md: fix a plug/unplug race in raid5
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / buffer.c
blob6d8b588a99610544074323ec78ae41942ec43a1d
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head * bh)
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 static void
97 __clear_page_buffers(struct page *page)
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
104 static void buffer_io_error(struct buffer_head *bh)
106 char b[BDEVNAME_SIZE];
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
125 unlock_buffer(bh);
126 put_bh(bh);
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 char b[BDEVNAME_SIZE];
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
145 unlock_buffer(bh);
146 put_bh(bh);
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
153 int sync_blockdev(struct block_device *bdev)
155 int ret = 0;
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159 return ret;
161 EXPORT_SYMBOL(sync_blockdev);
164 * Write out and wait upon all dirty data associated with this
165 * superblock. Filesystem data as well as the underlying block
166 * device. Takes the superblock lock.
168 int fsync_super(struct super_block *sb)
170 sync_inodes_sb(sb, 0);
171 DQUOT_SYNC(sb);
172 lock_super(sb);
173 if (sb->s_dirt && sb->s_op->write_super)
174 sb->s_op->write_super(sb);
175 unlock_super(sb);
176 if (sb->s_op->sync_fs)
177 sb->s_op->sync_fs(sb, 1);
178 sync_blockdev(sb->s_bdev);
179 sync_inodes_sb(sb, 1);
181 return sync_blockdev(sb->s_bdev);
185 * Write out and wait upon all dirty data associated with this
186 * device. Filesystem data as well as the underlying block
187 * device. Takes the superblock lock.
189 int fsync_bdev(struct block_device *bdev)
191 struct super_block *sb = get_super(bdev);
192 if (sb) {
193 int res = fsync_super(sb);
194 drop_super(sb);
195 return res;
197 return sync_blockdev(bdev);
201 * freeze_bdev -- lock a filesystem and force it into a consistent state
202 * @bdev: blockdevice to lock
204 * This takes the block device bd_mount_sem to make sure no new mounts
205 * happen on bdev until thaw_bdev() is called.
206 * If a superblock is found on this device, we take the s_umount semaphore
207 * on it to make sure nobody unmounts until the snapshot creation is done.
209 struct super_block *freeze_bdev(struct block_device *bdev)
211 struct super_block *sb;
213 down(&bdev->bd_mount_sem);
214 sb = get_super(bdev);
215 if (sb && !(sb->s_flags & MS_RDONLY)) {
216 sb->s_frozen = SB_FREEZE_WRITE;
217 smp_wmb();
219 sync_inodes_sb(sb, 0);
220 DQUOT_SYNC(sb);
222 lock_super(sb);
223 if (sb->s_dirt && sb->s_op->write_super)
224 sb->s_op->write_super(sb);
225 unlock_super(sb);
227 if (sb->s_op->sync_fs)
228 sb->s_op->sync_fs(sb, 1);
230 sync_blockdev(sb->s_bdev);
231 sync_inodes_sb(sb, 1);
233 sb->s_frozen = SB_FREEZE_TRANS;
234 smp_wmb();
236 sync_blockdev(sb->s_bdev);
238 if (sb->s_op->write_super_lockfs)
239 sb->s_op->write_super_lockfs(sb);
242 sync_blockdev(bdev);
243 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
245 EXPORT_SYMBOL(freeze_bdev);
248 * thaw_bdev -- unlock filesystem
249 * @bdev: blockdevice to unlock
250 * @sb: associated superblock
252 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
254 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
256 if (sb) {
257 BUG_ON(sb->s_bdev != bdev);
259 if (sb->s_op->unlockfs)
260 sb->s_op->unlockfs(sb);
261 sb->s_frozen = SB_UNFROZEN;
262 smp_wmb();
263 wake_up(&sb->s_wait_unfrozen);
264 drop_super(sb);
267 up(&bdev->bd_mount_sem);
269 EXPORT_SYMBOL(thaw_bdev);
272 * sync everything. Start out by waking pdflush, because that writes back
273 * all queues in parallel.
275 static void do_sync(unsigned long wait)
277 wakeup_pdflush(0);
278 sync_inodes(0); /* All mappings, inodes and their blockdevs */
279 DQUOT_SYNC(NULL);
280 sync_supers(); /* Write the superblocks */
281 sync_filesystems(0); /* Start syncing the filesystems */
282 sync_filesystems(wait); /* Waitingly sync the filesystems */
283 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
284 if (!wait)
285 printk("Emergency Sync complete\n");
286 if (unlikely(laptop_mode))
287 laptop_sync_completion();
290 asmlinkage long sys_sync(void)
292 do_sync(1);
293 return 0;
296 void emergency_sync(void)
298 pdflush_operation(do_sync, 0);
302 * Generic function to fsync a file.
304 * filp may be NULL if called via the msync of a vma.
307 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
309 struct inode * inode = dentry->d_inode;
310 struct super_block * sb;
311 int ret, err;
313 /* sync the inode to buffers */
314 ret = write_inode_now(inode, 0);
316 /* sync the superblock to buffers */
317 sb = inode->i_sb;
318 lock_super(sb);
319 if (sb->s_op->write_super)
320 sb->s_op->write_super(sb);
321 unlock_super(sb);
323 /* .. finally sync the buffers to disk */
324 err = sync_blockdev(sb->s_bdev);
325 if (!ret)
326 ret = err;
327 return ret;
330 static long do_fsync(unsigned int fd, int datasync)
332 struct file * file;
333 struct address_space *mapping;
334 int ret, err;
336 ret = -EBADF;
337 file = fget(fd);
338 if (!file)
339 goto out;
341 ret = -EINVAL;
342 if (!file->f_op || !file->f_op->fsync) {
343 /* Why? We can still call filemap_fdatawrite */
344 goto out_putf;
347 mapping = file->f_mapping;
349 current->flags |= PF_SYNCWRITE;
350 ret = filemap_fdatawrite(mapping);
353 * We need to protect against concurrent writers,
354 * which could cause livelocks in fsync_buffers_list
356 mutex_lock(&mapping->host->i_mutex);
357 err = file->f_op->fsync(file, file->f_dentry, datasync);
358 if (!ret)
359 ret = err;
360 mutex_unlock(&mapping->host->i_mutex);
361 err = filemap_fdatawait(mapping);
362 if (!ret)
363 ret = err;
364 current->flags &= ~PF_SYNCWRITE;
366 out_putf:
367 fput(file);
368 out:
369 return ret;
372 asmlinkage long sys_fsync(unsigned int fd)
374 return do_fsync(fd, 0);
377 asmlinkage long sys_fdatasync(unsigned int fd)
379 return do_fsync(fd, 1);
383 * Various filesystems appear to want __find_get_block to be non-blocking.
384 * But it's the page lock which protects the buffers. To get around this,
385 * we get exclusion from try_to_free_buffers with the blockdev mapping's
386 * private_lock.
388 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
389 * may be quite high. This code could TryLock the page, and if that
390 * succeeds, there is no need to take private_lock. (But if
391 * private_lock is contended then so is mapping->tree_lock).
393 static struct buffer_head *
394 __find_get_block_slow(struct block_device *bdev, sector_t block)
396 struct inode *bd_inode = bdev->bd_inode;
397 struct address_space *bd_mapping = bd_inode->i_mapping;
398 struct buffer_head *ret = NULL;
399 pgoff_t index;
400 struct buffer_head *bh;
401 struct buffer_head *head;
402 struct page *page;
403 int all_mapped = 1;
405 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
406 page = find_get_page(bd_mapping, index);
407 if (!page)
408 goto out;
410 spin_lock(&bd_mapping->private_lock);
411 if (!page_has_buffers(page))
412 goto out_unlock;
413 head = page_buffers(page);
414 bh = head;
415 do {
416 if (bh->b_blocknr == block) {
417 ret = bh;
418 get_bh(bh);
419 goto out_unlock;
421 if (!buffer_mapped(bh))
422 all_mapped = 0;
423 bh = bh->b_this_page;
424 } while (bh != head);
426 /* we might be here because some of the buffers on this page are
427 * not mapped. This is due to various races between
428 * file io on the block device and getblk. It gets dealt with
429 * elsewhere, don't buffer_error if we had some unmapped buffers
431 if (all_mapped) {
432 printk("__find_get_block_slow() failed. "
433 "block=%llu, b_blocknr=%llu\n",
434 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
435 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
436 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
438 out_unlock:
439 spin_unlock(&bd_mapping->private_lock);
440 page_cache_release(page);
441 out:
442 return ret;
445 /* If invalidate_buffers() will trash dirty buffers, it means some kind
446 of fs corruption is going on. Trashing dirty data always imply losing
447 information that was supposed to be just stored on the physical layer
448 by the user.
450 Thus invalidate_buffers in general usage is not allwowed to trash
451 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
452 be preserved. These buffers are simply skipped.
454 We also skip buffers which are still in use. For example this can
455 happen if a userspace program is reading the block device.
457 NOTE: In the case where the user removed a removable-media-disk even if
458 there's still dirty data not synced on disk (due a bug in the device driver
459 or due an error of the user), by not destroying the dirty buffers we could
460 generate corruption also on the next media inserted, thus a parameter is
461 necessary to handle this case in the most safe way possible (trying
462 to not corrupt also the new disk inserted with the data belonging to
463 the old now corrupted disk). Also for the ramdisk the natural thing
464 to do in order to release the ramdisk memory is to destroy dirty buffers.
466 These are two special cases. Normal usage imply the device driver
467 to issue a sync on the device (without waiting I/O completion) and
468 then an invalidate_buffers call that doesn't trash dirty buffers.
470 For handling cache coherency with the blkdev pagecache the 'update' case
471 is been introduced. It is needed to re-read from disk any pinned
472 buffer. NOTE: re-reading from disk is destructive so we can do it only
473 when we assume nobody is changing the buffercache under our I/O and when
474 we think the disk contains more recent information than the buffercache.
475 The update == 1 pass marks the buffers we need to update, the update == 2
476 pass does the actual I/O. */
477 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
479 invalidate_bh_lrus();
481 * FIXME: what about destroy_dirty_buffers?
482 * We really want to use invalidate_inode_pages2() for
483 * that, but not until that's cleaned up.
485 invalidate_inode_pages(bdev->bd_inode->i_mapping);
489 * Kick pdflush then try to free up some ZONE_NORMAL memory.
491 static void free_more_memory(void)
493 struct zone **zones;
494 pg_data_t *pgdat;
496 wakeup_pdflush(1024);
497 yield();
499 for_each_pgdat(pgdat) {
500 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
501 if (*zones)
502 try_to_free_pages(zones, GFP_NOFS);
507 * I/O completion handler for block_read_full_page() - pages
508 * which come unlocked at the end of I/O.
510 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 unsigned long flags;
513 struct buffer_head *first;
514 struct buffer_head *tmp;
515 struct page *page;
516 int page_uptodate = 1;
518 BUG_ON(!buffer_async_read(bh));
520 page = bh->b_page;
521 if (uptodate) {
522 set_buffer_uptodate(bh);
523 } else {
524 clear_buffer_uptodate(bh);
525 if (printk_ratelimit())
526 buffer_io_error(bh);
527 SetPageError(page);
531 * Be _very_ careful from here on. Bad things can happen if
532 * two buffer heads end IO at almost the same time and both
533 * decide that the page is now completely done.
535 first = page_buffers(page);
536 local_irq_save(flags);
537 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
538 clear_buffer_async_read(bh);
539 unlock_buffer(bh);
540 tmp = bh;
541 do {
542 if (!buffer_uptodate(tmp))
543 page_uptodate = 0;
544 if (buffer_async_read(tmp)) {
545 BUG_ON(!buffer_locked(tmp));
546 goto still_busy;
548 tmp = tmp->b_this_page;
549 } while (tmp != bh);
550 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
551 local_irq_restore(flags);
554 * If none of the buffers had errors and they are all
555 * uptodate then we can set the page uptodate.
557 if (page_uptodate && !PageError(page))
558 SetPageUptodate(page);
559 unlock_page(page);
560 return;
562 still_busy:
563 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
564 local_irq_restore(flags);
565 return;
569 * Completion handler for block_write_full_page() - pages which are unlocked
570 * during I/O, and which have PageWriteback cleared upon I/O completion.
572 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
574 char b[BDEVNAME_SIZE];
575 unsigned long flags;
576 struct buffer_head *first;
577 struct buffer_head *tmp;
578 struct page *page;
580 BUG_ON(!buffer_async_write(bh));
582 page = bh->b_page;
583 if (uptodate) {
584 set_buffer_uptodate(bh);
585 } else {
586 if (printk_ratelimit()) {
587 buffer_io_error(bh);
588 printk(KERN_WARNING "lost page write due to "
589 "I/O error on %s\n",
590 bdevname(bh->b_bdev, b));
592 set_bit(AS_EIO, &page->mapping->flags);
593 clear_buffer_uptodate(bh);
594 SetPageError(page);
597 first = page_buffers(page);
598 local_irq_save(flags);
599 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
601 clear_buffer_async_write(bh);
602 unlock_buffer(bh);
603 tmp = bh->b_this_page;
604 while (tmp != bh) {
605 if (buffer_async_write(tmp)) {
606 BUG_ON(!buffer_locked(tmp));
607 goto still_busy;
609 tmp = tmp->b_this_page;
611 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
612 local_irq_restore(flags);
613 end_page_writeback(page);
614 return;
616 still_busy:
617 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
618 local_irq_restore(flags);
619 return;
623 * If a page's buffers are under async readin (end_buffer_async_read
624 * completion) then there is a possibility that another thread of
625 * control could lock one of the buffers after it has completed
626 * but while some of the other buffers have not completed. This
627 * locked buffer would confuse end_buffer_async_read() into not unlocking
628 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
629 * that this buffer is not under async I/O.
631 * The page comes unlocked when it has no locked buffer_async buffers
632 * left.
634 * PageLocked prevents anyone starting new async I/O reads any of
635 * the buffers.
637 * PageWriteback is used to prevent simultaneous writeout of the same
638 * page.
640 * PageLocked prevents anyone from starting writeback of a page which is
641 * under read I/O (PageWriteback is only ever set against a locked page).
643 static void mark_buffer_async_read(struct buffer_head *bh)
645 bh->b_end_io = end_buffer_async_read;
646 set_buffer_async_read(bh);
649 void mark_buffer_async_write(struct buffer_head *bh)
651 bh->b_end_io = end_buffer_async_write;
652 set_buffer_async_write(bh);
654 EXPORT_SYMBOL(mark_buffer_async_write);
658 * fs/buffer.c contains helper functions for buffer-backed address space's
659 * fsync functions. A common requirement for buffer-based filesystems is
660 * that certain data from the backing blockdev needs to be written out for
661 * a successful fsync(). For example, ext2 indirect blocks need to be
662 * written back and waited upon before fsync() returns.
664 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
665 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
666 * management of a list of dependent buffers at ->i_mapping->private_list.
668 * Locking is a little subtle: try_to_free_buffers() will remove buffers
669 * from their controlling inode's queue when they are being freed. But
670 * try_to_free_buffers() will be operating against the *blockdev* mapping
671 * at the time, not against the S_ISREG file which depends on those buffers.
672 * So the locking for private_list is via the private_lock in the address_space
673 * which backs the buffers. Which is different from the address_space
674 * against which the buffers are listed. So for a particular address_space,
675 * mapping->private_lock does *not* protect mapping->private_list! In fact,
676 * mapping->private_list will always be protected by the backing blockdev's
677 * ->private_lock.
679 * Which introduces a requirement: all buffers on an address_space's
680 * ->private_list must be from the same address_space: the blockdev's.
682 * address_spaces which do not place buffers at ->private_list via these
683 * utility functions are free to use private_lock and private_list for
684 * whatever they want. The only requirement is that list_empty(private_list)
685 * be true at clear_inode() time.
687 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
688 * filesystems should do that. invalidate_inode_buffers() should just go
689 * BUG_ON(!list_empty).
691 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
692 * take an address_space, not an inode. And it should be called
693 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
694 * queued up.
696 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
697 * list if it is already on a list. Because if the buffer is on a list,
698 * it *must* already be on the right one. If not, the filesystem is being
699 * silly. This will save a ton of locking. But first we have to ensure
700 * that buffers are taken *off* the old inode's list when they are freed
701 * (presumably in truncate). That requires careful auditing of all
702 * filesystems (do it inside bforget()). It could also be done by bringing
703 * b_inode back.
707 * The buffer's backing address_space's private_lock must be held
709 static inline void __remove_assoc_queue(struct buffer_head *bh)
711 list_del_init(&bh->b_assoc_buffers);
714 int inode_has_buffers(struct inode *inode)
716 return !list_empty(&inode->i_data.private_list);
720 * osync is designed to support O_SYNC io. It waits synchronously for
721 * all already-submitted IO to complete, but does not queue any new
722 * writes to the disk.
724 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
725 * you dirty the buffers, and then use osync_inode_buffers to wait for
726 * completion. Any other dirty buffers which are not yet queued for
727 * write will not be flushed to disk by the osync.
729 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
731 struct buffer_head *bh;
732 struct list_head *p;
733 int err = 0;
735 spin_lock(lock);
736 repeat:
737 list_for_each_prev(p, list) {
738 bh = BH_ENTRY(p);
739 if (buffer_locked(bh)) {
740 get_bh(bh);
741 spin_unlock(lock);
742 wait_on_buffer(bh);
743 if (!buffer_uptodate(bh))
744 err = -EIO;
745 brelse(bh);
746 spin_lock(lock);
747 goto repeat;
750 spin_unlock(lock);
751 return err;
755 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
756 * buffers
757 * @mapping: the mapping which wants those buffers written
759 * Starts I/O against the buffers at mapping->private_list, and waits upon
760 * that I/O.
762 * Basically, this is a convenience function for fsync().
763 * @mapping is a file or directory which needs those buffers to be written for
764 * a successful fsync().
766 int sync_mapping_buffers(struct address_space *mapping)
768 struct address_space *buffer_mapping = mapping->assoc_mapping;
770 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
771 return 0;
773 return fsync_buffers_list(&buffer_mapping->private_lock,
774 &mapping->private_list);
776 EXPORT_SYMBOL(sync_mapping_buffers);
779 * Called when we've recently written block `bblock', and it is known that
780 * `bblock' was for a buffer_boundary() buffer. This means that the block at
781 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
782 * dirty, schedule it for IO. So that indirects merge nicely with their data.
784 void write_boundary_block(struct block_device *bdev,
785 sector_t bblock, unsigned blocksize)
787 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
788 if (bh) {
789 if (buffer_dirty(bh))
790 ll_rw_block(WRITE, 1, &bh);
791 put_bh(bh);
795 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
797 struct address_space *mapping = inode->i_mapping;
798 struct address_space *buffer_mapping = bh->b_page->mapping;
800 mark_buffer_dirty(bh);
801 if (!mapping->assoc_mapping) {
802 mapping->assoc_mapping = buffer_mapping;
803 } else {
804 if (mapping->assoc_mapping != buffer_mapping)
805 BUG();
807 if (list_empty(&bh->b_assoc_buffers)) {
808 spin_lock(&buffer_mapping->private_lock);
809 list_move_tail(&bh->b_assoc_buffers,
810 &mapping->private_list);
811 spin_unlock(&buffer_mapping->private_lock);
814 EXPORT_SYMBOL(mark_buffer_dirty_inode);
817 * Add a page to the dirty page list.
819 * It is a sad fact of life that this function is called from several places
820 * deeply under spinlocking. It may not sleep.
822 * If the page has buffers, the uptodate buffers are set dirty, to preserve
823 * dirty-state coherency between the page and the buffers. It the page does
824 * not have buffers then when they are later attached they will all be set
825 * dirty.
827 * The buffers are dirtied before the page is dirtied. There's a small race
828 * window in which a writepage caller may see the page cleanness but not the
829 * buffer dirtiness. That's fine. If this code were to set the page dirty
830 * before the buffers, a concurrent writepage caller could clear the page dirty
831 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
832 * page on the dirty page list.
834 * We use private_lock to lock against try_to_free_buffers while using the
835 * page's buffer list. Also use this to protect against clean buffers being
836 * added to the page after it was set dirty.
838 * FIXME: may need to call ->reservepage here as well. That's rather up to the
839 * address_space though.
841 int __set_page_dirty_buffers(struct page *page)
843 struct address_space * const mapping = page_mapping(page);
845 if (unlikely(!mapping))
846 return !TestSetPageDirty(page);
848 spin_lock(&mapping->private_lock);
849 if (page_has_buffers(page)) {
850 struct buffer_head *head = page_buffers(page);
851 struct buffer_head *bh = head;
853 do {
854 set_buffer_dirty(bh);
855 bh = bh->b_this_page;
856 } while (bh != head);
858 spin_unlock(&mapping->private_lock);
860 if (!TestSetPageDirty(page)) {
861 write_lock_irq(&mapping->tree_lock);
862 if (page->mapping) { /* Race with truncate? */
863 if (mapping_cap_account_dirty(mapping))
864 inc_page_state(nr_dirty);
865 radix_tree_tag_set(&mapping->page_tree,
866 page_index(page),
867 PAGECACHE_TAG_DIRTY);
869 write_unlock_irq(&mapping->tree_lock);
870 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
873 return 0;
875 EXPORT_SYMBOL(__set_page_dirty_buffers);
878 * Write out and wait upon a list of buffers.
880 * We have conflicting pressures: we want to make sure that all
881 * initially dirty buffers get waited on, but that any subsequently
882 * dirtied buffers don't. After all, we don't want fsync to last
883 * forever if somebody is actively writing to the file.
885 * Do this in two main stages: first we copy dirty buffers to a
886 * temporary inode list, queueing the writes as we go. Then we clean
887 * up, waiting for those writes to complete.
889 * During this second stage, any subsequent updates to the file may end
890 * up refiling the buffer on the original inode's dirty list again, so
891 * there is a chance we will end up with a buffer queued for write but
892 * not yet completed on that list. So, as a final cleanup we go through
893 * the osync code to catch these locked, dirty buffers without requeuing
894 * any newly dirty buffers for write.
896 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
898 struct buffer_head *bh;
899 struct list_head tmp;
900 int err = 0, err2;
902 INIT_LIST_HEAD(&tmp);
904 spin_lock(lock);
905 while (!list_empty(list)) {
906 bh = BH_ENTRY(list->next);
907 list_del_init(&bh->b_assoc_buffers);
908 if (buffer_dirty(bh) || buffer_locked(bh)) {
909 list_add(&bh->b_assoc_buffers, &tmp);
910 if (buffer_dirty(bh)) {
911 get_bh(bh);
912 spin_unlock(lock);
914 * Ensure any pending I/O completes so that
915 * ll_rw_block() actually writes the current
916 * contents - it is a noop if I/O is still in
917 * flight on potentially older contents.
919 ll_rw_block(SWRITE, 1, &bh);
920 brelse(bh);
921 spin_lock(lock);
926 while (!list_empty(&tmp)) {
927 bh = BH_ENTRY(tmp.prev);
928 __remove_assoc_queue(bh);
929 get_bh(bh);
930 spin_unlock(lock);
931 wait_on_buffer(bh);
932 if (!buffer_uptodate(bh))
933 err = -EIO;
934 brelse(bh);
935 spin_lock(lock);
938 spin_unlock(lock);
939 err2 = osync_buffers_list(lock, list);
940 if (err)
941 return err;
942 else
943 return err2;
947 * Invalidate any and all dirty buffers on a given inode. We are
948 * probably unmounting the fs, but that doesn't mean we have already
949 * done a sync(). Just drop the buffers from the inode list.
951 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
952 * assumes that all the buffers are against the blockdev. Not true
953 * for reiserfs.
955 void invalidate_inode_buffers(struct inode *inode)
957 if (inode_has_buffers(inode)) {
958 struct address_space *mapping = &inode->i_data;
959 struct list_head *list = &mapping->private_list;
960 struct address_space *buffer_mapping = mapping->assoc_mapping;
962 spin_lock(&buffer_mapping->private_lock);
963 while (!list_empty(list))
964 __remove_assoc_queue(BH_ENTRY(list->next));
965 spin_unlock(&buffer_mapping->private_lock);
970 * Remove any clean buffers from the inode's buffer list. This is called
971 * when we're trying to free the inode itself. Those buffers can pin it.
973 * Returns true if all buffers were removed.
975 int remove_inode_buffers(struct inode *inode)
977 int ret = 1;
979 if (inode_has_buffers(inode)) {
980 struct address_space *mapping = &inode->i_data;
981 struct list_head *list = &mapping->private_list;
982 struct address_space *buffer_mapping = mapping->assoc_mapping;
984 spin_lock(&buffer_mapping->private_lock);
985 while (!list_empty(list)) {
986 struct buffer_head *bh = BH_ENTRY(list->next);
987 if (buffer_dirty(bh)) {
988 ret = 0;
989 break;
991 __remove_assoc_queue(bh);
993 spin_unlock(&buffer_mapping->private_lock);
995 return ret;
999 * Create the appropriate buffers when given a page for data area and
1000 * the size of each buffer.. Use the bh->b_this_page linked list to
1001 * follow the buffers created. Return NULL if unable to create more
1002 * buffers.
1004 * The retry flag is used to differentiate async IO (paging, swapping)
1005 * which may not fail from ordinary buffer allocations.
1007 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1008 int retry)
1010 struct buffer_head *bh, *head;
1011 long offset;
1013 try_again:
1014 head = NULL;
1015 offset = PAGE_SIZE;
1016 while ((offset -= size) >= 0) {
1017 bh = alloc_buffer_head(GFP_NOFS);
1018 if (!bh)
1019 goto no_grow;
1021 bh->b_bdev = NULL;
1022 bh->b_this_page = head;
1023 bh->b_blocknr = -1;
1024 head = bh;
1026 bh->b_state = 0;
1027 atomic_set(&bh->b_count, 0);
1028 bh->b_private = NULL;
1029 bh->b_size = size;
1031 /* Link the buffer to its page */
1032 set_bh_page(bh, page, offset);
1034 init_buffer(bh, NULL, NULL);
1036 return head;
1038 * In case anything failed, we just free everything we got.
1040 no_grow:
1041 if (head) {
1042 do {
1043 bh = head;
1044 head = head->b_this_page;
1045 free_buffer_head(bh);
1046 } while (head);
1050 * Return failure for non-async IO requests. Async IO requests
1051 * are not allowed to fail, so we have to wait until buffer heads
1052 * become available. But we don't want tasks sleeping with
1053 * partially complete buffers, so all were released above.
1055 if (!retry)
1056 return NULL;
1058 /* We're _really_ low on memory. Now we just
1059 * wait for old buffer heads to become free due to
1060 * finishing IO. Since this is an async request and
1061 * the reserve list is empty, we're sure there are
1062 * async buffer heads in use.
1064 free_more_memory();
1065 goto try_again;
1067 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1069 static inline void
1070 link_dev_buffers(struct page *page, struct buffer_head *head)
1072 struct buffer_head *bh, *tail;
1074 bh = head;
1075 do {
1076 tail = bh;
1077 bh = bh->b_this_page;
1078 } while (bh);
1079 tail->b_this_page = head;
1080 attach_page_buffers(page, head);
1084 * Initialise the state of a blockdev page's buffers.
1086 static void
1087 init_page_buffers(struct page *page, struct block_device *bdev,
1088 sector_t block, int size)
1090 struct buffer_head *head = page_buffers(page);
1091 struct buffer_head *bh = head;
1092 int uptodate = PageUptodate(page);
1094 do {
1095 if (!buffer_mapped(bh)) {
1096 init_buffer(bh, NULL, NULL);
1097 bh->b_bdev = bdev;
1098 bh->b_blocknr = block;
1099 if (uptodate)
1100 set_buffer_uptodate(bh);
1101 set_buffer_mapped(bh);
1103 block++;
1104 bh = bh->b_this_page;
1105 } while (bh != head);
1109 * Create the page-cache page that contains the requested block.
1111 * This is user purely for blockdev mappings.
1113 static struct page *
1114 grow_dev_page(struct block_device *bdev, sector_t block,
1115 pgoff_t index, int size)
1117 struct inode *inode = bdev->bd_inode;
1118 struct page *page;
1119 struct buffer_head *bh;
1121 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1122 if (!page)
1123 return NULL;
1125 if (!PageLocked(page))
1126 BUG();
1128 if (page_has_buffers(page)) {
1129 bh = page_buffers(page);
1130 if (bh->b_size == size) {
1131 init_page_buffers(page, bdev, block, size);
1132 return page;
1134 if (!try_to_free_buffers(page))
1135 goto failed;
1139 * Allocate some buffers for this page
1141 bh = alloc_page_buffers(page, size, 0);
1142 if (!bh)
1143 goto failed;
1146 * Link the page to the buffers and initialise them. Take the
1147 * lock to be atomic wrt __find_get_block(), which does not
1148 * run under the page lock.
1150 spin_lock(&inode->i_mapping->private_lock);
1151 link_dev_buffers(page, bh);
1152 init_page_buffers(page, bdev, block, size);
1153 spin_unlock(&inode->i_mapping->private_lock);
1154 return page;
1156 failed:
1157 BUG();
1158 unlock_page(page);
1159 page_cache_release(page);
1160 return NULL;
1164 * Create buffers for the specified block device block's page. If
1165 * that page was dirty, the buffers are set dirty also.
1167 * Except that's a bug. Attaching dirty buffers to a dirty
1168 * blockdev's page can result in filesystem corruption, because
1169 * some of those buffers may be aliases of filesystem data.
1170 * grow_dev_page() will go BUG() if this happens.
1172 static int
1173 grow_buffers(struct block_device *bdev, sector_t block, int size)
1175 struct page *page;
1176 pgoff_t index;
1177 int sizebits;
1179 sizebits = -1;
1180 do {
1181 sizebits++;
1182 } while ((size << sizebits) < PAGE_SIZE);
1184 index = block >> sizebits;
1187 * Check for a block which wants to lie outside our maximum possible
1188 * pagecache index. (this comparison is done using sector_t types).
1190 if (unlikely(index != block >> sizebits)) {
1191 char b[BDEVNAME_SIZE];
1193 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1194 "device %s\n",
1195 __FUNCTION__, (unsigned long long)block,
1196 bdevname(bdev, b));
1197 return -EIO;
1199 block = index << sizebits;
1200 /* Create a page with the proper size buffers.. */
1201 page = grow_dev_page(bdev, block, index, size);
1202 if (!page)
1203 return 0;
1204 unlock_page(page);
1205 page_cache_release(page);
1206 return 1;
1209 static struct buffer_head *
1210 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1212 /* Size must be multiple of hard sectorsize */
1213 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1214 (size < 512 || size > PAGE_SIZE))) {
1215 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1216 size);
1217 printk(KERN_ERR "hardsect size: %d\n",
1218 bdev_hardsect_size(bdev));
1220 dump_stack();
1221 return NULL;
1224 for (;;) {
1225 struct buffer_head * bh;
1226 int ret;
1228 bh = __find_get_block(bdev, block, size);
1229 if (bh)
1230 return bh;
1232 ret = grow_buffers(bdev, block, size);
1233 if (ret < 0)
1234 return NULL;
1235 if (ret == 0)
1236 free_more_memory();
1241 * The relationship between dirty buffers and dirty pages:
1243 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1244 * the page is tagged dirty in its radix tree.
1246 * At all times, the dirtiness of the buffers represents the dirtiness of
1247 * subsections of the page. If the page has buffers, the page dirty bit is
1248 * merely a hint about the true dirty state.
1250 * When a page is set dirty in its entirety, all its buffers are marked dirty
1251 * (if the page has buffers).
1253 * When a buffer is marked dirty, its page is dirtied, but the page's other
1254 * buffers are not.
1256 * Also. When blockdev buffers are explicitly read with bread(), they
1257 * individually become uptodate. But their backing page remains not
1258 * uptodate - even if all of its buffers are uptodate. A subsequent
1259 * block_read_full_page() against that page will discover all the uptodate
1260 * buffers, will set the page uptodate and will perform no I/O.
1264 * mark_buffer_dirty - mark a buffer_head as needing writeout
1265 * @bh: the buffer_head to mark dirty
1267 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1268 * backing page dirty, then tag the page as dirty in its address_space's radix
1269 * tree and then attach the address_space's inode to its superblock's dirty
1270 * inode list.
1272 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1273 * mapping->tree_lock and the global inode_lock.
1275 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1277 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1278 __set_page_dirty_nobuffers(bh->b_page);
1282 * Decrement a buffer_head's reference count. If all buffers against a page
1283 * have zero reference count, are clean and unlocked, and if the page is clean
1284 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1285 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1286 * a page but it ends up not being freed, and buffers may later be reattached).
1288 void __brelse(struct buffer_head * buf)
1290 if (atomic_read(&buf->b_count)) {
1291 put_bh(buf);
1292 return;
1294 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1295 WARN_ON(1);
1299 * bforget() is like brelse(), except it discards any
1300 * potentially dirty data.
1302 void __bforget(struct buffer_head *bh)
1304 clear_buffer_dirty(bh);
1305 if (!list_empty(&bh->b_assoc_buffers)) {
1306 struct address_space *buffer_mapping = bh->b_page->mapping;
1308 spin_lock(&buffer_mapping->private_lock);
1309 list_del_init(&bh->b_assoc_buffers);
1310 spin_unlock(&buffer_mapping->private_lock);
1312 __brelse(bh);
1315 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1317 lock_buffer(bh);
1318 if (buffer_uptodate(bh)) {
1319 unlock_buffer(bh);
1320 return bh;
1321 } else {
1322 get_bh(bh);
1323 bh->b_end_io = end_buffer_read_sync;
1324 submit_bh(READ, bh);
1325 wait_on_buffer(bh);
1326 if (buffer_uptodate(bh))
1327 return bh;
1329 brelse(bh);
1330 return NULL;
1334 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1335 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1336 * refcount elevated by one when they're in an LRU. A buffer can only appear
1337 * once in a particular CPU's LRU. A single buffer can be present in multiple
1338 * CPU's LRUs at the same time.
1340 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1341 * sb_find_get_block().
1343 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1344 * a local interrupt disable for that.
1347 #define BH_LRU_SIZE 8
1349 struct bh_lru {
1350 struct buffer_head *bhs[BH_LRU_SIZE];
1353 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1355 #ifdef CONFIG_SMP
1356 #define bh_lru_lock() local_irq_disable()
1357 #define bh_lru_unlock() local_irq_enable()
1358 #else
1359 #define bh_lru_lock() preempt_disable()
1360 #define bh_lru_unlock() preempt_enable()
1361 #endif
1363 static inline void check_irqs_on(void)
1365 #ifdef irqs_disabled
1366 BUG_ON(irqs_disabled());
1367 #endif
1371 * The LRU management algorithm is dopey-but-simple. Sorry.
1373 static void bh_lru_install(struct buffer_head *bh)
1375 struct buffer_head *evictee = NULL;
1376 struct bh_lru *lru;
1378 check_irqs_on();
1379 bh_lru_lock();
1380 lru = &__get_cpu_var(bh_lrus);
1381 if (lru->bhs[0] != bh) {
1382 struct buffer_head *bhs[BH_LRU_SIZE];
1383 int in;
1384 int out = 0;
1386 get_bh(bh);
1387 bhs[out++] = bh;
1388 for (in = 0; in < BH_LRU_SIZE; in++) {
1389 struct buffer_head *bh2 = lru->bhs[in];
1391 if (bh2 == bh) {
1392 __brelse(bh2);
1393 } else {
1394 if (out >= BH_LRU_SIZE) {
1395 BUG_ON(evictee != NULL);
1396 evictee = bh2;
1397 } else {
1398 bhs[out++] = bh2;
1402 while (out < BH_LRU_SIZE)
1403 bhs[out++] = NULL;
1404 memcpy(lru->bhs, bhs, sizeof(bhs));
1406 bh_lru_unlock();
1408 if (evictee)
1409 __brelse(evictee);
1413 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1415 static struct buffer_head *
1416 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1418 struct buffer_head *ret = NULL;
1419 struct bh_lru *lru;
1420 int i;
1422 check_irqs_on();
1423 bh_lru_lock();
1424 lru = &__get_cpu_var(bh_lrus);
1425 for (i = 0; i < BH_LRU_SIZE; i++) {
1426 struct buffer_head *bh = lru->bhs[i];
1428 if (bh && bh->b_bdev == bdev &&
1429 bh->b_blocknr == block && bh->b_size == size) {
1430 if (i) {
1431 while (i) {
1432 lru->bhs[i] = lru->bhs[i - 1];
1433 i--;
1435 lru->bhs[0] = bh;
1437 get_bh(bh);
1438 ret = bh;
1439 break;
1442 bh_lru_unlock();
1443 return ret;
1447 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1448 * it in the LRU and mark it as accessed. If it is not present then return
1449 * NULL
1451 struct buffer_head *
1452 __find_get_block(struct block_device *bdev, sector_t block, int size)
1454 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1456 if (bh == NULL) {
1457 bh = __find_get_block_slow(bdev, block);
1458 if (bh)
1459 bh_lru_install(bh);
1461 if (bh)
1462 touch_buffer(bh);
1463 return bh;
1465 EXPORT_SYMBOL(__find_get_block);
1468 * __getblk will locate (and, if necessary, create) the buffer_head
1469 * which corresponds to the passed block_device, block and size. The
1470 * returned buffer has its reference count incremented.
1472 * __getblk() cannot fail - it just keeps trying. If you pass it an
1473 * illegal block number, __getblk() will happily return a buffer_head
1474 * which represents the non-existent block. Very weird.
1476 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1477 * attempt is failing. FIXME, perhaps?
1479 struct buffer_head *
1480 __getblk(struct block_device *bdev, sector_t block, int size)
1482 struct buffer_head *bh = __find_get_block(bdev, block, size);
1484 might_sleep();
1485 if (bh == NULL)
1486 bh = __getblk_slow(bdev, block, size);
1487 return bh;
1489 EXPORT_SYMBOL(__getblk);
1492 * Do async read-ahead on a buffer..
1494 void __breadahead(struct block_device *bdev, sector_t block, int size)
1496 struct buffer_head *bh = __getblk(bdev, block, size);
1497 if (likely(bh)) {
1498 ll_rw_block(READA, 1, &bh);
1499 brelse(bh);
1502 EXPORT_SYMBOL(__breadahead);
1505 * __bread() - reads a specified block and returns the bh
1506 * @bdev: the block_device to read from
1507 * @block: number of block
1508 * @size: size (in bytes) to read
1510 * Reads a specified block, and returns buffer head that contains it.
1511 * It returns NULL if the block was unreadable.
1513 struct buffer_head *
1514 __bread(struct block_device *bdev, sector_t block, int size)
1516 struct buffer_head *bh = __getblk(bdev, block, size);
1518 if (likely(bh) && !buffer_uptodate(bh))
1519 bh = __bread_slow(bh);
1520 return bh;
1522 EXPORT_SYMBOL(__bread);
1525 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1526 * This doesn't race because it runs in each cpu either in irq
1527 * or with preempt disabled.
1529 static void invalidate_bh_lru(void *arg)
1531 struct bh_lru *b = &get_cpu_var(bh_lrus);
1532 int i;
1534 for (i = 0; i < BH_LRU_SIZE; i++) {
1535 brelse(b->bhs[i]);
1536 b->bhs[i] = NULL;
1538 put_cpu_var(bh_lrus);
1541 static void invalidate_bh_lrus(void)
1543 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1546 void set_bh_page(struct buffer_head *bh,
1547 struct page *page, unsigned long offset)
1549 bh->b_page = page;
1550 if (offset >= PAGE_SIZE)
1551 BUG();
1552 if (PageHighMem(page))
1554 * This catches illegal uses and preserves the offset:
1556 bh->b_data = (char *)(0 + offset);
1557 else
1558 bh->b_data = page_address(page) + offset;
1560 EXPORT_SYMBOL(set_bh_page);
1563 * Called when truncating a buffer on a page completely.
1565 static void discard_buffer(struct buffer_head * bh)
1567 lock_buffer(bh);
1568 clear_buffer_dirty(bh);
1569 bh->b_bdev = NULL;
1570 clear_buffer_mapped(bh);
1571 clear_buffer_req(bh);
1572 clear_buffer_new(bh);
1573 clear_buffer_delay(bh);
1574 unlock_buffer(bh);
1578 * try_to_release_page() - release old fs-specific metadata on a page
1580 * @page: the page which the kernel is trying to free
1581 * @gfp_mask: memory allocation flags (and I/O mode)
1583 * The address_space is to try to release any data against the page
1584 * (presumably at page->private). If the release was successful, return `1'.
1585 * Otherwise return zero.
1587 * The @gfp_mask argument specifies whether I/O may be performed to release
1588 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1590 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1592 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1594 struct address_space * const mapping = page->mapping;
1596 BUG_ON(!PageLocked(page));
1597 if (PageWriteback(page))
1598 return 0;
1600 if (mapping && mapping->a_ops->releasepage)
1601 return mapping->a_ops->releasepage(page, gfp_mask);
1602 return try_to_free_buffers(page);
1604 EXPORT_SYMBOL(try_to_release_page);
1607 * block_invalidatepage - invalidate part of all of a buffer-backed page
1609 * @page: the page which is affected
1610 * @offset: the index of the truncation point
1612 * block_invalidatepage() is called when all or part of the page has become
1613 * invalidatedby a truncate operation.
1615 * block_invalidatepage() does not have to release all buffers, but it must
1616 * ensure that no dirty buffer is left outside @offset and that no I/O
1617 * is underway against any of the blocks which are outside the truncation
1618 * point. Because the caller is about to free (and possibly reuse) those
1619 * blocks on-disk.
1621 int block_invalidatepage(struct page *page, unsigned long offset)
1623 struct buffer_head *head, *bh, *next;
1624 unsigned int curr_off = 0;
1625 int ret = 1;
1627 BUG_ON(!PageLocked(page));
1628 if (!page_has_buffers(page))
1629 goto out;
1631 head = page_buffers(page);
1632 bh = head;
1633 do {
1634 unsigned int next_off = curr_off + bh->b_size;
1635 next = bh->b_this_page;
1638 * is this block fully invalidated?
1640 if (offset <= curr_off)
1641 discard_buffer(bh);
1642 curr_off = next_off;
1643 bh = next;
1644 } while (bh != head);
1647 * We release buffers only if the entire page is being invalidated.
1648 * The get_block cached value has been unconditionally invalidated,
1649 * so real IO is not possible anymore.
1651 if (offset == 0)
1652 ret = try_to_release_page(page, 0);
1653 out:
1654 return ret;
1656 EXPORT_SYMBOL(block_invalidatepage);
1658 int do_invalidatepage(struct page *page, unsigned long offset)
1660 int (*invalidatepage)(struct page *, unsigned long);
1661 invalidatepage = page->mapping->a_ops->invalidatepage;
1662 if (invalidatepage == NULL)
1663 invalidatepage = block_invalidatepage;
1664 return (*invalidatepage)(page, offset);
1668 * We attach and possibly dirty the buffers atomically wrt
1669 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1670 * is already excluded via the page lock.
1672 void create_empty_buffers(struct page *page,
1673 unsigned long blocksize, unsigned long b_state)
1675 struct buffer_head *bh, *head, *tail;
1677 head = alloc_page_buffers(page, blocksize, 1);
1678 bh = head;
1679 do {
1680 bh->b_state |= b_state;
1681 tail = bh;
1682 bh = bh->b_this_page;
1683 } while (bh);
1684 tail->b_this_page = head;
1686 spin_lock(&page->mapping->private_lock);
1687 if (PageUptodate(page) || PageDirty(page)) {
1688 bh = head;
1689 do {
1690 if (PageDirty(page))
1691 set_buffer_dirty(bh);
1692 if (PageUptodate(page))
1693 set_buffer_uptodate(bh);
1694 bh = bh->b_this_page;
1695 } while (bh != head);
1697 attach_page_buffers(page, head);
1698 spin_unlock(&page->mapping->private_lock);
1700 EXPORT_SYMBOL(create_empty_buffers);
1703 * We are taking a block for data and we don't want any output from any
1704 * buffer-cache aliases starting from return from that function and
1705 * until the moment when something will explicitly mark the buffer
1706 * dirty (hopefully that will not happen until we will free that block ;-)
1707 * We don't even need to mark it not-uptodate - nobody can expect
1708 * anything from a newly allocated buffer anyway. We used to used
1709 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1710 * don't want to mark the alias unmapped, for example - it would confuse
1711 * anyone who might pick it with bread() afterwards...
1713 * Also.. Note that bforget() doesn't lock the buffer. So there can
1714 * be writeout I/O going on against recently-freed buffers. We don't
1715 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1716 * only if we really need to. That happens here.
1718 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1720 struct buffer_head *old_bh;
1722 might_sleep();
1724 old_bh = __find_get_block_slow(bdev, block);
1725 if (old_bh) {
1726 clear_buffer_dirty(old_bh);
1727 wait_on_buffer(old_bh);
1728 clear_buffer_req(old_bh);
1729 __brelse(old_bh);
1732 EXPORT_SYMBOL(unmap_underlying_metadata);
1735 * NOTE! All mapped/uptodate combinations are valid:
1737 * Mapped Uptodate Meaning
1739 * No No "unknown" - must do get_block()
1740 * No Yes "hole" - zero-filled
1741 * Yes No "allocated" - allocated on disk, not read in
1742 * Yes Yes "valid" - allocated and up-to-date in memory.
1744 * "Dirty" is valid only with the last case (mapped+uptodate).
1748 * While block_write_full_page is writing back the dirty buffers under
1749 * the page lock, whoever dirtied the buffers may decide to clean them
1750 * again at any time. We handle that by only looking at the buffer
1751 * state inside lock_buffer().
1753 * If block_write_full_page() is called for regular writeback
1754 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1755 * locked buffer. This only can happen if someone has written the buffer
1756 * directly, with submit_bh(). At the address_space level PageWriteback
1757 * prevents this contention from occurring.
1759 static int __block_write_full_page(struct inode *inode, struct page *page,
1760 get_block_t *get_block, struct writeback_control *wbc)
1762 int err;
1763 sector_t block;
1764 sector_t last_block;
1765 struct buffer_head *bh, *head;
1766 int nr_underway = 0;
1768 BUG_ON(!PageLocked(page));
1770 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1772 if (!page_has_buffers(page)) {
1773 create_empty_buffers(page, 1 << inode->i_blkbits,
1774 (1 << BH_Dirty)|(1 << BH_Uptodate));
1778 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1779 * here, and the (potentially unmapped) buffers may become dirty at
1780 * any time. If a buffer becomes dirty here after we've inspected it
1781 * then we just miss that fact, and the page stays dirty.
1783 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1784 * handle that here by just cleaning them.
1787 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1788 head = page_buffers(page);
1789 bh = head;
1792 * Get all the dirty buffers mapped to disk addresses and
1793 * handle any aliases from the underlying blockdev's mapping.
1795 do {
1796 if (block > last_block) {
1798 * mapped buffers outside i_size will occur, because
1799 * this page can be outside i_size when there is a
1800 * truncate in progress.
1803 * The buffer was zeroed by block_write_full_page()
1805 clear_buffer_dirty(bh);
1806 set_buffer_uptodate(bh);
1807 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1808 err = get_block(inode, block, bh, 1);
1809 if (err)
1810 goto recover;
1811 if (buffer_new(bh)) {
1812 /* blockdev mappings never come here */
1813 clear_buffer_new(bh);
1814 unmap_underlying_metadata(bh->b_bdev,
1815 bh->b_blocknr);
1818 bh = bh->b_this_page;
1819 block++;
1820 } while (bh != head);
1822 do {
1823 if (!buffer_mapped(bh))
1824 continue;
1826 * If it's a fully non-blocking write attempt and we cannot
1827 * lock the buffer then redirty the page. Note that this can
1828 * potentially cause a busy-wait loop from pdflush and kswapd
1829 * activity, but those code paths have their own higher-level
1830 * throttling.
1832 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1833 lock_buffer(bh);
1834 } else if (test_set_buffer_locked(bh)) {
1835 redirty_page_for_writepage(wbc, page);
1836 continue;
1838 if (test_clear_buffer_dirty(bh)) {
1839 mark_buffer_async_write(bh);
1840 } else {
1841 unlock_buffer(bh);
1843 } while ((bh = bh->b_this_page) != head);
1846 * The page and its buffers are protected by PageWriteback(), so we can
1847 * drop the bh refcounts early.
1849 BUG_ON(PageWriteback(page));
1850 set_page_writeback(page);
1852 do {
1853 struct buffer_head *next = bh->b_this_page;
1854 if (buffer_async_write(bh)) {
1855 submit_bh(WRITE, bh);
1856 nr_underway++;
1858 bh = next;
1859 } while (bh != head);
1860 unlock_page(page);
1862 err = 0;
1863 done:
1864 if (nr_underway == 0) {
1866 * The page was marked dirty, but the buffers were
1867 * clean. Someone wrote them back by hand with
1868 * ll_rw_block/submit_bh. A rare case.
1870 int uptodate = 1;
1871 do {
1872 if (!buffer_uptodate(bh)) {
1873 uptodate = 0;
1874 break;
1876 bh = bh->b_this_page;
1877 } while (bh != head);
1878 if (uptodate)
1879 SetPageUptodate(page);
1880 end_page_writeback(page);
1882 * The page and buffer_heads can be released at any time from
1883 * here on.
1885 wbc->pages_skipped++; /* We didn't write this page */
1887 return err;
1889 recover:
1891 * ENOSPC, or some other error. We may already have added some
1892 * blocks to the file, so we need to write these out to avoid
1893 * exposing stale data.
1894 * The page is currently locked and not marked for writeback
1896 bh = head;
1897 /* Recovery: lock and submit the mapped buffers */
1898 do {
1899 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1900 lock_buffer(bh);
1901 mark_buffer_async_write(bh);
1902 } else {
1904 * The buffer may have been set dirty during
1905 * attachment to a dirty page.
1907 clear_buffer_dirty(bh);
1909 } while ((bh = bh->b_this_page) != head);
1910 SetPageError(page);
1911 BUG_ON(PageWriteback(page));
1912 set_page_writeback(page);
1913 unlock_page(page);
1914 do {
1915 struct buffer_head *next = bh->b_this_page;
1916 if (buffer_async_write(bh)) {
1917 clear_buffer_dirty(bh);
1918 submit_bh(WRITE, bh);
1919 nr_underway++;
1921 bh = next;
1922 } while (bh != head);
1923 goto done;
1926 static int __block_prepare_write(struct inode *inode, struct page *page,
1927 unsigned from, unsigned to, get_block_t *get_block)
1929 unsigned block_start, block_end;
1930 sector_t block;
1931 int err = 0;
1932 unsigned blocksize, bbits;
1933 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1935 BUG_ON(!PageLocked(page));
1936 BUG_ON(from > PAGE_CACHE_SIZE);
1937 BUG_ON(to > PAGE_CACHE_SIZE);
1938 BUG_ON(from > to);
1940 blocksize = 1 << inode->i_blkbits;
1941 if (!page_has_buffers(page))
1942 create_empty_buffers(page, blocksize, 0);
1943 head = page_buffers(page);
1945 bbits = inode->i_blkbits;
1946 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1948 for(bh = head, block_start = 0; bh != head || !block_start;
1949 block++, block_start=block_end, bh = bh->b_this_page) {
1950 block_end = block_start + blocksize;
1951 if (block_end <= from || block_start >= to) {
1952 if (PageUptodate(page)) {
1953 if (!buffer_uptodate(bh))
1954 set_buffer_uptodate(bh);
1956 continue;
1958 if (buffer_new(bh))
1959 clear_buffer_new(bh);
1960 if (!buffer_mapped(bh)) {
1961 err = get_block(inode, block, bh, 1);
1962 if (err)
1963 break;
1964 if (buffer_new(bh)) {
1965 unmap_underlying_metadata(bh->b_bdev,
1966 bh->b_blocknr);
1967 if (PageUptodate(page)) {
1968 set_buffer_uptodate(bh);
1969 continue;
1971 if (block_end > to || block_start < from) {
1972 void *kaddr;
1974 kaddr = kmap_atomic(page, KM_USER0);
1975 if (block_end > to)
1976 memset(kaddr+to, 0,
1977 block_end-to);
1978 if (block_start < from)
1979 memset(kaddr+block_start,
1980 0, from-block_start);
1981 flush_dcache_page(page);
1982 kunmap_atomic(kaddr, KM_USER0);
1984 continue;
1987 if (PageUptodate(page)) {
1988 if (!buffer_uptodate(bh))
1989 set_buffer_uptodate(bh);
1990 continue;
1992 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1993 (block_start < from || block_end > to)) {
1994 ll_rw_block(READ, 1, &bh);
1995 *wait_bh++=bh;
1999 * If we issued read requests - let them complete.
2001 while(wait_bh > wait) {
2002 wait_on_buffer(*--wait_bh);
2003 if (!buffer_uptodate(*wait_bh))
2004 err = -EIO;
2006 if (!err) {
2007 bh = head;
2008 do {
2009 if (buffer_new(bh))
2010 clear_buffer_new(bh);
2011 } while ((bh = bh->b_this_page) != head);
2012 return 0;
2014 /* Error case: */
2016 * Zero out any newly allocated blocks to avoid exposing stale
2017 * data. If BH_New is set, we know that the block was newly
2018 * allocated in the above loop.
2020 bh = head;
2021 block_start = 0;
2022 do {
2023 block_end = block_start+blocksize;
2024 if (block_end <= from)
2025 goto next_bh;
2026 if (block_start >= to)
2027 break;
2028 if (buffer_new(bh)) {
2029 void *kaddr;
2031 clear_buffer_new(bh);
2032 kaddr = kmap_atomic(page, KM_USER0);
2033 memset(kaddr+block_start, 0, bh->b_size);
2034 kunmap_atomic(kaddr, KM_USER0);
2035 set_buffer_uptodate(bh);
2036 mark_buffer_dirty(bh);
2038 next_bh:
2039 block_start = block_end;
2040 bh = bh->b_this_page;
2041 } while (bh != head);
2042 return err;
2045 static int __block_commit_write(struct inode *inode, struct page *page,
2046 unsigned from, unsigned to)
2048 unsigned block_start, block_end;
2049 int partial = 0;
2050 unsigned blocksize;
2051 struct buffer_head *bh, *head;
2053 blocksize = 1 << inode->i_blkbits;
2055 for(bh = head = page_buffers(page), block_start = 0;
2056 bh != head || !block_start;
2057 block_start=block_end, bh = bh->b_this_page) {
2058 block_end = block_start + blocksize;
2059 if (block_end <= from || block_start >= to) {
2060 if (!buffer_uptodate(bh))
2061 partial = 1;
2062 } else {
2063 set_buffer_uptodate(bh);
2064 mark_buffer_dirty(bh);
2069 * If this is a partial write which happened to make all buffers
2070 * uptodate then we can optimize away a bogus readpage() for
2071 * the next read(). Here we 'discover' whether the page went
2072 * uptodate as a result of this (potentially partial) write.
2074 if (!partial)
2075 SetPageUptodate(page);
2076 return 0;
2080 * Generic "read page" function for block devices that have the normal
2081 * get_block functionality. This is most of the block device filesystems.
2082 * Reads the page asynchronously --- the unlock_buffer() and
2083 * set/clear_buffer_uptodate() functions propagate buffer state into the
2084 * page struct once IO has completed.
2086 int block_read_full_page(struct page *page, get_block_t *get_block)
2088 struct inode *inode = page->mapping->host;
2089 sector_t iblock, lblock;
2090 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2091 unsigned int blocksize;
2092 int nr, i;
2093 int fully_mapped = 1;
2095 BUG_ON(!PageLocked(page));
2096 blocksize = 1 << inode->i_blkbits;
2097 if (!page_has_buffers(page))
2098 create_empty_buffers(page, blocksize, 0);
2099 head = page_buffers(page);
2101 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2102 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2103 bh = head;
2104 nr = 0;
2105 i = 0;
2107 do {
2108 if (buffer_uptodate(bh))
2109 continue;
2111 if (!buffer_mapped(bh)) {
2112 int err = 0;
2114 fully_mapped = 0;
2115 if (iblock < lblock) {
2116 err = get_block(inode, iblock, bh, 0);
2117 if (err)
2118 SetPageError(page);
2120 if (!buffer_mapped(bh)) {
2121 void *kaddr = kmap_atomic(page, KM_USER0);
2122 memset(kaddr + i * blocksize, 0, blocksize);
2123 flush_dcache_page(page);
2124 kunmap_atomic(kaddr, KM_USER0);
2125 if (!err)
2126 set_buffer_uptodate(bh);
2127 continue;
2130 * get_block() might have updated the buffer
2131 * synchronously
2133 if (buffer_uptodate(bh))
2134 continue;
2136 arr[nr++] = bh;
2137 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2139 if (fully_mapped)
2140 SetPageMappedToDisk(page);
2142 if (!nr) {
2144 * All buffers are uptodate - we can set the page uptodate
2145 * as well. But not if get_block() returned an error.
2147 if (!PageError(page))
2148 SetPageUptodate(page);
2149 unlock_page(page);
2150 return 0;
2153 /* Stage two: lock the buffers */
2154 for (i = 0; i < nr; i++) {
2155 bh = arr[i];
2156 lock_buffer(bh);
2157 mark_buffer_async_read(bh);
2161 * Stage 3: start the IO. Check for uptodateness
2162 * inside the buffer lock in case another process reading
2163 * the underlying blockdev brought it uptodate (the sct fix).
2165 for (i = 0; i < nr; i++) {
2166 bh = arr[i];
2167 if (buffer_uptodate(bh))
2168 end_buffer_async_read(bh, 1);
2169 else
2170 submit_bh(READ, bh);
2172 return 0;
2175 /* utility function for filesystems that need to do work on expanding
2176 * truncates. Uses prepare/commit_write to allow the filesystem to
2177 * deal with the hole.
2179 static int __generic_cont_expand(struct inode *inode, loff_t size,
2180 pgoff_t index, unsigned int offset)
2182 struct address_space *mapping = inode->i_mapping;
2183 struct page *page;
2184 unsigned long limit;
2185 int err;
2187 err = -EFBIG;
2188 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2189 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2190 send_sig(SIGXFSZ, current, 0);
2191 goto out;
2193 if (size > inode->i_sb->s_maxbytes)
2194 goto out;
2196 err = -ENOMEM;
2197 page = grab_cache_page(mapping, index);
2198 if (!page)
2199 goto out;
2200 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2201 if (err) {
2203 * ->prepare_write() may have instantiated a few blocks
2204 * outside i_size. Trim these off again.
2206 unlock_page(page);
2207 page_cache_release(page);
2208 vmtruncate(inode, inode->i_size);
2209 goto out;
2212 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2214 unlock_page(page);
2215 page_cache_release(page);
2216 if (err > 0)
2217 err = 0;
2218 out:
2219 return err;
2222 int generic_cont_expand(struct inode *inode, loff_t size)
2224 pgoff_t index;
2225 unsigned int offset;
2227 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2229 /* ugh. in prepare/commit_write, if from==to==start of block, we
2230 ** skip the prepare. make sure we never send an offset for the start
2231 ** of a block
2233 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2234 /* caller must handle this extra byte. */
2235 offset++;
2237 index = size >> PAGE_CACHE_SHIFT;
2239 return __generic_cont_expand(inode, size, index, offset);
2242 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2244 loff_t pos = size - 1;
2245 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2246 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2248 /* prepare/commit_write can handle even if from==to==start of block. */
2249 return __generic_cont_expand(inode, size, index, offset);
2253 * For moronic filesystems that do not allow holes in file.
2254 * We may have to extend the file.
2257 int cont_prepare_write(struct page *page, unsigned offset,
2258 unsigned to, get_block_t *get_block, loff_t *bytes)
2260 struct address_space *mapping = page->mapping;
2261 struct inode *inode = mapping->host;
2262 struct page *new_page;
2263 pgoff_t pgpos;
2264 long status;
2265 unsigned zerofrom;
2266 unsigned blocksize = 1 << inode->i_blkbits;
2267 void *kaddr;
2269 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2270 status = -ENOMEM;
2271 new_page = grab_cache_page(mapping, pgpos);
2272 if (!new_page)
2273 goto out;
2274 /* we might sleep */
2275 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2276 unlock_page(new_page);
2277 page_cache_release(new_page);
2278 continue;
2280 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2281 if (zerofrom & (blocksize-1)) {
2282 *bytes |= (blocksize-1);
2283 (*bytes)++;
2285 status = __block_prepare_write(inode, new_page, zerofrom,
2286 PAGE_CACHE_SIZE, get_block);
2287 if (status)
2288 goto out_unmap;
2289 kaddr = kmap_atomic(new_page, KM_USER0);
2290 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2291 flush_dcache_page(new_page);
2292 kunmap_atomic(kaddr, KM_USER0);
2293 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2294 unlock_page(new_page);
2295 page_cache_release(new_page);
2298 if (page->index < pgpos) {
2299 /* completely inside the area */
2300 zerofrom = offset;
2301 } else {
2302 /* page covers the boundary, find the boundary offset */
2303 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2305 /* if we will expand the thing last block will be filled */
2306 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2307 *bytes |= (blocksize-1);
2308 (*bytes)++;
2311 /* starting below the boundary? Nothing to zero out */
2312 if (offset <= zerofrom)
2313 zerofrom = offset;
2315 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2316 if (status)
2317 goto out1;
2318 if (zerofrom < offset) {
2319 kaddr = kmap_atomic(page, KM_USER0);
2320 memset(kaddr+zerofrom, 0, offset-zerofrom);
2321 flush_dcache_page(page);
2322 kunmap_atomic(kaddr, KM_USER0);
2323 __block_commit_write(inode, page, zerofrom, offset);
2325 return 0;
2326 out1:
2327 ClearPageUptodate(page);
2328 return status;
2330 out_unmap:
2331 ClearPageUptodate(new_page);
2332 unlock_page(new_page);
2333 page_cache_release(new_page);
2334 out:
2335 return status;
2338 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2339 get_block_t *get_block)
2341 struct inode *inode = page->mapping->host;
2342 int err = __block_prepare_write(inode, page, from, to, get_block);
2343 if (err)
2344 ClearPageUptodate(page);
2345 return err;
2348 int block_commit_write(struct page *page, unsigned from, unsigned to)
2350 struct inode *inode = page->mapping->host;
2351 __block_commit_write(inode,page,from,to);
2352 return 0;
2355 int generic_commit_write(struct file *file, struct page *page,
2356 unsigned from, unsigned to)
2358 struct inode *inode = page->mapping->host;
2359 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2360 __block_commit_write(inode,page,from,to);
2362 * No need to use i_size_read() here, the i_size
2363 * cannot change under us because we hold i_mutex.
2365 if (pos > inode->i_size) {
2366 i_size_write(inode, pos);
2367 mark_inode_dirty(inode);
2369 return 0;
2374 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2375 * immediately, while under the page lock. So it needs a special end_io
2376 * handler which does not touch the bh after unlocking it.
2378 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2379 * a race there is benign: unlock_buffer() only use the bh's address for
2380 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2381 * itself.
2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2385 if (uptodate) {
2386 set_buffer_uptodate(bh);
2387 } else {
2388 /* This happens, due to failed READA attempts. */
2389 clear_buffer_uptodate(bh);
2391 unlock_buffer(bh);
2395 * On entry, the page is fully not uptodate.
2396 * On exit the page is fully uptodate in the areas outside (from,to)
2398 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2399 get_block_t *get_block)
2401 struct inode *inode = page->mapping->host;
2402 const unsigned blkbits = inode->i_blkbits;
2403 const unsigned blocksize = 1 << blkbits;
2404 struct buffer_head map_bh;
2405 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2406 unsigned block_in_page;
2407 unsigned block_start;
2408 sector_t block_in_file;
2409 char *kaddr;
2410 int nr_reads = 0;
2411 int i;
2412 int ret = 0;
2413 int is_mapped_to_disk = 1;
2414 int dirtied_it = 0;
2416 if (PageMappedToDisk(page))
2417 return 0;
2419 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2420 map_bh.b_page = page;
2423 * We loop across all blocks in the page, whether or not they are
2424 * part of the affected region. This is so we can discover if the
2425 * page is fully mapped-to-disk.
2427 for (block_start = 0, block_in_page = 0;
2428 block_start < PAGE_CACHE_SIZE;
2429 block_in_page++, block_start += blocksize) {
2430 unsigned block_end = block_start + blocksize;
2431 int create;
2433 map_bh.b_state = 0;
2434 create = 1;
2435 if (block_start >= to)
2436 create = 0;
2437 ret = get_block(inode, block_in_file + block_in_page,
2438 &map_bh, create);
2439 if (ret)
2440 goto failed;
2441 if (!buffer_mapped(&map_bh))
2442 is_mapped_to_disk = 0;
2443 if (buffer_new(&map_bh))
2444 unmap_underlying_metadata(map_bh.b_bdev,
2445 map_bh.b_blocknr);
2446 if (PageUptodate(page))
2447 continue;
2448 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2449 kaddr = kmap_atomic(page, KM_USER0);
2450 if (block_start < from) {
2451 memset(kaddr+block_start, 0, from-block_start);
2452 dirtied_it = 1;
2454 if (block_end > to) {
2455 memset(kaddr + to, 0, block_end - to);
2456 dirtied_it = 1;
2458 flush_dcache_page(page);
2459 kunmap_atomic(kaddr, KM_USER0);
2460 continue;
2462 if (buffer_uptodate(&map_bh))
2463 continue; /* reiserfs does this */
2464 if (block_start < from || block_end > to) {
2465 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2467 if (!bh) {
2468 ret = -ENOMEM;
2469 goto failed;
2471 bh->b_state = map_bh.b_state;
2472 atomic_set(&bh->b_count, 0);
2473 bh->b_this_page = NULL;
2474 bh->b_page = page;
2475 bh->b_blocknr = map_bh.b_blocknr;
2476 bh->b_size = blocksize;
2477 bh->b_data = (char *)(long)block_start;
2478 bh->b_bdev = map_bh.b_bdev;
2479 bh->b_private = NULL;
2480 read_bh[nr_reads++] = bh;
2484 if (nr_reads) {
2485 struct buffer_head *bh;
2488 * The page is locked, so these buffers are protected from
2489 * any VM or truncate activity. Hence we don't need to care
2490 * for the buffer_head refcounts.
2492 for (i = 0; i < nr_reads; i++) {
2493 bh = read_bh[i];
2494 lock_buffer(bh);
2495 bh->b_end_io = end_buffer_read_nobh;
2496 submit_bh(READ, bh);
2498 for (i = 0; i < nr_reads; i++) {
2499 bh = read_bh[i];
2500 wait_on_buffer(bh);
2501 if (!buffer_uptodate(bh))
2502 ret = -EIO;
2503 free_buffer_head(bh);
2504 read_bh[i] = NULL;
2506 if (ret)
2507 goto failed;
2510 if (is_mapped_to_disk)
2511 SetPageMappedToDisk(page);
2512 SetPageUptodate(page);
2515 * Setting the page dirty here isn't necessary for the prepare_write
2516 * function - commit_write will do that. But if/when this function is
2517 * used within the pagefault handler to ensure that all mmapped pages
2518 * have backing space in the filesystem, we will need to dirty the page
2519 * if its contents were altered.
2521 if (dirtied_it)
2522 set_page_dirty(page);
2524 return 0;
2526 failed:
2527 for (i = 0; i < nr_reads; i++) {
2528 if (read_bh[i])
2529 free_buffer_head(read_bh[i]);
2533 * Error recovery is pretty slack. Clear the page and mark it dirty
2534 * so we'll later zero out any blocks which _were_ allocated.
2536 kaddr = kmap_atomic(page, KM_USER0);
2537 memset(kaddr, 0, PAGE_CACHE_SIZE);
2538 kunmap_atomic(kaddr, KM_USER0);
2539 SetPageUptodate(page);
2540 set_page_dirty(page);
2541 return ret;
2543 EXPORT_SYMBOL(nobh_prepare_write);
2545 int nobh_commit_write(struct file *file, struct page *page,
2546 unsigned from, unsigned to)
2548 struct inode *inode = page->mapping->host;
2549 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2551 set_page_dirty(page);
2552 if (pos > inode->i_size) {
2553 i_size_write(inode, pos);
2554 mark_inode_dirty(inode);
2556 return 0;
2558 EXPORT_SYMBOL(nobh_commit_write);
2561 * nobh_writepage() - based on block_full_write_page() except
2562 * that it tries to operate without attaching bufferheads to
2563 * the page.
2565 int nobh_writepage(struct page *page, get_block_t *get_block,
2566 struct writeback_control *wbc)
2568 struct inode * const inode = page->mapping->host;
2569 loff_t i_size = i_size_read(inode);
2570 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2571 unsigned offset;
2572 void *kaddr;
2573 int ret;
2575 /* Is the page fully inside i_size? */
2576 if (page->index < end_index)
2577 goto out;
2579 /* Is the page fully outside i_size? (truncate in progress) */
2580 offset = i_size & (PAGE_CACHE_SIZE-1);
2581 if (page->index >= end_index+1 || !offset) {
2583 * The page may have dirty, unmapped buffers. For example,
2584 * they may have been added in ext3_writepage(). Make them
2585 * freeable here, so the page does not leak.
2587 #if 0
2588 /* Not really sure about this - do we need this ? */
2589 if (page->mapping->a_ops->invalidatepage)
2590 page->mapping->a_ops->invalidatepage(page, offset);
2591 #endif
2592 unlock_page(page);
2593 return 0; /* don't care */
2597 * The page straddles i_size. It must be zeroed out on each and every
2598 * writepage invocation because it may be mmapped. "A file is mapped
2599 * in multiples of the page size. For a file that is not a multiple of
2600 * the page size, the remaining memory is zeroed when mapped, and
2601 * writes to that region are not written out to the file."
2603 kaddr = kmap_atomic(page, KM_USER0);
2604 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2605 flush_dcache_page(page);
2606 kunmap_atomic(kaddr, KM_USER0);
2607 out:
2608 ret = mpage_writepage(page, get_block, wbc);
2609 if (ret == -EAGAIN)
2610 ret = __block_write_full_page(inode, page, get_block, wbc);
2611 return ret;
2613 EXPORT_SYMBOL(nobh_writepage);
2616 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2618 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2620 struct inode *inode = mapping->host;
2621 unsigned blocksize = 1 << inode->i_blkbits;
2622 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2623 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2624 unsigned to;
2625 struct page *page;
2626 struct address_space_operations *a_ops = mapping->a_ops;
2627 char *kaddr;
2628 int ret = 0;
2630 if ((offset & (blocksize - 1)) == 0)
2631 goto out;
2633 ret = -ENOMEM;
2634 page = grab_cache_page(mapping, index);
2635 if (!page)
2636 goto out;
2638 to = (offset + blocksize) & ~(blocksize - 1);
2639 ret = a_ops->prepare_write(NULL, page, offset, to);
2640 if (ret == 0) {
2641 kaddr = kmap_atomic(page, KM_USER0);
2642 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2643 flush_dcache_page(page);
2644 kunmap_atomic(kaddr, KM_USER0);
2645 set_page_dirty(page);
2647 unlock_page(page);
2648 page_cache_release(page);
2649 out:
2650 return ret;
2652 EXPORT_SYMBOL(nobh_truncate_page);
2654 int block_truncate_page(struct address_space *mapping,
2655 loff_t from, get_block_t *get_block)
2657 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2658 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2659 unsigned blocksize;
2660 sector_t iblock;
2661 unsigned length, pos;
2662 struct inode *inode = mapping->host;
2663 struct page *page;
2664 struct buffer_head *bh;
2665 void *kaddr;
2666 int err;
2668 blocksize = 1 << inode->i_blkbits;
2669 length = offset & (blocksize - 1);
2671 /* Block boundary? Nothing to do */
2672 if (!length)
2673 return 0;
2675 length = blocksize - length;
2676 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2678 page = grab_cache_page(mapping, index);
2679 err = -ENOMEM;
2680 if (!page)
2681 goto out;
2683 if (!page_has_buffers(page))
2684 create_empty_buffers(page, blocksize, 0);
2686 /* Find the buffer that contains "offset" */
2687 bh = page_buffers(page);
2688 pos = blocksize;
2689 while (offset >= pos) {
2690 bh = bh->b_this_page;
2691 iblock++;
2692 pos += blocksize;
2695 err = 0;
2696 if (!buffer_mapped(bh)) {
2697 err = get_block(inode, iblock, bh, 0);
2698 if (err)
2699 goto unlock;
2700 /* unmapped? It's a hole - nothing to do */
2701 if (!buffer_mapped(bh))
2702 goto unlock;
2705 /* Ok, it's mapped. Make sure it's up-to-date */
2706 if (PageUptodate(page))
2707 set_buffer_uptodate(bh);
2709 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2710 err = -EIO;
2711 ll_rw_block(READ, 1, &bh);
2712 wait_on_buffer(bh);
2713 /* Uhhuh. Read error. Complain and punt. */
2714 if (!buffer_uptodate(bh))
2715 goto unlock;
2718 kaddr = kmap_atomic(page, KM_USER0);
2719 memset(kaddr + offset, 0, length);
2720 flush_dcache_page(page);
2721 kunmap_atomic(kaddr, KM_USER0);
2723 mark_buffer_dirty(bh);
2724 err = 0;
2726 unlock:
2727 unlock_page(page);
2728 page_cache_release(page);
2729 out:
2730 return err;
2734 * The generic ->writepage function for buffer-backed address_spaces
2736 int block_write_full_page(struct page *page, get_block_t *get_block,
2737 struct writeback_control *wbc)
2739 struct inode * const inode = page->mapping->host;
2740 loff_t i_size = i_size_read(inode);
2741 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2742 unsigned offset;
2743 void *kaddr;
2745 /* Is the page fully inside i_size? */
2746 if (page->index < end_index)
2747 return __block_write_full_page(inode, page, get_block, wbc);
2749 /* Is the page fully outside i_size? (truncate in progress) */
2750 offset = i_size & (PAGE_CACHE_SIZE-1);
2751 if (page->index >= end_index+1 || !offset) {
2753 * The page may have dirty, unmapped buffers. For example,
2754 * they may have been added in ext3_writepage(). Make them
2755 * freeable here, so the page does not leak.
2757 do_invalidatepage(page, 0);
2758 unlock_page(page);
2759 return 0; /* don't care */
2763 * The page straddles i_size. It must be zeroed out on each and every
2764 * writepage invokation because it may be mmapped. "A file is mapped
2765 * in multiples of the page size. For a file that is not a multiple of
2766 * the page size, the remaining memory is zeroed when mapped, and
2767 * writes to that region are not written out to the file."
2769 kaddr = kmap_atomic(page, KM_USER0);
2770 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2771 flush_dcache_page(page);
2772 kunmap_atomic(kaddr, KM_USER0);
2773 return __block_write_full_page(inode, page, get_block, wbc);
2776 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2777 get_block_t *get_block)
2779 struct buffer_head tmp;
2780 struct inode *inode = mapping->host;
2781 tmp.b_state = 0;
2782 tmp.b_blocknr = 0;
2783 get_block(inode, block, &tmp, 0);
2784 return tmp.b_blocknr;
2787 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2789 struct buffer_head *bh = bio->bi_private;
2791 if (bio->bi_size)
2792 return 1;
2794 if (err == -EOPNOTSUPP) {
2795 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2796 set_bit(BH_Eopnotsupp, &bh->b_state);
2799 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2800 bio_put(bio);
2801 return 0;
2804 int submit_bh(int rw, struct buffer_head * bh)
2806 struct bio *bio;
2807 int ret = 0;
2809 BUG_ON(!buffer_locked(bh));
2810 BUG_ON(!buffer_mapped(bh));
2811 BUG_ON(!bh->b_end_io);
2813 if (buffer_ordered(bh) && (rw == WRITE))
2814 rw = WRITE_BARRIER;
2817 * Only clear out a write error when rewriting, should this
2818 * include WRITE_SYNC as well?
2820 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2821 clear_buffer_write_io_error(bh);
2824 * from here on down, it's all bio -- do the initial mapping,
2825 * submit_bio -> generic_make_request may further map this bio around
2827 bio = bio_alloc(GFP_NOIO, 1);
2829 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2830 bio->bi_bdev = bh->b_bdev;
2831 bio->bi_io_vec[0].bv_page = bh->b_page;
2832 bio->bi_io_vec[0].bv_len = bh->b_size;
2833 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2835 bio->bi_vcnt = 1;
2836 bio->bi_idx = 0;
2837 bio->bi_size = bh->b_size;
2839 bio->bi_end_io = end_bio_bh_io_sync;
2840 bio->bi_private = bh;
2842 bio_get(bio);
2843 submit_bio(rw, bio);
2845 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2846 ret = -EOPNOTSUPP;
2848 bio_put(bio);
2849 return ret;
2853 * ll_rw_block: low-level access to block devices (DEPRECATED)
2854 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2855 * @nr: number of &struct buffer_heads in the array
2856 * @bhs: array of pointers to &struct buffer_head
2858 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2859 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2860 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2861 * are sent to disk. The fourth %READA option is described in the documentation
2862 * for generic_make_request() which ll_rw_block() calls.
2864 * This function drops any buffer that it cannot get a lock on (with the
2865 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2866 * clean when doing a write request, and any buffer that appears to be
2867 * up-to-date when doing read request. Further it marks as clean buffers that
2868 * are processed for writing (the buffer cache won't assume that they are
2869 * actually clean until the buffer gets unlocked).
2871 * ll_rw_block sets b_end_io to simple completion handler that marks
2872 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2873 * any waiters.
2875 * All of the buffers must be for the same device, and must also be a
2876 * multiple of the current approved size for the device.
2878 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2880 int i;
2882 for (i = 0; i < nr; i++) {
2883 struct buffer_head *bh = bhs[i];
2885 if (rw == SWRITE)
2886 lock_buffer(bh);
2887 else if (test_set_buffer_locked(bh))
2888 continue;
2890 if (rw == WRITE || rw == SWRITE) {
2891 if (test_clear_buffer_dirty(bh)) {
2892 bh->b_end_io = end_buffer_write_sync;
2893 get_bh(bh);
2894 submit_bh(WRITE, bh);
2895 continue;
2897 } else {
2898 if (!buffer_uptodate(bh)) {
2899 bh->b_end_io = end_buffer_read_sync;
2900 get_bh(bh);
2901 submit_bh(rw, bh);
2902 continue;
2905 unlock_buffer(bh);
2910 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2911 * and then start new I/O and then wait upon it. The caller must have a ref on
2912 * the buffer_head.
2914 int sync_dirty_buffer(struct buffer_head *bh)
2916 int ret = 0;
2918 WARN_ON(atomic_read(&bh->b_count) < 1);
2919 lock_buffer(bh);
2920 if (test_clear_buffer_dirty(bh)) {
2921 get_bh(bh);
2922 bh->b_end_io = end_buffer_write_sync;
2923 ret = submit_bh(WRITE, bh);
2924 wait_on_buffer(bh);
2925 if (buffer_eopnotsupp(bh)) {
2926 clear_buffer_eopnotsupp(bh);
2927 ret = -EOPNOTSUPP;
2929 if (!ret && !buffer_uptodate(bh))
2930 ret = -EIO;
2931 } else {
2932 unlock_buffer(bh);
2934 return ret;
2938 * try_to_free_buffers() checks if all the buffers on this particular page
2939 * are unused, and releases them if so.
2941 * Exclusion against try_to_free_buffers may be obtained by either
2942 * locking the page or by holding its mapping's private_lock.
2944 * If the page is dirty but all the buffers are clean then we need to
2945 * be sure to mark the page clean as well. This is because the page
2946 * may be against a block device, and a later reattachment of buffers
2947 * to a dirty page will set *all* buffers dirty. Which would corrupt
2948 * filesystem data on the same device.
2950 * The same applies to regular filesystem pages: if all the buffers are
2951 * clean then we set the page clean and proceed. To do that, we require
2952 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2953 * private_lock.
2955 * try_to_free_buffers() is non-blocking.
2957 static inline int buffer_busy(struct buffer_head *bh)
2959 return atomic_read(&bh->b_count) |
2960 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2963 static int
2964 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2966 struct buffer_head *head = page_buffers(page);
2967 struct buffer_head *bh;
2969 bh = head;
2970 do {
2971 if (buffer_write_io_error(bh) && page->mapping)
2972 set_bit(AS_EIO, &page->mapping->flags);
2973 if (buffer_busy(bh))
2974 goto failed;
2975 bh = bh->b_this_page;
2976 } while (bh != head);
2978 do {
2979 struct buffer_head *next = bh->b_this_page;
2981 if (!list_empty(&bh->b_assoc_buffers))
2982 __remove_assoc_queue(bh);
2983 bh = next;
2984 } while (bh != head);
2985 *buffers_to_free = head;
2986 __clear_page_buffers(page);
2987 return 1;
2988 failed:
2989 return 0;
2992 int try_to_free_buffers(struct page *page)
2994 struct address_space * const mapping = page->mapping;
2995 struct buffer_head *buffers_to_free = NULL;
2996 int ret = 0;
2998 BUG_ON(!PageLocked(page));
2999 if (PageWriteback(page))
3000 return 0;
3002 if (mapping == NULL) { /* can this still happen? */
3003 ret = drop_buffers(page, &buffers_to_free);
3004 goto out;
3007 spin_lock(&mapping->private_lock);
3008 ret = drop_buffers(page, &buffers_to_free);
3009 if (ret) {
3011 * If the filesystem writes its buffers by hand (eg ext3)
3012 * then we can have clean buffers against a dirty page. We
3013 * clean the page here; otherwise later reattachment of buffers
3014 * could encounter a non-uptodate page, which is unresolvable.
3015 * This only applies in the rare case where try_to_free_buffers
3016 * succeeds but the page is not freed.
3018 clear_page_dirty(page);
3020 spin_unlock(&mapping->private_lock);
3021 out:
3022 if (buffers_to_free) {
3023 struct buffer_head *bh = buffers_to_free;
3025 do {
3026 struct buffer_head *next = bh->b_this_page;
3027 free_buffer_head(bh);
3028 bh = next;
3029 } while (bh != buffers_to_free);
3031 return ret;
3033 EXPORT_SYMBOL(try_to_free_buffers);
3035 int block_sync_page(struct page *page)
3037 struct address_space *mapping;
3039 smp_mb();
3040 mapping = page_mapping(page);
3041 if (mapping)
3042 blk_run_backing_dev(mapping->backing_dev_info, page);
3043 return 0;
3047 * There are no bdflush tunables left. But distributions are
3048 * still running obsolete flush daemons, so we terminate them here.
3050 * Use of bdflush() is deprecated and will be removed in a future kernel.
3051 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3053 asmlinkage long sys_bdflush(int func, long data)
3055 static int msg_count;
3057 if (!capable(CAP_SYS_ADMIN))
3058 return -EPERM;
3060 if (msg_count < 5) {
3061 msg_count++;
3062 printk(KERN_INFO
3063 "warning: process `%s' used the obsolete bdflush"
3064 " system call\n", current->comm);
3065 printk(KERN_INFO "Fix your initscripts?\n");
3068 if (func == 1)
3069 do_exit(0);
3070 return 0;
3074 * Migration function for pages with buffers. This function can only be used
3075 * if the underlying filesystem guarantees that no other references to "page"
3076 * exist.
3078 #ifdef CONFIG_MIGRATION
3079 int buffer_migrate_page(struct page *newpage, struct page *page)
3081 struct address_space *mapping = page->mapping;
3082 struct buffer_head *bh, *head;
3083 int rc;
3085 if (!mapping)
3086 return -EAGAIN;
3088 if (!page_has_buffers(page))
3089 return migrate_page(newpage, page);
3091 head = page_buffers(page);
3093 rc = migrate_page_remove_references(newpage, page, 3);
3094 if (rc)
3095 return rc;
3097 bh = head;
3098 do {
3099 get_bh(bh);
3100 lock_buffer(bh);
3101 bh = bh->b_this_page;
3103 } while (bh != head);
3105 ClearPagePrivate(page);
3106 set_page_private(newpage, page_private(page));
3107 set_page_private(page, 0);
3108 put_page(page);
3109 get_page(newpage);
3111 bh = head;
3112 do {
3113 set_bh_page(bh, newpage, bh_offset(bh));
3114 bh = bh->b_this_page;
3116 } while (bh != head);
3118 SetPagePrivate(newpage);
3120 migrate_page_copy(newpage, page);
3122 bh = head;
3123 do {
3124 unlock_buffer(bh);
3125 put_bh(bh);
3126 bh = bh->b_this_page;
3128 } while (bh != head);
3130 return 0;
3132 EXPORT_SYMBOL(buffer_migrate_page);
3133 #endif
3136 * Buffer-head allocation
3138 static kmem_cache_t *bh_cachep;
3141 * Once the number of bh's in the machine exceeds this level, we start
3142 * stripping them in writeback.
3144 static int max_buffer_heads;
3146 int buffer_heads_over_limit;
3148 struct bh_accounting {
3149 int nr; /* Number of live bh's */
3150 int ratelimit; /* Limit cacheline bouncing */
3153 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3155 static void recalc_bh_state(void)
3157 int i;
3158 int tot = 0;
3160 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3161 return;
3162 __get_cpu_var(bh_accounting).ratelimit = 0;
3163 for_each_cpu(i)
3164 tot += per_cpu(bh_accounting, i).nr;
3165 buffer_heads_over_limit = (tot > max_buffer_heads);
3168 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3170 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3171 if (ret) {
3172 get_cpu_var(bh_accounting).nr++;
3173 recalc_bh_state();
3174 put_cpu_var(bh_accounting);
3176 return ret;
3178 EXPORT_SYMBOL(alloc_buffer_head);
3180 void free_buffer_head(struct buffer_head *bh)
3182 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3183 kmem_cache_free(bh_cachep, bh);
3184 get_cpu_var(bh_accounting).nr--;
3185 recalc_bh_state();
3186 put_cpu_var(bh_accounting);
3188 EXPORT_SYMBOL(free_buffer_head);
3190 static void
3191 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3193 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3194 SLAB_CTOR_CONSTRUCTOR) {
3195 struct buffer_head * bh = (struct buffer_head *)data;
3197 memset(bh, 0, sizeof(*bh));
3198 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3202 #ifdef CONFIG_HOTPLUG_CPU
3203 static void buffer_exit_cpu(int cpu)
3205 int i;
3206 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3208 for (i = 0; i < BH_LRU_SIZE; i++) {
3209 brelse(b->bhs[i]);
3210 b->bhs[i] = NULL;
3214 static int buffer_cpu_notify(struct notifier_block *self,
3215 unsigned long action, void *hcpu)
3217 if (action == CPU_DEAD)
3218 buffer_exit_cpu((unsigned long)hcpu);
3219 return NOTIFY_OK;
3221 #endif /* CONFIG_HOTPLUG_CPU */
3223 void __init buffer_init(void)
3225 int nrpages;
3227 bh_cachep = kmem_cache_create("buffer_head",
3228 sizeof(struct buffer_head), 0,
3229 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3232 * Limit the bh occupancy to 10% of ZONE_NORMAL
3234 nrpages = (nr_free_buffer_pages() * 10) / 100;
3235 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3236 hotcpu_notifier(buffer_cpu_notify, 0);
3239 EXPORT_SYMBOL(__bforget);
3240 EXPORT_SYMBOL(__brelse);
3241 EXPORT_SYMBOL(__wait_on_buffer);
3242 EXPORT_SYMBOL(block_commit_write);
3243 EXPORT_SYMBOL(block_prepare_write);
3244 EXPORT_SYMBOL(block_read_full_page);
3245 EXPORT_SYMBOL(block_sync_page);
3246 EXPORT_SYMBOL(block_truncate_page);
3247 EXPORT_SYMBOL(block_write_full_page);
3248 EXPORT_SYMBOL(cont_prepare_write);
3249 EXPORT_SYMBOL(end_buffer_async_write);
3250 EXPORT_SYMBOL(end_buffer_read_sync);
3251 EXPORT_SYMBOL(end_buffer_write_sync);
3252 EXPORT_SYMBOL(file_fsync);
3253 EXPORT_SYMBOL(fsync_bdev);
3254 EXPORT_SYMBOL(generic_block_bmap);
3255 EXPORT_SYMBOL(generic_commit_write);
3256 EXPORT_SYMBOL(generic_cont_expand);
3257 EXPORT_SYMBOL(generic_cont_expand_simple);
3258 EXPORT_SYMBOL(init_buffer);
3259 EXPORT_SYMBOL(invalidate_bdev);
3260 EXPORT_SYMBOL(ll_rw_block);
3261 EXPORT_SYMBOL(mark_buffer_dirty);
3262 EXPORT_SYMBOL(submit_bh);
3263 EXPORT_SYMBOL(sync_dirty_buffer);
3264 EXPORT_SYMBOL(unlock_buffer);