e1000: cleanup clean_tx_irq routine so that it completely cleans ring
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_main.c
blob5c61b921ca717f952bd0e1f7bdd7846cd072b051
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145 int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
196 #endif
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init e1000_init_module(void)
219 int ret;
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
223 printk(KERN_INFO "%s\n", e1000_copyright);
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 printk(KERN_INFO "e1000: copybreak disabled\n");
229 else
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
233 return ret;
236 module_init(e1000_init_module);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
245 static void __exit e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver);
250 module_exit(e1000_exit_module);
252 static int e1000_request_irq(struct e1000_adapter *adapter)
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
264 irq_flags = 0;
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269 netdev);
270 if (err) {
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
273 DPRINTK(PROBE, ERR,
274 "Unable to allocate interrupt Error: %d\n", err);
277 return err;
280 static void e1000_free_irq(struct e1000_adapter *adapter)
282 struct net_device *netdev = adapter->netdev;
284 free_irq(adapter->pdev->irq, netdev);
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
299 ew32(IMC, ~0);
300 E1000_WRITE_FLUSH();
301 synchronize_irq(adapter->pdev->irq);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMS, IMS_ENABLE_MASK);
314 E1000_WRITE_FLUSH();
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
329 } else
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333 (vid != old_vid) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
336 } else
337 adapter->mng_vlan_id = vid;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
354 u32 ctrl_ext;
355 u32 swsm;
356 struct e1000_hw *hw = &adapter->hw;
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
360 case e1000_82573:
361 swsm = er32(SWSM);
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363 break;
364 case e1000_82571:
365 case e1000_82572:
366 case e1000_80003es2lan:
367 case e1000_ich8lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370 break;
371 default:
372 break;
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
389 u32 ctrl_ext;
390 u32 swsm;
391 struct e1000_hw *hw = &adapter->hw;
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
395 case e1000_82573:
396 swsm = er32(SWSM);
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398 break;
399 case e1000_82571:
400 case e1000_82572:
401 case e1000_80003es2lan:
402 case e1000_ich8lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 default:
407 break;
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
413 struct e1000_hw *hw = &adapter->hw;
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
435 ew32(MANC, manc);
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
441 struct e1000_hw *hw = &adapter->hw;
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
449 if (hw->has_manc2h)
450 manc &= ~E1000_MANC_EN_MNG2HOST;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
455 ew32(MANC, manc);
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter *adapter)
465 struct net_device *netdev = adapter->netdev;
466 int i;
468 e1000_set_rx_mode(netdev);
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
485 adapter->tx_queue_len = netdev->tx_queue_len;
488 int e1000_up(struct e1000_adapter *adapter)
490 struct e1000_hw *hw = &adapter->hw;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
495 clear_bit(__E1000_DOWN, &adapter->flags);
497 napi_enable(&adapter->napi);
499 e1000_irq_enable(adapter);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
503 return 0;
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
518 struct e1000_hw *hw = &adapter->hw;
519 u16 mii_reg = 0;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
533 struct e1000_hw *hw = &adapter->hw;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
537 * (a) WoL is enabled
538 * (b) AMT is active
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
542 u16 mii_reg = 0;
544 switch (hw->mac_type) {
545 case e1000_82540:
546 case e1000_82545:
547 case e1000_82545_rev_3:
548 case e1000_82546:
549 case e1000_82546_rev_3:
550 case e1000_82541:
551 case e1000_82541_rev_2:
552 case e1000_82547:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
555 goto out;
556 break;
557 case e1000_82571:
558 case e1000_82572:
559 case e1000_82573:
560 case e1000_80003es2lan:
561 case e1000_ich8lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
564 goto out;
565 break;
566 default:
567 goto out;
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572 mdelay(1);
574 out:
575 return;
578 void e1000_down(struct e1000_adapter *adapter)
580 struct net_device *netdev = adapter->netdev;
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
586 napi_disable(&adapter->napi);
588 e1000_irq_disable(adapter);
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610 e1000_down(adapter);
611 e1000_up(adapter);
612 clear_bit(__E1000_RESETTING, &adapter->flags);
615 void e1000_reset(struct e1000_adapter *adapter)
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
629 case e1000_82543:
630 case e1000_82544:
631 case e1000_82540:
632 case e1000_82541:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
635 pba = E1000_PBA_48K;
636 break;
637 case e1000_82545:
638 case e1000_82545_rev_3:
639 case e1000_82546:
640 case e1000_82546_rev_3:
641 pba = E1000_PBA_48K;
642 break;
643 case e1000_82547:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
646 pba = E1000_PBA_30K;
647 break;
648 case e1000_82571:
649 case e1000_82572:
650 case e1000_80003es2lan:
651 pba = E1000_PBA_38K;
652 break;
653 case e1000_82573:
654 pba = E1000_PBA_20K;
655 break;
656 case e1000_ich8lan:
657 pba = E1000_PBA_8K;
658 case e1000_undefined:
659 case e1000_num_macs:
660 break;
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
676 ew32(PBA, pba);
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
684 pba = er32(PBA);
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
688 pba &= 0xffff;
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691 VLAN_TAG_SIZE;
692 min_tx_space = min_rx_space;
693 min_tx_space *= 2;
694 min_tx_space = ALIGN(min_tx_space, 1024);
695 min_tx_space >>= 10;
696 min_rx_space = ALIGN(min_rx_space, 1024);
697 min_rx_space >>= 10;
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
710 break;
711 default:
712 break;
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
719 case e1000_82573:
720 /* ERT enabled in e1000_configure_rx */
721 break;
722 default:
723 pba = min_rx_space;
724 break;
730 ew32(PBA, pba);
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
739 * mark. */
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
747 else
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749 hw->fc_send_xon = 1;
750 hw->fc = hw->original_fc;
752 /* Allow time for pending master requests to run */
753 e1000_reset_hw(hw);
754 if (hw->mac_type >= e1000_82544)
755 ew32(WUC, 0);
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
764 hw->autoneg == 1 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
771 ew32(CTRL, ctrl);
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
783 u16 phy_data = 0;
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788 &phy_data);
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 phy_data);
794 e1000_release_manageability(adapter);
798 * Dump the eeprom for users having checksum issues
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
805 u8 *data;
806 int i;
807 u16 csum_old, csum_new = 0;
809 eeprom.len = ops->get_eeprom_len(netdev);
810 eeprom.offset = 0;
812 data = kmalloc(eeprom.len, GFP_KERNEL);
813 if (!data) {
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815 " data\n");
816 return;
819 ops->get_eeprom(netdev, &eeprom, data);
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
835 printk(KERN_ERR "Include this output when contacting your support "
836 "provider.\n");
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
852 kfree(data);
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
859 * Return true if an adapter needs ioport resources
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
885 return true;
886 default:
887 return false;
891 static const struct net_device_ops e1000_netdev_ops = {
892 .ndo_open = e1000_open,
893 .ndo_stop = e1000_close,
894 .ndo_start_xmit = e1000_xmit_frame,
895 .ndo_get_stats = e1000_get_stats,
896 .ndo_set_rx_mode = e1000_set_rx_mode,
897 .ndo_set_mac_address = e1000_set_mac,
898 .ndo_tx_timeout = e1000_tx_timeout,
899 .ndo_change_mtu = e1000_change_mtu,
900 .ndo_do_ioctl = e1000_ioctl,
901 .ndo_validate_addr = eth_validate_addr,
903 .ndo_vlan_rx_register = e1000_vlan_rx_register,
904 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
905 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller = e1000_netpoll,
908 #endif
912 * e1000_probe - Device Initialization Routine
913 * @pdev: PCI device information struct
914 * @ent: entry in e1000_pci_tbl
916 * Returns 0 on success, negative on failure
918 * e1000_probe initializes an adapter identified by a pci_dev structure.
919 * The OS initialization, configuring of the adapter private structure,
920 * and a hardware reset occur.
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923 const struct pci_device_id *ent)
925 struct net_device *netdev;
926 struct e1000_adapter *adapter;
927 struct e1000_hw *hw;
929 static int cards_found = 0;
930 static int global_quad_port_a = 0; /* global ksp3 port a indication */
931 int i, err, pci_using_dac;
932 u16 eeprom_data = 0;
933 u16 eeprom_apme_mask = E1000_EEPROM_APME;
934 int bars, need_ioport;
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
945 if (err)
946 return err;
948 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950 pci_using_dac = 1;
951 } else {
952 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953 if (err) {
954 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955 if (err) {
956 E1000_ERR("No usable DMA configuration, "
957 "aborting\n");
958 goto err_dma;
961 pci_using_dac = 0;
964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965 if (err)
966 goto err_pci_reg;
968 pci_set_master(pdev);
970 err = -ENOMEM;
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 if (!netdev)
973 goto err_alloc_etherdev;
975 SET_NETDEV_DEV(netdev, &pdev->dev);
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = (1 << debug) - 1;
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
985 hw = &adapter->hw;
986 hw->back = adapter;
988 err = -EIO;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 if (!hw->hw_addr)
991 goto err_ioremap;
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1004 netdev->netdev_ops = &e1000_netdev_ops;
1005 e1000_set_ethtool_ops(netdev);
1006 netdev->watchdog_timeo = 5 * HZ;
1007 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1009 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1011 adapter->bd_number = cards_found;
1013 /* setup the private structure */
1015 err = e1000_sw_init(adapter);
1016 if (err)
1017 goto err_sw_init;
1019 err = -EIO;
1020 /* Flash BAR mapping must happen after e1000_sw_init
1021 * because it depends on mac_type */
1022 if ((hw->mac_type == e1000_ich8lan) &&
1023 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025 if (!hw->flash_address)
1026 goto err_flashmap;
1029 if (e1000_check_phy_reset_block(hw))
1030 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1032 if (hw->mac_type >= e1000_82543) {
1033 netdev->features = NETIF_F_SG |
1034 NETIF_F_HW_CSUM |
1035 NETIF_F_HW_VLAN_TX |
1036 NETIF_F_HW_VLAN_RX |
1037 NETIF_F_HW_VLAN_FILTER;
1038 if (hw->mac_type == e1000_ich8lan)
1039 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1042 if ((hw->mac_type >= e1000_82544) &&
1043 (hw->mac_type != e1000_82547))
1044 netdev->features |= NETIF_F_TSO;
1046 if (hw->mac_type > e1000_82547_rev_2)
1047 netdev->features |= NETIF_F_TSO6;
1048 if (pci_using_dac)
1049 netdev->features |= NETIF_F_HIGHDMA;
1051 netdev->vlan_features |= NETIF_F_TSO;
1052 netdev->vlan_features |= NETIF_F_TSO6;
1053 netdev->vlan_features |= NETIF_F_HW_CSUM;
1054 netdev->vlan_features |= NETIF_F_SG;
1056 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1058 /* initialize eeprom parameters */
1059 if (e1000_init_eeprom_params(hw)) {
1060 E1000_ERR("EEPROM initialization failed\n");
1061 goto err_eeprom;
1064 /* before reading the EEPROM, reset the controller to
1065 * put the device in a known good starting state */
1067 e1000_reset_hw(hw);
1069 /* make sure the EEPROM is good */
1070 if (e1000_validate_eeprom_checksum(hw) < 0) {
1071 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1072 e1000_dump_eeprom(adapter);
1074 * set MAC address to all zeroes to invalidate and temporary
1075 * disable this device for the user. This blocks regular
1076 * traffic while still permitting ethtool ioctls from reaching
1077 * the hardware as well as allowing the user to run the
1078 * interface after manually setting a hw addr using
1079 * `ip set address`
1081 memset(hw->mac_addr, 0, netdev->addr_len);
1082 } else {
1083 /* copy the MAC address out of the EEPROM */
1084 if (e1000_read_mac_addr(hw))
1085 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1087 /* don't block initalization here due to bad MAC address */
1088 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1089 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1091 if (!is_valid_ether_addr(netdev->perm_addr))
1092 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1094 e1000_get_bus_info(hw);
1096 init_timer(&adapter->tx_fifo_stall_timer);
1097 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1098 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1100 init_timer(&adapter->watchdog_timer);
1101 adapter->watchdog_timer.function = &e1000_watchdog;
1102 adapter->watchdog_timer.data = (unsigned long) adapter;
1104 init_timer(&adapter->phy_info_timer);
1105 adapter->phy_info_timer.function = &e1000_update_phy_info;
1106 adapter->phy_info_timer.data = (unsigned long)adapter;
1108 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1110 e1000_check_options(adapter);
1112 /* Initial Wake on LAN setting
1113 * If APM wake is enabled in the EEPROM,
1114 * enable the ACPI Magic Packet filter
1117 switch (hw->mac_type) {
1118 case e1000_82542_rev2_0:
1119 case e1000_82542_rev2_1:
1120 case e1000_82543:
1121 break;
1122 case e1000_82544:
1123 e1000_read_eeprom(hw,
1124 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1125 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1126 break;
1127 case e1000_ich8lan:
1128 e1000_read_eeprom(hw,
1129 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1130 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1131 break;
1132 case e1000_82546:
1133 case e1000_82546_rev_3:
1134 case e1000_82571:
1135 case e1000_80003es2lan:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1141 /* Fall Through */
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port */
1153 switch (pdev->device) {
1154 case E1000_DEV_ID_82546GB_PCIE:
1155 adapter->eeprom_wol = 0;
1156 break;
1157 case E1000_DEV_ID_82546EB_FIBER:
1158 case E1000_DEV_ID_82546GB_FIBER:
1159 case E1000_DEV_ID_82571EB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting */
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1167 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1169 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1170 /* if quad port adapter, disable WoL on all but port A */
1171 if (global_quad_port_a != 0)
1172 adapter->eeprom_wol = 0;
1173 else
1174 adapter->quad_port_a = 1;
1175 /* Reset for multiple quad port adapters */
1176 if (++global_quad_port_a == 4)
1177 global_quad_port_a = 0;
1178 break;
1181 /* initialize the wol settings based on the eeprom settings */
1182 adapter->wol = adapter->eeprom_wol;
1183 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1185 /* print bus type/speed/width info */
1186 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1187 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1188 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1189 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1190 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1191 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1192 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1193 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1194 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1195 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1196 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1197 "32-bit"));
1199 printk("%pM\n", netdev->dev_addr);
1201 if (hw->bus_type == e1000_bus_type_pci_express) {
1202 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1203 "longer be supported by this driver in the future.\n",
1204 pdev->vendor, pdev->device);
1205 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1206 "driver instead.\n");
1209 /* reset the hardware with the new settings */
1210 e1000_reset(adapter);
1212 /* If the controller is 82573 and f/w is AMT, do not set
1213 * DRV_LOAD until the interface is up. For all other cases,
1214 * let the f/w know that the h/w is now under the control
1215 * of the driver. */
1216 if (hw->mac_type != e1000_82573 ||
1217 !e1000_check_mng_mode(hw))
1218 e1000_get_hw_control(adapter);
1220 /* tell the stack to leave us alone until e1000_open() is called */
1221 netif_carrier_off(netdev);
1222 netif_stop_queue(netdev);
1224 strcpy(netdev->name, "eth%d");
1225 err = register_netdev(netdev);
1226 if (err)
1227 goto err_register;
1229 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1231 cards_found++;
1232 return 0;
1234 err_register:
1235 e1000_release_hw_control(adapter);
1236 err_eeprom:
1237 if (!e1000_check_phy_reset_block(hw))
1238 e1000_phy_hw_reset(hw);
1240 if (hw->flash_address)
1241 iounmap(hw->flash_address);
1242 err_flashmap:
1243 kfree(adapter->tx_ring);
1244 kfree(adapter->rx_ring);
1245 err_sw_init:
1246 iounmap(hw->hw_addr);
1247 err_ioremap:
1248 free_netdev(netdev);
1249 err_alloc_etherdev:
1250 pci_release_selected_regions(pdev, bars);
1251 err_pci_reg:
1252 err_dma:
1253 pci_disable_device(pdev);
1254 return err;
1258 * e1000_remove - Device Removal Routine
1259 * @pdev: PCI device information struct
1261 * e1000_remove is called by the PCI subsystem to alert the driver
1262 * that it should release a PCI device. The could be caused by a
1263 * Hot-Plug event, or because the driver is going to be removed from
1264 * memory.
1267 static void __devexit e1000_remove(struct pci_dev *pdev)
1269 struct net_device *netdev = pci_get_drvdata(pdev);
1270 struct e1000_adapter *adapter = netdev_priv(netdev);
1271 struct e1000_hw *hw = &adapter->hw;
1273 cancel_work_sync(&adapter->reset_task);
1275 e1000_release_manageability(adapter);
1277 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1278 * would have already happened in close and is redundant. */
1279 e1000_release_hw_control(adapter);
1281 unregister_netdev(netdev);
1283 if (!e1000_check_phy_reset_block(hw))
1284 e1000_phy_hw_reset(hw);
1286 kfree(adapter->tx_ring);
1287 kfree(adapter->rx_ring);
1289 iounmap(hw->hw_addr);
1290 if (hw->flash_address)
1291 iounmap(hw->flash_address);
1292 pci_release_selected_regions(pdev, adapter->bars);
1294 free_netdev(netdev);
1296 pci_disable_device(pdev);
1300 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301 * @adapter: board private structure to initialize
1303 * e1000_sw_init initializes the Adapter private data structure.
1304 * Fields are initialized based on PCI device information and
1305 * OS network device settings (MTU size).
1308 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1310 struct e1000_hw *hw = &adapter->hw;
1311 struct net_device *netdev = adapter->netdev;
1312 struct pci_dev *pdev = adapter->pdev;
1314 /* PCI config space info */
1316 hw->vendor_id = pdev->vendor;
1317 hw->device_id = pdev->device;
1318 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1319 hw->subsystem_id = pdev->subsystem_device;
1320 hw->revision_id = pdev->revision;
1322 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1324 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1325 hw->max_frame_size = netdev->mtu +
1326 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1327 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1329 /* identify the MAC */
1331 if (e1000_set_mac_type(hw)) {
1332 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1333 return -EIO;
1336 switch (hw->mac_type) {
1337 default:
1338 break;
1339 case e1000_82541:
1340 case e1000_82547:
1341 case e1000_82541_rev_2:
1342 case e1000_82547_rev_2:
1343 hw->phy_init_script = 1;
1344 break;
1347 e1000_set_media_type(hw);
1349 hw->wait_autoneg_complete = false;
1350 hw->tbi_compatibility_en = true;
1351 hw->adaptive_ifs = true;
1353 /* Copper options */
1355 if (hw->media_type == e1000_media_type_copper) {
1356 hw->mdix = AUTO_ALL_MODES;
1357 hw->disable_polarity_correction = false;
1358 hw->master_slave = E1000_MASTER_SLAVE;
1361 adapter->num_tx_queues = 1;
1362 adapter->num_rx_queues = 1;
1364 if (e1000_alloc_queues(adapter)) {
1365 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1366 return -ENOMEM;
1369 /* Explicitly disable IRQ since the NIC can be in any state. */
1370 e1000_irq_disable(adapter);
1372 spin_lock_init(&adapter->stats_lock);
1374 set_bit(__E1000_DOWN, &adapter->flags);
1376 return 0;
1380 * e1000_alloc_queues - Allocate memory for all rings
1381 * @adapter: board private structure to initialize
1383 * We allocate one ring per queue at run-time since we don't know the
1384 * number of queues at compile-time.
1387 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1389 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391 if (!adapter->tx_ring)
1392 return -ENOMEM;
1394 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396 if (!adapter->rx_ring) {
1397 kfree(adapter->tx_ring);
1398 return -ENOMEM;
1401 return E1000_SUCCESS;
1405 * e1000_open - Called when a network interface is made active
1406 * @netdev: network interface device structure
1408 * Returns 0 on success, negative value on failure
1410 * The open entry point is called when a network interface is made
1411 * active by the system (IFF_UP). At this point all resources needed
1412 * for transmit and receive operations are allocated, the interrupt
1413 * handler is registered with the OS, the watchdog timer is started,
1414 * and the stack is notified that the interface is ready.
1417 static int e1000_open(struct net_device *netdev)
1419 struct e1000_adapter *adapter = netdev_priv(netdev);
1420 struct e1000_hw *hw = &adapter->hw;
1421 int err;
1423 /* disallow open during test */
1424 if (test_bit(__E1000_TESTING, &adapter->flags))
1425 return -EBUSY;
1427 /* allocate transmit descriptors */
1428 err = e1000_setup_all_tx_resources(adapter);
1429 if (err)
1430 goto err_setup_tx;
1432 /* allocate receive descriptors */
1433 err = e1000_setup_all_rx_resources(adapter);
1434 if (err)
1435 goto err_setup_rx;
1437 e1000_power_up_phy(adapter);
1439 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1440 if ((hw->mng_cookie.status &
1441 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1442 e1000_update_mng_vlan(adapter);
1445 /* If AMT is enabled, let the firmware know that the network
1446 * interface is now open */
1447 if (hw->mac_type == e1000_82573 &&
1448 e1000_check_mng_mode(hw))
1449 e1000_get_hw_control(adapter);
1451 /* before we allocate an interrupt, we must be ready to handle it.
1452 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453 * as soon as we call pci_request_irq, so we have to setup our
1454 * clean_rx handler before we do so. */
1455 e1000_configure(adapter);
1457 err = e1000_request_irq(adapter);
1458 if (err)
1459 goto err_req_irq;
1461 /* From here on the code is the same as e1000_up() */
1462 clear_bit(__E1000_DOWN, &adapter->flags);
1464 napi_enable(&adapter->napi);
1466 e1000_irq_enable(adapter);
1468 netif_start_queue(netdev);
1470 /* fire a link status change interrupt to start the watchdog */
1471 ew32(ICS, E1000_ICS_LSC);
1473 return E1000_SUCCESS;
1475 err_req_irq:
1476 e1000_release_hw_control(adapter);
1477 e1000_power_down_phy(adapter);
1478 e1000_free_all_rx_resources(adapter);
1479 err_setup_rx:
1480 e1000_free_all_tx_resources(adapter);
1481 err_setup_tx:
1482 e1000_reset(adapter);
1484 return err;
1488 * e1000_close - Disables a network interface
1489 * @netdev: network interface device structure
1491 * Returns 0, this is not allowed to fail
1493 * The close entry point is called when an interface is de-activated
1494 * by the OS. The hardware is still under the drivers control, but
1495 * needs to be disabled. A global MAC reset is issued to stop the
1496 * hardware, and all transmit and receive resources are freed.
1499 static int e1000_close(struct net_device *netdev)
1501 struct e1000_adapter *adapter = netdev_priv(netdev);
1502 struct e1000_hw *hw = &adapter->hw;
1504 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1505 e1000_down(adapter);
1506 e1000_power_down_phy(adapter);
1507 e1000_free_irq(adapter);
1509 e1000_free_all_tx_resources(adapter);
1510 e1000_free_all_rx_resources(adapter);
1512 /* kill manageability vlan ID if supported, but not if a vlan with
1513 * the same ID is registered on the host OS (let 8021q kill it) */
1514 if ((hw->mng_cookie.status &
1515 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1516 !(adapter->vlgrp &&
1517 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1518 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1521 /* If AMT is enabled, let the firmware know that the network
1522 * interface is now closed */
1523 if (hw->mac_type == e1000_82573 &&
1524 e1000_check_mng_mode(hw))
1525 e1000_release_hw_control(adapter);
1527 return 0;
1531 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532 * @adapter: address of board private structure
1533 * @start: address of beginning of memory
1534 * @len: length of memory
1536 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1537 unsigned long len)
1539 struct e1000_hw *hw = &adapter->hw;
1540 unsigned long begin = (unsigned long)start;
1541 unsigned long end = begin + len;
1543 /* First rev 82545 and 82546 need to not allow any memory
1544 * write location to cross 64k boundary due to errata 23 */
1545 if (hw->mac_type == e1000_82545 ||
1546 hw->mac_type == e1000_82546) {
1547 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1550 return true;
1554 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555 * @adapter: board private structure
1556 * @txdr: tx descriptor ring (for a specific queue) to setup
1558 * Return 0 on success, negative on failure
1561 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1562 struct e1000_tx_ring *txdr)
1564 struct pci_dev *pdev = adapter->pdev;
1565 int size;
1567 size = sizeof(struct e1000_buffer) * txdr->count;
1568 txdr->buffer_info = vmalloc(size);
1569 if (!txdr->buffer_info) {
1570 DPRINTK(PROBE, ERR,
1571 "Unable to allocate memory for the transmit descriptor ring\n");
1572 return -ENOMEM;
1574 memset(txdr->buffer_info, 0, size);
1576 /* round up to nearest 4K */
1578 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1579 txdr->size = ALIGN(txdr->size, 4096);
1581 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1582 if (!txdr->desc) {
1583 setup_tx_desc_die:
1584 vfree(txdr->buffer_info);
1585 DPRINTK(PROBE, ERR,
1586 "Unable to allocate memory for the transmit descriptor ring\n");
1587 return -ENOMEM;
1590 /* Fix for errata 23, can't cross 64kB boundary */
1591 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1592 void *olddesc = txdr->desc;
1593 dma_addr_t olddma = txdr->dma;
1594 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1595 "at %p\n", txdr->size, txdr->desc);
1596 /* Try again, without freeing the previous */
1597 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1598 /* Failed allocation, critical failure */
1599 if (!txdr->desc) {
1600 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601 goto setup_tx_desc_die;
1604 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1605 /* give up */
1606 pci_free_consistent(pdev, txdr->size, txdr->desc,
1607 txdr->dma);
1608 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1609 DPRINTK(PROBE, ERR,
1610 "Unable to allocate aligned memory "
1611 "for the transmit descriptor ring\n");
1612 vfree(txdr->buffer_info);
1613 return -ENOMEM;
1614 } else {
1615 /* Free old allocation, new allocation was successful */
1616 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1619 memset(txdr->desc, 0, txdr->size);
1621 txdr->next_to_use = 0;
1622 txdr->next_to_clean = 0;
1624 return 0;
1628 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629 * (Descriptors) for all queues
1630 * @adapter: board private structure
1632 * Return 0 on success, negative on failure
1635 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1637 int i, err = 0;
1639 for (i = 0; i < adapter->num_tx_queues; i++) {
1640 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1641 if (err) {
1642 DPRINTK(PROBE, ERR,
1643 "Allocation for Tx Queue %u failed\n", i);
1644 for (i-- ; i >= 0; i--)
1645 e1000_free_tx_resources(adapter,
1646 &adapter->tx_ring[i]);
1647 break;
1651 return err;
1655 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656 * @adapter: board private structure
1658 * Configure the Tx unit of the MAC after a reset.
1661 static void e1000_configure_tx(struct e1000_adapter *adapter)
1663 u64 tdba;
1664 struct e1000_hw *hw = &adapter->hw;
1665 u32 tdlen, tctl, tipg, tarc;
1666 u32 ipgr1, ipgr2;
1668 /* Setup the HW Tx Head and Tail descriptor pointers */
1670 switch (adapter->num_tx_queues) {
1671 case 1:
1672 default:
1673 tdba = adapter->tx_ring[0].dma;
1674 tdlen = adapter->tx_ring[0].count *
1675 sizeof(struct e1000_tx_desc);
1676 ew32(TDLEN, tdlen);
1677 ew32(TDBAH, (tdba >> 32));
1678 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1679 ew32(TDT, 0);
1680 ew32(TDH, 0);
1681 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1682 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1683 break;
1686 /* Set the default values for the Tx Inter Packet Gap timer */
1687 if (hw->mac_type <= e1000_82547_rev_2 &&
1688 (hw->media_type == e1000_media_type_fiber ||
1689 hw->media_type == e1000_media_type_internal_serdes))
1690 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1691 else
1692 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1694 switch (hw->mac_type) {
1695 case e1000_82542_rev2_0:
1696 case e1000_82542_rev2_1:
1697 tipg = DEFAULT_82542_TIPG_IPGT;
1698 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1699 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1700 break;
1701 case e1000_80003es2lan:
1702 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1704 break;
1705 default:
1706 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1707 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1708 break;
1710 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1711 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1712 ew32(TIPG, tipg);
1714 /* Set the Tx Interrupt Delay register */
1716 ew32(TIDV, adapter->tx_int_delay);
1717 if (hw->mac_type >= e1000_82540)
1718 ew32(TADV, adapter->tx_abs_int_delay);
1720 /* Program the Transmit Control Register */
1722 tctl = er32(TCTL);
1723 tctl &= ~E1000_TCTL_CT;
1724 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1725 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1727 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1728 tarc = er32(TARC0);
1729 /* set the speed mode bit, we'll clear it if we're not at
1730 * gigabit link later */
1731 tarc |= (1 << 21);
1732 ew32(TARC0, tarc);
1733 } else if (hw->mac_type == e1000_80003es2lan) {
1734 tarc = er32(TARC0);
1735 tarc |= 1;
1736 ew32(TARC0, tarc);
1737 tarc = er32(TARC1);
1738 tarc |= 1;
1739 ew32(TARC1, tarc);
1742 e1000_config_collision_dist(hw);
1744 /* Setup Transmit Descriptor Settings for eop descriptor */
1745 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1747 /* only set IDE if we are delaying interrupts using the timers */
1748 if (adapter->tx_int_delay)
1749 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1751 if (hw->mac_type < e1000_82543)
1752 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1753 else
1754 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1756 /* Cache if we're 82544 running in PCI-X because we'll
1757 * need this to apply a workaround later in the send path. */
1758 if (hw->mac_type == e1000_82544 &&
1759 hw->bus_type == e1000_bus_type_pcix)
1760 adapter->pcix_82544 = 1;
1762 ew32(TCTL, tctl);
1767 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768 * @adapter: board private structure
1769 * @rxdr: rx descriptor ring (for a specific queue) to setup
1771 * Returns 0 on success, negative on failure
1774 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1775 struct e1000_rx_ring *rxdr)
1777 struct e1000_hw *hw = &adapter->hw;
1778 struct pci_dev *pdev = adapter->pdev;
1779 int size, desc_len;
1781 size = sizeof(struct e1000_buffer) * rxdr->count;
1782 rxdr->buffer_info = vmalloc(size);
1783 if (!rxdr->buffer_info) {
1784 DPRINTK(PROBE, ERR,
1785 "Unable to allocate memory for the receive descriptor ring\n");
1786 return -ENOMEM;
1788 memset(rxdr->buffer_info, 0, size);
1790 if (hw->mac_type <= e1000_82547_rev_2)
1791 desc_len = sizeof(struct e1000_rx_desc);
1792 else
1793 desc_len = sizeof(union e1000_rx_desc_packet_split);
1795 /* Round up to nearest 4K */
1797 rxdr->size = rxdr->count * desc_len;
1798 rxdr->size = ALIGN(rxdr->size, 4096);
1800 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1802 if (!rxdr->desc) {
1803 DPRINTK(PROBE, ERR,
1804 "Unable to allocate memory for the receive descriptor ring\n");
1805 setup_rx_desc_die:
1806 vfree(rxdr->buffer_info);
1807 return -ENOMEM;
1810 /* Fix for errata 23, can't cross 64kB boundary */
1811 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812 void *olddesc = rxdr->desc;
1813 dma_addr_t olddma = rxdr->dma;
1814 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815 "at %p\n", rxdr->size, rxdr->desc);
1816 /* Try again, without freeing the previous */
1817 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818 /* Failed allocation, critical failure */
1819 if (!rxdr->desc) {
1820 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821 DPRINTK(PROBE, ERR,
1822 "Unable to allocate memory "
1823 "for the receive descriptor ring\n");
1824 goto setup_rx_desc_die;
1827 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828 /* give up */
1829 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830 rxdr->dma);
1831 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832 DPRINTK(PROBE, ERR,
1833 "Unable to allocate aligned memory "
1834 "for the receive descriptor ring\n");
1835 goto setup_rx_desc_die;
1836 } else {
1837 /* Free old allocation, new allocation was successful */
1838 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1841 memset(rxdr->desc, 0, rxdr->size);
1843 rxdr->next_to_clean = 0;
1844 rxdr->next_to_use = 0;
1846 return 0;
1850 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851 * (Descriptors) for all queues
1852 * @adapter: board private structure
1854 * Return 0 on success, negative on failure
1857 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1859 int i, err = 0;
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1863 if (err) {
1864 DPRINTK(PROBE, ERR,
1865 "Allocation for Rx Queue %u failed\n", i);
1866 for (i-- ; i >= 0; i--)
1867 e1000_free_rx_resources(adapter,
1868 &adapter->rx_ring[i]);
1869 break;
1873 return err;
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1882 struct e1000_hw *hw = &adapter->hw;
1883 u32 rctl;
1885 rctl = er32(RCTL);
1887 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1889 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1890 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1891 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1893 if (hw->tbi_compatibility_on == 1)
1894 rctl |= E1000_RCTL_SBP;
1895 else
1896 rctl &= ~E1000_RCTL_SBP;
1898 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1899 rctl &= ~E1000_RCTL_LPE;
1900 else
1901 rctl |= E1000_RCTL_LPE;
1903 /* Setup buffer sizes */
1904 rctl &= ~E1000_RCTL_SZ_4096;
1905 rctl |= E1000_RCTL_BSEX;
1906 switch (adapter->rx_buffer_len) {
1907 case E1000_RXBUFFER_256:
1908 rctl |= E1000_RCTL_SZ_256;
1909 rctl &= ~E1000_RCTL_BSEX;
1910 break;
1911 case E1000_RXBUFFER_512:
1912 rctl |= E1000_RCTL_SZ_512;
1913 rctl &= ~E1000_RCTL_BSEX;
1914 break;
1915 case E1000_RXBUFFER_1024:
1916 rctl |= E1000_RCTL_SZ_1024;
1917 rctl &= ~E1000_RCTL_BSEX;
1918 break;
1919 case E1000_RXBUFFER_2048:
1920 default:
1921 rctl |= E1000_RCTL_SZ_2048;
1922 rctl &= ~E1000_RCTL_BSEX;
1923 break;
1924 case E1000_RXBUFFER_4096:
1925 rctl |= E1000_RCTL_SZ_4096;
1926 break;
1927 case E1000_RXBUFFER_8192:
1928 rctl |= E1000_RCTL_SZ_8192;
1929 break;
1930 case E1000_RXBUFFER_16384:
1931 rctl |= E1000_RCTL_SZ_16384;
1932 break;
1935 ew32(RCTL, rctl);
1939 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1940 * @adapter: board private structure
1942 * Configure the Rx unit of the MAC after a reset.
1945 static void e1000_configure_rx(struct e1000_adapter *adapter)
1947 u64 rdba;
1948 struct e1000_hw *hw = &adapter->hw;
1949 u32 rdlen, rctl, rxcsum, ctrl_ext;
1951 rdlen = adapter->rx_ring[0].count *
1952 sizeof(struct e1000_rx_desc);
1953 adapter->clean_rx = e1000_clean_rx_irq;
1954 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1956 /* disable receives while setting up the descriptors */
1957 rctl = er32(RCTL);
1958 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1960 /* set the Receive Delay Timer Register */
1961 ew32(RDTR, adapter->rx_int_delay);
1963 if (hw->mac_type >= e1000_82540) {
1964 ew32(RADV, adapter->rx_abs_int_delay);
1965 if (adapter->itr_setting != 0)
1966 ew32(ITR, 1000000000 / (adapter->itr * 256));
1969 if (hw->mac_type >= e1000_82571) {
1970 ctrl_ext = er32(CTRL_EXT);
1971 /* Reset delay timers after every interrupt */
1972 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1973 /* Auto-Mask interrupts upon ICR access */
1974 ctrl_ext |= E1000_CTRL_EXT_IAME;
1975 ew32(IAM, 0xffffffff);
1976 ew32(CTRL_EXT, ctrl_ext);
1977 E1000_WRITE_FLUSH();
1980 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1981 * the Base and Length of the Rx Descriptor Ring */
1982 switch (adapter->num_rx_queues) {
1983 case 1:
1984 default:
1985 rdba = adapter->rx_ring[0].dma;
1986 ew32(RDLEN, rdlen);
1987 ew32(RDBAH, (rdba >> 32));
1988 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1989 ew32(RDT, 0);
1990 ew32(RDH, 0);
1991 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1992 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1993 break;
1996 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1997 if (hw->mac_type >= e1000_82543) {
1998 rxcsum = er32(RXCSUM);
1999 if (adapter->rx_csum)
2000 rxcsum |= E1000_RXCSUM_TUOFL;
2001 else
2002 /* don't need to clear IPPCSE as it defaults to 0 */
2003 rxcsum &= ~E1000_RXCSUM_TUOFL;
2004 ew32(RXCSUM, rxcsum);
2007 /* Enable Receives */
2008 ew32(RCTL, rctl);
2012 * e1000_free_tx_resources - Free Tx Resources per Queue
2013 * @adapter: board private structure
2014 * @tx_ring: Tx descriptor ring for a specific queue
2016 * Free all transmit software resources
2019 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2020 struct e1000_tx_ring *tx_ring)
2022 struct pci_dev *pdev = adapter->pdev;
2024 e1000_clean_tx_ring(adapter, tx_ring);
2026 vfree(tx_ring->buffer_info);
2027 tx_ring->buffer_info = NULL;
2029 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2031 tx_ring->desc = NULL;
2035 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2036 * @adapter: board private structure
2038 * Free all transmit software resources
2041 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2043 int i;
2045 for (i = 0; i < adapter->num_tx_queues; i++)
2046 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2049 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2050 struct e1000_buffer *buffer_info)
2052 buffer_info->dma = 0;
2053 if (buffer_info->skb) {
2054 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2055 DMA_TO_DEVICE);
2056 dev_kfree_skb_any(buffer_info->skb);
2057 buffer_info->skb = NULL;
2059 buffer_info->time_stamp = 0;
2060 /* buffer_info must be completely set up in the transmit path */
2064 * e1000_clean_tx_ring - Free Tx Buffers
2065 * @adapter: board private structure
2066 * @tx_ring: ring to be cleaned
2069 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2070 struct e1000_tx_ring *tx_ring)
2072 struct e1000_hw *hw = &adapter->hw;
2073 struct e1000_buffer *buffer_info;
2074 unsigned long size;
2075 unsigned int i;
2077 /* Free all the Tx ring sk_buffs */
2079 for (i = 0; i < tx_ring->count; i++) {
2080 buffer_info = &tx_ring->buffer_info[i];
2081 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2084 size = sizeof(struct e1000_buffer) * tx_ring->count;
2085 memset(tx_ring->buffer_info, 0, size);
2087 /* Zero out the descriptor ring */
2089 memset(tx_ring->desc, 0, tx_ring->size);
2091 tx_ring->next_to_use = 0;
2092 tx_ring->next_to_clean = 0;
2093 tx_ring->last_tx_tso = 0;
2095 writel(0, hw->hw_addr + tx_ring->tdh);
2096 writel(0, hw->hw_addr + tx_ring->tdt);
2100 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2101 * @adapter: board private structure
2104 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2106 int i;
2108 for (i = 0; i < adapter->num_tx_queues; i++)
2109 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2113 * e1000_free_rx_resources - Free Rx Resources
2114 * @adapter: board private structure
2115 * @rx_ring: ring to clean the resources from
2117 * Free all receive software resources
2120 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2121 struct e1000_rx_ring *rx_ring)
2123 struct pci_dev *pdev = adapter->pdev;
2125 e1000_clean_rx_ring(adapter, rx_ring);
2127 vfree(rx_ring->buffer_info);
2128 rx_ring->buffer_info = NULL;
2130 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2132 rx_ring->desc = NULL;
2136 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2137 * @adapter: board private structure
2139 * Free all receive software resources
2142 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2144 int i;
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2151 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2152 * @adapter: board private structure
2153 * @rx_ring: ring to free buffers from
2156 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2157 struct e1000_rx_ring *rx_ring)
2159 struct e1000_hw *hw = &adapter->hw;
2160 struct e1000_buffer *buffer_info;
2161 struct pci_dev *pdev = adapter->pdev;
2162 unsigned long size;
2163 unsigned int i;
2165 /* Free all the Rx ring sk_buffs */
2166 for (i = 0; i < rx_ring->count; i++) {
2167 buffer_info = &rx_ring->buffer_info[i];
2168 if (buffer_info->skb) {
2169 pci_unmap_single(pdev,
2170 buffer_info->dma,
2171 buffer_info->length,
2172 PCI_DMA_FROMDEVICE);
2174 dev_kfree_skb(buffer_info->skb);
2175 buffer_info->skb = NULL;
2179 size = sizeof(struct e1000_buffer) * rx_ring->count;
2180 memset(rx_ring->buffer_info, 0, size);
2182 /* Zero out the descriptor ring */
2184 memset(rx_ring->desc, 0, rx_ring->size);
2186 rx_ring->next_to_clean = 0;
2187 rx_ring->next_to_use = 0;
2189 writel(0, hw->hw_addr + rx_ring->rdh);
2190 writel(0, hw->hw_addr + rx_ring->rdt);
2194 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2195 * @adapter: board private structure
2198 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2200 int i;
2202 for (i = 0; i < adapter->num_rx_queues; i++)
2203 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2206 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2207 * and memory write and invalidate disabled for certain operations
2209 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2211 struct e1000_hw *hw = &adapter->hw;
2212 struct net_device *netdev = adapter->netdev;
2213 u32 rctl;
2215 e1000_pci_clear_mwi(hw);
2217 rctl = er32(RCTL);
2218 rctl |= E1000_RCTL_RST;
2219 ew32(RCTL, rctl);
2220 E1000_WRITE_FLUSH();
2221 mdelay(5);
2223 if (netif_running(netdev))
2224 e1000_clean_all_rx_rings(adapter);
2227 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2229 struct e1000_hw *hw = &adapter->hw;
2230 struct net_device *netdev = adapter->netdev;
2231 u32 rctl;
2233 rctl = er32(RCTL);
2234 rctl &= ~E1000_RCTL_RST;
2235 ew32(RCTL, rctl);
2236 E1000_WRITE_FLUSH();
2237 mdelay(5);
2239 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2240 e1000_pci_set_mwi(hw);
2242 if (netif_running(netdev)) {
2243 /* No need to loop, because 82542 supports only 1 queue */
2244 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2245 e1000_configure_rx(adapter);
2246 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2251 * e1000_set_mac - Change the Ethernet Address of the NIC
2252 * @netdev: network interface device structure
2253 * @p: pointer to an address structure
2255 * Returns 0 on success, negative on failure
2258 static int e1000_set_mac(struct net_device *netdev, void *p)
2260 struct e1000_adapter *adapter = netdev_priv(netdev);
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct sockaddr *addr = p;
2264 if (!is_valid_ether_addr(addr->sa_data))
2265 return -EADDRNOTAVAIL;
2267 /* 82542 2.0 needs to be in reset to write receive address registers */
2269 if (hw->mac_type == e1000_82542_rev2_0)
2270 e1000_enter_82542_rst(adapter);
2272 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2273 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2275 e1000_rar_set(hw, hw->mac_addr, 0);
2277 /* With 82571 controllers, LAA may be overwritten (with the default)
2278 * due to controller reset from the other port. */
2279 if (hw->mac_type == e1000_82571) {
2280 /* activate the work around */
2281 hw->laa_is_present = 1;
2283 /* Hold a copy of the LAA in RAR[14] This is done so that
2284 * between the time RAR[0] gets clobbered and the time it
2285 * gets fixed (in e1000_watchdog), the actual LAA is in one
2286 * of the RARs and no incoming packets directed to this port
2287 * are dropped. Eventaully the LAA will be in RAR[0] and
2288 * RAR[14] */
2289 e1000_rar_set(hw, hw->mac_addr,
2290 E1000_RAR_ENTRIES - 1);
2293 if (hw->mac_type == e1000_82542_rev2_0)
2294 e1000_leave_82542_rst(adapter);
2296 return 0;
2300 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2301 * @netdev: network interface device structure
2303 * The set_rx_mode entry point is called whenever the unicast or multicast
2304 * address lists or the network interface flags are updated. This routine is
2305 * responsible for configuring the hardware for proper unicast, multicast,
2306 * promiscuous mode, and all-multi behavior.
2309 static void e1000_set_rx_mode(struct net_device *netdev)
2311 struct e1000_adapter *adapter = netdev_priv(netdev);
2312 struct e1000_hw *hw = &adapter->hw;
2313 struct dev_addr_list *uc_ptr;
2314 struct dev_addr_list *mc_ptr;
2315 u32 rctl;
2316 u32 hash_value;
2317 int i, rar_entries = E1000_RAR_ENTRIES;
2318 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2319 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2320 E1000_NUM_MTA_REGISTERS;
2322 if (hw->mac_type == e1000_ich8lan)
2323 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2325 /* reserve RAR[14] for LAA over-write work-around */
2326 if (hw->mac_type == e1000_82571)
2327 rar_entries--;
2329 /* Check for Promiscuous and All Multicast modes */
2331 rctl = er32(RCTL);
2333 if (netdev->flags & IFF_PROMISC) {
2334 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2335 rctl &= ~E1000_RCTL_VFE;
2336 } else {
2337 if (netdev->flags & IFF_ALLMULTI) {
2338 rctl |= E1000_RCTL_MPE;
2339 } else {
2340 rctl &= ~E1000_RCTL_MPE;
2342 if (adapter->hw.mac_type != e1000_ich8lan)
2343 rctl |= E1000_RCTL_VFE;
2346 uc_ptr = NULL;
2347 if (netdev->uc_count > rar_entries - 1) {
2348 rctl |= E1000_RCTL_UPE;
2349 } else if (!(netdev->flags & IFF_PROMISC)) {
2350 rctl &= ~E1000_RCTL_UPE;
2351 uc_ptr = netdev->uc_list;
2354 ew32(RCTL, rctl);
2356 /* 82542 2.0 needs to be in reset to write receive address registers */
2358 if (hw->mac_type == e1000_82542_rev2_0)
2359 e1000_enter_82542_rst(adapter);
2361 /* load the first 14 addresses into the exact filters 1-14. Unicast
2362 * addresses take precedence to avoid disabling unicast filtering
2363 * when possible.
2365 * RAR 0 is used for the station MAC adddress
2366 * if there are not 14 addresses, go ahead and clear the filters
2367 * -- with 82571 controllers only 0-13 entries are filled here
2369 mc_ptr = netdev->mc_list;
2371 for (i = 1; i < rar_entries; i++) {
2372 if (uc_ptr) {
2373 e1000_rar_set(hw, uc_ptr->da_addr, i);
2374 uc_ptr = uc_ptr->next;
2375 } else if (mc_ptr) {
2376 e1000_rar_set(hw, mc_ptr->da_addr, i);
2377 mc_ptr = mc_ptr->next;
2378 } else {
2379 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2380 E1000_WRITE_FLUSH();
2381 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2382 E1000_WRITE_FLUSH();
2385 WARN_ON(uc_ptr != NULL);
2387 /* clear the old settings from the multicast hash table */
2389 for (i = 0; i < mta_reg_count; i++) {
2390 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2391 E1000_WRITE_FLUSH();
2394 /* load any remaining addresses into the hash table */
2396 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2397 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2398 e1000_mta_set(hw, hash_value);
2401 if (hw->mac_type == e1000_82542_rev2_0)
2402 e1000_leave_82542_rst(adapter);
2405 /* Need to wait a few seconds after link up to get diagnostic information from
2406 * the phy */
2408 static void e1000_update_phy_info(unsigned long data)
2410 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2411 struct e1000_hw *hw = &adapter->hw;
2412 e1000_phy_get_info(hw, &adapter->phy_info);
2416 * e1000_82547_tx_fifo_stall - Timer Call-back
2417 * @data: pointer to adapter cast into an unsigned long
2420 static void e1000_82547_tx_fifo_stall(unsigned long data)
2422 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2423 struct e1000_hw *hw = &adapter->hw;
2424 struct net_device *netdev = adapter->netdev;
2425 u32 tctl;
2427 if (atomic_read(&adapter->tx_fifo_stall)) {
2428 if ((er32(TDT) == er32(TDH)) &&
2429 (er32(TDFT) == er32(TDFH)) &&
2430 (er32(TDFTS) == er32(TDFHS))) {
2431 tctl = er32(TCTL);
2432 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2433 ew32(TDFT, adapter->tx_head_addr);
2434 ew32(TDFH, adapter->tx_head_addr);
2435 ew32(TDFTS, adapter->tx_head_addr);
2436 ew32(TDFHS, adapter->tx_head_addr);
2437 ew32(TCTL, tctl);
2438 E1000_WRITE_FLUSH();
2440 adapter->tx_fifo_head = 0;
2441 atomic_set(&adapter->tx_fifo_stall, 0);
2442 netif_wake_queue(netdev);
2443 } else {
2444 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2450 * e1000_watchdog - Timer Call-back
2451 * @data: pointer to adapter cast into an unsigned long
2453 static void e1000_watchdog(unsigned long data)
2455 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2456 struct e1000_hw *hw = &adapter->hw;
2457 struct net_device *netdev = adapter->netdev;
2458 struct e1000_tx_ring *txdr = adapter->tx_ring;
2459 u32 link, tctl;
2460 s32 ret_val;
2462 ret_val = e1000_check_for_link(hw);
2463 if ((ret_val == E1000_ERR_PHY) &&
2464 (hw->phy_type == e1000_phy_igp_3) &&
2465 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2466 /* See e1000_kumeran_lock_loss_workaround() */
2467 DPRINTK(LINK, INFO,
2468 "Gigabit has been disabled, downgrading speed\n");
2471 if (hw->mac_type == e1000_82573) {
2472 e1000_enable_tx_pkt_filtering(hw);
2473 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2474 e1000_update_mng_vlan(adapter);
2477 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2478 !(er32(TXCW) & E1000_TXCW_ANE))
2479 link = !hw->serdes_link_down;
2480 else
2481 link = er32(STATUS) & E1000_STATUS_LU;
2483 if (link) {
2484 if (!netif_carrier_ok(netdev)) {
2485 u32 ctrl;
2486 bool txb2b = true;
2487 e1000_get_speed_and_duplex(hw,
2488 &adapter->link_speed,
2489 &adapter->link_duplex);
2491 ctrl = er32(CTRL);
2492 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2493 "Flow Control: %s\n",
2494 netdev->name,
2495 adapter->link_speed,
2496 adapter->link_duplex == FULL_DUPLEX ?
2497 "Full Duplex" : "Half Duplex",
2498 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2499 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2500 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2501 E1000_CTRL_TFCE) ? "TX" : "None" )));
2503 /* tweak tx_queue_len according to speed/duplex
2504 * and adjust the timeout factor */
2505 netdev->tx_queue_len = adapter->tx_queue_len;
2506 adapter->tx_timeout_factor = 1;
2507 switch (adapter->link_speed) {
2508 case SPEED_10:
2509 txb2b = false;
2510 netdev->tx_queue_len = 10;
2511 adapter->tx_timeout_factor = 8;
2512 break;
2513 case SPEED_100:
2514 txb2b = false;
2515 netdev->tx_queue_len = 100;
2516 /* maybe add some timeout factor ? */
2517 break;
2520 if ((hw->mac_type == e1000_82571 ||
2521 hw->mac_type == e1000_82572) &&
2522 !txb2b) {
2523 u32 tarc0;
2524 tarc0 = er32(TARC0);
2525 tarc0 &= ~(1 << 21);
2526 ew32(TARC0, tarc0);
2529 /* disable TSO for pcie and 10/100 speeds, to avoid
2530 * some hardware issues */
2531 if (!adapter->tso_force &&
2532 hw->bus_type == e1000_bus_type_pci_express){
2533 switch (adapter->link_speed) {
2534 case SPEED_10:
2535 case SPEED_100:
2536 DPRINTK(PROBE,INFO,
2537 "10/100 speed: disabling TSO\n");
2538 netdev->features &= ~NETIF_F_TSO;
2539 netdev->features &= ~NETIF_F_TSO6;
2540 break;
2541 case SPEED_1000:
2542 netdev->features |= NETIF_F_TSO;
2543 netdev->features |= NETIF_F_TSO6;
2544 break;
2545 default:
2546 /* oops */
2547 break;
2551 /* enable transmits in the hardware, need to do this
2552 * after setting TARC0 */
2553 tctl = er32(TCTL);
2554 tctl |= E1000_TCTL_EN;
2555 ew32(TCTL, tctl);
2557 netif_carrier_on(netdev);
2558 netif_wake_queue(netdev);
2559 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2560 adapter->smartspeed = 0;
2561 } else {
2562 /* make sure the receive unit is started */
2563 if (hw->rx_needs_kicking) {
2564 u32 rctl = er32(RCTL);
2565 ew32(RCTL, rctl | E1000_RCTL_EN);
2568 } else {
2569 if (netif_carrier_ok(netdev)) {
2570 adapter->link_speed = 0;
2571 adapter->link_duplex = 0;
2572 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2573 netdev->name);
2574 netif_carrier_off(netdev);
2575 netif_stop_queue(netdev);
2576 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2578 /* 80003ES2LAN workaround--
2579 * For packet buffer work-around on link down event;
2580 * disable receives in the ISR and
2581 * reset device here in the watchdog
2583 if (hw->mac_type == e1000_80003es2lan)
2584 /* reset device */
2585 schedule_work(&adapter->reset_task);
2588 e1000_smartspeed(adapter);
2591 e1000_update_stats(adapter);
2593 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2594 adapter->tpt_old = adapter->stats.tpt;
2595 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2596 adapter->colc_old = adapter->stats.colc;
2598 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2599 adapter->gorcl_old = adapter->stats.gorcl;
2600 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2601 adapter->gotcl_old = adapter->stats.gotcl;
2603 e1000_update_adaptive(hw);
2605 if (!netif_carrier_ok(netdev)) {
2606 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2607 /* We've lost link, so the controller stops DMA,
2608 * but we've got queued Tx work that's never going
2609 * to get done, so reset controller to flush Tx.
2610 * (Do the reset outside of interrupt context). */
2611 adapter->tx_timeout_count++;
2612 schedule_work(&adapter->reset_task);
2616 /* Cause software interrupt to ensure rx ring is cleaned */
2617 ew32(ICS, E1000_ICS_RXDMT0);
2619 /* Force detection of hung controller every watchdog period */
2620 adapter->detect_tx_hung = true;
2622 /* With 82571 controllers, LAA may be overwritten due to controller
2623 * reset from the other port. Set the appropriate LAA in RAR[0] */
2624 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2625 e1000_rar_set(hw, hw->mac_addr, 0);
2627 /* Reset the timer */
2628 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2631 enum latency_range {
2632 lowest_latency = 0,
2633 low_latency = 1,
2634 bulk_latency = 2,
2635 latency_invalid = 255
2639 * e1000_update_itr - update the dynamic ITR value based on statistics
2640 * Stores a new ITR value based on packets and byte
2641 * counts during the last interrupt. The advantage of per interrupt
2642 * computation is faster updates and more accurate ITR for the current
2643 * traffic pattern. Constants in this function were computed
2644 * based on theoretical maximum wire speed and thresholds were set based
2645 * on testing data as well as attempting to minimize response time
2646 * while increasing bulk throughput.
2647 * this functionality is controlled by the InterruptThrottleRate module
2648 * parameter (see e1000_param.c)
2649 * @adapter: pointer to adapter
2650 * @itr_setting: current adapter->itr
2651 * @packets: the number of packets during this measurement interval
2652 * @bytes: the number of bytes during this measurement interval
2654 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2655 u16 itr_setting, int packets, int bytes)
2657 unsigned int retval = itr_setting;
2658 struct e1000_hw *hw = &adapter->hw;
2660 if (unlikely(hw->mac_type < e1000_82540))
2661 goto update_itr_done;
2663 if (packets == 0)
2664 goto update_itr_done;
2666 switch (itr_setting) {
2667 case lowest_latency:
2668 /* jumbo frames get bulk treatment*/
2669 if (bytes/packets > 8000)
2670 retval = bulk_latency;
2671 else if ((packets < 5) && (bytes > 512))
2672 retval = low_latency;
2673 break;
2674 case low_latency: /* 50 usec aka 20000 ints/s */
2675 if (bytes > 10000) {
2676 /* jumbo frames need bulk latency setting */
2677 if (bytes/packets > 8000)
2678 retval = bulk_latency;
2679 else if ((packets < 10) || ((bytes/packets) > 1200))
2680 retval = bulk_latency;
2681 else if ((packets > 35))
2682 retval = lowest_latency;
2683 } else if (bytes/packets > 2000)
2684 retval = bulk_latency;
2685 else if (packets <= 2 && bytes < 512)
2686 retval = lowest_latency;
2687 break;
2688 case bulk_latency: /* 250 usec aka 4000 ints/s */
2689 if (bytes > 25000) {
2690 if (packets > 35)
2691 retval = low_latency;
2692 } else if (bytes < 6000) {
2693 retval = low_latency;
2695 break;
2698 update_itr_done:
2699 return retval;
2702 static void e1000_set_itr(struct e1000_adapter *adapter)
2704 struct e1000_hw *hw = &adapter->hw;
2705 u16 current_itr;
2706 u32 new_itr = adapter->itr;
2708 if (unlikely(hw->mac_type < e1000_82540))
2709 return;
2711 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2712 if (unlikely(adapter->link_speed != SPEED_1000)) {
2713 current_itr = 0;
2714 new_itr = 4000;
2715 goto set_itr_now;
2718 adapter->tx_itr = e1000_update_itr(adapter,
2719 adapter->tx_itr,
2720 adapter->total_tx_packets,
2721 adapter->total_tx_bytes);
2722 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2723 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2724 adapter->tx_itr = low_latency;
2726 adapter->rx_itr = e1000_update_itr(adapter,
2727 adapter->rx_itr,
2728 adapter->total_rx_packets,
2729 adapter->total_rx_bytes);
2730 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2731 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2732 adapter->rx_itr = low_latency;
2734 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2736 switch (current_itr) {
2737 /* counts and packets in update_itr are dependent on these numbers */
2738 case lowest_latency:
2739 new_itr = 70000;
2740 break;
2741 case low_latency:
2742 new_itr = 20000; /* aka hwitr = ~200 */
2743 break;
2744 case bulk_latency:
2745 new_itr = 4000;
2746 break;
2747 default:
2748 break;
2751 set_itr_now:
2752 if (new_itr != adapter->itr) {
2753 /* this attempts to bias the interrupt rate towards Bulk
2754 * by adding intermediate steps when interrupt rate is
2755 * increasing */
2756 new_itr = new_itr > adapter->itr ?
2757 min(adapter->itr + (new_itr >> 2), new_itr) :
2758 new_itr;
2759 adapter->itr = new_itr;
2760 ew32(ITR, 1000000000 / (new_itr * 256));
2763 return;
2766 #define E1000_TX_FLAGS_CSUM 0x00000001
2767 #define E1000_TX_FLAGS_VLAN 0x00000002
2768 #define E1000_TX_FLAGS_TSO 0x00000004
2769 #define E1000_TX_FLAGS_IPV4 0x00000008
2770 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2771 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2773 static int e1000_tso(struct e1000_adapter *adapter,
2774 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2776 struct e1000_context_desc *context_desc;
2777 struct e1000_buffer *buffer_info;
2778 unsigned int i;
2779 u32 cmd_length = 0;
2780 u16 ipcse = 0, tucse, mss;
2781 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2782 int err;
2784 if (skb_is_gso(skb)) {
2785 if (skb_header_cloned(skb)) {
2786 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2787 if (err)
2788 return err;
2791 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2792 mss = skb_shinfo(skb)->gso_size;
2793 if (skb->protocol == htons(ETH_P_IP)) {
2794 struct iphdr *iph = ip_hdr(skb);
2795 iph->tot_len = 0;
2796 iph->check = 0;
2797 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2798 iph->daddr, 0,
2799 IPPROTO_TCP,
2801 cmd_length = E1000_TXD_CMD_IP;
2802 ipcse = skb_transport_offset(skb) - 1;
2803 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2804 ipv6_hdr(skb)->payload_len = 0;
2805 tcp_hdr(skb)->check =
2806 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2807 &ipv6_hdr(skb)->daddr,
2808 0, IPPROTO_TCP, 0);
2809 ipcse = 0;
2811 ipcss = skb_network_offset(skb);
2812 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2813 tucss = skb_transport_offset(skb);
2814 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2815 tucse = 0;
2817 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2818 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2820 i = tx_ring->next_to_use;
2821 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2822 buffer_info = &tx_ring->buffer_info[i];
2824 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2825 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2826 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2827 context_desc->upper_setup.tcp_fields.tucss = tucss;
2828 context_desc->upper_setup.tcp_fields.tucso = tucso;
2829 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2830 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2831 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2832 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2834 buffer_info->time_stamp = jiffies;
2835 buffer_info->next_to_watch = i;
2837 if (++i == tx_ring->count) i = 0;
2838 tx_ring->next_to_use = i;
2840 return true;
2842 return false;
2845 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2846 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2848 struct e1000_context_desc *context_desc;
2849 struct e1000_buffer *buffer_info;
2850 unsigned int i;
2851 u8 css;
2852 u32 cmd_len = E1000_TXD_CMD_DEXT;
2854 if (skb->ip_summed != CHECKSUM_PARTIAL)
2855 return false;
2857 switch (skb->protocol) {
2858 case cpu_to_be16(ETH_P_IP):
2859 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2860 cmd_len |= E1000_TXD_CMD_TCP;
2861 break;
2862 case cpu_to_be16(ETH_P_IPV6):
2863 /* XXX not handling all IPV6 headers */
2864 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2865 cmd_len |= E1000_TXD_CMD_TCP;
2866 break;
2867 default:
2868 if (unlikely(net_ratelimit()))
2869 DPRINTK(DRV, WARNING,
2870 "checksum_partial proto=%x!\n", skb->protocol);
2871 break;
2874 css = skb_transport_offset(skb);
2876 i = tx_ring->next_to_use;
2877 buffer_info = &tx_ring->buffer_info[i];
2878 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2880 context_desc->lower_setup.ip_config = 0;
2881 context_desc->upper_setup.tcp_fields.tucss = css;
2882 context_desc->upper_setup.tcp_fields.tucso =
2883 css + skb->csum_offset;
2884 context_desc->upper_setup.tcp_fields.tucse = 0;
2885 context_desc->tcp_seg_setup.data = 0;
2886 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2888 buffer_info->time_stamp = jiffies;
2889 buffer_info->next_to_watch = i;
2891 if (unlikely(++i == tx_ring->count)) i = 0;
2892 tx_ring->next_to_use = i;
2894 return true;
2897 #define E1000_MAX_TXD_PWR 12
2898 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2900 static int e1000_tx_map(struct e1000_adapter *adapter,
2901 struct e1000_tx_ring *tx_ring,
2902 struct sk_buff *skb, unsigned int first,
2903 unsigned int max_per_txd, unsigned int nr_frags,
2904 unsigned int mss)
2906 struct e1000_hw *hw = &adapter->hw;
2907 struct e1000_buffer *buffer_info;
2908 unsigned int len = skb_headlen(skb);
2909 unsigned int offset, size, count = 0, i;
2910 unsigned int f;
2911 dma_addr_t *map;
2913 i = tx_ring->next_to_use;
2915 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2916 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2917 return 0;
2920 map = skb_shinfo(skb)->dma_maps;
2921 offset = 0;
2923 while (len) {
2924 buffer_info = &tx_ring->buffer_info[i];
2925 size = min(len, max_per_txd);
2926 /* Workaround for Controller erratum --
2927 * descriptor for non-tso packet in a linear SKB that follows a
2928 * tso gets written back prematurely before the data is fully
2929 * DMA'd to the controller */
2930 if (!skb->data_len && tx_ring->last_tx_tso &&
2931 !skb_is_gso(skb)) {
2932 tx_ring->last_tx_tso = 0;
2933 size -= 4;
2936 /* Workaround for premature desc write-backs
2937 * in TSO mode. Append 4-byte sentinel desc */
2938 if (unlikely(mss && !nr_frags && size == len && size > 8))
2939 size -= 4;
2940 /* work-around for errata 10 and it applies
2941 * to all controllers in PCI-X mode
2942 * The fix is to make sure that the first descriptor of a
2943 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2945 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2946 (size > 2015) && count == 0))
2947 size = 2015;
2949 /* Workaround for potential 82544 hang in PCI-X. Avoid
2950 * terminating buffers within evenly-aligned dwords. */
2951 if (unlikely(adapter->pcix_82544 &&
2952 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2953 size > 4))
2954 size -= 4;
2956 buffer_info->length = size;
2957 buffer_info->dma = map[0] + offset;
2958 buffer_info->time_stamp = jiffies;
2959 buffer_info->next_to_watch = i;
2961 len -= size;
2962 offset += size;
2963 count++;
2964 if (len) {
2965 i++;
2966 if (unlikely(i == tx_ring->count))
2967 i = 0;
2971 for (f = 0; f < nr_frags; f++) {
2972 struct skb_frag_struct *frag;
2974 frag = &skb_shinfo(skb)->frags[f];
2975 len = frag->size;
2976 offset = 0;
2978 while (len) {
2979 i++;
2980 if (unlikely(i == tx_ring->count))
2981 i = 0;
2983 buffer_info = &tx_ring->buffer_info[i];
2984 size = min(len, max_per_txd);
2985 /* Workaround for premature desc write-backs
2986 * in TSO mode. Append 4-byte sentinel desc */
2987 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2988 size -= 4;
2989 /* Workaround for potential 82544 hang in PCI-X.
2990 * Avoid terminating buffers within evenly-aligned
2991 * dwords. */
2992 if (unlikely(adapter->pcix_82544 &&
2993 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2994 size > 4))
2995 size -= 4;
2997 buffer_info->length = size;
2998 buffer_info->dma = map[f + 1] + offset;
2999 buffer_info->time_stamp = jiffies;
3000 buffer_info->next_to_watch = i;
3002 len -= size;
3003 offset += size;
3004 count++;
3008 tx_ring->buffer_info[i].skb = skb;
3009 tx_ring->buffer_info[first].next_to_watch = i;
3011 return count;
3014 static void e1000_tx_queue(struct e1000_adapter *adapter,
3015 struct e1000_tx_ring *tx_ring, int tx_flags,
3016 int count)
3018 struct e1000_hw *hw = &adapter->hw;
3019 struct e1000_tx_desc *tx_desc = NULL;
3020 struct e1000_buffer *buffer_info;
3021 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3022 unsigned int i;
3024 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3025 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3026 E1000_TXD_CMD_TSE;
3027 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3029 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3030 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3033 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3034 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3035 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3038 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3039 txd_lower |= E1000_TXD_CMD_VLE;
3040 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3043 i = tx_ring->next_to_use;
3045 while (count--) {
3046 buffer_info = &tx_ring->buffer_info[i];
3047 tx_desc = E1000_TX_DESC(*tx_ring, i);
3048 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3049 tx_desc->lower.data =
3050 cpu_to_le32(txd_lower | buffer_info->length);
3051 tx_desc->upper.data = cpu_to_le32(txd_upper);
3052 if (unlikely(++i == tx_ring->count)) i = 0;
3055 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3057 /* Force memory writes to complete before letting h/w
3058 * know there are new descriptors to fetch. (Only
3059 * applicable for weak-ordered memory model archs,
3060 * such as IA-64). */
3061 wmb();
3063 tx_ring->next_to_use = i;
3064 writel(i, hw->hw_addr + tx_ring->tdt);
3065 /* we need this if more than one processor can write to our tail
3066 * at a time, it syncronizes IO on IA64/Altix systems */
3067 mmiowb();
3071 * 82547 workaround to avoid controller hang in half-duplex environment.
3072 * The workaround is to avoid queuing a large packet that would span
3073 * the internal Tx FIFO ring boundary by notifying the stack to resend
3074 * the packet at a later time. This gives the Tx FIFO an opportunity to
3075 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3076 * to the beginning of the Tx FIFO.
3079 #define E1000_FIFO_HDR 0x10
3080 #define E1000_82547_PAD_LEN 0x3E0
3082 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3083 struct sk_buff *skb)
3085 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3086 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3088 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3090 if (adapter->link_duplex != HALF_DUPLEX)
3091 goto no_fifo_stall_required;
3093 if (atomic_read(&adapter->tx_fifo_stall))
3094 return 1;
3096 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3097 atomic_set(&adapter->tx_fifo_stall, 1);
3098 return 1;
3101 no_fifo_stall_required:
3102 adapter->tx_fifo_head += skb_fifo_len;
3103 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3104 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3105 return 0;
3108 #define MINIMUM_DHCP_PACKET_SIZE 282
3109 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3110 struct sk_buff *skb)
3112 struct e1000_hw *hw = &adapter->hw;
3113 u16 length, offset;
3114 if (vlan_tx_tag_present(skb)) {
3115 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3116 ( hw->mng_cookie.status &
3117 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3118 return 0;
3120 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3121 struct ethhdr *eth = (struct ethhdr *)skb->data;
3122 if ((htons(ETH_P_IP) == eth->h_proto)) {
3123 const struct iphdr *ip =
3124 (struct iphdr *)((u8 *)skb->data+14);
3125 if (IPPROTO_UDP == ip->protocol) {
3126 struct udphdr *udp =
3127 (struct udphdr *)((u8 *)ip +
3128 (ip->ihl << 2));
3129 if (ntohs(udp->dest) == 67) {
3130 offset = (u8 *)udp + 8 - skb->data;
3131 length = skb->len - offset;
3133 return e1000_mng_write_dhcp_info(hw,
3134 (u8 *)udp + 8,
3135 length);
3140 return 0;
3143 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3145 struct e1000_adapter *adapter = netdev_priv(netdev);
3146 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3148 netif_stop_queue(netdev);
3149 /* Herbert's original patch had:
3150 * smp_mb__after_netif_stop_queue();
3151 * but since that doesn't exist yet, just open code it. */
3152 smp_mb();
3154 /* We need to check again in a case another CPU has just
3155 * made room available. */
3156 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3157 return -EBUSY;
3159 /* A reprieve! */
3160 netif_start_queue(netdev);
3161 ++adapter->restart_queue;
3162 return 0;
3165 static int e1000_maybe_stop_tx(struct net_device *netdev,
3166 struct e1000_tx_ring *tx_ring, int size)
3168 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3169 return 0;
3170 return __e1000_maybe_stop_tx(netdev, size);
3173 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3174 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3176 struct e1000_adapter *adapter = netdev_priv(netdev);
3177 struct e1000_hw *hw = &adapter->hw;
3178 struct e1000_tx_ring *tx_ring;
3179 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3180 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3181 unsigned int tx_flags = 0;
3182 unsigned int len = skb->len - skb->data_len;
3183 unsigned int nr_frags;
3184 unsigned int mss;
3185 int count = 0;
3186 int tso;
3187 unsigned int f;
3189 /* This goes back to the question of how to logically map a tx queue
3190 * to a flow. Right now, performance is impacted slightly negatively
3191 * if using multiple tx queues. If the stack breaks away from a
3192 * single qdisc implementation, we can look at this again. */
3193 tx_ring = adapter->tx_ring;
3195 if (unlikely(skb->len <= 0)) {
3196 dev_kfree_skb_any(skb);
3197 return NETDEV_TX_OK;
3200 /* 82571 and newer doesn't need the workaround that limited descriptor
3201 * length to 4kB */
3202 if (hw->mac_type >= e1000_82571)
3203 max_per_txd = 8192;
3205 mss = skb_shinfo(skb)->gso_size;
3206 /* The controller does a simple calculation to
3207 * make sure there is enough room in the FIFO before
3208 * initiating the DMA for each buffer. The calc is:
3209 * 4 = ceil(buffer len/mss). To make sure we don't
3210 * overrun the FIFO, adjust the max buffer len if mss
3211 * drops. */
3212 if (mss) {
3213 u8 hdr_len;
3214 max_per_txd = min(mss << 2, max_per_txd);
3215 max_txd_pwr = fls(max_per_txd) - 1;
3217 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3218 * points to just header, pull a few bytes of payload from
3219 * frags into skb->data */
3220 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3221 if (skb->data_len && hdr_len == len) {
3222 switch (hw->mac_type) {
3223 unsigned int pull_size;
3224 case e1000_82544:
3225 /* Make sure we have room to chop off 4 bytes,
3226 * and that the end alignment will work out to
3227 * this hardware's requirements
3228 * NOTE: this is a TSO only workaround
3229 * if end byte alignment not correct move us
3230 * into the next dword */
3231 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3232 break;
3233 /* fall through */
3234 case e1000_82571:
3235 case e1000_82572:
3236 case e1000_82573:
3237 case e1000_ich8lan:
3238 pull_size = min((unsigned int)4, skb->data_len);
3239 if (!__pskb_pull_tail(skb, pull_size)) {
3240 DPRINTK(DRV, ERR,
3241 "__pskb_pull_tail failed.\n");
3242 dev_kfree_skb_any(skb);
3243 return NETDEV_TX_OK;
3245 len = skb->len - skb->data_len;
3246 break;
3247 default:
3248 /* do nothing */
3249 break;
3254 /* reserve a descriptor for the offload context */
3255 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3256 count++;
3257 count++;
3259 /* Controller Erratum workaround */
3260 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3261 count++;
3263 count += TXD_USE_COUNT(len, max_txd_pwr);
3265 if (adapter->pcix_82544)
3266 count++;
3268 /* work-around for errata 10 and it applies to all controllers
3269 * in PCI-X mode, so add one more descriptor to the count
3271 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3272 (len > 2015)))
3273 count++;
3275 nr_frags = skb_shinfo(skb)->nr_frags;
3276 for (f = 0; f < nr_frags; f++)
3277 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3278 max_txd_pwr);
3279 if (adapter->pcix_82544)
3280 count += nr_frags;
3283 if (hw->tx_pkt_filtering &&
3284 (hw->mac_type == e1000_82573))
3285 e1000_transfer_dhcp_info(adapter, skb);
3287 /* need: count + 2 desc gap to keep tail from touching
3288 * head, otherwise try next time */
3289 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3290 return NETDEV_TX_BUSY;
3292 if (unlikely(hw->mac_type == e1000_82547)) {
3293 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3294 netif_stop_queue(netdev);
3295 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3296 return NETDEV_TX_BUSY;
3300 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3301 tx_flags |= E1000_TX_FLAGS_VLAN;
3302 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3305 first = tx_ring->next_to_use;
3307 tso = e1000_tso(adapter, tx_ring, skb);
3308 if (tso < 0) {
3309 dev_kfree_skb_any(skb);
3310 return NETDEV_TX_OK;
3313 if (likely(tso)) {
3314 tx_ring->last_tx_tso = 1;
3315 tx_flags |= E1000_TX_FLAGS_TSO;
3316 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3317 tx_flags |= E1000_TX_FLAGS_CSUM;
3319 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3320 * 82571 hardware supports TSO capabilities for IPv6 as well...
3321 * no longer assume, we must. */
3322 if (likely(skb->protocol == htons(ETH_P_IP)))
3323 tx_flags |= E1000_TX_FLAGS_IPV4;
3325 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3326 nr_frags, mss);
3328 if (count) {
3329 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3330 netdev->trans_start = jiffies;
3331 /* Make sure there is space in the ring for the next send. */
3332 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3334 } else {
3335 dev_kfree_skb_any(skb);
3336 tx_ring->buffer_info[first].time_stamp = 0;
3337 tx_ring->next_to_use = first;
3340 return NETDEV_TX_OK;
3344 * e1000_tx_timeout - Respond to a Tx Hang
3345 * @netdev: network interface device structure
3348 static void e1000_tx_timeout(struct net_device *netdev)
3350 struct e1000_adapter *adapter = netdev_priv(netdev);
3352 /* Do the reset outside of interrupt context */
3353 adapter->tx_timeout_count++;
3354 schedule_work(&adapter->reset_task);
3357 static void e1000_reset_task(struct work_struct *work)
3359 struct e1000_adapter *adapter =
3360 container_of(work, struct e1000_adapter, reset_task);
3362 e1000_reinit_locked(adapter);
3366 * e1000_get_stats - Get System Network Statistics
3367 * @netdev: network interface device structure
3369 * Returns the address of the device statistics structure.
3370 * The statistics are actually updated from the timer callback.
3373 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3375 struct e1000_adapter *adapter = netdev_priv(netdev);
3377 /* only return the current stats */
3378 return &adapter->net_stats;
3382 * e1000_change_mtu - Change the Maximum Transfer Unit
3383 * @netdev: network interface device structure
3384 * @new_mtu: new value for maximum frame size
3386 * Returns 0 on success, negative on failure
3389 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3391 struct e1000_adapter *adapter = netdev_priv(netdev);
3392 struct e1000_hw *hw = &adapter->hw;
3393 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3394 u16 eeprom_data = 0;
3396 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3397 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3398 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3399 return -EINVAL;
3402 /* Adapter-specific max frame size limits. */
3403 switch (hw->mac_type) {
3404 case e1000_undefined ... e1000_82542_rev2_1:
3405 case e1000_ich8lan:
3406 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3407 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3408 return -EINVAL;
3410 break;
3411 case e1000_82573:
3412 /* Jumbo Frames not supported if:
3413 * - this is not an 82573L device
3414 * - ASPM is enabled in any way (0x1A bits 3:2) */
3415 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3416 &eeprom_data);
3417 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3418 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3419 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3420 DPRINTK(PROBE, ERR,
3421 "Jumbo Frames not supported.\n");
3422 return -EINVAL;
3424 break;
3426 /* ERT will be enabled later to enable wire speed receives */
3428 /* fall through to get support */
3429 case e1000_82571:
3430 case e1000_82572:
3431 case e1000_80003es2lan:
3432 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3433 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3434 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3435 return -EINVAL;
3437 break;
3438 default:
3439 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3440 break;
3443 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3444 * means we reserve 2 more, this pushes us to allocate from the next
3445 * larger slab size
3446 * i.e. RXBUFFER_2048 --> size-4096 slab */
3448 if (max_frame <= E1000_RXBUFFER_256)
3449 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3450 else if (max_frame <= E1000_RXBUFFER_512)
3451 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3452 else if (max_frame <= E1000_RXBUFFER_1024)
3453 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3454 else if (max_frame <= E1000_RXBUFFER_2048)
3455 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3456 else if (max_frame <= E1000_RXBUFFER_4096)
3457 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3458 else if (max_frame <= E1000_RXBUFFER_8192)
3459 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3460 else if (max_frame <= E1000_RXBUFFER_16384)
3461 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3463 /* adjust allocation if LPE protects us, and we aren't using SBP */
3464 if (!hw->tbi_compatibility_on &&
3465 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3466 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3467 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3469 netdev->mtu = new_mtu;
3470 hw->max_frame_size = max_frame;
3472 if (netif_running(netdev))
3473 e1000_reinit_locked(adapter);
3475 return 0;
3479 * e1000_update_stats - Update the board statistics counters
3480 * @adapter: board private structure
3483 void e1000_update_stats(struct e1000_adapter *adapter)
3485 struct e1000_hw *hw = &adapter->hw;
3486 struct pci_dev *pdev = adapter->pdev;
3487 unsigned long flags;
3488 u16 phy_tmp;
3490 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3493 * Prevent stats update while adapter is being reset, or if the pci
3494 * connection is down.
3496 if (adapter->link_speed == 0)
3497 return;
3498 if (pci_channel_offline(pdev))
3499 return;
3501 spin_lock_irqsave(&adapter->stats_lock, flags);
3503 /* these counters are modified from e1000_tbi_adjust_stats,
3504 * called from the interrupt context, so they must only
3505 * be written while holding adapter->stats_lock
3508 adapter->stats.crcerrs += er32(CRCERRS);
3509 adapter->stats.gprc += er32(GPRC);
3510 adapter->stats.gorcl += er32(GORCL);
3511 adapter->stats.gorch += er32(GORCH);
3512 adapter->stats.bprc += er32(BPRC);
3513 adapter->stats.mprc += er32(MPRC);
3514 adapter->stats.roc += er32(ROC);
3516 if (hw->mac_type != e1000_ich8lan) {
3517 adapter->stats.prc64 += er32(PRC64);
3518 adapter->stats.prc127 += er32(PRC127);
3519 adapter->stats.prc255 += er32(PRC255);
3520 adapter->stats.prc511 += er32(PRC511);
3521 adapter->stats.prc1023 += er32(PRC1023);
3522 adapter->stats.prc1522 += er32(PRC1522);
3525 adapter->stats.symerrs += er32(SYMERRS);
3526 adapter->stats.mpc += er32(MPC);
3527 adapter->stats.scc += er32(SCC);
3528 adapter->stats.ecol += er32(ECOL);
3529 adapter->stats.mcc += er32(MCC);
3530 adapter->stats.latecol += er32(LATECOL);
3531 adapter->stats.dc += er32(DC);
3532 adapter->stats.sec += er32(SEC);
3533 adapter->stats.rlec += er32(RLEC);
3534 adapter->stats.xonrxc += er32(XONRXC);
3535 adapter->stats.xontxc += er32(XONTXC);
3536 adapter->stats.xoffrxc += er32(XOFFRXC);
3537 adapter->stats.xofftxc += er32(XOFFTXC);
3538 adapter->stats.fcruc += er32(FCRUC);
3539 adapter->stats.gptc += er32(GPTC);
3540 adapter->stats.gotcl += er32(GOTCL);
3541 adapter->stats.gotch += er32(GOTCH);
3542 adapter->stats.rnbc += er32(RNBC);
3543 adapter->stats.ruc += er32(RUC);
3544 adapter->stats.rfc += er32(RFC);
3545 adapter->stats.rjc += er32(RJC);
3546 adapter->stats.torl += er32(TORL);
3547 adapter->stats.torh += er32(TORH);
3548 adapter->stats.totl += er32(TOTL);
3549 adapter->stats.toth += er32(TOTH);
3550 adapter->stats.tpr += er32(TPR);
3552 if (hw->mac_type != e1000_ich8lan) {
3553 adapter->stats.ptc64 += er32(PTC64);
3554 adapter->stats.ptc127 += er32(PTC127);
3555 adapter->stats.ptc255 += er32(PTC255);
3556 adapter->stats.ptc511 += er32(PTC511);
3557 adapter->stats.ptc1023 += er32(PTC1023);
3558 adapter->stats.ptc1522 += er32(PTC1522);
3561 adapter->stats.mptc += er32(MPTC);
3562 adapter->stats.bptc += er32(BPTC);
3564 /* used for adaptive IFS */
3566 hw->tx_packet_delta = er32(TPT);
3567 adapter->stats.tpt += hw->tx_packet_delta;
3568 hw->collision_delta = er32(COLC);
3569 adapter->stats.colc += hw->collision_delta;
3571 if (hw->mac_type >= e1000_82543) {
3572 adapter->stats.algnerrc += er32(ALGNERRC);
3573 adapter->stats.rxerrc += er32(RXERRC);
3574 adapter->stats.tncrs += er32(TNCRS);
3575 adapter->stats.cexterr += er32(CEXTERR);
3576 adapter->stats.tsctc += er32(TSCTC);
3577 adapter->stats.tsctfc += er32(TSCTFC);
3579 if (hw->mac_type > e1000_82547_rev_2) {
3580 adapter->stats.iac += er32(IAC);
3581 adapter->stats.icrxoc += er32(ICRXOC);
3583 if (hw->mac_type != e1000_ich8lan) {
3584 adapter->stats.icrxptc += er32(ICRXPTC);
3585 adapter->stats.icrxatc += er32(ICRXATC);
3586 adapter->stats.ictxptc += er32(ICTXPTC);
3587 adapter->stats.ictxatc += er32(ICTXATC);
3588 adapter->stats.ictxqec += er32(ICTXQEC);
3589 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3590 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3594 /* Fill out the OS statistics structure */
3595 adapter->net_stats.multicast = adapter->stats.mprc;
3596 adapter->net_stats.collisions = adapter->stats.colc;
3598 /* Rx Errors */
3600 /* RLEC on some newer hardware can be incorrect so build
3601 * our own version based on RUC and ROC */
3602 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3603 adapter->stats.crcerrs + adapter->stats.algnerrc +
3604 adapter->stats.ruc + adapter->stats.roc +
3605 adapter->stats.cexterr;
3606 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3607 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3608 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3609 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3610 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3612 /* Tx Errors */
3613 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3614 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3615 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3616 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3617 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3618 if (hw->bad_tx_carr_stats_fd &&
3619 adapter->link_duplex == FULL_DUPLEX) {
3620 adapter->net_stats.tx_carrier_errors = 0;
3621 adapter->stats.tncrs = 0;
3624 /* Tx Dropped needs to be maintained elsewhere */
3626 /* Phy Stats */
3627 if (hw->media_type == e1000_media_type_copper) {
3628 if ((adapter->link_speed == SPEED_1000) &&
3629 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3630 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3631 adapter->phy_stats.idle_errors += phy_tmp;
3634 if ((hw->mac_type <= e1000_82546) &&
3635 (hw->phy_type == e1000_phy_m88) &&
3636 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3637 adapter->phy_stats.receive_errors += phy_tmp;
3640 /* Management Stats */
3641 if (hw->has_smbus) {
3642 adapter->stats.mgptc += er32(MGTPTC);
3643 adapter->stats.mgprc += er32(MGTPRC);
3644 adapter->stats.mgpdc += er32(MGTPDC);
3647 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3651 * e1000_intr_msi - Interrupt Handler
3652 * @irq: interrupt number
3653 * @data: pointer to a network interface device structure
3656 static irqreturn_t e1000_intr_msi(int irq, void *data)
3658 struct net_device *netdev = data;
3659 struct e1000_adapter *adapter = netdev_priv(netdev);
3660 struct e1000_hw *hw = &adapter->hw;
3661 u32 icr = er32(ICR);
3663 /* in NAPI mode read ICR disables interrupts using IAM */
3665 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3666 hw->get_link_status = 1;
3667 /* 80003ES2LAN workaround-- For packet buffer work-around on
3668 * link down event; disable receives here in the ISR and reset
3669 * adapter in watchdog */
3670 if (netif_carrier_ok(netdev) &&
3671 (hw->mac_type == e1000_80003es2lan)) {
3672 /* disable receives */
3673 u32 rctl = er32(RCTL);
3674 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3676 /* guard against interrupt when we're going down */
3677 if (!test_bit(__E1000_DOWN, &adapter->flags))
3678 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3681 if (likely(napi_schedule_prep(&adapter->napi))) {
3682 adapter->total_tx_bytes = 0;
3683 adapter->total_tx_packets = 0;
3684 adapter->total_rx_bytes = 0;
3685 adapter->total_rx_packets = 0;
3686 __napi_schedule(&adapter->napi);
3687 } else
3688 e1000_irq_enable(adapter);
3690 return IRQ_HANDLED;
3694 * e1000_intr - Interrupt Handler
3695 * @irq: interrupt number
3696 * @data: pointer to a network interface device structure
3699 static irqreturn_t e1000_intr(int irq, void *data)
3701 struct net_device *netdev = data;
3702 struct e1000_adapter *adapter = netdev_priv(netdev);
3703 struct e1000_hw *hw = &adapter->hw;
3704 u32 rctl, icr = er32(ICR);
3706 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3707 return IRQ_NONE; /* Not our interrupt */
3709 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3710 * not set, then the adapter didn't send an interrupt */
3711 if (unlikely(hw->mac_type >= e1000_82571 &&
3712 !(icr & E1000_ICR_INT_ASSERTED)))
3713 return IRQ_NONE;
3715 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3716 * need for the IMC write */
3718 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3719 hw->get_link_status = 1;
3720 /* 80003ES2LAN workaround--
3721 * For packet buffer work-around on link down event;
3722 * disable receives here in the ISR and
3723 * reset adapter in watchdog
3725 if (netif_carrier_ok(netdev) &&
3726 (hw->mac_type == e1000_80003es2lan)) {
3727 /* disable receives */
3728 rctl = er32(RCTL);
3729 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3731 /* guard against interrupt when we're going down */
3732 if (!test_bit(__E1000_DOWN, &adapter->flags))
3733 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3736 if (unlikely(hw->mac_type < e1000_82571)) {
3737 /* disable interrupts, without the synchronize_irq bit */
3738 ew32(IMC, ~0);
3739 E1000_WRITE_FLUSH();
3741 if (likely(napi_schedule_prep(&adapter->napi))) {
3742 adapter->total_tx_bytes = 0;
3743 adapter->total_tx_packets = 0;
3744 adapter->total_rx_bytes = 0;
3745 adapter->total_rx_packets = 0;
3746 __napi_schedule(&adapter->napi);
3747 } else
3748 /* this really should not happen! if it does it is basically a
3749 * bug, but not a hard error, so enable ints and continue */
3750 e1000_irq_enable(adapter);
3752 return IRQ_HANDLED;
3756 * e1000_clean - NAPI Rx polling callback
3757 * @adapter: board private structure
3759 static int e1000_clean(struct napi_struct *napi, int budget)
3761 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3762 struct net_device *poll_dev = adapter->netdev;
3763 int tx_cleaned = 0, work_done = 0;
3765 adapter = netdev_priv(poll_dev);
3767 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3769 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3770 &work_done, budget);
3772 if (!tx_cleaned)
3773 work_done = budget;
3775 /* If budget not fully consumed, exit the polling mode */
3776 if (work_done < budget) {
3777 if (likely(adapter->itr_setting & 3))
3778 e1000_set_itr(adapter);
3779 napi_complete(napi);
3780 e1000_irq_enable(adapter);
3783 return work_done;
3787 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3788 * @adapter: board private structure
3790 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3791 struct e1000_tx_ring *tx_ring)
3793 struct e1000_hw *hw = &adapter->hw;
3794 struct net_device *netdev = adapter->netdev;
3795 struct e1000_tx_desc *tx_desc, *eop_desc;
3796 struct e1000_buffer *buffer_info;
3797 unsigned int i, eop;
3798 unsigned int count = 0;
3799 bool cleaned;
3800 unsigned int total_tx_bytes=0, total_tx_packets=0;
3802 i = tx_ring->next_to_clean;
3803 eop = tx_ring->buffer_info[i].next_to_watch;
3804 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3806 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3807 (count < tx_ring->count)) {
3808 for (cleaned = false; !cleaned; count++) {
3809 tx_desc = E1000_TX_DESC(*tx_ring, i);
3810 buffer_info = &tx_ring->buffer_info[i];
3811 cleaned = (i == eop);
3813 if (cleaned) {
3814 struct sk_buff *skb = buffer_info->skb;
3815 unsigned int segs, bytecount;
3816 segs = skb_shinfo(skb)->gso_segs ?: 1;
3817 /* multiply data chunks by size of headers */
3818 bytecount = ((segs - 1) * skb_headlen(skb)) +
3819 skb->len;
3820 total_tx_packets += segs;
3821 total_tx_bytes += bytecount;
3823 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3824 tx_desc->upper.data = 0;
3826 if (unlikely(++i == tx_ring->count)) i = 0;
3829 eop = tx_ring->buffer_info[i].next_to_watch;
3830 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3833 tx_ring->next_to_clean = i;
3835 #define TX_WAKE_THRESHOLD 32
3836 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3837 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3838 /* Make sure that anybody stopping the queue after this
3839 * sees the new next_to_clean.
3841 smp_mb();
3842 if (netif_queue_stopped(netdev)) {
3843 netif_wake_queue(netdev);
3844 ++adapter->restart_queue;
3848 if (adapter->detect_tx_hung) {
3849 /* Detect a transmit hang in hardware, this serializes the
3850 * check with the clearing of time_stamp and movement of i */
3851 adapter->detect_tx_hung = false;
3852 if (tx_ring->buffer_info[i].time_stamp &&
3853 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3854 (adapter->tx_timeout_factor * HZ))
3855 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3857 /* detected Tx unit hang */
3858 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3859 " Tx Queue <%lu>\n"
3860 " TDH <%x>\n"
3861 " TDT <%x>\n"
3862 " next_to_use <%x>\n"
3863 " next_to_clean <%x>\n"
3864 "buffer_info[next_to_clean]\n"
3865 " time_stamp <%lx>\n"
3866 " next_to_watch <%x>\n"
3867 " jiffies <%lx>\n"
3868 " next_to_watch.status <%x>\n",
3869 (unsigned long)((tx_ring - adapter->tx_ring) /
3870 sizeof(struct e1000_tx_ring)),
3871 readl(hw->hw_addr + tx_ring->tdh),
3872 readl(hw->hw_addr + tx_ring->tdt),
3873 tx_ring->next_to_use,
3874 tx_ring->next_to_clean,
3875 tx_ring->buffer_info[i].time_stamp,
3876 eop,
3877 jiffies,
3878 eop_desc->upper.fields.status);
3879 netif_stop_queue(netdev);
3882 adapter->total_tx_bytes += total_tx_bytes;
3883 adapter->total_tx_packets += total_tx_packets;
3884 adapter->net_stats.tx_bytes += total_tx_bytes;
3885 adapter->net_stats.tx_packets += total_tx_packets;
3886 return (count < tx_ring->count);
3890 * e1000_rx_checksum - Receive Checksum Offload for 82543
3891 * @adapter: board private structure
3892 * @status_err: receive descriptor status and error fields
3893 * @csum: receive descriptor csum field
3894 * @sk_buff: socket buffer with received data
3897 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3898 u32 csum, struct sk_buff *skb)
3900 struct e1000_hw *hw = &adapter->hw;
3901 u16 status = (u16)status_err;
3902 u8 errors = (u8)(status_err >> 24);
3903 skb->ip_summed = CHECKSUM_NONE;
3905 /* 82543 or newer only */
3906 if (unlikely(hw->mac_type < e1000_82543)) return;
3907 /* Ignore Checksum bit is set */
3908 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3909 /* TCP/UDP checksum error bit is set */
3910 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3911 /* let the stack verify checksum errors */
3912 adapter->hw_csum_err++;
3913 return;
3915 /* TCP/UDP Checksum has not been calculated */
3916 if (hw->mac_type <= e1000_82547_rev_2) {
3917 if (!(status & E1000_RXD_STAT_TCPCS))
3918 return;
3919 } else {
3920 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3921 return;
3923 /* It must be a TCP or UDP packet with a valid checksum */
3924 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3925 /* TCP checksum is good */
3926 skb->ip_summed = CHECKSUM_UNNECESSARY;
3927 } else if (hw->mac_type > e1000_82547_rev_2) {
3928 /* IP fragment with UDP payload */
3929 /* Hardware complements the payload checksum, so we undo it
3930 * and then put the value in host order for further stack use.
3932 __sum16 sum = (__force __sum16)htons(csum);
3933 skb->csum = csum_unfold(~sum);
3934 skb->ip_summed = CHECKSUM_COMPLETE;
3936 adapter->hw_csum_good++;
3940 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3941 * @adapter: board private structure
3943 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3944 struct e1000_rx_ring *rx_ring,
3945 int *work_done, int work_to_do)
3947 struct e1000_hw *hw = &adapter->hw;
3948 struct net_device *netdev = adapter->netdev;
3949 struct pci_dev *pdev = adapter->pdev;
3950 struct e1000_rx_desc *rx_desc, *next_rxd;
3951 struct e1000_buffer *buffer_info, *next_buffer;
3952 unsigned long flags;
3953 u32 length;
3954 u8 last_byte;
3955 unsigned int i;
3956 int cleaned_count = 0;
3957 bool cleaned = false;
3958 unsigned int total_rx_bytes=0, total_rx_packets=0;
3960 i = rx_ring->next_to_clean;
3961 rx_desc = E1000_RX_DESC(*rx_ring, i);
3962 buffer_info = &rx_ring->buffer_info[i];
3964 while (rx_desc->status & E1000_RXD_STAT_DD) {
3965 struct sk_buff *skb;
3966 u8 status;
3968 if (*work_done >= work_to_do)
3969 break;
3970 (*work_done)++;
3972 status = rx_desc->status;
3973 skb = buffer_info->skb;
3974 buffer_info->skb = NULL;
3976 prefetch(skb->data - NET_IP_ALIGN);
3978 if (++i == rx_ring->count) i = 0;
3979 next_rxd = E1000_RX_DESC(*rx_ring, i);
3980 prefetch(next_rxd);
3982 next_buffer = &rx_ring->buffer_info[i];
3984 cleaned = true;
3985 cleaned_count++;
3986 pci_unmap_single(pdev,
3987 buffer_info->dma,
3988 buffer_info->length,
3989 PCI_DMA_FROMDEVICE);
3991 length = le16_to_cpu(rx_desc->length);
3993 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3994 /* All receives must fit into a single buffer */
3995 E1000_DBG("%s: Receive packet consumed multiple"
3996 " buffers\n", netdev->name);
3997 /* recycle */
3998 buffer_info->skb = skb;
3999 goto next_desc;
4002 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4003 last_byte = *(skb->data + length - 1);
4004 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4005 last_byte)) {
4006 spin_lock_irqsave(&adapter->stats_lock, flags);
4007 e1000_tbi_adjust_stats(hw, &adapter->stats,
4008 length, skb->data);
4009 spin_unlock_irqrestore(&adapter->stats_lock,
4010 flags);
4011 length--;
4012 } else {
4013 /* recycle */
4014 buffer_info->skb = skb;
4015 goto next_desc;
4019 /* adjust length to remove Ethernet CRC, this must be
4020 * done after the TBI_ACCEPT workaround above */
4021 length -= 4;
4023 /* probably a little skewed due to removing CRC */
4024 total_rx_bytes += length;
4025 total_rx_packets++;
4027 /* code added for copybreak, this should improve
4028 * performance for small packets with large amounts
4029 * of reassembly being done in the stack */
4030 if (length < copybreak) {
4031 struct sk_buff *new_skb =
4032 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4033 if (new_skb) {
4034 skb_reserve(new_skb, NET_IP_ALIGN);
4035 skb_copy_to_linear_data_offset(new_skb,
4036 -NET_IP_ALIGN,
4037 (skb->data -
4038 NET_IP_ALIGN),
4039 (length +
4040 NET_IP_ALIGN));
4041 /* save the skb in buffer_info as good */
4042 buffer_info->skb = skb;
4043 skb = new_skb;
4045 /* else just continue with the old one */
4047 /* end copybreak code */
4048 skb_put(skb, length);
4050 /* Receive Checksum Offload */
4051 e1000_rx_checksum(adapter,
4052 (u32)(status) |
4053 ((u32)(rx_desc->errors) << 24),
4054 le16_to_cpu(rx_desc->csum), skb);
4056 skb->protocol = eth_type_trans(skb, netdev);
4058 if (unlikely(adapter->vlgrp &&
4059 (status & E1000_RXD_STAT_VP))) {
4060 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4061 le16_to_cpu(rx_desc->special));
4062 } else {
4063 netif_receive_skb(skb);
4066 next_desc:
4067 rx_desc->status = 0;
4069 /* return some buffers to hardware, one at a time is too slow */
4070 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4071 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4072 cleaned_count = 0;
4075 /* use prefetched values */
4076 rx_desc = next_rxd;
4077 buffer_info = next_buffer;
4079 rx_ring->next_to_clean = i;
4081 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4082 if (cleaned_count)
4083 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4085 adapter->total_rx_packets += total_rx_packets;
4086 adapter->total_rx_bytes += total_rx_bytes;
4087 adapter->net_stats.rx_bytes += total_rx_bytes;
4088 adapter->net_stats.rx_packets += total_rx_packets;
4089 return cleaned;
4093 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4094 * @adapter: address of board private structure
4097 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4098 struct e1000_rx_ring *rx_ring,
4099 int cleaned_count)
4101 struct e1000_hw *hw = &adapter->hw;
4102 struct net_device *netdev = adapter->netdev;
4103 struct pci_dev *pdev = adapter->pdev;
4104 struct e1000_rx_desc *rx_desc;
4105 struct e1000_buffer *buffer_info;
4106 struct sk_buff *skb;
4107 unsigned int i;
4108 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4110 i = rx_ring->next_to_use;
4111 buffer_info = &rx_ring->buffer_info[i];
4113 while (cleaned_count--) {
4114 skb = buffer_info->skb;
4115 if (skb) {
4116 skb_trim(skb, 0);
4117 goto map_skb;
4120 skb = netdev_alloc_skb(netdev, bufsz);
4121 if (unlikely(!skb)) {
4122 /* Better luck next round */
4123 adapter->alloc_rx_buff_failed++;
4124 break;
4127 /* Fix for errata 23, can't cross 64kB boundary */
4128 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4129 struct sk_buff *oldskb = skb;
4130 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4131 "at %p\n", bufsz, skb->data);
4132 /* Try again, without freeing the previous */
4133 skb = netdev_alloc_skb(netdev, bufsz);
4134 /* Failed allocation, critical failure */
4135 if (!skb) {
4136 dev_kfree_skb(oldskb);
4137 break;
4140 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4141 /* give up */
4142 dev_kfree_skb(skb);
4143 dev_kfree_skb(oldskb);
4144 break; /* while !buffer_info->skb */
4147 /* Use new allocation */
4148 dev_kfree_skb(oldskb);
4150 /* Make buffer alignment 2 beyond a 16 byte boundary
4151 * this will result in a 16 byte aligned IP header after
4152 * the 14 byte MAC header is removed
4154 skb_reserve(skb, NET_IP_ALIGN);
4156 buffer_info->skb = skb;
4157 buffer_info->length = adapter->rx_buffer_len;
4158 map_skb:
4159 buffer_info->dma = pci_map_single(pdev,
4160 skb->data,
4161 adapter->rx_buffer_len,
4162 PCI_DMA_FROMDEVICE);
4164 /* Fix for errata 23, can't cross 64kB boundary */
4165 if (!e1000_check_64k_bound(adapter,
4166 (void *)(unsigned long)buffer_info->dma,
4167 adapter->rx_buffer_len)) {
4168 DPRINTK(RX_ERR, ERR,
4169 "dma align check failed: %u bytes at %p\n",
4170 adapter->rx_buffer_len,
4171 (void *)(unsigned long)buffer_info->dma);
4172 dev_kfree_skb(skb);
4173 buffer_info->skb = NULL;
4175 pci_unmap_single(pdev, buffer_info->dma,
4176 adapter->rx_buffer_len,
4177 PCI_DMA_FROMDEVICE);
4179 break; /* while !buffer_info->skb */
4181 rx_desc = E1000_RX_DESC(*rx_ring, i);
4182 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4184 if (unlikely(++i == rx_ring->count))
4185 i = 0;
4186 buffer_info = &rx_ring->buffer_info[i];
4189 if (likely(rx_ring->next_to_use != i)) {
4190 rx_ring->next_to_use = i;
4191 if (unlikely(i-- == 0))
4192 i = (rx_ring->count - 1);
4194 /* Force memory writes to complete before letting h/w
4195 * know there are new descriptors to fetch. (Only
4196 * applicable for weak-ordered memory model archs,
4197 * such as IA-64). */
4198 wmb();
4199 writel(i, hw->hw_addr + rx_ring->rdt);
4204 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4205 * @adapter:
4208 static void e1000_smartspeed(struct e1000_adapter *adapter)
4210 struct e1000_hw *hw = &adapter->hw;
4211 u16 phy_status;
4212 u16 phy_ctrl;
4214 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4215 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4216 return;
4218 if (adapter->smartspeed == 0) {
4219 /* If Master/Slave config fault is asserted twice,
4220 * we assume back-to-back */
4221 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4222 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4223 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4224 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4225 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4226 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4227 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4228 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4229 phy_ctrl);
4230 adapter->smartspeed++;
4231 if (!e1000_phy_setup_autoneg(hw) &&
4232 !e1000_read_phy_reg(hw, PHY_CTRL,
4233 &phy_ctrl)) {
4234 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4235 MII_CR_RESTART_AUTO_NEG);
4236 e1000_write_phy_reg(hw, PHY_CTRL,
4237 phy_ctrl);
4240 return;
4241 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4242 /* If still no link, perhaps using 2/3 pair cable */
4243 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4244 phy_ctrl |= CR_1000T_MS_ENABLE;
4245 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4246 if (!e1000_phy_setup_autoneg(hw) &&
4247 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4248 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4249 MII_CR_RESTART_AUTO_NEG);
4250 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4253 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4254 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4255 adapter->smartspeed = 0;
4259 * e1000_ioctl -
4260 * @netdev:
4261 * @ifreq:
4262 * @cmd:
4265 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4267 switch (cmd) {
4268 case SIOCGMIIPHY:
4269 case SIOCGMIIREG:
4270 case SIOCSMIIREG:
4271 return e1000_mii_ioctl(netdev, ifr, cmd);
4272 default:
4273 return -EOPNOTSUPP;
4278 * e1000_mii_ioctl -
4279 * @netdev:
4280 * @ifreq:
4281 * @cmd:
4284 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4285 int cmd)
4287 struct e1000_adapter *adapter = netdev_priv(netdev);
4288 struct e1000_hw *hw = &adapter->hw;
4289 struct mii_ioctl_data *data = if_mii(ifr);
4290 int retval;
4291 u16 mii_reg;
4292 u16 spddplx;
4293 unsigned long flags;
4295 if (hw->media_type != e1000_media_type_copper)
4296 return -EOPNOTSUPP;
4298 switch (cmd) {
4299 case SIOCGMIIPHY:
4300 data->phy_id = hw->phy_addr;
4301 break;
4302 case SIOCGMIIREG:
4303 if (!capable(CAP_NET_ADMIN))
4304 return -EPERM;
4305 spin_lock_irqsave(&adapter->stats_lock, flags);
4306 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4307 &data->val_out)) {
4308 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4309 return -EIO;
4311 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4312 break;
4313 case SIOCSMIIREG:
4314 if (!capable(CAP_NET_ADMIN))
4315 return -EPERM;
4316 if (data->reg_num & ~(0x1F))
4317 return -EFAULT;
4318 mii_reg = data->val_in;
4319 spin_lock_irqsave(&adapter->stats_lock, flags);
4320 if (e1000_write_phy_reg(hw, data->reg_num,
4321 mii_reg)) {
4322 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4323 return -EIO;
4325 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4326 if (hw->media_type == e1000_media_type_copper) {
4327 switch (data->reg_num) {
4328 case PHY_CTRL:
4329 if (mii_reg & MII_CR_POWER_DOWN)
4330 break;
4331 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4332 hw->autoneg = 1;
4333 hw->autoneg_advertised = 0x2F;
4334 } else {
4335 if (mii_reg & 0x40)
4336 spddplx = SPEED_1000;
4337 else if (mii_reg & 0x2000)
4338 spddplx = SPEED_100;
4339 else
4340 spddplx = SPEED_10;
4341 spddplx += (mii_reg & 0x100)
4342 ? DUPLEX_FULL :
4343 DUPLEX_HALF;
4344 retval = e1000_set_spd_dplx(adapter,
4345 spddplx);
4346 if (retval)
4347 return retval;
4349 if (netif_running(adapter->netdev))
4350 e1000_reinit_locked(adapter);
4351 else
4352 e1000_reset(adapter);
4353 break;
4354 case M88E1000_PHY_SPEC_CTRL:
4355 case M88E1000_EXT_PHY_SPEC_CTRL:
4356 if (e1000_phy_reset(hw))
4357 return -EIO;
4358 break;
4360 } else {
4361 switch (data->reg_num) {
4362 case PHY_CTRL:
4363 if (mii_reg & MII_CR_POWER_DOWN)
4364 break;
4365 if (netif_running(adapter->netdev))
4366 e1000_reinit_locked(adapter);
4367 else
4368 e1000_reset(adapter);
4369 break;
4372 break;
4373 default:
4374 return -EOPNOTSUPP;
4376 return E1000_SUCCESS;
4379 void e1000_pci_set_mwi(struct e1000_hw *hw)
4381 struct e1000_adapter *adapter = hw->back;
4382 int ret_val = pci_set_mwi(adapter->pdev);
4384 if (ret_val)
4385 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4388 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4390 struct e1000_adapter *adapter = hw->back;
4392 pci_clear_mwi(adapter->pdev);
4395 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4397 struct e1000_adapter *adapter = hw->back;
4398 return pcix_get_mmrbc(adapter->pdev);
4401 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4403 struct e1000_adapter *adapter = hw->back;
4404 pcix_set_mmrbc(adapter->pdev, mmrbc);
4407 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4409 struct e1000_adapter *adapter = hw->back;
4410 u16 cap_offset;
4412 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4413 if (!cap_offset)
4414 return -E1000_ERR_CONFIG;
4416 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4418 return E1000_SUCCESS;
4421 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4423 outl(value, port);
4426 static void e1000_vlan_rx_register(struct net_device *netdev,
4427 struct vlan_group *grp)
4429 struct e1000_adapter *adapter = netdev_priv(netdev);
4430 struct e1000_hw *hw = &adapter->hw;
4431 u32 ctrl, rctl;
4433 if (!test_bit(__E1000_DOWN, &adapter->flags))
4434 e1000_irq_disable(adapter);
4435 adapter->vlgrp = grp;
4437 if (grp) {
4438 /* enable VLAN tag insert/strip */
4439 ctrl = er32(CTRL);
4440 ctrl |= E1000_CTRL_VME;
4441 ew32(CTRL, ctrl);
4443 if (adapter->hw.mac_type != e1000_ich8lan) {
4444 /* enable VLAN receive filtering */
4445 rctl = er32(RCTL);
4446 rctl &= ~E1000_RCTL_CFIEN;
4447 ew32(RCTL, rctl);
4448 e1000_update_mng_vlan(adapter);
4450 } else {
4451 /* disable VLAN tag insert/strip */
4452 ctrl = er32(CTRL);
4453 ctrl &= ~E1000_CTRL_VME;
4454 ew32(CTRL, ctrl);
4456 if (adapter->hw.mac_type != e1000_ich8lan) {
4457 if (adapter->mng_vlan_id !=
4458 (u16)E1000_MNG_VLAN_NONE) {
4459 e1000_vlan_rx_kill_vid(netdev,
4460 adapter->mng_vlan_id);
4461 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4466 if (!test_bit(__E1000_DOWN, &adapter->flags))
4467 e1000_irq_enable(adapter);
4470 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4472 struct e1000_adapter *adapter = netdev_priv(netdev);
4473 struct e1000_hw *hw = &adapter->hw;
4474 u32 vfta, index;
4476 if ((hw->mng_cookie.status &
4477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4478 (vid == adapter->mng_vlan_id))
4479 return;
4480 /* add VID to filter table */
4481 index = (vid >> 5) & 0x7F;
4482 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4483 vfta |= (1 << (vid & 0x1F));
4484 e1000_write_vfta(hw, index, vfta);
4487 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4489 struct e1000_adapter *adapter = netdev_priv(netdev);
4490 struct e1000_hw *hw = &adapter->hw;
4491 u32 vfta, index;
4493 if (!test_bit(__E1000_DOWN, &adapter->flags))
4494 e1000_irq_disable(adapter);
4495 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4496 if (!test_bit(__E1000_DOWN, &adapter->flags))
4497 e1000_irq_enable(adapter);
4499 if ((hw->mng_cookie.status &
4500 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4501 (vid == adapter->mng_vlan_id)) {
4502 /* release control to f/w */
4503 e1000_release_hw_control(adapter);
4504 return;
4507 /* remove VID from filter table */
4508 index = (vid >> 5) & 0x7F;
4509 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4510 vfta &= ~(1 << (vid & 0x1F));
4511 e1000_write_vfta(hw, index, vfta);
4514 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4516 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4518 if (adapter->vlgrp) {
4519 u16 vid;
4520 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4521 if (!vlan_group_get_device(adapter->vlgrp, vid))
4522 continue;
4523 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4528 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4530 struct e1000_hw *hw = &adapter->hw;
4532 hw->autoneg = 0;
4534 /* Fiber NICs only allow 1000 gbps Full duplex */
4535 if ((hw->media_type == e1000_media_type_fiber) &&
4536 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4537 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4538 return -EINVAL;
4541 switch (spddplx) {
4542 case SPEED_10 + DUPLEX_HALF:
4543 hw->forced_speed_duplex = e1000_10_half;
4544 break;
4545 case SPEED_10 + DUPLEX_FULL:
4546 hw->forced_speed_duplex = e1000_10_full;
4547 break;
4548 case SPEED_100 + DUPLEX_HALF:
4549 hw->forced_speed_duplex = e1000_100_half;
4550 break;
4551 case SPEED_100 + DUPLEX_FULL:
4552 hw->forced_speed_duplex = e1000_100_full;
4553 break;
4554 case SPEED_1000 + DUPLEX_FULL:
4555 hw->autoneg = 1;
4556 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4557 break;
4558 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4559 default:
4560 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4561 return -EINVAL;
4563 return 0;
4566 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4568 struct net_device *netdev = pci_get_drvdata(pdev);
4569 struct e1000_adapter *adapter = netdev_priv(netdev);
4570 struct e1000_hw *hw = &adapter->hw;
4571 u32 ctrl, ctrl_ext, rctl, status;
4572 u32 wufc = adapter->wol;
4573 #ifdef CONFIG_PM
4574 int retval = 0;
4575 #endif
4577 netif_device_detach(netdev);
4579 if (netif_running(netdev)) {
4580 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4581 e1000_down(adapter);
4584 #ifdef CONFIG_PM
4585 retval = pci_save_state(pdev);
4586 if (retval)
4587 return retval;
4588 #endif
4590 status = er32(STATUS);
4591 if (status & E1000_STATUS_LU)
4592 wufc &= ~E1000_WUFC_LNKC;
4594 if (wufc) {
4595 e1000_setup_rctl(adapter);
4596 e1000_set_rx_mode(netdev);
4598 /* turn on all-multi mode if wake on multicast is enabled */
4599 if (wufc & E1000_WUFC_MC) {
4600 rctl = er32(RCTL);
4601 rctl |= E1000_RCTL_MPE;
4602 ew32(RCTL, rctl);
4605 if (hw->mac_type >= e1000_82540) {
4606 ctrl = er32(CTRL);
4607 /* advertise wake from D3Cold */
4608 #define E1000_CTRL_ADVD3WUC 0x00100000
4609 /* phy power management enable */
4610 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4611 ctrl |= E1000_CTRL_ADVD3WUC |
4612 E1000_CTRL_EN_PHY_PWR_MGMT;
4613 ew32(CTRL, ctrl);
4616 if (hw->media_type == e1000_media_type_fiber ||
4617 hw->media_type == e1000_media_type_internal_serdes) {
4618 /* keep the laser running in D3 */
4619 ctrl_ext = er32(CTRL_EXT);
4620 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4621 ew32(CTRL_EXT, ctrl_ext);
4624 /* Allow time for pending master requests to run */
4625 e1000_disable_pciex_master(hw);
4627 ew32(WUC, E1000_WUC_PME_EN);
4628 ew32(WUFC, wufc);
4629 pci_enable_wake(pdev, PCI_D3hot, 1);
4630 pci_enable_wake(pdev, PCI_D3cold, 1);
4631 } else {
4632 ew32(WUC, 0);
4633 ew32(WUFC, 0);
4634 pci_enable_wake(pdev, PCI_D3hot, 0);
4635 pci_enable_wake(pdev, PCI_D3cold, 0);
4638 e1000_release_manageability(adapter);
4640 /* make sure adapter isn't asleep if manageability is enabled */
4641 if (adapter->en_mng_pt) {
4642 pci_enable_wake(pdev, PCI_D3hot, 1);
4643 pci_enable_wake(pdev, PCI_D3cold, 1);
4646 if (hw->phy_type == e1000_phy_igp_3)
4647 e1000_phy_powerdown_workaround(hw);
4649 if (netif_running(netdev))
4650 e1000_free_irq(adapter);
4652 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4653 * would have already happened in close and is redundant. */
4654 e1000_release_hw_control(adapter);
4656 pci_disable_device(pdev);
4658 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4660 return 0;
4663 #ifdef CONFIG_PM
4664 static int e1000_resume(struct pci_dev *pdev)
4666 struct net_device *netdev = pci_get_drvdata(pdev);
4667 struct e1000_adapter *adapter = netdev_priv(netdev);
4668 struct e1000_hw *hw = &adapter->hw;
4669 u32 err;
4671 pci_set_power_state(pdev, PCI_D0);
4672 pci_restore_state(pdev);
4674 if (adapter->need_ioport)
4675 err = pci_enable_device(pdev);
4676 else
4677 err = pci_enable_device_mem(pdev);
4678 if (err) {
4679 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4680 return err;
4682 pci_set_master(pdev);
4684 pci_enable_wake(pdev, PCI_D3hot, 0);
4685 pci_enable_wake(pdev, PCI_D3cold, 0);
4687 if (netif_running(netdev)) {
4688 err = e1000_request_irq(adapter);
4689 if (err)
4690 return err;
4693 e1000_power_up_phy(adapter);
4694 e1000_reset(adapter);
4695 ew32(WUS, ~0);
4697 e1000_init_manageability(adapter);
4699 if (netif_running(netdev))
4700 e1000_up(adapter);
4702 netif_device_attach(netdev);
4704 /* If the controller is 82573 and f/w is AMT, do not set
4705 * DRV_LOAD until the interface is up. For all other cases,
4706 * let the f/w know that the h/w is now under the control
4707 * of the driver. */
4708 if (hw->mac_type != e1000_82573 ||
4709 !e1000_check_mng_mode(hw))
4710 e1000_get_hw_control(adapter);
4712 return 0;
4714 #endif
4716 static void e1000_shutdown(struct pci_dev *pdev)
4718 e1000_suspend(pdev, PMSG_SUSPEND);
4721 #ifdef CONFIG_NET_POLL_CONTROLLER
4723 * Polling 'interrupt' - used by things like netconsole to send skbs
4724 * without having to re-enable interrupts. It's not called while
4725 * the interrupt routine is executing.
4727 static void e1000_netpoll(struct net_device *netdev)
4729 struct e1000_adapter *adapter = netdev_priv(netdev);
4731 disable_irq(adapter->pdev->irq);
4732 e1000_intr(adapter->pdev->irq, netdev);
4733 enable_irq(adapter->pdev->irq);
4735 #endif
4738 * e1000_io_error_detected - called when PCI error is detected
4739 * @pdev: Pointer to PCI device
4740 * @state: The current pci conneection state
4742 * This function is called after a PCI bus error affecting
4743 * this device has been detected.
4745 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4746 pci_channel_state_t state)
4748 struct net_device *netdev = pci_get_drvdata(pdev);
4749 struct e1000_adapter *adapter = netdev_priv(netdev);
4751 netif_device_detach(netdev);
4753 if (netif_running(netdev))
4754 e1000_down(adapter);
4755 pci_disable_device(pdev);
4757 /* Request a slot slot reset. */
4758 return PCI_ERS_RESULT_NEED_RESET;
4762 * e1000_io_slot_reset - called after the pci bus has been reset.
4763 * @pdev: Pointer to PCI device
4765 * Restart the card from scratch, as if from a cold-boot. Implementation
4766 * resembles the first-half of the e1000_resume routine.
4768 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4770 struct net_device *netdev = pci_get_drvdata(pdev);
4771 struct e1000_adapter *adapter = netdev_priv(netdev);
4772 struct e1000_hw *hw = &adapter->hw;
4773 int err;
4775 if (adapter->need_ioport)
4776 err = pci_enable_device(pdev);
4777 else
4778 err = pci_enable_device_mem(pdev);
4779 if (err) {
4780 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4781 return PCI_ERS_RESULT_DISCONNECT;
4783 pci_set_master(pdev);
4785 pci_enable_wake(pdev, PCI_D3hot, 0);
4786 pci_enable_wake(pdev, PCI_D3cold, 0);
4788 e1000_reset(adapter);
4789 ew32(WUS, ~0);
4791 return PCI_ERS_RESULT_RECOVERED;
4795 * e1000_io_resume - called when traffic can start flowing again.
4796 * @pdev: Pointer to PCI device
4798 * This callback is called when the error recovery driver tells us that
4799 * its OK to resume normal operation. Implementation resembles the
4800 * second-half of the e1000_resume routine.
4802 static void e1000_io_resume(struct pci_dev *pdev)
4804 struct net_device *netdev = pci_get_drvdata(pdev);
4805 struct e1000_adapter *adapter = netdev_priv(netdev);
4806 struct e1000_hw *hw = &adapter->hw;
4808 e1000_init_manageability(adapter);
4810 if (netif_running(netdev)) {
4811 if (e1000_up(adapter)) {
4812 printk("e1000: can't bring device back up after reset\n");
4813 return;
4817 netif_device_attach(netdev);
4819 /* If the controller is 82573 and f/w is AMT, do not set
4820 * DRV_LOAD until the interface is up. For all other cases,
4821 * let the f/w know that the h/w is now under the control
4822 * of the driver. */
4823 if (hw->mac_type != e1000_82573 ||
4824 !e1000_check_mng_mode(hw))
4825 e1000_get_hw_control(adapter);
4829 /* e1000_main.c */