b43: add lacking boardflags defines
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / dmaengine.c
blobb48967b499da0bad30529501492def4695dc1f25
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
32 * LOCKING:
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
45 * See Documentation/dmaengine.txt for more details
48 #include <linux/dma-mapping.h>
49 #include <linux/init.h>
50 #include <linux/module.h>
51 #include <linux/mm.h>
52 #include <linux/device.h>
53 #include <linux/dmaengine.h>
54 #include <linux/hardirq.h>
55 #include <linux/spinlock.h>
56 #include <linux/percpu.h>
57 #include <linux/rcupdate.h>
58 #include <linux/mutex.h>
59 #include <linux/jiffies.h>
60 #include <linux/rculist.h>
61 #include <linux/idr.h>
62 #include <linux/slab.h>
64 static DEFINE_MUTEX(dma_list_mutex);
65 static DEFINE_IDR(dma_idr);
66 static LIST_HEAD(dma_device_list);
67 static long dmaengine_ref_count;
69 /* --- sysfs implementation --- */
71 /**
72 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
73 * @dev - device node
75 * Must be called under dma_list_mutex
77 static struct dma_chan *dev_to_dma_chan(struct device *dev)
79 struct dma_chan_dev *chan_dev;
81 chan_dev = container_of(dev, typeof(*chan_dev), device);
82 return chan_dev->chan;
85 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
87 struct dma_chan *chan;
88 unsigned long count = 0;
89 int i;
90 int err;
92 mutex_lock(&dma_list_mutex);
93 chan = dev_to_dma_chan(dev);
94 if (chan) {
95 for_each_possible_cpu(i)
96 count += per_cpu_ptr(chan->local, i)->memcpy_count;
97 err = sprintf(buf, "%lu\n", count);
98 } else
99 err = -ENODEV;
100 mutex_unlock(&dma_list_mutex);
102 return err;
105 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
106 char *buf)
108 struct dma_chan *chan;
109 unsigned long count = 0;
110 int i;
111 int err;
113 mutex_lock(&dma_list_mutex);
114 chan = dev_to_dma_chan(dev);
115 if (chan) {
116 for_each_possible_cpu(i)
117 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
118 err = sprintf(buf, "%lu\n", count);
119 } else
120 err = -ENODEV;
121 mutex_unlock(&dma_list_mutex);
123 return err;
126 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
128 struct dma_chan *chan;
129 int err;
131 mutex_lock(&dma_list_mutex);
132 chan = dev_to_dma_chan(dev);
133 if (chan)
134 err = sprintf(buf, "%d\n", chan->client_count);
135 else
136 err = -ENODEV;
137 mutex_unlock(&dma_list_mutex);
139 return err;
142 static struct device_attribute dma_attrs[] = {
143 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
144 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
145 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
146 __ATTR_NULL
149 static void chan_dev_release(struct device *dev)
151 struct dma_chan_dev *chan_dev;
153 chan_dev = container_of(dev, typeof(*chan_dev), device);
154 if (atomic_dec_and_test(chan_dev->idr_ref)) {
155 mutex_lock(&dma_list_mutex);
156 idr_remove(&dma_idr, chan_dev->dev_id);
157 mutex_unlock(&dma_list_mutex);
158 kfree(chan_dev->idr_ref);
160 kfree(chan_dev);
163 static struct class dma_devclass = {
164 .name = "dma",
165 .dev_attrs = dma_attrs,
166 .dev_release = chan_dev_release,
169 /* --- client and device registration --- */
171 #define dma_device_satisfies_mask(device, mask) \
172 __dma_device_satisfies_mask((device), &(mask))
173 static int
174 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
176 dma_cap_mask_t has;
178 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
179 DMA_TX_TYPE_END);
180 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
183 static struct module *dma_chan_to_owner(struct dma_chan *chan)
185 return chan->device->dev->driver->owner;
189 * balance_ref_count - catch up the channel reference count
190 * @chan - channel to balance ->client_count versus dmaengine_ref_count
192 * balance_ref_count must be called under dma_list_mutex
194 static void balance_ref_count(struct dma_chan *chan)
196 struct module *owner = dma_chan_to_owner(chan);
198 while (chan->client_count < dmaengine_ref_count) {
199 __module_get(owner);
200 chan->client_count++;
205 * dma_chan_get - try to grab a dma channel's parent driver module
206 * @chan - channel to grab
208 * Must be called under dma_list_mutex
210 static int dma_chan_get(struct dma_chan *chan)
212 int err = -ENODEV;
213 struct module *owner = dma_chan_to_owner(chan);
215 if (chan->client_count) {
216 __module_get(owner);
217 err = 0;
218 } else if (try_module_get(owner))
219 err = 0;
221 if (err == 0)
222 chan->client_count++;
224 /* allocate upon first client reference */
225 if (chan->client_count == 1 && err == 0) {
226 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
228 if (desc_cnt < 0) {
229 err = desc_cnt;
230 chan->client_count = 0;
231 module_put(owner);
232 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
233 balance_ref_count(chan);
236 return err;
240 * dma_chan_put - drop a reference to a dma channel's parent driver module
241 * @chan - channel to release
243 * Must be called under dma_list_mutex
245 static void dma_chan_put(struct dma_chan *chan)
247 if (!chan->client_count)
248 return; /* this channel failed alloc_chan_resources */
249 chan->client_count--;
250 module_put(dma_chan_to_owner(chan));
251 if (chan->client_count == 0)
252 chan->device->device_free_chan_resources(chan);
255 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
257 enum dma_status status;
258 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
260 dma_async_issue_pending(chan);
261 do {
262 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
263 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
264 printk(KERN_ERR "dma_sync_wait_timeout!\n");
265 return DMA_ERROR;
267 } while (status == DMA_IN_PROGRESS);
269 return status;
271 EXPORT_SYMBOL(dma_sync_wait);
274 * dma_cap_mask_all - enable iteration over all operation types
276 static dma_cap_mask_t dma_cap_mask_all;
279 * dma_chan_tbl_ent - tracks channel allocations per core/operation
280 * @chan - associated channel for this entry
282 struct dma_chan_tbl_ent {
283 struct dma_chan *chan;
287 * channel_table - percpu lookup table for memory-to-memory offload providers
289 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
291 static int __init dma_channel_table_init(void)
293 enum dma_transaction_type cap;
294 int err = 0;
296 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
298 /* 'interrupt', 'private', and 'slave' are channel capabilities,
299 * but are not associated with an operation so they do not need
300 * an entry in the channel_table
302 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
303 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
304 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
306 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
307 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
308 if (!channel_table[cap]) {
309 err = -ENOMEM;
310 break;
314 if (err) {
315 pr_err("dmaengine: initialization failure\n");
316 for_each_dma_cap_mask(cap, dma_cap_mask_all)
317 if (channel_table[cap])
318 free_percpu(channel_table[cap]);
321 return err;
323 arch_initcall(dma_channel_table_init);
326 * dma_find_channel - find a channel to carry out the operation
327 * @tx_type: transaction type
329 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
331 return this_cpu_read(channel_table[tx_type]->chan);
333 EXPORT_SYMBOL(dma_find_channel);
336 * dma_issue_pending_all - flush all pending operations across all channels
338 void dma_issue_pending_all(void)
340 struct dma_device *device;
341 struct dma_chan *chan;
343 rcu_read_lock();
344 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
345 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
346 continue;
347 list_for_each_entry(chan, &device->channels, device_node)
348 if (chan->client_count)
349 device->device_issue_pending(chan);
351 rcu_read_unlock();
353 EXPORT_SYMBOL(dma_issue_pending_all);
356 * nth_chan - returns the nth channel of the given capability
357 * @cap: capability to match
358 * @n: nth channel desired
360 * Defaults to returning the channel with the desired capability and the
361 * lowest reference count when 'n' cannot be satisfied. Must be called
362 * under dma_list_mutex.
364 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
366 struct dma_device *device;
367 struct dma_chan *chan;
368 struct dma_chan *ret = NULL;
369 struct dma_chan *min = NULL;
371 list_for_each_entry(device, &dma_device_list, global_node) {
372 if (!dma_has_cap(cap, device->cap_mask) ||
373 dma_has_cap(DMA_PRIVATE, device->cap_mask))
374 continue;
375 list_for_each_entry(chan, &device->channels, device_node) {
376 if (!chan->client_count)
377 continue;
378 if (!min)
379 min = chan;
380 else if (chan->table_count < min->table_count)
381 min = chan;
383 if (n-- == 0) {
384 ret = chan;
385 break; /* done */
388 if (ret)
389 break; /* done */
392 if (!ret)
393 ret = min;
395 if (ret)
396 ret->table_count++;
398 return ret;
402 * dma_channel_rebalance - redistribute the available channels
404 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
405 * operation type) in the SMP case, and operation isolation (avoid
406 * multi-tasking channels) in the non-SMP case. Must be called under
407 * dma_list_mutex.
409 static void dma_channel_rebalance(void)
411 struct dma_chan *chan;
412 struct dma_device *device;
413 int cpu;
414 int cap;
415 int n;
417 /* undo the last distribution */
418 for_each_dma_cap_mask(cap, dma_cap_mask_all)
419 for_each_possible_cpu(cpu)
420 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
422 list_for_each_entry(device, &dma_device_list, global_node) {
423 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
424 continue;
425 list_for_each_entry(chan, &device->channels, device_node)
426 chan->table_count = 0;
429 /* don't populate the channel_table if no clients are available */
430 if (!dmaengine_ref_count)
431 return;
433 /* redistribute available channels */
434 n = 0;
435 for_each_dma_cap_mask(cap, dma_cap_mask_all)
436 for_each_online_cpu(cpu) {
437 if (num_possible_cpus() > 1)
438 chan = nth_chan(cap, n++);
439 else
440 chan = nth_chan(cap, -1);
442 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
446 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
447 dma_filter_fn fn, void *fn_param)
449 struct dma_chan *chan;
451 if (!__dma_device_satisfies_mask(dev, mask)) {
452 pr_debug("%s: wrong capabilities\n", __func__);
453 return NULL;
455 /* devices with multiple channels need special handling as we need to
456 * ensure that all channels are either private or public.
458 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
459 list_for_each_entry(chan, &dev->channels, device_node) {
460 /* some channels are already publicly allocated */
461 if (chan->client_count)
462 return NULL;
465 list_for_each_entry(chan, &dev->channels, device_node) {
466 if (chan->client_count) {
467 pr_debug("%s: %s busy\n",
468 __func__, dma_chan_name(chan));
469 continue;
471 if (fn && !fn(chan, fn_param)) {
472 pr_debug("%s: %s filter said false\n",
473 __func__, dma_chan_name(chan));
474 continue;
476 return chan;
479 return NULL;
483 * dma_request_channel - try to allocate an exclusive channel
484 * @mask: capabilities that the channel must satisfy
485 * @fn: optional callback to disposition available channels
486 * @fn_param: opaque parameter to pass to dma_filter_fn
488 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
490 struct dma_device *device, *_d;
491 struct dma_chan *chan = NULL;
492 int err;
494 /* Find a channel */
495 mutex_lock(&dma_list_mutex);
496 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
497 chan = private_candidate(mask, device, fn, fn_param);
498 if (chan) {
499 /* Found a suitable channel, try to grab, prep, and
500 * return it. We first set DMA_PRIVATE to disable
501 * balance_ref_count as this channel will not be
502 * published in the general-purpose allocator
504 dma_cap_set(DMA_PRIVATE, device->cap_mask);
505 device->privatecnt++;
506 err = dma_chan_get(chan);
508 if (err == -ENODEV) {
509 pr_debug("%s: %s module removed\n", __func__,
510 dma_chan_name(chan));
511 list_del_rcu(&device->global_node);
512 } else if (err)
513 pr_debug("dmaengine: failed to get %s: (%d)\n",
514 dma_chan_name(chan), err);
515 else
516 break;
517 if (--device->privatecnt == 0)
518 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
519 chan = NULL;
522 mutex_unlock(&dma_list_mutex);
524 pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
525 chan ? dma_chan_name(chan) : NULL);
527 return chan;
529 EXPORT_SYMBOL_GPL(__dma_request_channel);
531 void dma_release_channel(struct dma_chan *chan)
533 mutex_lock(&dma_list_mutex);
534 WARN_ONCE(chan->client_count != 1,
535 "chan reference count %d != 1\n", chan->client_count);
536 dma_chan_put(chan);
537 /* drop PRIVATE cap enabled by __dma_request_channel() */
538 if (--chan->device->privatecnt == 0)
539 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
540 mutex_unlock(&dma_list_mutex);
542 EXPORT_SYMBOL_GPL(dma_release_channel);
545 * dmaengine_get - register interest in dma_channels
547 void dmaengine_get(void)
549 struct dma_device *device, *_d;
550 struct dma_chan *chan;
551 int err;
553 mutex_lock(&dma_list_mutex);
554 dmaengine_ref_count++;
556 /* try to grab channels */
557 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
558 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
559 continue;
560 list_for_each_entry(chan, &device->channels, device_node) {
561 err = dma_chan_get(chan);
562 if (err == -ENODEV) {
563 /* module removed before we could use it */
564 list_del_rcu(&device->global_node);
565 break;
566 } else if (err)
567 pr_err("dmaengine: failed to get %s: (%d)\n",
568 dma_chan_name(chan), err);
572 /* if this is the first reference and there were channels
573 * waiting we need to rebalance to get those channels
574 * incorporated into the channel table
576 if (dmaengine_ref_count == 1)
577 dma_channel_rebalance();
578 mutex_unlock(&dma_list_mutex);
580 EXPORT_SYMBOL(dmaengine_get);
583 * dmaengine_put - let dma drivers be removed when ref_count == 0
585 void dmaengine_put(void)
587 struct dma_device *device;
588 struct dma_chan *chan;
590 mutex_lock(&dma_list_mutex);
591 dmaengine_ref_count--;
592 BUG_ON(dmaengine_ref_count < 0);
593 /* drop channel references */
594 list_for_each_entry(device, &dma_device_list, global_node) {
595 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
596 continue;
597 list_for_each_entry(chan, &device->channels, device_node)
598 dma_chan_put(chan);
600 mutex_unlock(&dma_list_mutex);
602 EXPORT_SYMBOL(dmaengine_put);
604 static bool device_has_all_tx_types(struct dma_device *device)
606 /* A device that satisfies this test has channels that will never cause
607 * an async_tx channel switch event as all possible operation types can
608 * be handled.
610 #ifdef CONFIG_ASYNC_TX_DMA
611 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
612 return false;
613 #endif
615 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
616 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
617 return false;
618 #endif
620 #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
621 if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
622 return false;
623 #endif
625 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
626 if (!dma_has_cap(DMA_XOR, device->cap_mask))
627 return false;
629 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
630 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
631 return false;
632 #endif
633 #endif
635 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
636 if (!dma_has_cap(DMA_PQ, device->cap_mask))
637 return false;
639 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
640 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
641 return false;
642 #endif
643 #endif
645 return true;
648 static int get_dma_id(struct dma_device *device)
650 int rc;
652 idr_retry:
653 if (!idr_pre_get(&dma_idr, GFP_KERNEL))
654 return -ENOMEM;
655 mutex_lock(&dma_list_mutex);
656 rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
657 mutex_unlock(&dma_list_mutex);
658 if (rc == -EAGAIN)
659 goto idr_retry;
660 else if (rc != 0)
661 return rc;
663 return 0;
667 * dma_async_device_register - registers DMA devices found
668 * @device: &dma_device
670 int dma_async_device_register(struct dma_device *device)
672 int chancnt = 0, rc;
673 struct dma_chan* chan;
674 atomic_t *idr_ref;
676 if (!device)
677 return -ENODEV;
679 /* validate device routines */
680 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
681 !device->device_prep_dma_memcpy);
682 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
683 !device->device_prep_dma_xor);
684 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
685 !device->device_prep_dma_xor_val);
686 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
687 !device->device_prep_dma_pq);
688 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
689 !device->device_prep_dma_pq_val);
690 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
691 !device->device_prep_dma_memset);
692 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
693 !device->device_prep_dma_interrupt);
694 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
695 !device->device_prep_dma_sg);
696 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
697 !device->device_prep_slave_sg);
698 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
699 !device->device_prep_dma_cyclic);
700 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
701 !device->device_control);
703 BUG_ON(!device->device_alloc_chan_resources);
704 BUG_ON(!device->device_free_chan_resources);
705 BUG_ON(!device->device_tx_status);
706 BUG_ON(!device->device_issue_pending);
707 BUG_ON(!device->dev);
709 /* note: this only matters in the
710 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
712 if (device_has_all_tx_types(device))
713 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
715 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
716 if (!idr_ref)
717 return -ENOMEM;
718 rc = get_dma_id(device);
719 if (rc != 0) {
720 kfree(idr_ref);
721 return rc;
724 atomic_set(idr_ref, 0);
726 /* represent channels in sysfs. Probably want devs too */
727 list_for_each_entry(chan, &device->channels, device_node) {
728 rc = -ENOMEM;
729 chan->local = alloc_percpu(typeof(*chan->local));
730 if (chan->local == NULL)
731 goto err_out;
732 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
733 if (chan->dev == NULL) {
734 free_percpu(chan->local);
735 chan->local = NULL;
736 goto err_out;
739 chan->chan_id = chancnt++;
740 chan->dev->device.class = &dma_devclass;
741 chan->dev->device.parent = device->dev;
742 chan->dev->chan = chan;
743 chan->dev->idr_ref = idr_ref;
744 chan->dev->dev_id = device->dev_id;
745 atomic_inc(idr_ref);
746 dev_set_name(&chan->dev->device, "dma%dchan%d",
747 device->dev_id, chan->chan_id);
749 rc = device_register(&chan->dev->device);
750 if (rc) {
751 free_percpu(chan->local);
752 chan->local = NULL;
753 kfree(chan->dev);
754 atomic_dec(idr_ref);
755 goto err_out;
757 chan->client_count = 0;
759 device->chancnt = chancnt;
761 mutex_lock(&dma_list_mutex);
762 /* take references on public channels */
763 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
764 list_for_each_entry(chan, &device->channels, device_node) {
765 /* if clients are already waiting for channels we need
766 * to take references on their behalf
768 if (dma_chan_get(chan) == -ENODEV) {
769 /* note we can only get here for the first
770 * channel as the remaining channels are
771 * guaranteed to get a reference
773 rc = -ENODEV;
774 mutex_unlock(&dma_list_mutex);
775 goto err_out;
778 list_add_tail_rcu(&device->global_node, &dma_device_list);
779 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
780 device->privatecnt++; /* Always private */
781 dma_channel_rebalance();
782 mutex_unlock(&dma_list_mutex);
784 return 0;
786 err_out:
787 /* if we never registered a channel just release the idr */
788 if (atomic_read(idr_ref) == 0) {
789 mutex_lock(&dma_list_mutex);
790 idr_remove(&dma_idr, device->dev_id);
791 mutex_unlock(&dma_list_mutex);
792 kfree(idr_ref);
793 return rc;
796 list_for_each_entry(chan, &device->channels, device_node) {
797 if (chan->local == NULL)
798 continue;
799 mutex_lock(&dma_list_mutex);
800 chan->dev->chan = NULL;
801 mutex_unlock(&dma_list_mutex);
802 device_unregister(&chan->dev->device);
803 free_percpu(chan->local);
805 return rc;
807 EXPORT_SYMBOL(dma_async_device_register);
810 * dma_async_device_unregister - unregister a DMA device
811 * @device: &dma_device
813 * This routine is called by dma driver exit routines, dmaengine holds module
814 * references to prevent it being called while channels are in use.
816 void dma_async_device_unregister(struct dma_device *device)
818 struct dma_chan *chan;
820 mutex_lock(&dma_list_mutex);
821 list_del_rcu(&device->global_node);
822 dma_channel_rebalance();
823 mutex_unlock(&dma_list_mutex);
825 list_for_each_entry(chan, &device->channels, device_node) {
826 WARN_ONCE(chan->client_count,
827 "%s called while %d clients hold a reference\n",
828 __func__, chan->client_count);
829 mutex_lock(&dma_list_mutex);
830 chan->dev->chan = NULL;
831 mutex_unlock(&dma_list_mutex);
832 device_unregister(&chan->dev->device);
833 free_percpu(chan->local);
836 EXPORT_SYMBOL(dma_async_device_unregister);
839 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
840 * @chan: DMA channel to offload copy to
841 * @dest: destination address (virtual)
842 * @src: source address (virtual)
843 * @len: length
845 * Both @dest and @src must be mappable to a bus address according to the
846 * DMA mapping API rules for streaming mappings.
847 * Both @dest and @src must stay memory resident (kernel memory or locked
848 * user space pages).
850 dma_cookie_t
851 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
852 void *src, size_t len)
854 struct dma_device *dev = chan->device;
855 struct dma_async_tx_descriptor *tx;
856 dma_addr_t dma_dest, dma_src;
857 dma_cookie_t cookie;
858 unsigned long flags;
860 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
861 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
862 flags = DMA_CTRL_ACK |
863 DMA_COMPL_SRC_UNMAP_SINGLE |
864 DMA_COMPL_DEST_UNMAP_SINGLE;
865 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
867 if (!tx) {
868 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
869 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
870 return -ENOMEM;
873 tx->callback = NULL;
874 cookie = tx->tx_submit(tx);
876 preempt_disable();
877 __this_cpu_add(chan->local->bytes_transferred, len);
878 __this_cpu_inc(chan->local->memcpy_count);
879 preempt_enable();
881 return cookie;
883 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
886 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
887 * @chan: DMA channel to offload copy to
888 * @page: destination page
889 * @offset: offset in page to copy to
890 * @kdata: source address (virtual)
891 * @len: length
893 * Both @page/@offset and @kdata must be mappable to a bus address according
894 * to the DMA mapping API rules for streaming mappings.
895 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
896 * locked user space pages)
898 dma_cookie_t
899 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
900 unsigned int offset, void *kdata, size_t len)
902 struct dma_device *dev = chan->device;
903 struct dma_async_tx_descriptor *tx;
904 dma_addr_t dma_dest, dma_src;
905 dma_cookie_t cookie;
906 unsigned long flags;
908 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
909 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
910 flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
911 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
913 if (!tx) {
914 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
915 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
916 return -ENOMEM;
919 tx->callback = NULL;
920 cookie = tx->tx_submit(tx);
922 preempt_disable();
923 __this_cpu_add(chan->local->bytes_transferred, len);
924 __this_cpu_inc(chan->local->memcpy_count);
925 preempt_enable();
927 return cookie;
929 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
932 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
933 * @chan: DMA channel to offload copy to
934 * @dest_pg: destination page
935 * @dest_off: offset in page to copy to
936 * @src_pg: source page
937 * @src_off: offset in page to copy from
938 * @len: length
940 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
941 * address according to the DMA mapping API rules for streaming mappings.
942 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
943 * (kernel memory or locked user space pages).
945 dma_cookie_t
946 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
947 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
948 size_t len)
950 struct dma_device *dev = chan->device;
951 struct dma_async_tx_descriptor *tx;
952 dma_addr_t dma_dest, dma_src;
953 dma_cookie_t cookie;
954 unsigned long flags;
956 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
957 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
958 DMA_FROM_DEVICE);
959 flags = DMA_CTRL_ACK;
960 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
962 if (!tx) {
963 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
964 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
965 return -ENOMEM;
968 tx->callback = NULL;
969 cookie = tx->tx_submit(tx);
971 preempt_disable();
972 __this_cpu_add(chan->local->bytes_transferred, len);
973 __this_cpu_inc(chan->local->memcpy_count);
974 preempt_enable();
976 return cookie;
978 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
980 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
981 struct dma_chan *chan)
983 tx->chan = chan;
984 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
985 spin_lock_init(&tx->lock);
986 #endif
988 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
990 /* dma_wait_for_async_tx - spin wait for a transaction to complete
991 * @tx: in-flight transaction to wait on
993 enum dma_status
994 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
996 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
998 if (!tx)
999 return DMA_SUCCESS;
1001 while (tx->cookie == -EBUSY) {
1002 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1003 pr_err("%s timeout waiting for descriptor submission\n",
1004 __func__);
1005 return DMA_ERROR;
1007 cpu_relax();
1009 return dma_sync_wait(tx->chan, tx->cookie);
1011 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1013 /* dma_run_dependencies - helper routine for dma drivers to process
1014 * (start) dependent operations on their target channel
1015 * @tx: transaction with dependencies
1017 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1019 struct dma_async_tx_descriptor *dep = txd_next(tx);
1020 struct dma_async_tx_descriptor *dep_next;
1021 struct dma_chan *chan;
1023 if (!dep)
1024 return;
1026 /* we'll submit tx->next now, so clear the link */
1027 txd_clear_next(tx);
1028 chan = dep->chan;
1030 /* keep submitting up until a channel switch is detected
1031 * in that case we will be called again as a result of
1032 * processing the interrupt from async_tx_channel_switch
1034 for (; dep; dep = dep_next) {
1035 txd_lock(dep);
1036 txd_clear_parent(dep);
1037 dep_next = txd_next(dep);
1038 if (dep_next && dep_next->chan == chan)
1039 txd_clear_next(dep); /* ->next will be submitted */
1040 else
1041 dep_next = NULL; /* submit current dep and terminate */
1042 txd_unlock(dep);
1044 dep->tx_submit(dep);
1047 chan->device->device_issue_pending(chan);
1049 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1051 static int __init dma_bus_init(void)
1053 return class_register(&dma_devclass);
1055 arch_initcall(dma_bus_init);