mac80211: add the 'minstrel' rate control algorithm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob2cba5ef97b2b3a6d49559c8923a87e1ec128c2fa
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
34 #include "blk.h"
36 static int __make_request(struct request_queue *q, struct bio *bio);
39 * For the allocated request tables
41 static struct kmem_cache *request_cachep;
44 * For queue allocation
46 struct kmem_cache *blk_requestq_cachep;
49 * Controlling structure to kblockd
51 static struct workqueue_struct *kblockd_workqueue;
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
55 static void drive_stat_acct(struct request *rq, int new_io)
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
76 void blk_queue_congestion_threshold(struct request_queue *q)
78 int nr;
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
91 /**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
98 * Will return NULL if the request queue cannot be located.
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
102 struct backing_dev_info *ret = NULL;
103 struct request_queue *q = bdev_get_queue(bdev);
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
111 void blk_rq_init(struct request_queue *q, struct request *rq)
113 memset(rq, 0, sizeof(*rq));
115 INIT_LIST_HEAD(&rq->queuelist);
116 INIT_LIST_HEAD(&rq->donelist);
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->cmd = rq->__cmd;
122 rq->tag = -1;
123 rq->ref_count = 1;
125 EXPORT_SYMBOL(blk_rq_init);
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
130 struct request_queue *q = rq->q;
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
138 if (unlikely(nbytes > bio->bi_size)) {
139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 __func__, nbytes, bio->bi_size);
141 nbytes = bio->bi_size;
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
150 if (bio->bi_size == 0)
151 bio_endio(bio, error);
152 } else {
155 * Okay, this is the barrier request in progress, just
156 * record the error;
158 if (error && !q->orderr)
159 q->orderr = error;
163 void blk_dump_rq_flags(struct request *rq, char *msg)
165 int bit;
167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
180 if (blk_pc_request(rq)) {
181 printk(KERN_INFO " cdb: ");
182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
187 EXPORT_SYMBOL(blk_dump_rq_flags);
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
197 void blk_plug_device(struct request_queue *q)
199 WARN_ON(!irqs_disabled());
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
205 if (blk_queue_stopped(q))
206 return;
208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
213 EXPORT_SYMBOL(blk_plug_device);
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
223 void blk_plug_device_unlocked(struct request_queue *q)
225 unsigned long flags;
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
231 EXPORT_SYMBOL(blk_plug_device_unlocked);
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
237 int blk_remove_plug(struct request_queue *q)
239 WARN_ON(!irqs_disabled());
241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
242 return 0;
244 del_timer(&q->unplug_timer);
245 return 1;
247 EXPORT_SYMBOL(blk_remove_plug);
250 * remove the plug and let it rip..
252 void __generic_unplug_device(struct request_queue *q)
254 if (unlikely(blk_queue_stopped(q)))
255 return;
257 if (!blk_remove_plug(q))
258 return;
260 q->request_fn(q);
262 EXPORT_SYMBOL(__generic_unplug_device);
265 * generic_unplug_device - fire a request queue
266 * @q: The &struct request_queue in question
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
275 void generic_unplug_device(struct request_queue *q)
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
283 EXPORT_SYMBOL(generic_unplug_device);
285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
288 struct request_queue *q = bdi->unplug_io_data;
290 blk_unplug(q);
293 void blk_unplug_work(struct work_struct *work)
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
301 q->unplug_fn(q);
304 void blk_unplug_timeout(unsigned long data)
306 struct request_queue *q = (struct request_queue *)data;
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
311 kblockd_schedule_work(&q->unplug_work);
314 void blk_unplug(struct request_queue *q)
317 * devices don't necessarily have an ->unplug_fn defined
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
323 q->unplug_fn(q);
326 EXPORT_SYMBOL(blk_unplug);
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 void blk_start_queue(struct request_queue *q)
339 WARN_ON(!irqs_disabled());
341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
348 q->request_fn(q);
349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
355 EXPORT_SYMBOL(blk_start_queue);
358 * blk_stop_queue - stop a queue
359 * @q: The &struct request_queue in question
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
371 void blk_stop_queue(struct request_queue *q)
373 blk_remove_plug(q);
374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
376 EXPORT_SYMBOL(blk_stop_queue);
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
387 * that the callbacks might use. The caller must already have made sure
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
392 void blk_sync_queue(struct request_queue *q)
394 del_timer_sync(&q->unplug_timer);
395 kblockd_flush_work(&q->unplug_work);
397 EXPORT_SYMBOL(blk_sync_queue);
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
403 void __blk_run_queue(struct request_queue *q)
405 blk_remove_plug(q);
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!elv_queue_empty(q)) {
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 q->request_fn(q);
414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
421 EXPORT_SYMBOL(__blk_run_queue);
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
427 void blk_run_queue(struct request_queue *q)
429 unsigned long flags;
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
435 EXPORT_SYMBOL(blk_run_queue);
437 void blk_put_queue(struct request_queue *q)
439 kobject_put(&q->kobj);
442 void blk_cleanup_queue(struct request_queue *q)
444 mutex_lock(&q->sysfs_lock);
445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
446 mutex_unlock(&q->sysfs_lock);
448 if (q->elevator)
449 elevator_exit(q->elevator);
451 blk_put_queue(q);
453 EXPORT_SYMBOL(blk_cleanup_queue);
455 static int blk_init_free_list(struct request_queue *q)
457 struct request_list *rl = &q->rq;
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
461 rl->elvpriv = 0;
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
468 if (!rl->rq_pool)
469 return -ENOMEM;
471 return 0;
474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
476 return blk_alloc_queue_node(gfp_mask, -1);
478 EXPORT_SYMBOL(blk_alloc_queue);
480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
482 struct request_queue *q;
483 int err;
485 q = kmem_cache_alloc_node(blk_requestq_cachep,
486 gfp_mask | __GFP_ZERO, node_id);
487 if (!q)
488 return NULL;
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
494 kmem_cache_free(blk_requestq_cachep, q);
495 return NULL;
498 init_timer(&q->unplug_timer);
500 kobject_init(&q->kobj, &blk_queue_ktype);
502 mutex_init(&q->sysfs_lock);
503 spin_lock_init(&q->__queue_lock);
505 return q;
507 EXPORT_SYMBOL(blk_alloc_queue_node);
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
530 * The queue spin lock must be held while manipulating the requests on the
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
534 * Function returns a pointer to the initialized request queue, or NULL if
535 * it didn't succeed.
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
544 return blk_init_queue_node(rfn, lock, -1);
546 EXPORT_SYMBOL(blk_init_queue);
548 struct request_queue *
549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
553 if (!q)
554 return NULL;
556 q->node = node_id;
557 if (blk_init_free_list(q)) {
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
566 if (!lock)
567 lock = &q->__queue_lock;
569 q->request_fn = rfn;
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
575 blk_queue_segment_boundary(q, 0xffffffff);
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
583 q->sg_reserved_size = INT_MAX;
585 blk_set_cmd_filter_defaults(&q->cmd_filter);
588 * all done
590 if (!elevator_init(q, NULL)) {
591 blk_queue_congestion_threshold(q);
592 return q;
595 blk_put_queue(q);
596 return NULL;
598 EXPORT_SYMBOL(blk_init_queue_node);
600 int blk_get_queue(struct request_queue *q)
602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
603 kobject_get(&q->kobj);
604 return 0;
607 return 1;
610 static inline void blk_free_request(struct request_queue *q, struct request *rq)
612 if (rq->cmd_flags & REQ_ELVPRIV)
613 elv_put_request(q, rq);
614 mempool_free(rq, q->rq.rq_pool);
617 static struct request *
618 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
622 if (!rq)
623 return NULL;
625 blk_rq_init(q, rq);
628 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
629 * see bio.h and blkdev.h
631 rq->cmd_flags = rw | REQ_ALLOCED;
633 if (priv) {
634 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
635 mempool_free(rq, q->rq.rq_pool);
636 return NULL;
638 rq->cmd_flags |= REQ_ELVPRIV;
641 return rq;
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650 if (!ioc)
651 return 0;
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
656 * lose wakeups.
658 return ioc->nr_batch_requests == q->nr_batching ||
659 (ioc->nr_batch_requests > 0
660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
667 * a nice run.
669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671 if (!ioc || ioc_batching(q, ioc))
672 return;
674 ioc->nr_batch_requests = q->nr_batching;
675 ioc->last_waited = jiffies;
678 static void __freed_request(struct request_queue *q, int rw)
680 struct request_list *rl = &q->rq;
682 if (rl->count[rw] < queue_congestion_off_threshold(q))
683 blk_clear_queue_congested(q, rw);
685 if (rl->count[rw] + 1 <= q->nr_requests) {
686 if (waitqueue_active(&rl->wait[rw]))
687 wake_up(&rl->wait[rw]);
689 blk_clear_queue_full(q, rw);
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
697 static void freed_request(struct request_queue *q, int rw, int priv)
699 struct request_list *rl = &q->rq;
701 rl->count[rw]--;
702 if (priv)
703 rl->elvpriv--;
705 __freed_request(q, rw);
707 if (unlikely(rl->starved[rw ^ 1]))
708 __freed_request(q, rw ^ 1);
711 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
717 static struct request *get_request(struct request_queue *q, int rw_flags,
718 struct bio *bio, gfp_t gfp_mask)
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
722 struct io_context *ioc = NULL;
723 const int rw = rw_flags & 0x01;
724 int may_queue, priv;
726 may_queue = elv_may_queue(q, rw_flags);
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
730 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[rw]+1 >= q->nr_requests) {
732 ioc = current_io_context(GFP_ATOMIC, q->node);
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
739 if (!blk_queue_full(q, rw)) {
740 ioc_set_batching(q, ioc);
741 blk_set_queue_full(q, rw);
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
750 goto out;
754 blk_set_queue_congested(q, rw);
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
762 if (rl->count[rw] >= (3 * q->nr_requests / 2))
763 goto out;
765 rl->count[rw]++;
766 rl->starved[rw] = 0;
768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
769 if (priv)
770 rl->elvpriv++;
772 spin_unlock_irq(q->queue_lock);
774 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
775 if (unlikely(!rq)) {
777 * Allocation failed presumably due to memory. Undo anything
778 * we might have messed up.
780 * Allocating task should really be put onto the front of the
781 * wait queue, but this is pretty rare.
783 spin_lock_irq(q->queue_lock);
784 freed_request(q, rw, priv);
787 * in the very unlikely event that allocation failed and no
788 * requests for this direction was pending, mark us starved
789 * so that freeing of a request in the other direction will
790 * notice us. another possible fix would be to split the
791 * rq mempool into READ and WRITE
793 rq_starved:
794 if (unlikely(rl->count[rw] == 0))
795 rl->starved[rw] = 1;
797 goto out;
801 * ioc may be NULL here, and ioc_batching will be false. That's
802 * OK, if the queue is under the request limit then requests need
803 * not count toward the nr_batch_requests limit. There will always
804 * be some limit enforced by BLK_BATCH_TIME.
806 if (ioc_batching(q, ioc))
807 ioc->nr_batch_requests--;
809 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
810 out:
811 return rq;
815 * No available requests for this queue, unplug the device and wait for some
816 * requests to become available.
818 * Called with q->queue_lock held, and returns with it unlocked.
820 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
821 struct bio *bio)
823 const int rw = rw_flags & 0x01;
824 struct request *rq;
826 rq = get_request(q, rw_flags, bio, GFP_NOIO);
827 while (!rq) {
828 DEFINE_WAIT(wait);
829 struct io_context *ioc;
830 struct request_list *rl = &q->rq;
832 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
833 TASK_UNINTERRUPTIBLE);
835 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
837 __generic_unplug_device(q);
838 spin_unlock_irq(q->queue_lock);
839 io_schedule();
842 * After sleeping, we become a "batching" process and
843 * will be able to allocate at least one request, and
844 * up to a big batch of them for a small period time.
845 * See ioc_batching, ioc_set_batching
847 ioc = current_io_context(GFP_NOIO, q->node);
848 ioc_set_batching(q, ioc);
850 spin_lock_irq(q->queue_lock);
851 finish_wait(&rl->wait[rw], &wait);
853 rq = get_request(q, rw_flags, bio, GFP_NOIO);
856 return rq;
859 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
861 struct request *rq;
863 BUG_ON(rw != READ && rw != WRITE);
865 spin_lock_irq(q->queue_lock);
866 if (gfp_mask & __GFP_WAIT) {
867 rq = get_request_wait(q, rw, NULL);
868 } else {
869 rq = get_request(q, rw, NULL, gfp_mask);
870 if (!rq)
871 spin_unlock_irq(q->queue_lock);
873 /* q->queue_lock is unlocked at this point */
875 return rq;
877 EXPORT_SYMBOL(blk_get_request);
880 * blk_start_queueing - initiate dispatch of requests to device
881 * @q: request queue to kick into gear
883 * This is basically a helper to remove the need to know whether a queue
884 * is plugged or not if someone just wants to initiate dispatch of requests
885 * for this queue.
887 * The queue lock must be held with interrupts disabled.
889 void blk_start_queueing(struct request_queue *q)
891 if (!blk_queue_plugged(q))
892 q->request_fn(q);
893 else
894 __generic_unplug_device(q);
896 EXPORT_SYMBOL(blk_start_queueing);
899 * blk_requeue_request - put a request back on queue
900 * @q: request queue where request should be inserted
901 * @rq: request to be inserted
903 * Description:
904 * Drivers often keep queueing requests until the hardware cannot accept
905 * more, when that condition happens we need to put the request back
906 * on the queue. Must be called with queue lock held.
908 void blk_requeue_request(struct request_queue *q, struct request *rq)
910 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
912 if (blk_rq_tagged(rq))
913 blk_queue_end_tag(q, rq);
915 elv_requeue_request(q, rq);
917 EXPORT_SYMBOL(blk_requeue_request);
920 * blk_insert_request - insert a special request in to a request queue
921 * @q: request queue where request should be inserted
922 * @rq: request to be inserted
923 * @at_head: insert request at head or tail of queue
924 * @data: private data
926 * Description:
927 * Many block devices need to execute commands asynchronously, so they don't
928 * block the whole kernel from preemption during request execution. This is
929 * accomplished normally by inserting aritficial requests tagged as
930 * REQ_SPECIAL in to the corresponding request queue, and letting them be
931 * scheduled for actual execution by the request queue.
933 * We have the option of inserting the head or the tail of the queue.
934 * Typically we use the tail for new ioctls and so forth. We use the head
935 * of the queue for things like a QUEUE_FULL message from a device, or a
936 * host that is unable to accept a particular command.
938 void blk_insert_request(struct request_queue *q, struct request *rq,
939 int at_head, void *data)
941 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
942 unsigned long flags;
945 * tell I/O scheduler that this isn't a regular read/write (ie it
946 * must not attempt merges on this) and that it acts as a soft
947 * barrier
949 rq->cmd_type = REQ_TYPE_SPECIAL;
950 rq->cmd_flags |= REQ_SOFTBARRIER;
952 rq->special = data;
954 spin_lock_irqsave(q->queue_lock, flags);
957 * If command is tagged, release the tag
959 if (blk_rq_tagged(rq))
960 blk_queue_end_tag(q, rq);
962 drive_stat_acct(rq, 1);
963 __elv_add_request(q, rq, where, 0);
964 blk_start_queueing(q);
965 spin_unlock_irqrestore(q->queue_lock, flags);
967 EXPORT_SYMBOL(blk_insert_request);
970 * add-request adds a request to the linked list.
971 * queue lock is held and interrupts disabled, as we muck with the
972 * request queue list.
974 static inline void add_request(struct request_queue *q, struct request *req)
976 drive_stat_acct(req, 1);
979 * elevator indicated where it wants this request to be
980 * inserted at elevator_merge time
982 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
986 * disk_round_stats() - Round off the performance stats on a struct
987 * disk_stats.
989 * The average IO queue length and utilisation statistics are maintained
990 * by observing the current state of the queue length and the amount of
991 * time it has been in this state for.
993 * Normally, that accounting is done on IO completion, but that can result
994 * in more than a second's worth of IO being accounted for within any one
995 * second, leading to >100% utilisation. To deal with that, we call this
996 * function to do a round-off before returning the results when reading
997 * /proc/diskstats. This accounts immediately for all queue usage up to
998 * the current jiffies and restarts the counters again.
1000 void disk_round_stats(struct gendisk *disk)
1002 unsigned long now = jiffies;
1004 if (now == disk->stamp)
1005 return;
1007 if (disk->in_flight) {
1008 __disk_stat_add(disk, time_in_queue,
1009 disk->in_flight * (now - disk->stamp));
1010 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1012 disk->stamp = now;
1014 EXPORT_SYMBOL_GPL(disk_round_stats);
1016 void part_round_stats(struct hd_struct *part)
1018 unsigned long now = jiffies;
1020 if (now == part->stamp)
1021 return;
1023 if (part->in_flight) {
1024 __part_stat_add(part, time_in_queue,
1025 part->in_flight * (now - part->stamp));
1026 __part_stat_add(part, io_ticks, (now - part->stamp));
1028 part->stamp = now;
1032 * queue lock must be held
1034 void __blk_put_request(struct request_queue *q, struct request *req)
1036 if (unlikely(!q))
1037 return;
1038 if (unlikely(--req->ref_count))
1039 return;
1041 elv_completed_request(q, req);
1044 * Request may not have originated from ll_rw_blk. if not,
1045 * it didn't come out of our reserved rq pools
1047 if (req->cmd_flags & REQ_ALLOCED) {
1048 int rw = rq_data_dir(req);
1049 int priv = req->cmd_flags & REQ_ELVPRIV;
1051 BUG_ON(!list_empty(&req->queuelist));
1052 BUG_ON(!hlist_unhashed(&req->hash));
1054 blk_free_request(q, req);
1055 freed_request(q, rw, priv);
1058 EXPORT_SYMBOL_GPL(__blk_put_request);
1060 void blk_put_request(struct request *req)
1062 unsigned long flags;
1063 struct request_queue *q = req->q;
1065 spin_lock_irqsave(q->queue_lock, flags);
1066 __blk_put_request(q, req);
1067 spin_unlock_irqrestore(q->queue_lock, flags);
1069 EXPORT_SYMBOL(blk_put_request);
1071 void init_request_from_bio(struct request *req, struct bio *bio)
1073 req->cmd_type = REQ_TYPE_FS;
1076 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1078 if (bio_rw_ahead(bio) || bio_failfast(bio))
1079 req->cmd_flags |= REQ_FAILFAST;
1082 * REQ_BARRIER implies no merging, but lets make it explicit
1084 if (unlikely(bio_barrier(bio)))
1085 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1087 if (bio_sync(bio))
1088 req->cmd_flags |= REQ_RW_SYNC;
1089 if (bio_rw_meta(bio))
1090 req->cmd_flags |= REQ_RW_META;
1092 req->errors = 0;
1093 req->hard_sector = req->sector = bio->bi_sector;
1094 req->ioprio = bio_prio(bio);
1095 req->start_time = jiffies;
1096 blk_rq_bio_prep(req->q, req, bio);
1099 static int __make_request(struct request_queue *q, struct bio *bio)
1101 struct request *req;
1102 int el_ret, nr_sectors, barrier, err;
1103 const unsigned short prio = bio_prio(bio);
1104 const int sync = bio_sync(bio);
1105 int rw_flags;
1107 nr_sectors = bio_sectors(bio);
1110 * low level driver can indicate that it wants pages above a
1111 * certain limit bounced to low memory (ie for highmem, or even
1112 * ISA dma in theory)
1114 blk_queue_bounce(q, &bio);
1116 barrier = bio_barrier(bio);
1117 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1118 err = -EOPNOTSUPP;
1119 goto end_io;
1122 spin_lock_irq(q->queue_lock);
1124 if (unlikely(barrier) || elv_queue_empty(q))
1125 goto get_rq;
1127 el_ret = elv_merge(q, &req, bio);
1128 switch (el_ret) {
1129 case ELEVATOR_BACK_MERGE:
1130 BUG_ON(!rq_mergeable(req));
1132 if (!ll_back_merge_fn(q, req, bio))
1133 break;
1135 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1137 req->biotail->bi_next = bio;
1138 req->biotail = bio;
1139 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1140 req->ioprio = ioprio_best(req->ioprio, prio);
1141 drive_stat_acct(req, 0);
1142 if (!attempt_back_merge(q, req))
1143 elv_merged_request(q, req, el_ret);
1144 goto out;
1146 case ELEVATOR_FRONT_MERGE:
1147 BUG_ON(!rq_mergeable(req));
1149 if (!ll_front_merge_fn(q, req, bio))
1150 break;
1152 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1154 bio->bi_next = req->bio;
1155 req->bio = bio;
1158 * may not be valid. if the low level driver said
1159 * it didn't need a bounce buffer then it better
1160 * not touch req->buffer either...
1162 req->buffer = bio_data(bio);
1163 req->current_nr_sectors = bio_cur_sectors(bio);
1164 req->hard_cur_sectors = req->current_nr_sectors;
1165 req->sector = req->hard_sector = bio->bi_sector;
1166 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1167 req->ioprio = ioprio_best(req->ioprio, prio);
1168 drive_stat_acct(req, 0);
1169 if (!attempt_front_merge(q, req))
1170 elv_merged_request(q, req, el_ret);
1171 goto out;
1173 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1174 default:
1178 get_rq:
1180 * This sync check and mask will be re-done in init_request_from_bio(),
1181 * but we need to set it earlier to expose the sync flag to the
1182 * rq allocator and io schedulers.
1184 rw_flags = bio_data_dir(bio);
1185 if (sync)
1186 rw_flags |= REQ_RW_SYNC;
1189 * Grab a free request. This is might sleep but can not fail.
1190 * Returns with the queue unlocked.
1192 req = get_request_wait(q, rw_flags, bio);
1195 * After dropping the lock and possibly sleeping here, our request
1196 * may now be mergeable after it had proven unmergeable (above).
1197 * We don't worry about that case for efficiency. It won't happen
1198 * often, and the elevators are able to handle it.
1200 init_request_from_bio(req, bio);
1202 spin_lock_irq(q->queue_lock);
1203 if (elv_queue_empty(q))
1204 blk_plug_device(q);
1205 add_request(q, req);
1206 out:
1207 if (sync)
1208 __generic_unplug_device(q);
1210 spin_unlock_irq(q->queue_lock);
1211 return 0;
1213 end_io:
1214 bio_endio(bio, err);
1215 return 0;
1219 * If bio->bi_dev is a partition, remap the location
1221 static inline void blk_partition_remap(struct bio *bio)
1223 struct block_device *bdev = bio->bi_bdev;
1225 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1226 struct hd_struct *p = bdev->bd_part;
1228 bio->bi_sector += p->start_sect;
1229 bio->bi_bdev = bdev->bd_contains;
1231 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1232 bdev->bd_dev, bio->bi_sector,
1233 bio->bi_sector - p->start_sect);
1237 static void handle_bad_sector(struct bio *bio)
1239 char b[BDEVNAME_SIZE];
1241 printk(KERN_INFO "attempt to access beyond end of device\n");
1242 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1243 bdevname(bio->bi_bdev, b),
1244 bio->bi_rw,
1245 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1246 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1248 set_bit(BIO_EOF, &bio->bi_flags);
1251 #ifdef CONFIG_FAIL_MAKE_REQUEST
1253 static DECLARE_FAULT_ATTR(fail_make_request);
1255 static int __init setup_fail_make_request(char *str)
1257 return setup_fault_attr(&fail_make_request, str);
1259 __setup("fail_make_request=", setup_fail_make_request);
1261 static int should_fail_request(struct bio *bio)
1263 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1264 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1265 return should_fail(&fail_make_request, bio->bi_size);
1267 return 0;
1270 static int __init fail_make_request_debugfs(void)
1272 return init_fault_attr_dentries(&fail_make_request,
1273 "fail_make_request");
1276 late_initcall(fail_make_request_debugfs);
1278 #else /* CONFIG_FAIL_MAKE_REQUEST */
1280 static inline int should_fail_request(struct bio *bio)
1282 return 0;
1285 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1288 * Check whether this bio extends beyond the end of the device.
1290 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1292 sector_t maxsector;
1294 if (!nr_sectors)
1295 return 0;
1297 /* Test device or partition size, when known. */
1298 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1299 if (maxsector) {
1300 sector_t sector = bio->bi_sector;
1302 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1304 * This may well happen - the kernel calls bread()
1305 * without checking the size of the device, e.g., when
1306 * mounting a device.
1308 handle_bad_sector(bio);
1309 return 1;
1313 return 0;
1317 * generic_make_request: hand a buffer to its device driver for I/O
1318 * @bio: The bio describing the location in memory and on the device.
1320 * generic_make_request() is used to make I/O requests of block
1321 * devices. It is passed a &struct bio, which describes the I/O that needs
1322 * to be done.
1324 * generic_make_request() does not return any status. The
1325 * success/failure status of the request, along with notification of
1326 * completion, is delivered asynchronously through the bio->bi_end_io
1327 * function described (one day) else where.
1329 * The caller of generic_make_request must make sure that bi_io_vec
1330 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1331 * set to describe the device address, and the
1332 * bi_end_io and optionally bi_private are set to describe how
1333 * completion notification should be signaled.
1335 * generic_make_request and the drivers it calls may use bi_next if this
1336 * bio happens to be merged with someone else, and may change bi_dev and
1337 * bi_sector for remaps as it sees fit. So the values of these fields
1338 * should NOT be depended on after the call to generic_make_request.
1340 static inline void __generic_make_request(struct bio *bio)
1342 struct request_queue *q;
1343 sector_t old_sector;
1344 int ret, nr_sectors = bio_sectors(bio);
1345 dev_t old_dev;
1346 int err = -EIO;
1348 might_sleep();
1350 if (bio_check_eod(bio, nr_sectors))
1351 goto end_io;
1354 * Resolve the mapping until finished. (drivers are
1355 * still free to implement/resolve their own stacking
1356 * by explicitly returning 0)
1358 * NOTE: we don't repeat the blk_size check for each new device.
1359 * Stacking drivers are expected to know what they are doing.
1361 old_sector = -1;
1362 old_dev = 0;
1363 do {
1364 char b[BDEVNAME_SIZE];
1366 q = bdev_get_queue(bio->bi_bdev);
1367 if (!q) {
1368 printk(KERN_ERR
1369 "generic_make_request: Trying to access "
1370 "nonexistent block-device %s (%Lu)\n",
1371 bdevname(bio->bi_bdev, b),
1372 (long long) bio->bi_sector);
1373 end_io:
1374 bio_endio(bio, err);
1375 break;
1378 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1379 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1380 bdevname(bio->bi_bdev, b),
1381 bio_sectors(bio),
1382 q->max_hw_sectors);
1383 goto end_io;
1386 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1387 goto end_io;
1389 if (should_fail_request(bio))
1390 goto end_io;
1393 * If this device has partitions, remap block n
1394 * of partition p to block n+start(p) of the disk.
1396 blk_partition_remap(bio);
1398 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1399 goto end_io;
1401 if (old_sector != -1)
1402 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1403 old_sector);
1405 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1407 old_sector = bio->bi_sector;
1408 old_dev = bio->bi_bdev->bd_dev;
1410 if (bio_check_eod(bio, nr_sectors))
1411 goto end_io;
1412 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1413 err = -EOPNOTSUPP;
1414 goto end_io;
1417 ret = q->make_request_fn(q, bio);
1418 } while (ret);
1422 * We only want one ->make_request_fn to be active at a time,
1423 * else stack usage with stacked devices could be a problem.
1424 * So use current->bio_{list,tail} to keep a list of requests
1425 * submited by a make_request_fn function.
1426 * current->bio_tail is also used as a flag to say if
1427 * generic_make_request is currently active in this task or not.
1428 * If it is NULL, then no make_request is active. If it is non-NULL,
1429 * then a make_request is active, and new requests should be added
1430 * at the tail
1432 void generic_make_request(struct bio *bio)
1434 if (current->bio_tail) {
1435 /* make_request is active */
1436 *(current->bio_tail) = bio;
1437 bio->bi_next = NULL;
1438 current->bio_tail = &bio->bi_next;
1439 return;
1441 /* following loop may be a bit non-obvious, and so deserves some
1442 * explanation.
1443 * Before entering the loop, bio->bi_next is NULL (as all callers
1444 * ensure that) so we have a list with a single bio.
1445 * We pretend that we have just taken it off a longer list, so
1446 * we assign bio_list to the next (which is NULL) and bio_tail
1447 * to &bio_list, thus initialising the bio_list of new bios to be
1448 * added. __generic_make_request may indeed add some more bios
1449 * through a recursive call to generic_make_request. If it
1450 * did, we find a non-NULL value in bio_list and re-enter the loop
1451 * from the top. In this case we really did just take the bio
1452 * of the top of the list (no pretending) and so fixup bio_list and
1453 * bio_tail or bi_next, and call into __generic_make_request again.
1455 * The loop was structured like this to make only one call to
1456 * __generic_make_request (which is important as it is large and
1457 * inlined) and to keep the structure simple.
1459 BUG_ON(bio->bi_next);
1460 do {
1461 current->bio_list = bio->bi_next;
1462 if (bio->bi_next == NULL)
1463 current->bio_tail = &current->bio_list;
1464 else
1465 bio->bi_next = NULL;
1466 __generic_make_request(bio);
1467 bio = current->bio_list;
1468 } while (bio);
1469 current->bio_tail = NULL; /* deactivate */
1471 EXPORT_SYMBOL(generic_make_request);
1474 * submit_bio: submit a bio to the block device layer for I/O
1475 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1476 * @bio: The &struct bio which describes the I/O
1478 * submit_bio() is very similar in purpose to generic_make_request(), and
1479 * uses that function to do most of the work. Both are fairly rough
1480 * interfaces, @bio must be presetup and ready for I/O.
1483 void submit_bio(int rw, struct bio *bio)
1485 int count = bio_sectors(bio);
1487 bio->bi_rw |= rw;
1490 * If it's a regular read/write or a barrier with data attached,
1491 * go through the normal accounting stuff before submission.
1493 if (!bio_empty_barrier(bio)) {
1495 BIO_BUG_ON(!bio->bi_size);
1496 BIO_BUG_ON(!bio->bi_io_vec);
1498 if (rw & WRITE) {
1499 count_vm_events(PGPGOUT, count);
1500 } else {
1501 task_io_account_read(bio->bi_size);
1502 count_vm_events(PGPGIN, count);
1505 if (unlikely(block_dump)) {
1506 char b[BDEVNAME_SIZE];
1507 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1508 current->comm, task_pid_nr(current),
1509 (rw & WRITE) ? "WRITE" : "READ",
1510 (unsigned long long)bio->bi_sector,
1511 bdevname(bio->bi_bdev, b));
1515 generic_make_request(bio);
1517 EXPORT_SYMBOL(submit_bio);
1520 * __end_that_request_first - end I/O on a request
1521 * @req: the request being processed
1522 * @error: 0 for success, < 0 for error
1523 * @nr_bytes: number of bytes to complete
1525 * Description:
1526 * Ends I/O on a number of bytes attached to @req, and sets it up
1527 * for the next range of segments (if any) in the cluster.
1529 * Return:
1530 * 0 - we are done with this request, call end_that_request_last()
1531 * 1 - still buffers pending for this request
1533 static int __end_that_request_first(struct request *req, int error,
1534 int nr_bytes)
1536 int total_bytes, bio_nbytes, next_idx = 0;
1537 struct bio *bio;
1539 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1542 * for a REQ_BLOCK_PC request, we want to carry any eventual
1543 * sense key with us all the way through
1545 if (!blk_pc_request(req))
1546 req->errors = 0;
1548 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1549 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1550 req->rq_disk ? req->rq_disk->disk_name : "?",
1551 (unsigned long long)req->sector);
1554 if (blk_fs_request(req) && req->rq_disk) {
1555 struct hd_struct *part = get_part(req->rq_disk, req->sector);
1556 const int rw = rq_data_dir(req);
1558 all_stat_add(req->rq_disk, part, sectors[rw],
1559 nr_bytes >> 9, req->sector);
1562 total_bytes = bio_nbytes = 0;
1563 while ((bio = req->bio) != NULL) {
1564 int nbytes;
1567 * For an empty barrier request, the low level driver must
1568 * store a potential error location in ->sector. We pass
1569 * that back up in ->bi_sector.
1571 if (blk_empty_barrier(req))
1572 bio->bi_sector = req->sector;
1574 if (nr_bytes >= bio->bi_size) {
1575 req->bio = bio->bi_next;
1576 nbytes = bio->bi_size;
1577 req_bio_endio(req, bio, nbytes, error);
1578 next_idx = 0;
1579 bio_nbytes = 0;
1580 } else {
1581 int idx = bio->bi_idx + next_idx;
1583 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1584 blk_dump_rq_flags(req, "__end_that");
1585 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1586 __func__, bio->bi_idx, bio->bi_vcnt);
1587 break;
1590 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1591 BIO_BUG_ON(nbytes > bio->bi_size);
1594 * not a complete bvec done
1596 if (unlikely(nbytes > nr_bytes)) {
1597 bio_nbytes += nr_bytes;
1598 total_bytes += nr_bytes;
1599 break;
1603 * advance to the next vector
1605 next_idx++;
1606 bio_nbytes += nbytes;
1609 total_bytes += nbytes;
1610 nr_bytes -= nbytes;
1612 bio = req->bio;
1613 if (bio) {
1615 * end more in this run, or just return 'not-done'
1617 if (unlikely(nr_bytes <= 0))
1618 break;
1623 * completely done
1625 if (!req->bio)
1626 return 0;
1629 * if the request wasn't completed, update state
1631 if (bio_nbytes) {
1632 req_bio_endio(req, bio, bio_nbytes, error);
1633 bio->bi_idx += next_idx;
1634 bio_iovec(bio)->bv_offset += nr_bytes;
1635 bio_iovec(bio)->bv_len -= nr_bytes;
1638 blk_recalc_rq_sectors(req, total_bytes >> 9);
1639 blk_recalc_rq_segments(req);
1640 return 1;
1644 * splice the completion data to a local structure and hand off to
1645 * process_completion_queue() to complete the requests
1647 static void blk_done_softirq(struct softirq_action *h)
1649 struct list_head *cpu_list, local_list;
1651 local_irq_disable();
1652 cpu_list = &__get_cpu_var(blk_cpu_done);
1653 list_replace_init(cpu_list, &local_list);
1654 local_irq_enable();
1656 while (!list_empty(&local_list)) {
1657 struct request *rq;
1659 rq = list_entry(local_list.next, struct request, donelist);
1660 list_del_init(&rq->donelist);
1661 rq->q->softirq_done_fn(rq);
1665 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1666 unsigned long action, void *hcpu)
1669 * If a CPU goes away, splice its entries to the current CPU
1670 * and trigger a run of the softirq
1672 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1673 int cpu = (unsigned long) hcpu;
1675 local_irq_disable();
1676 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1677 &__get_cpu_var(blk_cpu_done));
1678 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1679 local_irq_enable();
1682 return NOTIFY_OK;
1686 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1687 .notifier_call = blk_cpu_notify,
1691 * blk_complete_request - end I/O on a request
1692 * @req: the request being processed
1694 * Description:
1695 * Ends all I/O on a request. It does not handle partial completions,
1696 * unless the driver actually implements this in its completion callback
1697 * through requeueing. The actual completion happens out-of-order,
1698 * through a softirq handler. The user must have registered a completion
1699 * callback through blk_queue_softirq_done().
1702 void blk_complete_request(struct request *req)
1704 struct list_head *cpu_list;
1705 unsigned long flags;
1707 BUG_ON(!req->q->softirq_done_fn);
1709 local_irq_save(flags);
1711 cpu_list = &__get_cpu_var(blk_cpu_done);
1712 list_add_tail(&req->donelist, cpu_list);
1713 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1715 local_irq_restore(flags);
1717 EXPORT_SYMBOL(blk_complete_request);
1720 * queue lock must be held
1722 static void end_that_request_last(struct request *req, int error)
1724 struct gendisk *disk = req->rq_disk;
1726 if (blk_rq_tagged(req))
1727 blk_queue_end_tag(req->q, req);
1729 if (blk_queued_rq(req))
1730 blkdev_dequeue_request(req);
1732 if (unlikely(laptop_mode) && blk_fs_request(req))
1733 laptop_io_completion();
1736 * Account IO completion. bar_rq isn't accounted as a normal
1737 * IO on queueing nor completion. Accounting the containing
1738 * request is enough.
1740 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1741 unsigned long duration = jiffies - req->start_time;
1742 const int rw = rq_data_dir(req);
1743 struct hd_struct *part = get_part(disk, req->sector);
1745 __all_stat_inc(disk, part, ios[rw], req->sector);
1746 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1747 disk_round_stats(disk);
1748 disk->in_flight--;
1749 if (part) {
1750 part_round_stats(part);
1751 part->in_flight--;
1755 if (req->end_io)
1756 req->end_io(req, error);
1757 else {
1758 if (blk_bidi_rq(req))
1759 __blk_put_request(req->next_rq->q, req->next_rq);
1761 __blk_put_request(req->q, req);
1765 static inline void __end_request(struct request *rq, int uptodate,
1766 unsigned int nr_bytes)
1768 int error = 0;
1770 if (uptodate <= 0)
1771 error = uptodate ? uptodate : -EIO;
1773 __blk_end_request(rq, error, nr_bytes);
1777 * blk_rq_bytes - Returns bytes left to complete in the entire request
1778 * @rq: the request being processed
1780 unsigned int blk_rq_bytes(struct request *rq)
1782 if (blk_fs_request(rq))
1783 return rq->hard_nr_sectors << 9;
1785 return rq->data_len;
1787 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1790 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1791 * @rq: the request being processed
1793 unsigned int blk_rq_cur_bytes(struct request *rq)
1795 if (blk_fs_request(rq))
1796 return rq->current_nr_sectors << 9;
1798 if (rq->bio)
1799 return rq->bio->bi_size;
1801 return rq->data_len;
1803 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1806 * end_queued_request - end all I/O on a queued request
1807 * @rq: the request being processed
1808 * @uptodate: error value or 0/1 uptodate flag
1810 * Description:
1811 * Ends all I/O on a request, and removes it from the block layer queues.
1812 * Not suitable for normal IO completion, unless the driver still has
1813 * the request attached to the block layer.
1816 void end_queued_request(struct request *rq, int uptodate)
1818 __end_request(rq, uptodate, blk_rq_bytes(rq));
1820 EXPORT_SYMBOL(end_queued_request);
1823 * end_dequeued_request - end all I/O on a dequeued request
1824 * @rq: the request being processed
1825 * @uptodate: error value or 0/1 uptodate flag
1827 * Description:
1828 * Ends all I/O on a request. The request must already have been
1829 * dequeued using blkdev_dequeue_request(), as is normally the case
1830 * for most drivers.
1833 void end_dequeued_request(struct request *rq, int uptodate)
1835 __end_request(rq, uptodate, blk_rq_bytes(rq));
1837 EXPORT_SYMBOL(end_dequeued_request);
1841 * end_request - end I/O on the current segment of the request
1842 * @req: the request being processed
1843 * @uptodate: error value or 0/1 uptodate flag
1845 * Description:
1846 * Ends I/O on the current segment of a request. If that is the only
1847 * remaining segment, the request is also completed and freed.
1849 * This is a remnant of how older block drivers handled IO completions.
1850 * Modern drivers typically end IO on the full request in one go, unless
1851 * they have a residual value to account for. For that case this function
1852 * isn't really useful, unless the residual just happens to be the
1853 * full current segment. In other words, don't use this function in new
1854 * code. Either use end_request_completely(), or the
1855 * end_that_request_chunk() (along with end_that_request_last()) for
1856 * partial completions.
1859 void end_request(struct request *req, int uptodate)
1861 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1863 EXPORT_SYMBOL(end_request);
1866 * blk_end_io - Generic end_io function to complete a request.
1867 * @rq: the request being processed
1868 * @error: 0 for success, < 0 for error
1869 * @nr_bytes: number of bytes to complete @rq
1870 * @bidi_bytes: number of bytes to complete @rq->next_rq
1871 * @drv_callback: function called between completion of bios in the request
1872 * and completion of the request.
1873 * If the callback returns non 0, this helper returns without
1874 * completion of the request.
1876 * Description:
1877 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1878 * If @rq has leftover, sets it up for the next range of segments.
1880 * Return:
1881 * 0 - we are done with this request
1882 * 1 - this request is not freed yet, it still has pending buffers.
1884 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1885 unsigned int bidi_bytes,
1886 int (drv_callback)(struct request *))
1888 struct request_queue *q = rq->q;
1889 unsigned long flags = 0UL;
1891 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1892 if (__end_that_request_first(rq, error, nr_bytes))
1893 return 1;
1895 /* Bidi request must be completed as a whole */
1896 if (blk_bidi_rq(rq) &&
1897 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1898 return 1;
1901 /* Special feature for tricky drivers */
1902 if (drv_callback && drv_callback(rq))
1903 return 1;
1905 add_disk_randomness(rq->rq_disk);
1907 spin_lock_irqsave(q->queue_lock, flags);
1908 end_that_request_last(rq, error);
1909 spin_unlock_irqrestore(q->queue_lock, flags);
1911 return 0;
1915 * blk_end_request - Helper function for drivers to complete the request.
1916 * @rq: the request being processed
1917 * @error: 0 for success, < 0 for error
1918 * @nr_bytes: number of bytes to complete
1920 * Description:
1921 * Ends I/O on a number of bytes attached to @rq.
1922 * If @rq has leftover, sets it up for the next range of segments.
1924 * Return:
1925 * 0 - we are done with this request
1926 * 1 - still buffers pending for this request
1928 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1930 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1932 EXPORT_SYMBOL_GPL(blk_end_request);
1935 * __blk_end_request - Helper function for drivers to complete the request.
1936 * @rq: the request being processed
1937 * @error: 0 for success, < 0 for error
1938 * @nr_bytes: number of bytes to complete
1940 * Description:
1941 * Must be called with queue lock held unlike blk_end_request().
1943 * Return:
1944 * 0 - we are done with this request
1945 * 1 - still buffers pending for this request
1947 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1949 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1950 if (__end_that_request_first(rq, error, nr_bytes))
1951 return 1;
1954 add_disk_randomness(rq->rq_disk);
1956 end_that_request_last(rq, error);
1958 return 0;
1960 EXPORT_SYMBOL_GPL(__blk_end_request);
1963 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1964 * @rq: the bidi request being processed
1965 * @error: 0 for success, < 0 for error
1966 * @nr_bytes: number of bytes to complete @rq
1967 * @bidi_bytes: number of bytes to complete @rq->next_rq
1969 * Description:
1970 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1972 * Return:
1973 * 0 - we are done with this request
1974 * 1 - still buffers pending for this request
1976 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1977 unsigned int bidi_bytes)
1979 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1981 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1984 * blk_end_request_callback - Special helper function for tricky drivers
1985 * @rq: the request being processed
1986 * @error: 0 for success, < 0 for error
1987 * @nr_bytes: number of bytes to complete
1988 * @drv_callback: function called between completion of bios in the request
1989 * and completion of the request.
1990 * If the callback returns non 0, this helper returns without
1991 * completion of the request.
1993 * Description:
1994 * Ends I/O on a number of bytes attached to @rq.
1995 * If @rq has leftover, sets it up for the next range of segments.
1997 * This special helper function is used only for existing tricky drivers.
1998 * (e.g. cdrom_newpc_intr() of ide-cd)
1999 * This interface will be removed when such drivers are rewritten.
2000 * Don't use this interface in other places anymore.
2002 * Return:
2003 * 0 - we are done with this request
2004 * 1 - this request is not freed yet.
2005 * this request still has pending buffers or
2006 * the driver doesn't want to finish this request yet.
2008 int blk_end_request_callback(struct request *rq, int error,
2009 unsigned int nr_bytes,
2010 int (drv_callback)(struct request *))
2012 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2014 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2016 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2017 struct bio *bio)
2019 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2020 rq->cmd_flags |= (bio->bi_rw & 3);
2022 rq->nr_phys_segments = bio_phys_segments(q, bio);
2023 rq->nr_hw_segments = bio_hw_segments(q, bio);
2024 rq->current_nr_sectors = bio_cur_sectors(bio);
2025 rq->hard_cur_sectors = rq->current_nr_sectors;
2026 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2027 rq->buffer = bio_data(bio);
2028 rq->data_len = bio->bi_size;
2030 rq->bio = rq->biotail = bio;
2032 if (bio->bi_bdev)
2033 rq->rq_disk = bio->bi_bdev->bd_disk;
2036 int kblockd_schedule_work(struct work_struct *work)
2038 return queue_work(kblockd_workqueue, work);
2040 EXPORT_SYMBOL(kblockd_schedule_work);
2042 void kblockd_flush_work(struct work_struct *work)
2044 cancel_work_sync(work);
2046 EXPORT_SYMBOL(kblockd_flush_work);
2048 int __init blk_dev_init(void)
2050 int i;
2052 kblockd_workqueue = create_workqueue("kblockd");
2053 if (!kblockd_workqueue)
2054 panic("Failed to create kblockd\n");
2056 request_cachep = kmem_cache_create("blkdev_requests",
2057 sizeof(struct request), 0, SLAB_PANIC, NULL);
2059 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2060 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2062 for_each_possible_cpu(i)
2063 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2065 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2066 register_hotcpu_notifier(&blk_cpu_notifier);
2068 return 0;