rtmutex-tester: Remove BKL tests
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / dmaengine.c
blob8bcb15fb959d1e3de64e79a5e90300c105d62ad3
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
32 * LOCKING:
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
45 * See Documentation/dmaengine.txt for more details
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
63 static DEFINE_MUTEX(dma_list_mutex);
64 static LIST_HEAD(dma_device_list);
65 static long dmaengine_ref_count;
66 static struct idr dma_idr;
68 /* --- sysfs implementation --- */
70 /**
71 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
72 * @dev - device node
74 * Must be called under dma_list_mutex
76 static struct dma_chan *dev_to_dma_chan(struct device *dev)
78 struct dma_chan_dev *chan_dev;
80 chan_dev = container_of(dev, typeof(*chan_dev), device);
81 return chan_dev->chan;
84 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
86 struct dma_chan *chan;
87 unsigned long count = 0;
88 int i;
89 int err;
91 mutex_lock(&dma_list_mutex);
92 chan = dev_to_dma_chan(dev);
93 if (chan) {
94 for_each_possible_cpu(i)
95 count += per_cpu_ptr(chan->local, i)->memcpy_count;
96 err = sprintf(buf, "%lu\n", count);
97 } else
98 err = -ENODEV;
99 mutex_unlock(&dma_list_mutex);
101 return err;
104 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
105 char *buf)
107 struct dma_chan *chan;
108 unsigned long count = 0;
109 int i;
110 int err;
112 mutex_lock(&dma_list_mutex);
113 chan = dev_to_dma_chan(dev);
114 if (chan) {
115 for_each_possible_cpu(i)
116 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
117 err = sprintf(buf, "%lu\n", count);
118 } else
119 err = -ENODEV;
120 mutex_unlock(&dma_list_mutex);
122 return err;
125 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
127 struct dma_chan *chan;
128 int err;
130 mutex_lock(&dma_list_mutex);
131 chan = dev_to_dma_chan(dev);
132 if (chan)
133 err = sprintf(buf, "%d\n", chan->client_count);
134 else
135 err = -ENODEV;
136 mutex_unlock(&dma_list_mutex);
138 return err;
141 static struct device_attribute dma_attrs[] = {
142 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
143 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
144 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
145 __ATTR_NULL
148 static void chan_dev_release(struct device *dev)
150 struct dma_chan_dev *chan_dev;
152 chan_dev = container_of(dev, typeof(*chan_dev), device);
153 if (atomic_dec_and_test(chan_dev->idr_ref)) {
154 mutex_lock(&dma_list_mutex);
155 idr_remove(&dma_idr, chan_dev->dev_id);
156 mutex_unlock(&dma_list_mutex);
157 kfree(chan_dev->idr_ref);
159 kfree(chan_dev);
162 static struct class dma_devclass = {
163 .name = "dma",
164 .dev_attrs = dma_attrs,
165 .dev_release = chan_dev_release,
168 /* --- client and device registration --- */
170 #define dma_device_satisfies_mask(device, mask) \
171 __dma_device_satisfies_mask((device), &(mask))
172 static int
173 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
175 dma_cap_mask_t has;
177 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
178 DMA_TX_TYPE_END);
179 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
182 static struct module *dma_chan_to_owner(struct dma_chan *chan)
184 return chan->device->dev->driver->owner;
188 * balance_ref_count - catch up the channel reference count
189 * @chan - channel to balance ->client_count versus dmaengine_ref_count
191 * balance_ref_count must be called under dma_list_mutex
193 static void balance_ref_count(struct dma_chan *chan)
195 struct module *owner = dma_chan_to_owner(chan);
197 while (chan->client_count < dmaengine_ref_count) {
198 __module_get(owner);
199 chan->client_count++;
204 * dma_chan_get - try to grab a dma channel's parent driver module
205 * @chan - channel to grab
207 * Must be called under dma_list_mutex
209 static int dma_chan_get(struct dma_chan *chan)
211 int err = -ENODEV;
212 struct module *owner = dma_chan_to_owner(chan);
214 if (chan->client_count) {
215 __module_get(owner);
216 err = 0;
217 } else if (try_module_get(owner))
218 err = 0;
220 if (err == 0)
221 chan->client_count++;
223 /* allocate upon first client reference */
224 if (chan->client_count == 1 && err == 0) {
225 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
227 if (desc_cnt < 0) {
228 err = desc_cnt;
229 chan->client_count = 0;
230 module_put(owner);
231 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
232 balance_ref_count(chan);
235 return err;
239 * dma_chan_put - drop a reference to a dma channel's parent driver module
240 * @chan - channel to release
242 * Must be called under dma_list_mutex
244 static void dma_chan_put(struct dma_chan *chan)
246 if (!chan->client_count)
247 return; /* this channel failed alloc_chan_resources */
248 chan->client_count--;
249 module_put(dma_chan_to_owner(chan));
250 if (chan->client_count == 0)
251 chan->device->device_free_chan_resources(chan);
254 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
256 enum dma_status status;
257 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
259 dma_async_issue_pending(chan);
260 do {
261 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
262 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
263 printk(KERN_ERR "dma_sync_wait_timeout!\n");
264 return DMA_ERROR;
266 } while (status == DMA_IN_PROGRESS);
268 return status;
270 EXPORT_SYMBOL(dma_sync_wait);
273 * dma_cap_mask_all - enable iteration over all operation types
275 static dma_cap_mask_t dma_cap_mask_all;
278 * dma_chan_tbl_ent - tracks channel allocations per core/operation
279 * @chan - associated channel for this entry
281 struct dma_chan_tbl_ent {
282 struct dma_chan *chan;
286 * channel_table - percpu lookup table for memory-to-memory offload providers
288 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
290 static int __init dma_channel_table_init(void)
292 enum dma_transaction_type cap;
293 int err = 0;
295 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
297 /* 'interrupt', 'private', and 'slave' are channel capabilities,
298 * but are not associated with an operation so they do not need
299 * an entry in the channel_table
301 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
302 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
303 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
305 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
306 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
307 if (!channel_table[cap]) {
308 err = -ENOMEM;
309 break;
313 if (err) {
314 pr_err("dmaengine: initialization failure\n");
315 for_each_dma_cap_mask(cap, dma_cap_mask_all)
316 if (channel_table[cap])
317 free_percpu(channel_table[cap]);
320 return err;
322 arch_initcall(dma_channel_table_init);
325 * dma_find_channel - find a channel to carry out the operation
326 * @tx_type: transaction type
328 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
330 return this_cpu_read(channel_table[tx_type]->chan);
332 EXPORT_SYMBOL(dma_find_channel);
335 * dma_issue_pending_all - flush all pending operations across all channels
337 void dma_issue_pending_all(void)
339 struct dma_device *device;
340 struct dma_chan *chan;
342 rcu_read_lock();
343 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
344 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
345 continue;
346 list_for_each_entry(chan, &device->channels, device_node)
347 if (chan->client_count)
348 device->device_issue_pending(chan);
350 rcu_read_unlock();
352 EXPORT_SYMBOL(dma_issue_pending_all);
355 * nth_chan - returns the nth channel of the given capability
356 * @cap: capability to match
357 * @n: nth channel desired
359 * Defaults to returning the channel with the desired capability and the
360 * lowest reference count when 'n' cannot be satisfied. Must be called
361 * under dma_list_mutex.
363 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
365 struct dma_device *device;
366 struct dma_chan *chan;
367 struct dma_chan *ret = NULL;
368 struct dma_chan *min = NULL;
370 list_for_each_entry(device, &dma_device_list, global_node) {
371 if (!dma_has_cap(cap, device->cap_mask) ||
372 dma_has_cap(DMA_PRIVATE, device->cap_mask))
373 continue;
374 list_for_each_entry(chan, &device->channels, device_node) {
375 if (!chan->client_count)
376 continue;
377 if (!min)
378 min = chan;
379 else if (chan->table_count < min->table_count)
380 min = chan;
382 if (n-- == 0) {
383 ret = chan;
384 break; /* done */
387 if (ret)
388 break; /* done */
391 if (!ret)
392 ret = min;
394 if (ret)
395 ret->table_count++;
397 return ret;
401 * dma_channel_rebalance - redistribute the available channels
403 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
404 * operation type) in the SMP case, and operation isolation (avoid
405 * multi-tasking channels) in the non-SMP case. Must be called under
406 * dma_list_mutex.
408 static void dma_channel_rebalance(void)
410 struct dma_chan *chan;
411 struct dma_device *device;
412 int cpu;
413 int cap;
414 int n;
416 /* undo the last distribution */
417 for_each_dma_cap_mask(cap, dma_cap_mask_all)
418 for_each_possible_cpu(cpu)
419 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
421 list_for_each_entry(device, &dma_device_list, global_node) {
422 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
423 continue;
424 list_for_each_entry(chan, &device->channels, device_node)
425 chan->table_count = 0;
428 /* don't populate the channel_table if no clients are available */
429 if (!dmaengine_ref_count)
430 return;
432 /* redistribute available channels */
433 n = 0;
434 for_each_dma_cap_mask(cap, dma_cap_mask_all)
435 for_each_online_cpu(cpu) {
436 if (num_possible_cpus() > 1)
437 chan = nth_chan(cap, n++);
438 else
439 chan = nth_chan(cap, -1);
441 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
445 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
446 dma_filter_fn fn, void *fn_param)
448 struct dma_chan *chan;
450 if (!__dma_device_satisfies_mask(dev, mask)) {
451 pr_debug("%s: wrong capabilities\n", __func__);
452 return NULL;
454 /* devices with multiple channels need special handling as we need to
455 * ensure that all channels are either private or public.
457 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
458 list_for_each_entry(chan, &dev->channels, device_node) {
459 /* some channels are already publicly allocated */
460 if (chan->client_count)
461 return NULL;
464 list_for_each_entry(chan, &dev->channels, device_node) {
465 if (chan->client_count) {
466 pr_debug("%s: %s busy\n",
467 __func__, dma_chan_name(chan));
468 continue;
470 if (fn && !fn(chan, fn_param)) {
471 pr_debug("%s: %s filter said false\n",
472 __func__, dma_chan_name(chan));
473 continue;
475 return chan;
478 return NULL;
482 * dma_request_channel - try to allocate an exclusive channel
483 * @mask: capabilities that the channel must satisfy
484 * @fn: optional callback to disposition available channels
485 * @fn_param: opaque parameter to pass to dma_filter_fn
487 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
489 struct dma_device *device, *_d;
490 struct dma_chan *chan = NULL;
491 int err;
493 /* Find a channel */
494 mutex_lock(&dma_list_mutex);
495 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
496 chan = private_candidate(mask, device, fn, fn_param);
497 if (chan) {
498 /* Found a suitable channel, try to grab, prep, and
499 * return it. We first set DMA_PRIVATE to disable
500 * balance_ref_count as this channel will not be
501 * published in the general-purpose allocator
503 dma_cap_set(DMA_PRIVATE, device->cap_mask);
504 device->privatecnt++;
505 err = dma_chan_get(chan);
507 if (err == -ENODEV) {
508 pr_debug("%s: %s module removed\n", __func__,
509 dma_chan_name(chan));
510 list_del_rcu(&device->global_node);
511 } else if (err)
512 pr_err("dmaengine: failed to get %s: (%d)\n",
513 dma_chan_name(chan), err);
514 else
515 break;
516 if (--device->privatecnt == 0)
517 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
518 chan = NULL;
521 mutex_unlock(&dma_list_mutex);
523 pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
524 chan ? dma_chan_name(chan) : NULL);
526 return chan;
528 EXPORT_SYMBOL_GPL(__dma_request_channel);
530 void dma_release_channel(struct dma_chan *chan)
532 mutex_lock(&dma_list_mutex);
533 WARN_ONCE(chan->client_count != 1,
534 "chan reference count %d != 1\n", chan->client_count);
535 dma_chan_put(chan);
536 /* drop PRIVATE cap enabled by __dma_request_channel() */
537 if (--chan->device->privatecnt == 0)
538 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
539 mutex_unlock(&dma_list_mutex);
541 EXPORT_SYMBOL_GPL(dma_release_channel);
544 * dmaengine_get - register interest in dma_channels
546 void dmaengine_get(void)
548 struct dma_device *device, *_d;
549 struct dma_chan *chan;
550 int err;
552 mutex_lock(&dma_list_mutex);
553 dmaengine_ref_count++;
555 /* try to grab channels */
556 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
557 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
558 continue;
559 list_for_each_entry(chan, &device->channels, device_node) {
560 err = dma_chan_get(chan);
561 if (err == -ENODEV) {
562 /* module removed before we could use it */
563 list_del_rcu(&device->global_node);
564 break;
565 } else if (err)
566 pr_err("dmaengine: failed to get %s: (%d)\n",
567 dma_chan_name(chan), err);
571 /* if this is the first reference and there were channels
572 * waiting we need to rebalance to get those channels
573 * incorporated into the channel table
575 if (dmaengine_ref_count == 1)
576 dma_channel_rebalance();
577 mutex_unlock(&dma_list_mutex);
579 EXPORT_SYMBOL(dmaengine_get);
582 * dmaengine_put - let dma drivers be removed when ref_count == 0
584 void dmaengine_put(void)
586 struct dma_device *device;
587 struct dma_chan *chan;
589 mutex_lock(&dma_list_mutex);
590 dmaengine_ref_count--;
591 BUG_ON(dmaengine_ref_count < 0);
592 /* drop channel references */
593 list_for_each_entry(device, &dma_device_list, global_node) {
594 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
595 continue;
596 list_for_each_entry(chan, &device->channels, device_node)
597 dma_chan_put(chan);
599 mutex_unlock(&dma_list_mutex);
601 EXPORT_SYMBOL(dmaengine_put);
603 static bool device_has_all_tx_types(struct dma_device *device)
605 /* A device that satisfies this test has channels that will never cause
606 * an async_tx channel switch event as all possible operation types can
607 * be handled.
609 #ifdef CONFIG_ASYNC_TX_DMA
610 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
611 return false;
612 #endif
614 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
615 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
616 return false;
617 #endif
619 #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
620 if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
621 return false;
622 #endif
624 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
625 if (!dma_has_cap(DMA_XOR, device->cap_mask))
626 return false;
628 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
629 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
630 return false;
631 #endif
632 #endif
634 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
635 if (!dma_has_cap(DMA_PQ, device->cap_mask))
636 return false;
638 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
639 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
640 return false;
641 #endif
642 #endif
644 return true;
647 static int get_dma_id(struct dma_device *device)
649 int rc;
651 idr_retry:
652 if (!idr_pre_get(&dma_idr, GFP_KERNEL))
653 return -ENOMEM;
654 mutex_lock(&dma_list_mutex);
655 rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
656 mutex_unlock(&dma_list_mutex);
657 if (rc == -EAGAIN)
658 goto idr_retry;
659 else if (rc != 0)
660 return rc;
662 return 0;
666 * dma_async_device_register - registers DMA devices found
667 * @device: &dma_device
669 int dma_async_device_register(struct dma_device *device)
671 int chancnt = 0, rc;
672 struct dma_chan* chan;
673 atomic_t *idr_ref;
675 if (!device)
676 return -ENODEV;
678 /* validate device routines */
679 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
680 !device->device_prep_dma_memcpy);
681 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
682 !device->device_prep_dma_xor);
683 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
684 !device->device_prep_dma_xor_val);
685 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
686 !device->device_prep_dma_pq);
687 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
688 !device->device_prep_dma_pq_val);
689 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
690 !device->device_prep_dma_memset);
691 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
692 !device->device_prep_dma_interrupt);
693 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
694 !device->device_prep_dma_sg);
695 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
696 !device->device_prep_slave_sg);
697 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
698 !device->device_prep_dma_cyclic);
699 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
700 !device->device_control);
702 BUG_ON(!device->device_alloc_chan_resources);
703 BUG_ON(!device->device_free_chan_resources);
704 BUG_ON(!device->device_tx_status);
705 BUG_ON(!device->device_issue_pending);
706 BUG_ON(!device->dev);
708 /* note: this only matters in the
709 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
711 if (device_has_all_tx_types(device))
712 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
714 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
715 if (!idr_ref)
716 return -ENOMEM;
717 rc = get_dma_id(device);
718 if (rc != 0) {
719 kfree(idr_ref);
720 return rc;
723 atomic_set(idr_ref, 0);
725 /* represent channels in sysfs. Probably want devs too */
726 list_for_each_entry(chan, &device->channels, device_node) {
727 rc = -ENOMEM;
728 chan->local = alloc_percpu(typeof(*chan->local));
729 if (chan->local == NULL)
730 goto err_out;
731 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
732 if (chan->dev == NULL) {
733 free_percpu(chan->local);
734 chan->local = NULL;
735 goto err_out;
738 chan->chan_id = chancnt++;
739 chan->dev->device.class = &dma_devclass;
740 chan->dev->device.parent = device->dev;
741 chan->dev->chan = chan;
742 chan->dev->idr_ref = idr_ref;
743 chan->dev->dev_id = device->dev_id;
744 atomic_inc(idr_ref);
745 dev_set_name(&chan->dev->device, "dma%dchan%d",
746 device->dev_id, chan->chan_id);
748 rc = device_register(&chan->dev->device);
749 if (rc) {
750 free_percpu(chan->local);
751 chan->local = NULL;
752 kfree(chan->dev);
753 atomic_dec(idr_ref);
754 goto err_out;
756 chan->client_count = 0;
758 device->chancnt = chancnt;
760 mutex_lock(&dma_list_mutex);
761 /* take references on public channels */
762 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
763 list_for_each_entry(chan, &device->channels, device_node) {
764 /* if clients are already waiting for channels we need
765 * to take references on their behalf
767 if (dma_chan_get(chan) == -ENODEV) {
768 /* note we can only get here for the first
769 * channel as the remaining channels are
770 * guaranteed to get a reference
772 rc = -ENODEV;
773 mutex_unlock(&dma_list_mutex);
774 goto err_out;
777 list_add_tail_rcu(&device->global_node, &dma_device_list);
778 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
779 device->privatecnt++; /* Always private */
780 dma_channel_rebalance();
781 mutex_unlock(&dma_list_mutex);
783 return 0;
785 err_out:
786 /* if we never registered a channel just release the idr */
787 if (atomic_read(idr_ref) == 0) {
788 mutex_lock(&dma_list_mutex);
789 idr_remove(&dma_idr, device->dev_id);
790 mutex_unlock(&dma_list_mutex);
791 kfree(idr_ref);
792 return rc;
795 list_for_each_entry(chan, &device->channels, device_node) {
796 if (chan->local == NULL)
797 continue;
798 mutex_lock(&dma_list_mutex);
799 chan->dev->chan = NULL;
800 mutex_unlock(&dma_list_mutex);
801 device_unregister(&chan->dev->device);
802 free_percpu(chan->local);
804 return rc;
806 EXPORT_SYMBOL(dma_async_device_register);
809 * dma_async_device_unregister - unregister a DMA device
810 * @device: &dma_device
812 * This routine is called by dma driver exit routines, dmaengine holds module
813 * references to prevent it being called while channels are in use.
815 void dma_async_device_unregister(struct dma_device *device)
817 struct dma_chan *chan;
819 mutex_lock(&dma_list_mutex);
820 list_del_rcu(&device->global_node);
821 dma_channel_rebalance();
822 mutex_unlock(&dma_list_mutex);
824 list_for_each_entry(chan, &device->channels, device_node) {
825 WARN_ONCE(chan->client_count,
826 "%s called while %d clients hold a reference\n",
827 __func__, chan->client_count);
828 mutex_lock(&dma_list_mutex);
829 chan->dev->chan = NULL;
830 mutex_unlock(&dma_list_mutex);
831 device_unregister(&chan->dev->device);
832 free_percpu(chan->local);
835 EXPORT_SYMBOL(dma_async_device_unregister);
838 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
839 * @chan: DMA channel to offload copy to
840 * @dest: destination address (virtual)
841 * @src: source address (virtual)
842 * @len: length
844 * Both @dest and @src must be mappable to a bus address according to the
845 * DMA mapping API rules for streaming mappings.
846 * Both @dest and @src must stay memory resident (kernel memory or locked
847 * user space pages).
849 dma_cookie_t
850 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
851 void *src, size_t len)
853 struct dma_device *dev = chan->device;
854 struct dma_async_tx_descriptor *tx;
855 dma_addr_t dma_dest, dma_src;
856 dma_cookie_t cookie;
857 unsigned long flags;
859 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
860 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
861 flags = DMA_CTRL_ACK |
862 DMA_COMPL_SRC_UNMAP_SINGLE |
863 DMA_COMPL_DEST_UNMAP_SINGLE;
864 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
866 if (!tx) {
867 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
868 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
869 return -ENOMEM;
872 tx->callback = NULL;
873 cookie = tx->tx_submit(tx);
875 preempt_disable();
876 __this_cpu_add(chan->local->bytes_transferred, len);
877 __this_cpu_inc(chan->local->memcpy_count);
878 preempt_enable();
880 return cookie;
882 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
885 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
886 * @chan: DMA channel to offload copy to
887 * @page: destination page
888 * @offset: offset in page to copy to
889 * @kdata: source address (virtual)
890 * @len: length
892 * Both @page/@offset and @kdata must be mappable to a bus address according
893 * to the DMA mapping API rules for streaming mappings.
894 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
895 * locked user space pages)
897 dma_cookie_t
898 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
899 unsigned int offset, void *kdata, size_t len)
901 struct dma_device *dev = chan->device;
902 struct dma_async_tx_descriptor *tx;
903 dma_addr_t dma_dest, dma_src;
904 dma_cookie_t cookie;
905 unsigned long flags;
907 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
908 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
909 flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
910 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
912 if (!tx) {
913 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
914 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
915 return -ENOMEM;
918 tx->callback = NULL;
919 cookie = tx->tx_submit(tx);
921 preempt_disable();
922 __this_cpu_add(chan->local->bytes_transferred, len);
923 __this_cpu_inc(chan->local->memcpy_count);
924 preempt_enable();
926 return cookie;
928 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
931 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
932 * @chan: DMA channel to offload copy to
933 * @dest_pg: destination page
934 * @dest_off: offset in page to copy to
935 * @src_pg: source page
936 * @src_off: offset in page to copy from
937 * @len: length
939 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
940 * address according to the DMA mapping API rules for streaming mappings.
941 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
942 * (kernel memory or locked user space pages).
944 dma_cookie_t
945 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
946 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
947 size_t len)
949 struct dma_device *dev = chan->device;
950 struct dma_async_tx_descriptor *tx;
951 dma_addr_t dma_dest, dma_src;
952 dma_cookie_t cookie;
953 unsigned long flags;
955 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
956 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
957 DMA_FROM_DEVICE);
958 flags = DMA_CTRL_ACK;
959 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
961 if (!tx) {
962 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
963 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
964 return -ENOMEM;
967 tx->callback = NULL;
968 cookie = tx->tx_submit(tx);
970 preempt_disable();
971 __this_cpu_add(chan->local->bytes_transferred, len);
972 __this_cpu_inc(chan->local->memcpy_count);
973 preempt_enable();
975 return cookie;
977 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
979 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
980 struct dma_chan *chan)
982 tx->chan = chan;
983 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
984 spin_lock_init(&tx->lock);
985 #endif
987 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
989 /* dma_wait_for_async_tx - spin wait for a transaction to complete
990 * @tx: in-flight transaction to wait on
992 enum dma_status
993 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
995 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
997 if (!tx)
998 return DMA_SUCCESS;
1000 while (tx->cookie == -EBUSY) {
1001 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1002 pr_err("%s timeout waiting for descriptor submission\n",
1003 __func__);
1004 return DMA_ERROR;
1006 cpu_relax();
1008 return dma_sync_wait(tx->chan, tx->cookie);
1010 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1012 /* dma_run_dependencies - helper routine for dma drivers to process
1013 * (start) dependent operations on their target channel
1014 * @tx: transaction with dependencies
1016 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1018 struct dma_async_tx_descriptor *dep = txd_next(tx);
1019 struct dma_async_tx_descriptor *dep_next;
1020 struct dma_chan *chan;
1022 if (!dep)
1023 return;
1025 /* we'll submit tx->next now, so clear the link */
1026 txd_clear_next(tx);
1027 chan = dep->chan;
1029 /* keep submitting up until a channel switch is detected
1030 * in that case we will be called again as a result of
1031 * processing the interrupt from async_tx_channel_switch
1033 for (; dep; dep = dep_next) {
1034 txd_lock(dep);
1035 txd_clear_parent(dep);
1036 dep_next = txd_next(dep);
1037 if (dep_next && dep_next->chan == chan)
1038 txd_clear_next(dep); /* ->next will be submitted */
1039 else
1040 dep_next = NULL; /* submit current dep and terminate */
1041 txd_unlock(dep);
1043 dep->tx_submit(dep);
1046 chan->device->device_issue_pending(chan);
1048 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1050 static int __init dma_bus_init(void)
1052 idr_init(&dma_idr);
1053 mutex_init(&dma_list_mutex);
1054 return class_register(&dma_devclass);
1056 arch_initcall(dma_bus_init);