[POWERPC] Flush registers to proper task context
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / process.c
blobb7b3588bfaabdc92dbeb16948509fa197f029201
1 /*
2 * arch/ppc/kernel/process.c
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #ifdef CONFIG_PPC64
51 #include <asm/firmware.h>
52 #include <asm/time.h>
53 #endif
55 extern unsigned long _get_SP(void);
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
64 * Make sure the floating-point register state in the
65 * the thread_struct is up to date for task tsk.
67 void flush_fp_to_thread(struct task_struct *tsk)
69 if (tsk->thread.regs) {
71 * We need to disable preemption here because if we didn't,
72 * another process could get scheduled after the regs->msr
73 * test but before we have finished saving the FP registers
74 * to the thread_struct. That process could take over the
75 * FPU, and then when we get scheduled again we would store
76 * bogus values for the remaining FP registers.
78 preempt_disable();
79 if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
82 * This should only ever be called for current or
83 * for a stopped child process. Since we save away
84 * the FP register state on context switch on SMP,
85 * there is something wrong if a stopped child appears
86 * to still have its FP state in the CPU registers.
88 BUG_ON(tsk != current);
89 #endif
90 giveup_fpu(tsk);
92 preempt_enable();
96 void enable_kernel_fp(void)
98 WARN_ON(preemptible());
100 #ifdef CONFIG_SMP
101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 giveup_fpu(current);
103 else
104 giveup_fpu(NULL); /* just enables FP for kernel */
105 #else
106 giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
109 EXPORT_SYMBOL(enable_kernel_fp);
111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
113 if (!tsk->thread.regs)
114 return 0;
115 flush_fp_to_thread(current);
117 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
119 return 1;
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
125 WARN_ON(preemptible());
127 #ifdef CONFIG_SMP
128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129 giveup_altivec(current);
130 else
131 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
132 #else
133 giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
136 EXPORT_SYMBOL(enable_kernel_altivec);
139 * Make sure the VMX/Altivec register state in the
140 * the thread_struct is up to date for task tsk.
142 void flush_altivec_to_thread(struct task_struct *tsk)
144 if (tsk->thread.regs) {
145 preempt_disable();
146 if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148 BUG_ON(tsk != current);
149 #endif
150 giveup_altivec(tsk);
152 preempt_enable();
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
158 flush_altivec_to_thread(current);
159 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160 return 1;
162 #endif /* CONFIG_ALTIVEC */
164 #ifdef CONFIG_SPE
166 void enable_kernel_spe(void)
168 WARN_ON(preemptible());
170 #ifdef CONFIG_SMP
171 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
172 giveup_spe(current);
173 else
174 giveup_spe(NULL); /* just enable SPE for kernel - force */
175 #else
176 giveup_spe(last_task_used_spe);
177 #endif /* __SMP __ */
179 EXPORT_SYMBOL(enable_kernel_spe);
181 void flush_spe_to_thread(struct task_struct *tsk)
183 if (tsk->thread.regs) {
184 preempt_disable();
185 if (tsk->thread.regs->msr & MSR_SPE) {
186 #ifdef CONFIG_SMP
187 BUG_ON(tsk != current);
188 #endif
189 giveup_spe(tsk);
191 preempt_enable();
195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
197 flush_spe_to_thread(current);
198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
200 return 1;
202 #endif /* CONFIG_SPE */
204 #ifndef CONFIG_SMP
206 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
207 * and the current task has some state, discard it.
209 void discard_lazy_cpu_state(void)
211 preempt_disable();
212 if (last_task_used_math == current)
213 last_task_used_math = NULL;
214 #ifdef CONFIG_ALTIVEC
215 if (last_task_used_altivec == current)
216 last_task_used_altivec = NULL;
217 #endif /* CONFIG_ALTIVEC */
218 #ifdef CONFIG_SPE
219 if (last_task_used_spe == current)
220 last_task_used_spe = NULL;
221 #endif
222 preempt_enable();
224 #endif /* CONFIG_SMP */
226 #ifdef CONFIG_PPC_MERGE /* XXX for now */
227 int set_dabr(unsigned long dabr)
229 if (ppc_md.set_dabr)
230 return ppc_md.set_dabr(dabr);
232 mtspr(SPRN_DABR, dabr);
233 return 0;
235 #endif
237 #ifdef CONFIG_PPC64
238 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
239 static DEFINE_PER_CPU(unsigned long, current_dabr);
240 #endif
242 struct task_struct *__switch_to(struct task_struct *prev,
243 struct task_struct *new)
245 struct thread_struct *new_thread, *old_thread;
246 unsigned long flags;
247 struct task_struct *last;
249 #ifdef CONFIG_SMP
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
257 * -- Cort
259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 giveup_fpu(prev);
261 #ifdef CONFIG_ALTIVEC
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
271 * -- Cort
273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 giveup_altivec(prev);
275 #endif /* CONFIG_ALTIVEC */
276 #ifdef CONFIG_SPE
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 giveup_spe(prev);
286 #endif /* CONFIG_SPE */
288 #else /* CONFIG_SMP */
289 #ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
293 if (new->thread.regs && last_task_used_altivec == new)
294 new->thread.regs->msr |= MSR_VEC;
295 #endif /* CONFIG_ALTIVEC */
296 #ifdef CONFIG_SPE
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
300 if (new->thread.regs && last_task_used_spe == new)
301 new->thread.regs->msr |= MSR_SPE;
302 #endif /* CONFIG_SPE */
304 #endif /* CONFIG_SMP */
306 #ifdef CONFIG_PPC64 /* for now */
307 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
308 set_dabr(new->thread.dabr);
309 __get_cpu_var(current_dabr) = new->thread.dabr;
312 flush_tlb_pending();
313 #endif
315 new_thread = &new->thread;
316 old_thread = &current->thread;
318 #ifdef CONFIG_PPC64
320 * Collect processor utilization data per process
322 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
323 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
324 long unsigned start_tb, current_tb;
325 start_tb = old_thread->start_tb;
326 cu->current_tb = current_tb = mfspr(SPRN_PURR);
327 old_thread->accum_tb += (current_tb - start_tb);
328 new_thread->start_tb = current_tb;
330 #endif
332 local_irq_save(flags);
333 last = _switch(old_thread, new_thread);
335 local_irq_restore(flags);
337 return last;
340 static int instructions_to_print = 16;
342 #ifdef CONFIG_PPC64
343 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
344 (REGION_ID(pc) != VMALLOC_REGION_ID))
345 #else
346 #define BAD_PC(pc) ((pc) < KERNELBASE)
347 #endif
349 static void show_instructions(struct pt_regs *regs)
351 int i;
352 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
353 sizeof(int));
355 printk("Instruction dump:");
357 for (i = 0; i < instructions_to_print; i++) {
358 int instr;
360 if (!(i % 8))
361 printk("\n");
363 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
364 printk("XXXXXXXX ");
365 } else {
366 if (regs->nip == pc)
367 printk("<%08x> ", instr);
368 else
369 printk("%08x ", instr);
372 pc += sizeof(int);
375 printk("\n");
378 static struct regbit {
379 unsigned long bit;
380 const char *name;
381 } msr_bits[] = {
382 {MSR_EE, "EE"},
383 {MSR_PR, "PR"},
384 {MSR_FP, "FP"},
385 {MSR_ME, "ME"},
386 {MSR_IR, "IR"},
387 {MSR_DR, "DR"},
388 {0, NULL}
391 static void printbits(unsigned long val, struct regbit *bits)
393 const char *sep = "";
395 printk("<");
396 for (; bits->bit; ++bits)
397 if (val & bits->bit) {
398 printk("%s%s", sep, bits->name);
399 sep = ",";
401 printk(">");
404 #ifdef CONFIG_PPC64
405 #define REG "%016lX"
406 #define REGS_PER_LINE 4
407 #define LAST_VOLATILE 13
408 #else
409 #define REG "%08lX"
410 #define REGS_PER_LINE 8
411 #define LAST_VOLATILE 12
412 #endif
414 void show_regs(struct pt_regs * regs)
416 int i, trap;
418 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419 regs->nip, regs->link, regs->ctr);
420 printk("REGS: %p TRAP: %04lx %s (%s)\n",
421 regs, regs->trap, print_tainted(), system_utsname.release);
422 printk("MSR: "REG" ", regs->msr);
423 printbits(regs->msr, msr_bits);
424 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
425 trap = TRAP(regs);
426 if (trap == 0x300 || trap == 0x600)
427 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428 printk("TASK = %p[%d] '%s' THREAD: %p",
429 current, current->pid, current->comm, task_thread_info(current));
431 #ifdef CONFIG_SMP
432 printk(" CPU: %d", smp_processor_id());
433 #endif /* CONFIG_SMP */
435 for (i = 0; i < 32; i++) {
436 if ((i % REGS_PER_LINE) == 0)
437 printk("\n" KERN_INFO "GPR%02d: ", i);
438 printk(REG " ", regs->gpr[i]);
439 if (i == LAST_VOLATILE && !FULL_REGS(regs))
440 break;
442 printk("\n");
443 #ifdef CONFIG_KALLSYMS
445 * Lookup NIP late so we have the best change of getting the
446 * above info out without failing
448 printk("NIP ["REG"] ", regs->nip);
449 print_symbol("%s\n", regs->nip);
450 printk("LR ["REG"] ", regs->link);
451 print_symbol("%s\n", regs->link);
452 #endif
453 show_stack(current, (unsigned long *) regs->gpr[1]);
454 if (!user_mode(regs))
455 show_instructions(regs);
458 void exit_thread(void)
460 kprobe_flush_task(current);
461 discard_lazy_cpu_state();
464 void flush_thread(void)
466 #ifdef CONFIG_PPC64
467 struct thread_info *t = current_thread_info();
469 if (t->flags & _TIF_ABI_PENDING)
470 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
471 #endif
473 discard_lazy_cpu_state();
475 #ifdef CONFIG_PPC64 /* for now */
476 if (current->thread.dabr) {
477 current->thread.dabr = 0;
478 set_dabr(0);
480 #endif
483 void
484 release_thread(struct task_struct *t)
489 * This gets called before we allocate a new thread and copy
490 * the current task into it.
492 void prepare_to_copy(struct task_struct *tsk)
494 flush_fp_to_thread(current);
495 flush_altivec_to_thread(current);
496 flush_spe_to_thread(current);
500 * Copy a thread..
502 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
503 unsigned long unused, struct task_struct *p,
504 struct pt_regs *regs)
506 struct pt_regs *childregs, *kregs;
507 extern void ret_from_fork(void);
508 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
510 CHECK_FULL_REGS(regs);
511 /* Copy registers */
512 sp -= sizeof(struct pt_regs);
513 childregs = (struct pt_regs *) sp;
514 *childregs = *regs;
515 if ((childregs->msr & MSR_PR) == 0) {
516 /* for kernel thread, set `current' and stackptr in new task */
517 childregs->gpr[1] = sp + sizeof(struct pt_regs);
518 #ifdef CONFIG_PPC32
519 childregs->gpr[2] = (unsigned long) p;
520 #else
521 clear_tsk_thread_flag(p, TIF_32BIT);
522 #endif
523 p->thread.regs = NULL; /* no user register state */
524 } else {
525 childregs->gpr[1] = usp;
526 p->thread.regs = childregs;
527 if (clone_flags & CLONE_SETTLS) {
528 #ifdef CONFIG_PPC64
529 if (!test_thread_flag(TIF_32BIT))
530 childregs->gpr[13] = childregs->gpr[6];
531 else
532 #endif
533 childregs->gpr[2] = childregs->gpr[6];
536 childregs->gpr[3] = 0; /* Result from fork() */
537 sp -= STACK_FRAME_OVERHEAD;
540 * The way this works is that at some point in the future
541 * some task will call _switch to switch to the new task.
542 * That will pop off the stack frame created below and start
543 * the new task running at ret_from_fork. The new task will
544 * do some house keeping and then return from the fork or clone
545 * system call, using the stack frame created above.
547 sp -= sizeof(struct pt_regs);
548 kregs = (struct pt_regs *) sp;
549 sp -= STACK_FRAME_OVERHEAD;
550 p->thread.ksp = sp;
552 #ifdef CONFIG_PPC64
553 if (cpu_has_feature(CPU_FTR_SLB)) {
554 unsigned long sp_vsid = get_kernel_vsid(sp);
555 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
557 sp_vsid <<= SLB_VSID_SHIFT;
558 sp_vsid |= SLB_VSID_KERNEL | llp;
559 p->thread.ksp_vsid = sp_vsid;
563 * The PPC64 ABI makes use of a TOC to contain function
564 * pointers. The function (ret_from_except) is actually a pointer
565 * to the TOC entry. The first entry is a pointer to the actual
566 * function.
568 kregs->nip = *((unsigned long *)ret_from_fork);
569 #else
570 kregs->nip = (unsigned long)ret_from_fork;
571 p->thread.last_syscall = -1;
572 #endif
574 return 0;
578 * Set up a thread for executing a new program
580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
582 #ifdef CONFIG_PPC64
583 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
584 #endif
586 set_fs(USER_DS);
589 * If we exec out of a kernel thread then thread.regs will not be
590 * set. Do it now.
592 if (!current->thread.regs) {
593 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
594 current->thread.regs = regs - 1;
597 memset(regs->gpr, 0, sizeof(regs->gpr));
598 regs->ctr = 0;
599 regs->link = 0;
600 regs->xer = 0;
601 regs->ccr = 0;
602 regs->gpr[1] = sp;
604 #ifdef CONFIG_PPC32
605 regs->mq = 0;
606 regs->nip = start;
607 regs->msr = MSR_USER;
608 #else
609 if (!test_thread_flag(TIF_32BIT)) {
610 unsigned long entry, toc;
612 /* start is a relocated pointer to the function descriptor for
613 * the elf _start routine. The first entry in the function
614 * descriptor is the entry address of _start and the second
615 * entry is the TOC value we need to use.
617 __get_user(entry, (unsigned long __user *)start);
618 __get_user(toc, (unsigned long __user *)start+1);
620 /* Check whether the e_entry function descriptor entries
621 * need to be relocated before we can use them.
623 if (load_addr != 0) {
624 entry += load_addr;
625 toc += load_addr;
627 regs->nip = entry;
628 regs->gpr[2] = toc;
629 regs->msr = MSR_USER64;
630 } else {
631 regs->nip = start;
632 regs->gpr[2] = 0;
633 regs->msr = MSR_USER32;
635 #endif
637 discard_lazy_cpu_state();
638 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
639 current->thread.fpscr.val = 0;
640 #ifdef CONFIG_ALTIVEC
641 memset(current->thread.vr, 0, sizeof(current->thread.vr));
642 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
643 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
644 current->thread.vrsave = 0;
645 current->thread.used_vr = 0;
646 #endif /* CONFIG_ALTIVEC */
647 #ifdef CONFIG_SPE
648 memset(current->thread.evr, 0, sizeof(current->thread.evr));
649 current->thread.acc = 0;
650 current->thread.spefscr = 0;
651 current->thread.used_spe = 0;
652 #endif /* CONFIG_SPE */
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656 | PR_FP_EXC_RES | PR_FP_EXC_INV)
658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
660 struct pt_regs *regs = tsk->thread.regs;
662 /* This is a bit hairy. If we are an SPE enabled processor
663 * (have embedded fp) we store the IEEE exception enable flags in
664 * fpexc_mode. fpexc_mode is also used for setting FP exception
665 * mode (asyn, precise, disabled) for 'Classic' FP. */
666 if (val & PR_FP_EXC_SW_ENABLE) {
667 #ifdef CONFIG_SPE
668 tsk->thread.fpexc_mode = val &
669 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
670 return 0;
671 #else
672 return -EINVAL;
673 #endif
676 /* on a CONFIG_SPE this does not hurt us. The bits that
677 * __pack_fe01 use do not overlap with bits used for
678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
679 * on CONFIG_SPE implementations are reserved so writing to
680 * them does not change anything */
681 if (val > PR_FP_EXC_PRECISE)
682 return -EINVAL;
683 tsk->thread.fpexc_mode = __pack_fe01(val);
684 if (regs != NULL && (regs->msr & MSR_FP) != 0)
685 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
686 | tsk->thread.fpexc_mode;
687 return 0;
690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
692 unsigned int val;
694 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
695 #ifdef CONFIG_SPE
696 val = tsk->thread.fpexc_mode;
697 #else
698 return -EINVAL;
699 #endif
700 else
701 val = __unpack_fe01(tsk->thread.fpexc_mode);
702 return put_user(val, (unsigned int __user *) adr);
705 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
707 int sys_clone(unsigned long clone_flags, unsigned long usp,
708 int __user *parent_tidp, void __user *child_threadptr,
709 int __user *child_tidp, int p6,
710 struct pt_regs *regs)
712 CHECK_FULL_REGS(regs);
713 if (usp == 0)
714 usp = regs->gpr[1]; /* stack pointer for child */
715 #ifdef CONFIG_PPC64
716 if (test_thread_flag(TIF_32BIT)) {
717 parent_tidp = TRUNC_PTR(parent_tidp);
718 child_tidp = TRUNC_PTR(child_tidp);
720 #endif
721 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
724 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
725 unsigned long p4, unsigned long p5, unsigned long p6,
726 struct pt_regs *regs)
728 CHECK_FULL_REGS(regs);
729 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
732 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
733 unsigned long p4, unsigned long p5, unsigned long p6,
734 struct pt_regs *regs)
736 CHECK_FULL_REGS(regs);
737 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
738 regs, 0, NULL, NULL);
741 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
742 unsigned long a3, unsigned long a4, unsigned long a5,
743 struct pt_regs *regs)
745 int error;
746 char *filename;
748 filename = getname((char __user *) a0);
749 error = PTR_ERR(filename);
750 if (IS_ERR(filename))
751 goto out;
752 flush_fp_to_thread(current);
753 flush_altivec_to_thread(current);
754 flush_spe_to_thread(current);
755 error = do_execve(filename, (char __user * __user *) a1,
756 (char __user * __user *) a2, regs);
757 if (error == 0) {
758 task_lock(current);
759 current->ptrace &= ~PT_DTRACE;
760 task_unlock(current);
762 putname(filename);
763 out:
764 return error;
767 static int validate_sp(unsigned long sp, struct task_struct *p,
768 unsigned long nbytes)
770 unsigned long stack_page = (unsigned long)task_stack_page(p);
772 if (sp >= stack_page + sizeof(struct thread_struct)
773 && sp <= stack_page + THREAD_SIZE - nbytes)
774 return 1;
776 #ifdef CONFIG_IRQSTACKS
777 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
778 if (sp >= stack_page + sizeof(struct thread_struct)
779 && sp <= stack_page + THREAD_SIZE - nbytes)
780 return 1;
782 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
783 if (sp >= stack_page + sizeof(struct thread_struct)
784 && sp <= stack_page + THREAD_SIZE - nbytes)
785 return 1;
786 #endif
788 return 0;
791 #ifdef CONFIG_PPC64
792 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
793 #define FRAME_LR_SAVE 2
794 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
795 #define REGS_MARKER 0x7265677368657265ul
796 #define FRAME_MARKER 12
797 #else
798 #define MIN_STACK_FRAME 16
799 #define FRAME_LR_SAVE 1
800 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
801 #define REGS_MARKER 0x72656773ul
802 #define FRAME_MARKER 2
803 #endif
805 unsigned long get_wchan(struct task_struct *p)
807 unsigned long ip, sp;
808 int count = 0;
810 if (!p || p == current || p->state == TASK_RUNNING)
811 return 0;
813 sp = p->thread.ksp;
814 if (!validate_sp(sp, p, MIN_STACK_FRAME))
815 return 0;
817 do {
818 sp = *(unsigned long *)sp;
819 if (!validate_sp(sp, p, MIN_STACK_FRAME))
820 return 0;
821 if (count > 0) {
822 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
823 if (!in_sched_functions(ip))
824 return ip;
826 } while (count++ < 16);
827 return 0;
829 EXPORT_SYMBOL(get_wchan);
831 static int kstack_depth_to_print = 64;
833 void show_stack(struct task_struct *tsk, unsigned long *stack)
835 unsigned long sp, ip, lr, newsp;
836 int count = 0;
837 int firstframe = 1;
839 sp = (unsigned long) stack;
840 if (tsk == NULL)
841 tsk = current;
842 if (sp == 0) {
843 if (tsk == current)
844 asm("mr %0,1" : "=r" (sp));
845 else
846 sp = tsk->thread.ksp;
849 lr = 0;
850 printk("Call Trace:\n");
851 do {
852 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
853 return;
855 stack = (unsigned long *) sp;
856 newsp = stack[0];
857 ip = stack[FRAME_LR_SAVE];
858 if (!firstframe || ip != lr) {
859 printk("["REG"] ["REG"] ", sp, ip);
860 print_symbol("%s", ip);
861 if (firstframe)
862 printk(" (unreliable)");
863 printk("\n");
865 firstframe = 0;
868 * See if this is an exception frame.
869 * We look for the "regshere" marker in the current frame.
871 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
872 && stack[FRAME_MARKER] == REGS_MARKER) {
873 struct pt_regs *regs = (struct pt_regs *)
874 (sp + STACK_FRAME_OVERHEAD);
875 printk("--- Exception: %lx", regs->trap);
876 print_symbol(" at %s\n", regs->nip);
877 lr = regs->link;
878 print_symbol(" LR = %s\n", lr);
879 firstframe = 1;
882 sp = newsp;
883 } while (count++ < kstack_depth_to_print);
886 void dump_stack(void)
888 show_stack(current, NULL);
890 EXPORT_SYMBOL(dump_stack);
892 #ifdef CONFIG_PPC64
893 void ppc64_runlatch_on(void)
895 unsigned long ctrl;
897 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
898 HMT_medium();
900 ctrl = mfspr(SPRN_CTRLF);
901 ctrl |= CTRL_RUNLATCH;
902 mtspr(SPRN_CTRLT, ctrl);
904 set_thread_flag(TIF_RUNLATCH);
908 void ppc64_runlatch_off(void)
910 unsigned long ctrl;
912 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
913 HMT_medium();
915 clear_thread_flag(TIF_RUNLATCH);
917 ctrl = mfspr(SPRN_CTRLF);
918 ctrl &= ~CTRL_RUNLATCH;
919 mtspr(SPRN_CTRLT, ctrl);
922 #endif