2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
34 #include <asm/byteorder.h>
39 * Isochronous DMA context management
42 int fw_iso_buffer_init(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
43 int page_count
, enum dma_data_direction direction
)
48 buffer
->page_count
= page_count
;
49 buffer
->direction
= direction
;
51 buffer
->pages
= kmalloc(page_count
* sizeof(buffer
->pages
[0]),
53 if (buffer
->pages
== NULL
)
56 for (i
= 0; i
< buffer
->page_count
; i
++) {
57 buffer
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
| __GFP_ZERO
);
58 if (buffer
->pages
[i
] == NULL
)
61 address
= dma_map_page(card
->device
, buffer
->pages
[i
],
62 0, PAGE_SIZE
, direction
);
63 if (dma_mapping_error(card
->device
, address
)) {
64 __free_page(buffer
->pages
[i
]);
67 set_page_private(buffer
->pages
[i
], address
);
73 for (j
= 0; j
< i
; j
++) {
74 address
= page_private(buffer
->pages
[j
]);
75 dma_unmap_page(card
->device
, address
,
76 PAGE_SIZE
, direction
);
77 __free_page(buffer
->pages
[j
]);
85 EXPORT_SYMBOL(fw_iso_buffer_init
);
87 int fw_iso_buffer_map(struct fw_iso_buffer
*buffer
, struct vm_area_struct
*vma
)
92 uaddr
= vma
->vm_start
;
93 for (i
= 0; i
< buffer
->page_count
; i
++) {
94 err
= vm_insert_page(vma
, uaddr
, buffer
->pages
[i
]);
104 void fw_iso_buffer_destroy(struct fw_iso_buffer
*buffer
,
105 struct fw_card
*card
)
110 for (i
= 0; i
< buffer
->page_count
; i
++) {
111 address
= page_private(buffer
->pages
[i
]);
112 dma_unmap_page(card
->device
, address
,
113 PAGE_SIZE
, buffer
->direction
);
114 __free_page(buffer
->pages
[i
]);
117 kfree(buffer
->pages
);
118 buffer
->pages
= NULL
;
120 EXPORT_SYMBOL(fw_iso_buffer_destroy
);
122 /* Convert DMA address to offset into virtually contiguous buffer. */
123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer
*buffer
, dma_addr_t completed
)
129 for (i
= 0; i
< buffer
->page_count
; i
++) {
130 address
= page_private(buffer
->pages
[i
]);
131 offset
= (ssize_t
)completed
- (ssize_t
)address
;
132 if (offset
> 0 && offset
<= PAGE_SIZE
)
133 return (i
<< PAGE_SHIFT
) + offset
;
139 struct fw_iso_context
*fw_iso_context_create(struct fw_card
*card
,
140 int type
, int channel
, int speed
, size_t header_size
,
141 fw_iso_callback_t callback
, void *callback_data
)
143 struct fw_iso_context
*ctx
;
145 ctx
= card
->driver
->allocate_iso_context(card
,
146 type
, channel
, header_size
);
152 ctx
->channel
= channel
;
154 ctx
->header_size
= header_size
;
155 ctx
->callback
.sc
= callback
;
156 ctx
->callback_data
= callback_data
;
160 EXPORT_SYMBOL(fw_iso_context_create
);
162 void fw_iso_context_destroy(struct fw_iso_context
*ctx
)
164 ctx
->card
->driver
->free_iso_context(ctx
);
166 EXPORT_SYMBOL(fw_iso_context_destroy
);
168 int fw_iso_context_start(struct fw_iso_context
*ctx
,
169 int cycle
, int sync
, int tags
)
171 return ctx
->card
->driver
->start_iso(ctx
, cycle
, sync
, tags
);
173 EXPORT_SYMBOL(fw_iso_context_start
);
175 int fw_iso_context_set_channels(struct fw_iso_context
*ctx
, u64
*channels
)
177 return ctx
->card
->driver
->set_iso_channels(ctx
, channels
);
180 int fw_iso_context_queue(struct fw_iso_context
*ctx
,
181 struct fw_iso_packet
*packet
,
182 struct fw_iso_buffer
*buffer
,
183 unsigned long payload
)
185 return ctx
->card
->driver
->queue_iso(ctx
, packet
, buffer
, payload
);
187 EXPORT_SYMBOL(fw_iso_context_queue
);
189 void fw_iso_context_queue_flush(struct fw_iso_context
*ctx
)
191 ctx
->card
->driver
->flush_queue_iso(ctx
);
193 EXPORT_SYMBOL(fw_iso_context_queue_flush
);
195 int fw_iso_context_stop(struct fw_iso_context
*ctx
)
197 return ctx
->card
->driver
->stop_iso(ctx
);
199 EXPORT_SYMBOL(fw_iso_context_stop
);
202 * Isochronous bus resource management (channels, bandwidth), client side
205 static int manage_bandwidth(struct fw_card
*card
, int irm_id
, int generation
,
206 int bandwidth
, bool allocate
)
208 int try, new, old
= allocate
? BANDWIDTH_AVAILABLE_INITIAL
: 0;
212 * On a 1394a IRM with low contention, try < 1 is enough.
213 * On a 1394-1995 IRM, we need at least try < 2.
214 * Let's just do try < 5.
216 for (try = 0; try < 5; try++) {
217 new = allocate
? old
- bandwidth
: old
+ bandwidth
;
218 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL
)
221 data
[0] = cpu_to_be32(old
);
222 data
[1] = cpu_to_be32(new);
223 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
224 irm_id
, generation
, SCODE_100
,
225 CSR_REGISTER_BASE
+ CSR_BANDWIDTH_AVAILABLE
,
227 case RCODE_GENERATION
:
228 /* A generation change frees all bandwidth. */
229 return allocate
? -EAGAIN
: bandwidth
;
232 if (be32_to_cpup(data
) == old
)
235 old
= be32_to_cpup(data
);
243 static int manage_channel(struct fw_card
*card
, int irm_id
, int generation
,
244 u32 channels_mask
, u64 offset
, bool allocate
)
246 __be32 bit
, all
, old
;
248 int channel
, ret
= -EIO
, retry
= 5;
250 old
= all
= allocate
? cpu_to_be32(~0) : 0;
252 for (channel
= 0; channel
< 32; channel
++) {
253 if (!(channels_mask
& 1 << channel
))
258 bit
= cpu_to_be32(1 << (31 - channel
));
259 if ((old
& bit
) != (all
& bit
))
264 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
265 irm_id
, generation
, SCODE_100
,
267 case RCODE_GENERATION
:
268 /* A generation change frees all channels. */
269 return allocate
? -EAGAIN
: channel
;
277 /* Is the IRM 1394a-2000 compliant? */
278 if ((data
[0] & bit
) == (data
[1] & bit
))
281 /* 1394-1995 IRM, fall through to retry. */
295 static void deallocate_channel(struct fw_card
*card
, int irm_id
,
296 int generation
, int channel
)
301 mask
= channel
< 32 ? 1 << channel
: 1 << (channel
- 32);
302 offset
= channel
< 32 ? CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
:
303 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
;
305 manage_channel(card
, irm_id
, generation
, mask
, offset
, false);
309 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
311 * In parameters: card, generation, channels_mask, bandwidth, allocate
312 * Out parameters: channel, bandwidth
313 * This function blocks (sleeps) during communication with the IRM.
315 * Allocates or deallocates at most one channel out of channels_mask.
316 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
317 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
318 * channel 0 and LSB for channel 63.)
319 * Allocates or deallocates as many bandwidth allocation units as specified.
321 * Returns channel < 0 if no channel was allocated or deallocated.
322 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
324 * If generation is stale, deallocations succeed but allocations fail with
327 * If channel allocation fails, no bandwidth will be allocated either.
328 * If bandwidth allocation fails, no channel will be allocated either.
329 * But deallocations of channel and bandwidth are tried independently
330 * of each other's success.
332 void fw_iso_resource_manage(struct fw_card
*card
, int generation
,
333 u64 channels_mask
, int *channel
, int *bandwidth
,
336 u32 channels_hi
= channels_mask
; /* channels 31...0 */
337 u32 channels_lo
= channels_mask
>> 32; /* channels 63...32 */
338 int irm_id
, ret
, c
= -EINVAL
;
340 spin_lock_irq(&card
->lock
);
341 irm_id
= card
->irm_node
->node_id
;
342 spin_unlock_irq(&card
->lock
);
345 c
= manage_channel(card
, irm_id
, generation
, channels_hi
,
346 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
,
348 if (channels_lo
&& c
< 0) {
349 c
= manage_channel(card
, irm_id
, generation
, channels_lo
,
350 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
,
357 if (allocate
&& channels_mask
!= 0 && c
< 0)
363 ret
= manage_bandwidth(card
, irm_id
, generation
, *bandwidth
, allocate
);
367 if (allocate
&& ret
< 0) {
369 deallocate_channel(card
, irm_id
, generation
, c
);
373 EXPORT_SYMBOL(fw_iso_resource_manage
);