eCryptfs: Make truncate path killable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / s390 / mm / fault.c
bloba9a301866b3c1846f37792aa371620e2b3004415
1 /*
2 * arch/s390/mm/fault.c
4 * S390 version
5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (uweigand@de.ibm.com)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1995 Linus Torvalds
13 #include <linux/kernel_stat.h>
14 #include <linux/perf_event.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/module.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/system.h>
36 #include <asm/pgtable.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/compat.h>
40 #include "../kernel/entry.h"
42 #ifndef CONFIG_64BIT
43 #define __FAIL_ADDR_MASK 0x7ffff000
44 #define __SUBCODE_MASK 0x0200
45 #define __PF_RES_FIELD 0ULL
46 #else /* CONFIG_64BIT */
47 #define __FAIL_ADDR_MASK -4096L
48 #define __SUBCODE_MASK 0x0600
49 #define __PF_RES_FIELD 0x8000000000000000ULL
50 #endif /* CONFIG_64BIT */
52 #define VM_FAULT_BADCONTEXT 0x010000
53 #define VM_FAULT_BADMAP 0x020000
54 #define VM_FAULT_BADACCESS 0x040000
56 static unsigned long store_indication;
58 void fault_init(void)
60 if (test_facility(2) && test_facility(75))
61 store_indication = 0xc00;
64 static inline int notify_page_fault(struct pt_regs *regs)
66 int ret = 0;
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
75 return ret;
80 * Unlock any spinlocks which will prevent us from getting the
81 * message out.
83 void bust_spinlocks(int yes)
85 if (yes) {
86 oops_in_progress = 1;
87 } else {
88 int loglevel_save = console_loglevel;
89 console_unblank();
90 oops_in_progress = 0;
92 * OK, the message is on the console. Now we call printk()
93 * without oops_in_progress set so that printk will give klogd
94 * a poke. Hold onto your hats...
96 console_loglevel = 15;
97 printk(" ");
98 console_loglevel = loglevel_save;
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
106 static inline int user_space_fault(unsigned long trans_exc_code)
109 * The lowest two bits of the translation exception
110 * identification indicate which paging table was used.
112 trans_exc_code &= 3;
113 if (trans_exc_code == 2)
114 /* Access via secondary space, set_fs setting decides */
115 return current->thread.mm_segment.ar4;
116 if (user_mode == HOME_SPACE_MODE)
117 /* User space if the access has been done via home space. */
118 return trans_exc_code == 3;
120 * If the user space is not the home space the kernel runs in home
121 * space. Access via secondary space has already been covered,
122 * access via primary space or access register is from user space
123 * and access via home space is from the kernel.
125 return trans_exc_code != 3;
128 static inline void report_user_fault(struct pt_regs *regs, long int_code,
129 int signr, unsigned long address)
131 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132 return;
133 if (!unhandled_signal(current, signr))
134 return;
135 if (!printk_ratelimit())
136 return;
137 printk("User process fault: interruption code 0x%lX ", int_code);
138 print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139 printk("\n");
140 printk("failing address: %lX\n", address);
141 show_regs(regs);
145 * Send SIGSEGV to task. This is an external routine
146 * to keep the stack usage of do_page_fault small.
148 static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149 int si_code, unsigned long trans_exc_code)
151 struct siginfo si;
152 unsigned long address;
154 address = trans_exc_code & __FAIL_ADDR_MASK;
155 current->thread.prot_addr = address;
156 current->thread.trap_no = int_code;
157 report_user_fault(regs, int_code, SIGSEGV, address);
158 si.si_signo = SIGSEGV;
159 si.si_code = si_code;
160 si.si_addr = (void __user *) address;
161 force_sig_info(SIGSEGV, &si, current);
164 static noinline void do_no_context(struct pt_regs *regs, long int_code,
165 unsigned long trans_exc_code)
167 const struct exception_table_entry *fixup;
168 unsigned long address;
170 /* Are we prepared to handle this kernel fault? */
171 fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172 if (fixup) {
173 regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
174 return;
178 * Oops. The kernel tried to access some bad page. We'll have to
179 * terminate things with extreme prejudice.
181 address = trans_exc_code & __FAIL_ADDR_MASK;
182 if (!user_space_fault(trans_exc_code))
183 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184 " at virtual kernel address %p\n", (void *)address);
185 else
186 printk(KERN_ALERT "Unable to handle kernel paging request"
187 " at virtual user address %p\n", (void *)address);
189 die("Oops", regs, int_code);
190 do_exit(SIGKILL);
193 static noinline void do_low_address(struct pt_regs *regs, long int_code,
194 unsigned long trans_exc_code)
196 /* Low-address protection hit in kernel mode means
197 NULL pointer write access in kernel mode. */
198 if (regs->psw.mask & PSW_MASK_PSTATE) {
199 /* Low-address protection hit in user mode 'cannot happen'. */
200 die ("Low-address protection", regs, int_code);
201 do_exit(SIGKILL);
204 do_no_context(regs, int_code, trans_exc_code);
207 static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208 unsigned long trans_exc_code)
210 struct task_struct *tsk = current;
211 unsigned long address;
212 struct siginfo si;
215 * Send a sigbus, regardless of whether we were in kernel
216 * or user mode.
218 address = trans_exc_code & __FAIL_ADDR_MASK;
219 tsk->thread.prot_addr = address;
220 tsk->thread.trap_no = int_code;
221 si.si_signo = SIGBUS;
222 si.si_errno = 0;
223 si.si_code = BUS_ADRERR;
224 si.si_addr = (void __user *) address;
225 force_sig_info(SIGBUS, &si, tsk);
228 static noinline void do_fault_error(struct pt_regs *regs, long int_code,
229 unsigned long trans_exc_code, int fault)
231 int si_code;
233 switch (fault) {
234 case VM_FAULT_BADACCESS:
235 case VM_FAULT_BADMAP:
236 /* Bad memory access. Check if it is kernel or user space. */
237 if (regs->psw.mask & PSW_MASK_PSTATE) {
238 /* User mode accesses just cause a SIGSEGV */
239 si_code = (fault == VM_FAULT_BADMAP) ?
240 SEGV_MAPERR : SEGV_ACCERR;
241 do_sigsegv(regs, int_code, si_code, trans_exc_code);
242 return;
244 case VM_FAULT_BADCONTEXT:
245 do_no_context(regs, int_code, trans_exc_code);
246 break;
247 default: /* fault & VM_FAULT_ERROR */
248 if (fault & VM_FAULT_OOM) {
249 if (!(regs->psw.mask & PSW_MASK_PSTATE))
250 do_no_context(regs, int_code, trans_exc_code);
251 else
252 pagefault_out_of_memory();
253 } else if (fault & VM_FAULT_SIGBUS) {
254 /* Kernel mode? Handle exceptions or die */
255 if (!(regs->psw.mask & PSW_MASK_PSTATE))
256 do_no_context(regs, int_code, trans_exc_code);
257 else
258 do_sigbus(regs, int_code, trans_exc_code);
259 } else
260 BUG();
261 break;
266 * This routine handles page faults. It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
270 * interruption code (int_code):
271 * 04 Protection -> Write-Protection (suprression)
272 * 10 Segment translation -> Not present (nullification)
273 * 11 Page translation -> Not present (nullification)
274 * 3b Region third trans. -> Not present (nullification)
276 static inline int do_exception(struct pt_regs *regs, int access,
277 unsigned long trans_exc_code)
279 struct task_struct *tsk;
280 struct mm_struct *mm;
281 struct vm_area_struct *vma;
282 unsigned long address;
283 unsigned int flags;
284 int fault;
286 if (notify_page_fault(regs))
287 return 0;
289 tsk = current;
290 mm = tsk->mm;
293 * Verify that the fault happened in user space, that
294 * we are not in an interrupt and that there is a
295 * user context.
297 fault = VM_FAULT_BADCONTEXT;
298 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
299 goto out;
301 address = trans_exc_code & __FAIL_ADDR_MASK;
302 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
303 flags = FAULT_FLAG_ALLOW_RETRY;
304 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
305 flags |= FAULT_FLAG_WRITE;
306 down_read(&mm->mmap_sem);
308 #ifdef CONFIG_PGSTE
309 if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
310 address = __gmap_fault(address,
311 (struct gmap *) S390_lowcore.gmap);
312 if (address == -EFAULT) {
313 fault = VM_FAULT_BADMAP;
314 goto out_up;
316 if (address == -ENOMEM) {
317 fault = VM_FAULT_OOM;
318 goto out_up;
321 #endif
323 retry:
324 fault = VM_FAULT_BADMAP;
325 vma = find_vma(mm, address);
326 if (!vma)
327 goto out_up;
329 if (unlikely(vma->vm_start > address)) {
330 if (!(vma->vm_flags & VM_GROWSDOWN))
331 goto out_up;
332 if (expand_stack(vma, address))
333 goto out_up;
337 * Ok, we have a good vm_area for this memory access, so
338 * we can handle it..
340 fault = VM_FAULT_BADACCESS;
341 if (unlikely(!(vma->vm_flags & access)))
342 goto out_up;
344 if (is_vm_hugetlb_page(vma))
345 address &= HPAGE_MASK;
347 * If for any reason at all we couldn't handle the fault,
348 * make sure we exit gracefully rather than endlessly redo
349 * the fault.
351 fault = handle_mm_fault(mm, vma, address, flags);
352 if (unlikely(fault & VM_FAULT_ERROR))
353 goto out_up;
356 * Major/minor page fault accounting is only done on the
357 * initial attempt. If we go through a retry, it is extremely
358 * likely that the page will be found in page cache at that point.
360 if (flags & FAULT_FLAG_ALLOW_RETRY) {
361 if (fault & VM_FAULT_MAJOR) {
362 tsk->maj_flt++;
363 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
364 regs, address);
365 } else {
366 tsk->min_flt++;
367 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
368 regs, address);
370 if (fault & VM_FAULT_RETRY) {
371 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
372 * of starvation. */
373 flags &= ~FAULT_FLAG_ALLOW_RETRY;
374 down_read(&mm->mmap_sem);
375 goto retry;
379 * The instruction that caused the program check will
380 * be repeated. Don't signal single step via SIGTRAP.
382 clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
383 fault = 0;
384 out_up:
385 up_read(&mm->mmap_sem);
386 out:
387 return fault;
390 void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
391 unsigned long trans_exc_code)
393 int fault;
395 /* Protection exception is suppressing, decrement psw address. */
396 regs->psw.addr = __rewind_psw(regs->psw, pgm_int_code >> 16);
398 * Check for low-address protection. This needs to be treated
399 * as a special case because the translation exception code
400 * field is not guaranteed to contain valid data in this case.
402 if (unlikely(!(trans_exc_code & 4))) {
403 do_low_address(regs, pgm_int_code, trans_exc_code);
404 return;
406 fault = do_exception(regs, VM_WRITE, trans_exc_code);
407 if (unlikely(fault))
408 do_fault_error(regs, 4, trans_exc_code, fault);
411 void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
412 unsigned long trans_exc_code)
414 int access, fault;
416 access = VM_READ | VM_EXEC | VM_WRITE;
417 fault = do_exception(regs, access, trans_exc_code);
418 if (unlikely(fault))
419 do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
422 #ifdef CONFIG_64BIT
423 void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
424 unsigned long trans_exc_code)
426 struct mm_struct *mm = current->mm;
427 struct vm_area_struct *vma;
429 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
430 goto no_context;
432 down_read(&mm->mmap_sem);
433 vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
434 up_read(&mm->mmap_sem);
436 if (vma) {
437 update_mm(mm, current);
438 return;
441 /* User mode accesses just cause a SIGSEGV */
442 if (regs->psw.mask & PSW_MASK_PSTATE) {
443 do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
444 return;
447 no_context:
448 do_no_context(regs, pgm_int_code, trans_exc_code);
450 #endif
452 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
454 struct pt_regs regs;
455 int access, fault;
457 regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
458 if (!irqs_disabled())
459 regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
460 regs.psw.addr = (unsigned long) __builtin_return_address(0);
461 regs.psw.addr |= PSW_ADDR_AMODE;
462 uaddr &= PAGE_MASK;
463 access = write ? VM_WRITE : VM_READ;
464 fault = do_exception(&regs, access, uaddr | 2);
465 if (unlikely(fault)) {
466 if (fault & VM_FAULT_OOM)
467 return -EFAULT;
468 else if (fault & VM_FAULT_SIGBUS)
469 do_sigbus(&regs, pgm_int_code, uaddr);
471 return fault ? -EFAULT : 0;
474 #ifdef CONFIG_PFAULT
476 * 'pfault' pseudo page faults routines.
478 static int pfault_disable;
480 static int __init nopfault(char *str)
482 pfault_disable = 1;
483 return 1;
486 __setup("nopfault", nopfault);
488 struct pfault_refbk {
489 u16 refdiagc;
490 u16 reffcode;
491 u16 refdwlen;
492 u16 refversn;
493 u64 refgaddr;
494 u64 refselmk;
495 u64 refcmpmk;
496 u64 reserved;
497 } __attribute__ ((packed, aligned(8)));
499 int pfault_init(void)
501 struct pfault_refbk refbk = {
502 .refdiagc = 0x258,
503 .reffcode = 0,
504 .refdwlen = 5,
505 .refversn = 2,
506 .refgaddr = __LC_CURRENT_PID,
507 .refselmk = 1ULL << 48,
508 .refcmpmk = 1ULL << 48,
509 .reserved = __PF_RES_FIELD };
510 int rc;
512 if (!MACHINE_IS_VM || pfault_disable)
513 return -1;
514 asm volatile(
515 " diag %1,%0,0x258\n"
516 "0: j 2f\n"
517 "1: la %0,8\n"
518 "2:\n"
519 EX_TABLE(0b,1b)
520 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
521 return rc;
524 void pfault_fini(void)
526 struct pfault_refbk refbk = {
527 .refdiagc = 0x258,
528 .reffcode = 1,
529 .refdwlen = 5,
530 .refversn = 2,
533 if (!MACHINE_IS_VM || pfault_disable)
534 return;
535 asm volatile(
536 " diag %0,0,0x258\n"
537 "0:\n"
538 EX_TABLE(0b,0b)
539 : : "a" (&refbk), "m" (refbk) : "cc");
542 static DEFINE_SPINLOCK(pfault_lock);
543 static LIST_HEAD(pfault_list);
545 static void pfault_interrupt(unsigned int ext_int_code,
546 unsigned int param32, unsigned long param64)
548 struct task_struct *tsk;
549 __u16 subcode;
550 pid_t pid;
553 * Get the external interruption subcode & pfault
554 * initial/completion signal bit. VM stores this
555 * in the 'cpu address' field associated with the
556 * external interrupt.
558 subcode = ext_int_code >> 16;
559 if ((subcode & 0xff00) != __SUBCODE_MASK)
560 return;
561 kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
562 if (subcode & 0x0080) {
563 /* Get the token (= pid of the affected task). */
564 pid = sizeof(void *) == 4 ? param32 : param64;
565 rcu_read_lock();
566 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
567 if (tsk)
568 get_task_struct(tsk);
569 rcu_read_unlock();
570 if (!tsk)
571 return;
572 } else {
573 tsk = current;
575 spin_lock(&pfault_lock);
576 if (subcode & 0x0080) {
577 /* signal bit is set -> a page has been swapped in by VM */
578 if (tsk->thread.pfault_wait == 1) {
579 /* Initial interrupt was faster than the completion
580 * interrupt. pfault_wait is valid. Set pfault_wait
581 * back to zero and wake up the process. This can
582 * safely be done because the task is still sleeping
583 * and can't produce new pfaults. */
584 tsk->thread.pfault_wait = 0;
585 list_del(&tsk->thread.list);
586 wake_up_process(tsk);
587 } else {
588 /* Completion interrupt was faster than initial
589 * interrupt. Set pfault_wait to -1 so the initial
590 * interrupt doesn't put the task to sleep.
591 * If the task is not running, ignore the completion
592 * interrupt since it must be a leftover of a PFAULT
593 * CANCEL operation which didn't remove all pending
594 * completion interrupts. */
595 if (tsk->state == TASK_RUNNING)
596 tsk->thread.pfault_wait = -1;
598 put_task_struct(tsk);
599 } else {
600 /* signal bit not set -> a real page is missing. */
601 if (tsk->thread.pfault_wait == -1) {
602 /* Completion interrupt was faster than the initial
603 * interrupt (pfault_wait == -1). Set pfault_wait
604 * back to zero and exit. */
605 tsk->thread.pfault_wait = 0;
606 } else {
607 /* Initial interrupt arrived before completion
608 * interrupt. Let the task sleep. */
609 tsk->thread.pfault_wait = 1;
610 list_add(&tsk->thread.list, &pfault_list);
611 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
612 set_tsk_need_resched(tsk);
615 spin_unlock(&pfault_lock);
618 static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
619 unsigned long action, void *hcpu)
621 struct thread_struct *thread, *next;
622 struct task_struct *tsk;
624 switch (action) {
625 case CPU_DEAD:
626 case CPU_DEAD_FROZEN:
627 spin_lock_irq(&pfault_lock);
628 list_for_each_entry_safe(thread, next, &pfault_list, list) {
629 thread->pfault_wait = 0;
630 list_del(&thread->list);
631 tsk = container_of(thread, struct task_struct, thread);
632 wake_up_process(tsk);
634 spin_unlock_irq(&pfault_lock);
635 break;
636 default:
637 break;
639 return NOTIFY_OK;
642 static int __init pfault_irq_init(void)
644 int rc;
646 if (!MACHINE_IS_VM)
647 return 0;
648 rc = register_external_interrupt(0x2603, pfault_interrupt);
649 if (rc)
650 goto out_extint;
651 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
652 if (rc)
653 goto out_pfault;
654 service_subclass_irq_register();
655 hotcpu_notifier(pfault_cpu_notify, 0);
656 return 0;
658 out_pfault:
659 unregister_external_interrupt(0x2603, pfault_interrupt);
660 out_extint:
661 pfault_disable = 1;
662 return rc;
664 early_initcall(pfault_irq_init);
666 #endif /* CONFIG_PFAULT */