter
,
4053 ((u32
)(rx_desc
->errors
) << 24),
4054 le16_to_cpu(rx_desc
->csum
), skb
);
4056 skb
->protocol
= eth_type_trans(skb
, netdev
);
4058 if (unlikely(adapter
->vlgrp
&&
4059 (status
& E1000_RXD_STAT_VP
))) {
4060 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4061 le16_to_cpu(rx_desc
->special
));
4063 netif_receive_skb(skb
);
4067 rx_desc
->status
= 0;
4069 /* return some buffers to hardware, one at a time is too slow */
4070 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4071 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4075 /* use prefetched values */
4077 buffer_info
= next_buffer
;
4079 rx_ring
->next_to_clean
= i
;
4081 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4083 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4085 adapter
->total_rx_packets
+= total_rx_packets
;
4086 adapter
->total_rx_bytes
+= total_rx_bytes
;
4087 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
4088 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
4093 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4094 * @adapter: address of board private structure
4097 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4098 struct e1000_rx_ring
*rx_ring
,
4101 struct e1000_hw
*hw
= &adapter
->hw
;
4102 struct net_device
*netdev
= adapter
->netdev
;
4103 struct pci_dev
*pdev
= adapter
->pdev
;
4104 struct e1000_rx_desc
*rx_desc
;
4105 struct e1000_buffer
*buffer_info
;
4106 struct sk_buff
*skb
;
4108 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4110 i
= rx_ring
->next_to_use
;
4111 buffer_info
= &rx_ring
->buffer_info
[i
];
4113 while (cleaned_count
--) {
4114 skb
= buffer_info
->skb
;
4120 skb
= netdev_alloc_skb(netdev
, bufsz
);
4121 if (unlikely(!skb
)) {
4122 /* Better luck next round */
4123 adapter
->alloc_rx_buff_failed
++;
4127 /* Fix for errata 23, can't cross 64kB boundary */
4128 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4129 struct sk_buff
*oldskb
= skb
;
4130 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4131 "at %p\n", bufsz
, skb
->data
);
4132 /* Try again, without freeing the previous */
4133 skb
= netdev_alloc_skb(netdev
, bufsz
);
4134 /* Failed allocation, critical failure */
4136 dev_kfree_skb(oldskb
);
4140 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4143 dev_kfree_skb(oldskb
);
4144 break; /* while !buffer_info->skb */
4147 /* Use new allocation */
4148 dev_kfree_skb(oldskb
);
4150 /* Make buffer alignment 2 beyond a 16 byte boundary
4151 * this will result in a 16 byte aligned IP header after
4152 * the 14 byte MAC header is removed
4154 skb_reserve(skb
, NET_IP_ALIGN
);
4156 buffer_info
->skb
= skb
;
4157 buffer_info
->length
= adapter
->rx_buffer_len
;
4159 buffer_info
->dma
= pci_map_single(pdev
,
4161 adapter
->rx_buffer_len
,
4162 PCI_DMA_FROMDEVICE
);
4164 /* Fix for errata 23, can't cross 64kB boundary */
4165 if (!e1000_check_64k_bound(adapter
,
4166 (void *)(unsigned long)buffer_info
->dma
,
4167 adapter
->rx_buffer_len
)) {
4168 DPRINTK(RX_ERR
, ERR
,
4169 "dma align check failed: %u bytes at %p\n",
4170 adapter
->rx_buffer_len
,
4171 (void *)(unsigned long)buffer_info
->dma
);
4173 buffer_info
->skb
= NULL
;
4175 pci_unmap_single(pdev
, buffer_info
->dma
,
4176 adapter
->rx_buffer_len
,
4177 PCI_DMA_FROMDEVICE
);
4179 break; /* while !buffer_info->skb */
4181 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4182 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4184 if (unlikely(++i
== rx_ring
->count
))
4186 buffer_info
= &rx_ring
->buffer_info
[i
];
4189 if (likely(rx_ring
->next_to_use
!= i
)) {
4190 rx_ring
->next_to_use
= i
;
4191 if (unlikely(i
-- == 0))
4192 i
= (rx_ring
->count
- 1);
4194 /* Force memory writes to complete before letting h/w
4195 * know there are new descriptors to fetch. (Only
4196 * applicable for weak-ordered memory model archs,
4197 * such as IA-64). */
4199 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4204 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4208 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4210 struct e1000_hw
*hw
= &adapter
->hw
;
4214 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4215 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4218 if (adapter
->smartspeed
== 0) {
4219 /* If Master/Slave config fault is asserted twice,
4220 * we assume back-to-back */
4221 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4222 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4223 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4224 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4225 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4226 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4227 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4228 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4230 adapter
->smartspeed
++;
4231 if (!e1000_phy_setup_autoneg(hw
) &&
4232 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4234 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4235 MII_CR_RESTART_AUTO_NEG
);
4236 e1000_write_phy_reg(hw
, PHY_CTRL
,
4241 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4242 /* If still no link, perhaps using 2/3 pair cable */
4243 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4244 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4245 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4246 if (!e1000_phy_setup_autoneg(hw
) &&
4247 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4248 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4249 MII_CR_RESTART_AUTO_NEG
);
4250 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4253 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4254 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4255 adapter
->smartspeed
= 0;
4265 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4271 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4284 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4287 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4288 struct e1000_hw
*hw
= &adapter
->hw
;
4289 struct mii_ioctl_data
*data
= if_mii(ifr
);
4293 unsigned long flags
;
4295 if (hw
->media_type
!= e1000_media_type_copper
)
4300 data
->phy_id
= hw
->phy_addr
;
4303 if (!capable(CAP_NET_ADMIN
))
4305 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4306 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4308 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4311 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4314 if (!capable(CAP_NET_ADMIN
))
4316 if (data
->reg_num
& ~(0x1F))
4318 mii_reg
= data
->val_in
;
4319 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4320 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4322 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4325 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4326 if (hw
->media_type
== e1000_media_type_copper
) {
4327 switch (data
->reg_num
) {
4329 if (mii_reg
& MII_CR_POWER_DOWN
)
4331 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4333 hw
->autoneg_advertised
= 0x2F;
4336 spddplx
= SPEED_1000
;
4337 else if (mii_reg
& 0x2000)
4338 spddplx
= SPEED_100
;
4341 spddplx
+= (mii_reg
& 0x100)
4344 retval
= e1000_set_spd_dplx(adapter
,
4349 if (netif_running(adapter
->netdev
))
4350 e1000_reinit_locked(adapter
);
4352 e1000_reset(adapter
);
4354 case M88E1000_PHY_SPEC_CTRL
:
4355 case M88E1000_EXT_PHY_SPEC_CTRL
:
4356 if (e1000_phy_reset(hw
))
4361 switch (data
->reg_num
) {
4363 if (mii_reg
& MII_CR_POWER_DOWN
)
4365 if (netif_running(adapter
->netdev
))
4366 e1000_reinit_locked(adapter
);
4368 e1000_reset(adapter
);
4376 return E1000_SUCCESS
;
4379 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4381 struct e1000_adapter
*adapter
= hw
->back
;
4382 int ret_val
= pci_set_mwi(adapter
->pdev
);
4385 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4388 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4390 struct e1000_adapter
*adapter
= hw
->back
;
4392 pci_clear_mwi(adapter
->pdev
);
4395 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4397 struct e1000_adapter
*adapter
= hw
->back
;
4398 return pcix_get_mmrbc(adapter
->pdev
);
4401 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4403 struct e1000_adapter
*adapter
= hw
->back
;
4404 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4407 s32
e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
4409 struct e1000_adapter
*adapter
= hw
->back
;
4412 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4414 return -E1000_ERR_CONFIG
;
4416 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4418 return E1000_SUCCESS
;
4421 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4426 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4427 struct vlan_group
*grp
)
4429 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4430 struct e1000_hw
*hw
= &adapter
->hw
;
4433 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4434 e1000_irq_disable(adapter
);
4435 adapter
->vlgrp
= grp
;
4438 /* enable VLAN tag insert/strip */
4440 ctrl
|= E1000_CTRL_VME
;
4443 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4444 /* enable VLAN receive filtering */
4446 rctl
&= ~E1000_RCTL_CFIEN
;
4448 e1000_update_mng_vlan(adapter
);
4451 /* disable VLAN tag insert/strip */
4453 ctrl
&= ~E1000_CTRL_VME
;
4456 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4457 if (adapter
->mng_vlan_id
!=
4458 (u16
)E1000_MNG_VLAN_NONE
) {
4459 e1000_vlan_rx_kill_vid(netdev
,
4460 adapter
->mng_vlan_id
);
4461 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4466 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4467 e1000_irq_enable(adapter
);
4470 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4472 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4473 struct e1000_hw
*hw
= &adapter
->hw
;
4476 if ((hw
->mng_cookie
.status
&
4477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4478 (vid
== adapter
->mng_vlan_id
))
4480 /* add VID to filter table */
4481 index
= (vid
>> 5) & 0x7F;
4482 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4483 vfta
|= (1 << (vid
& 0x1F));
4484 e1000_write_vfta(hw
, index
, vfta
);
4487 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4489 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4490 struct e1000_hw
*hw
= &adapter
->hw
;
4493 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4494 e1000_irq_disable(adapter
);
4495 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4496 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4497 e1000_irq_enable(adapter
);
4499 if ((hw
->mng_cookie
.status
&
4500 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4501 (vid
== adapter
->mng_vlan_id
)) {
4502 /* release control to f/w */
4503 e1000_release_hw_control(adapter
);
4507 /* remove VID from filter table */
4508 index
= (vid
>> 5) & 0x7F;
4509 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4510 vfta
&= ~(1 << (vid
& 0x1F));
4511 e1000_write_vfta(hw
, index
, vfta
);
4514 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4516 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4518 if (adapter
->vlgrp
) {
4520 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4521 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4523 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4528 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4530 struct e1000_hw
*hw
= &adapter
->hw
;
4534 /* Fiber NICs only allow 1000 gbps Full duplex */
4535 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4536 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4537 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4542 case SPEED_10
+ DUPLEX_HALF
:
4543 hw
->forced_speed_duplex
= e1000_10_half
;
4545 case SPEED_10
+ DUPLEX_FULL
:
4546 hw
->forced_speed_duplex
= e1000_10_full
;
4548 case SPEED_100
+ DUPLEX_HALF
:
4549 hw
->forced_speed_duplex
= e1000_100_half
;
4551 case SPEED_100
+ DUPLEX_FULL
:
4552 hw
->forced_speed_duplex
= e1000_100_full
;
4554 case SPEED_1000
+ DUPLEX_FULL
:
4556 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4558 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4560 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4566 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4568 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4569 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4570 struct e1000_hw
*hw
= &adapter
->hw
;
4571 u32 ctrl
, ctrl_ext
, rctl
, status
;
4572 u32 wufc
= adapter
->wol
;
4577 netif_device_detach(netdev
);
4579 if (netif_running(netdev
)) {
4580 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4581 e1000_down(adapter
);
4585 retval
= pci_save_state(pdev
);
4590 status
= er32(STATUS
);
4591 if (status
& E1000_STATUS_LU
)
4592 wufc
&= ~E1000_WUFC_LNKC
;
4595 e1000_setup_rctl(adapter
);
4596 e1000_set_rx_mode(netdev
);
4598 /* turn on all-multi mode if wake on multicast is enabled */
4599 if (wufc
& E1000_WUFC_MC
) {
4601 rctl
|= E1000_RCTL_MPE
;
4605 if (hw
->mac_type
>= e1000_82540
) {
4607 /* advertise wake from D3Cold */
4608 #define E1000_CTRL_ADVD3WUC 0x00100000
4609 /* phy power management enable */
4610 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4611 ctrl
|= E1000_CTRL_ADVD3WUC
|
4612 E1000_CTRL_EN_PHY_PWR_MGMT
;
4616 if (hw
->media_type
== e1000_media_type_fiber
||
4617 hw
->media_type
== e1000_media_type_internal_serdes
) {
4618 /* keep the laser running in D3 */
4619 ctrl_ext
= er32(CTRL_EXT
);
4620 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4621 ew32(CTRL_EXT
, ctrl_ext
);
4624 /* Allow time for pending master requests to run */
4625 e1000_disable_pciex_master(hw
);
4627 ew32(WUC
, E1000_WUC_PME_EN
);
4629 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4630 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4634 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4635 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4638 e1000_release_manageability(adapter
);
4640 /* make sure adapter isn't asleep if manageability is enabled */
4641 if (adapter
->en_mng_pt
) {
4642 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4643 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4646 if (hw
->phy_type
== e1000_phy_igp_3
)
4647 e1000_phy_powerdown_workaround(hw
);
4649 if (netif_running(netdev
))
4650 e1000_free_irq(adapter
);
4652 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4653 * would have already happened in close and is redundant. */
4654 e1000_release_hw_control(adapter
);
4656 pci_disable_device(pdev
);
4658 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4664 static int e1000_resume(struct pci_dev
*pdev
)
4666 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4667 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4668 struct e1000_hw
*hw
= &adapter
->hw
;
4671 pci_set_power_state(pdev
, PCI_D0
);
4672 pci_restore_state(pdev
);
4674 if (adapter
->need_ioport
)
4675 err
= pci_enable_device(pdev
);
4677 err
= pci_enable_device_mem(pdev
);
4679 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4682 pci_set_master(pdev
);
4684 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4685 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4687 if (netif_running(netdev
)) {
4688 err
= e1000_request_irq(adapter
);
4693 e1000_power_up_phy(adapter
);
4694 e1000_reset(adapter
);
4697 e1000_init_manageability(adapter
);
4699 if (netif_running(netdev
))
4702 netif_device_attach(netdev
);
4704 /* If the controller is 82573 and f/w is AMT, do not set
4705 * DRV_LOAD until the interface is up. For all other cases,
4706 * let the f/w know that the h/w is now under the control
4708 if (hw
->mac_type
!= e1000_82573
||
4709 !e1000_check_mng_mode(hw
))
4710 e1000_get_hw_control(adapter
);
4716 static void e1000_shutdown(struct pci_dev
*pdev
)
4718 e1000_suspend(pdev
, PMSG_SUSPEND
);
4721 #ifdef CONFIG_NET_POLL_CONTROLLER
4723 * Polling 'interrupt' - used by things like netconsole to send skbs
4724 * without having to re-enable interrupts. It's not called while
4725 * the interrupt routine is executing.
4727 static void e1000_netpoll(struct net_device
*netdev
)
4729 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4731 disable_irq(adapter
->pdev
->irq
);
4732 e1000_intr(adapter
->pdev
->irq
, netdev
);
4733 enable_irq(adapter
->pdev
->irq
);
4738 * e1000_io_error_detected - called when PCI error is detected
4739 * @pdev: Pointer to PCI device
4740 * @state: The current pci conneection state
4742 * This function is called after a PCI bus error affecting
4743 * this device has been detected.
4745 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4746 pci_channel_state_t state
)
4748 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4749 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4751 netif_device_detach(netdev
);
4753 if (netif_running(netdev
))
4754 e1000_down(adapter
);
4755 pci_disable_device(pdev
);
4757 /* Request a slot slot reset. */
4758 return PCI_ERS_RESULT_NEED_RESET
;
4762 * e1000_io_slot_reset - called after the pci bus has been reset.
4763 * @pdev: Pointer to PCI device
4765 * Restart the card from scratch, as if from a cold-boot. Implementation
4766 * resembles the first-half of the e1000_resume routine.
4768 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4770 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4771 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4772 struct e1000_hw
*hw
= &adapter
->hw
;
4775 if (adapter
->need_ioport
)
4776 err
= pci_enable_device(pdev
);
4778 err
= pci_enable_device_mem(pdev
);
4780 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4781 return PCI_ERS_RESULT_DISCONNECT
;
4783 pci_set_master(pdev
);
4785 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4786 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4788 e1000_reset(adapter
);
4791 return PCI_ERS_RESULT_RECOVERED
;
4795 * e1000_io_resume - called when traffic can start flowing again.
4796 * @pdev: Pointer to PCI device
4798 * This callback is called when the error recovery driver tells us that
4799 * its OK to resume normal operation. Implementation resembles the
4800 * second-half of the e1000_resume routine.
4802 static void e1000_io_resume(struct pci_dev
*pdev
)
4804 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4805 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4806 struct e1000_hw
*hw
= &adapter
->hw
;
4808 e1000_init_manageability(adapter
);
4810 if (netif_running(netdev
)) {
4811 if (e1000_up(adapter
)) {
4812 printk("e1000: can't bring device back up after reset\n");
4817 netif_device_attach(netdev
);
4819 /* If the controller is 82573 and f/w is AMT, do not set
4820 * DRV_LOAD until the interface is up. For all other cases,
4821 * let the f/w know that the h/w is now under the control
4823 if (hw
->mac_type
!= e1000_82573
||
4824 !e1000_check_mng_mode(hw
))
4825 e1000_get_hw_control(adapter
);