2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
44 * For the allocated request tables
46 static kmem_cache_t
*request_cachep
;
49 * For queue allocation
51 static kmem_cache_t
*requestq_cachep
;
54 * For io context allocations
56 static kmem_cache_t
*iocontext_cachep
;
58 static wait_queue_head_t congestion_wqh
[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct
*kblockd_workqueue
;
68 unsigned long blk_max_low_pfn
, blk_max_pfn
;
70 EXPORT_SYMBOL(blk_max_low_pfn
);
71 EXPORT_SYMBOL(blk_max_pfn
);
73 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
88 return q
->nr_congestion_on
;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
96 return q
->nr_congestion_off
;
99 static void blk_queue_congestion_threshold(struct request_queue
*q
)
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
104 if (nr
> q
->nr_requests
)
106 q
->nr_congestion_on
= nr
;
108 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
111 q
->nr_congestion_off
= nr
;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
119 static void clear_queue_congested(request_queue_t
*q
, int rw
)
122 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
124 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
125 clear_bit(bit
, &q
->backing_dev_info
.state
);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh
))
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t
*q
, int rw
)
139 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
140 set_bit(bit
, &q
->backing_dev_info
.state
);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
147 * Locates the passed device's request queue and returns the address of its
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
154 struct backing_dev_info
*ret
= NULL
;
155 request_queue_t
*q
= bdev_get_queue(bdev
);
158 ret
= &q
->backing_dev_info
;
162 EXPORT_SYMBOL(blk_get_backing_dev_info
);
164 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
167 q
->activity_data
= data
;
170 EXPORT_SYMBOL(blk_queue_activity_fn
);
173 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
188 EXPORT_SYMBOL(blk_queue_prep_rq
);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
206 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
208 q
->merge_bvec_fn
= mbfn
;
211 EXPORT_SYMBOL(blk_queue_merge_bvec
);
213 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
215 q
->softirq_done_fn
= fn
;
218 EXPORT_SYMBOL(blk_queue_softirq_done
);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
247 q
->nr_requests
= BLKDEV_MAX_RQ
;
248 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
249 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
250 q
->make_request_fn
= mfn
;
251 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
252 q
->backing_dev_info
.state
= 0;
253 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
254 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
255 blk_queue_hardsect_size(q
, 512);
256 blk_queue_dma_alignment(q
, 511);
257 blk_queue_congestion_threshold(q
);
258 q
->nr_batching
= BLK_BATCH_REQ
;
260 q
->unplug_thresh
= 4; /* hmm */
261 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
262 if (q
->unplug_delay
== 0)
265 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
267 q
->unplug_timer
.function
= blk_unplug_timeout
;
268 q
->unplug_timer
.data
= (unsigned long)q
;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
275 blk_queue_activity_fn(q
, NULL
, NULL
);
278 EXPORT_SYMBOL(blk_queue_make_request
);
280 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
282 INIT_LIST_HEAD(&rq
->queuelist
);
283 INIT_LIST_HEAD(&rq
->donelist
);
286 rq
->rq_status
= RQ_ACTIVE
;
287 rq
->bio
= rq
->biotail
= NULL
;
296 rq
->nr_phys_segments
= 0;
299 rq
->end_io_data
= NULL
;
300 rq
->completion_data
= NULL
;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
316 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
317 prepare_flush_fn
*prepare_flush_fn
)
319 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
320 prepare_flush_fn
== NULL
) {
321 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
325 if (ordered
!= QUEUE_ORDERED_NONE
&&
326 ordered
!= QUEUE_ORDERED_DRAIN
&&
327 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
328 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
329 ordered
!= QUEUE_ORDERED_TAG
&&
330 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
331 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
332 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
336 q
->ordered
= ordered
;
337 q
->next_ordered
= ordered
;
338 q
->prepare_flush_fn
= prepare_flush_fn
;
343 EXPORT_SYMBOL(blk_queue_ordered
);
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
355 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
357 q
->issue_flush_fn
= iff
;
360 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
363 * Cache flushing for ordered writes handling
365 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
369 return 1 << ffz(q
->ordseq
);
372 unsigned blk_ordered_req_seq(struct request
*rq
)
374 request_queue_t
*q
= rq
->q
;
376 BUG_ON(q
->ordseq
== 0);
378 if (rq
== &q
->pre_flush_rq
)
379 return QUEUE_ORDSEQ_PREFLUSH
;
380 if (rq
== &q
->bar_rq
)
381 return QUEUE_ORDSEQ_BAR
;
382 if (rq
== &q
->post_flush_rq
)
383 return QUEUE_ORDSEQ_POSTFLUSH
;
385 if ((rq
->flags
& REQ_ORDERED_COLOR
) ==
386 (q
->orig_bar_rq
->flags
& REQ_ORDERED_COLOR
))
387 return QUEUE_ORDSEQ_DRAIN
;
389 return QUEUE_ORDSEQ_DONE
;
392 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
397 if (error
&& !q
->orderr
)
400 BUG_ON(q
->ordseq
& seq
);
403 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
407 * Okay, sequence complete.
410 uptodate
= q
->orderr
? q
->orderr
: 1;
414 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
415 end_that_request_last(rq
, uptodate
);
418 static void pre_flush_end_io(struct request
*rq
, int error
)
420 elv_completed_request(rq
->q
, rq
);
421 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
424 static void bar_end_io(struct request
*rq
, int error
)
426 elv_completed_request(rq
->q
, rq
);
427 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
430 static void post_flush_end_io(struct request
*rq
, int error
)
432 elv_completed_request(rq
->q
, rq
);
433 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
436 static void queue_flush(request_queue_t
*q
, unsigned which
)
439 rq_end_io_fn
*end_io
;
441 if (which
== QUEUE_ORDERED_PREFLUSH
) {
442 rq
= &q
->pre_flush_rq
;
443 end_io
= pre_flush_end_io
;
445 rq
= &q
->post_flush_rq
;
446 end_io
= post_flush_end_io
;
450 rq
->flags
= REQ_HARDBARRIER
;
451 rq
->elevator_private
= NULL
;
452 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
455 q
->prepare_flush_fn(q
, rq
);
457 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
460 static inline struct request
*start_ordered(request_queue_t
*q
,
465 q
->ordered
= q
->next_ordered
;
466 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
469 * Prep proxy barrier request.
471 blkdev_dequeue_request(rq
);
475 rq
->flags
= bio_data_dir(q
->orig_bar_rq
->bio
);
476 rq
->flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
477 rq
->elevator_private
= NULL
;
479 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
480 rq
->end_io
= bar_end_io
;
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
488 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
489 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
491 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
493 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
495 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
496 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
497 rq
= &q
->pre_flush_rq
;
499 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
501 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
502 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
509 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
511 struct request
*rq
= *rqp
;
512 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
518 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
519 *rqp
= start_ordered(q
, rq
);
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
526 blkdev_dequeue_request(rq
);
527 end_that_request_first(rq
, -EOPNOTSUPP
,
528 rq
->hard_nr_sectors
);
529 end_that_request_last(rq
, -EOPNOTSUPP
);
536 * Ordered sequence in progress
539 /* Special requests are not subject to ordering rules. */
540 if (!blk_fs_request(rq
) &&
541 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
544 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
545 /* Ordered by tag. Blocking the next barrier is enough. */
546 if (is_barrier
&& rq
!= &q
->bar_rq
)
549 /* Ordered by draining. Wait for turn. */
550 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
551 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
558 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
560 request_queue_t
*q
= bio
->bi_private
;
561 struct bio_vec
*bvec
;
565 * This is dry run, restore bio_sector and size. We'll finish
566 * this request again with the original bi_end_io after an
567 * error occurs or post flush is complete.
576 bio_for_each_segment(bvec
, bio
, i
) {
577 bvec
->bv_len
+= bvec
->bv_offset
;
582 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
583 bio
->bi_size
= q
->bi_size
;
584 bio
->bi_sector
-= (q
->bi_size
>> 9);
590 static inline int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
591 unsigned int nbytes
, int error
)
593 request_queue_t
*q
= rq
->q
;
597 if (&q
->bar_rq
!= rq
)
601 * Okay, this is the barrier request in progress, dry finish it.
603 if (error
&& !q
->orderr
)
606 endio
= bio
->bi_end_io
;
607 private = bio
->bi_private
;
608 bio
->bi_end_io
= flush_dry_bio_endio
;
611 bio_endio(bio
, nbytes
, error
);
613 bio
->bi_end_io
= endio
;
614 bio
->bi_private
= private;
620 * blk_queue_bounce_limit - set bounce buffer limit for queue
621 * @q: the request queue for the device
622 * @dma_addr: bus address limit
625 * Different hardware can have different requirements as to what pages
626 * it can do I/O directly to. A low level driver can call
627 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
628 * buffers for doing I/O to pages residing above @page.
630 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
632 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
635 q
->bounce_gfp
= GFP_NOIO
;
636 #if BITS_PER_LONG == 64
637 /* Assume anything <= 4GB can be handled by IOMMU.
638 Actually some IOMMUs can handle everything, but I don't
639 know of a way to test this here. */
640 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
642 q
->bounce_pfn
= max_low_pfn
;
644 if (bounce_pfn
< blk_max_low_pfn
)
646 q
->bounce_pfn
= bounce_pfn
;
649 init_emergency_isa_pool();
650 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
651 q
->bounce_pfn
= bounce_pfn
;
655 EXPORT_SYMBOL(blk_queue_bounce_limit
);
658 * blk_queue_max_sectors - set max sectors for a request for this queue
659 * @q: the request queue for the device
660 * @max_sectors: max sectors in the usual 512b unit
663 * Enables a low level driver to set an upper limit on the size of
666 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
668 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
669 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
670 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
673 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
674 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
676 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
677 q
->max_hw_sectors
= max_sectors
;
681 EXPORT_SYMBOL(blk_queue_max_sectors
);
684 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
685 * @q: the request queue for the device
686 * @max_segments: max number of segments
689 * Enables a low level driver to set an upper limit on the number of
690 * physical data segments in a request. This would be the largest sized
691 * scatter list the driver could handle.
693 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
697 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
700 q
->max_phys_segments
= max_segments
;
703 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
706 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
707 * @q: the request queue for the device
708 * @max_segments: max number of segments
711 * Enables a low level driver to set an upper limit on the number of
712 * hw data segments in a request. This would be the largest number of
713 * address/length pairs the host adapter can actually give as once
716 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
720 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
723 q
->max_hw_segments
= max_segments
;
726 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
729 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
730 * @q: the request queue for the device
731 * @max_size: max size of segment in bytes
734 * Enables a low level driver to set an upper limit on the size of a
737 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
739 if (max_size
< PAGE_CACHE_SIZE
) {
740 max_size
= PAGE_CACHE_SIZE
;
741 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
744 q
->max_segment_size
= max_size
;
747 EXPORT_SYMBOL(blk_queue_max_segment_size
);
750 * blk_queue_hardsect_size - set hardware sector size for the queue
751 * @q: the request queue for the device
752 * @size: the hardware sector size, in bytes
755 * This should typically be set to the lowest possible sector size
756 * that the hardware can operate on (possible without reverting to
757 * even internal read-modify-write operations). Usually the default
758 * of 512 covers most hardware.
760 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
762 q
->hardsect_size
= size
;
765 EXPORT_SYMBOL(blk_queue_hardsect_size
);
768 * Returns the minimum that is _not_ zero, unless both are zero.
770 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
773 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
774 * @t: the stacking driver (top)
775 * @b: the underlying device (bottom)
777 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
779 /* zero is "infinity" */
780 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
781 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
783 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
784 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
785 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
786 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
789 EXPORT_SYMBOL(blk_queue_stack_limits
);
792 * blk_queue_segment_boundary - set boundary rules for segment merging
793 * @q: the request queue for the device
794 * @mask: the memory boundary mask
796 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
798 if (mask
< PAGE_CACHE_SIZE
- 1) {
799 mask
= PAGE_CACHE_SIZE
- 1;
800 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
803 q
->seg_boundary_mask
= mask
;
806 EXPORT_SYMBOL(blk_queue_segment_boundary
);
809 * blk_queue_dma_alignment - set dma length and memory alignment
810 * @q: the request queue for the device
811 * @mask: alignment mask
814 * set required memory and length aligment for direct dma transactions.
815 * this is used when buiding direct io requests for the queue.
818 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
820 q
->dma_alignment
= mask
;
823 EXPORT_SYMBOL(blk_queue_dma_alignment
);
826 * blk_queue_find_tag - find a request by its tag and queue
827 * @q: The request queue for the device
828 * @tag: The tag of the request
831 * Should be used when a device returns a tag and you want to match
834 * no locks need be held.
836 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
838 struct blk_queue_tag
*bqt
= q
->queue_tags
;
840 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
843 return bqt
->tag_index
[tag
];
846 EXPORT_SYMBOL(blk_queue_find_tag
);
849 * __blk_queue_free_tags - release tag maintenance info
850 * @q: the request queue for the device
853 * blk_cleanup_queue() will take care of calling this function, if tagging
854 * has been used. So there's no need to call this directly.
856 static void __blk_queue_free_tags(request_queue_t
*q
)
858 struct blk_queue_tag
*bqt
= q
->queue_tags
;
863 if (atomic_dec_and_test(&bqt
->refcnt
)) {
865 BUG_ON(!list_empty(&bqt
->busy_list
));
867 kfree(bqt
->tag_index
);
868 bqt
->tag_index
= NULL
;
876 q
->queue_tags
= NULL
;
877 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
881 * blk_queue_free_tags - release tag maintenance info
882 * @q: the request queue for the device
885 * This is used to disabled tagged queuing to a device, yet leave
888 void blk_queue_free_tags(request_queue_t
*q
)
890 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
893 EXPORT_SYMBOL(blk_queue_free_tags
);
896 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
898 struct request
**tag_index
;
899 unsigned long *tag_map
;
902 if (depth
> q
->nr_requests
* 2) {
903 depth
= q
->nr_requests
* 2;
904 printk(KERN_ERR
"%s: adjusted depth to %d\n",
905 __FUNCTION__
, depth
);
908 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
912 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
913 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
917 memset(tag_index
, 0, depth
* sizeof(struct request
*));
918 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
919 tags
->real_max_depth
= depth
;
920 tags
->max_depth
= depth
;
921 tags
->tag_index
= tag_index
;
922 tags
->tag_map
= tag_map
;
931 * blk_queue_init_tags - initialize the queue tag info
932 * @q: the request queue for the device
933 * @depth: the maximum queue depth supported
934 * @tags: the tag to use
936 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
937 struct blk_queue_tag
*tags
)
941 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
943 if (!tags
&& !q
->queue_tags
) {
944 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
948 if (init_tag_map(q
, tags
, depth
))
951 INIT_LIST_HEAD(&tags
->busy_list
);
953 atomic_set(&tags
->refcnt
, 1);
954 } else if (q
->queue_tags
) {
955 if ((rc
= blk_queue_resize_tags(q
, depth
)))
957 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
960 atomic_inc(&tags
->refcnt
);
963 * assign it, all done
965 q
->queue_tags
= tags
;
966 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
973 EXPORT_SYMBOL(blk_queue_init_tags
);
976 * blk_queue_resize_tags - change the queueing depth
977 * @q: the request queue for the device
978 * @new_depth: the new max command queueing depth
981 * Must be called with the queue lock held.
983 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
985 struct blk_queue_tag
*bqt
= q
->queue_tags
;
986 struct request
**tag_index
;
987 unsigned long *tag_map
;
988 int max_depth
, nr_ulongs
;
994 * if we already have large enough real_max_depth. just
995 * adjust max_depth. *NOTE* as requests with tag value
996 * between new_depth and real_max_depth can be in-flight, tag
997 * map can not be shrunk blindly here.
999 if (new_depth
<= bqt
->real_max_depth
) {
1000 bqt
->max_depth
= new_depth
;
1005 * save the old state info, so we can copy it back
1007 tag_index
= bqt
->tag_index
;
1008 tag_map
= bqt
->tag_map
;
1009 max_depth
= bqt
->real_max_depth
;
1011 if (init_tag_map(q
, bqt
, new_depth
))
1014 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1015 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1016 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1023 EXPORT_SYMBOL(blk_queue_resize_tags
);
1026 * blk_queue_end_tag - end tag operations for a request
1027 * @q: the request queue for the device
1028 * @rq: the request that has completed
1031 * Typically called when end_that_request_first() returns 0, meaning
1032 * all transfers have been done for a request. It's important to call
1033 * this function before end_that_request_last(), as that will put the
1034 * request back on the free list thus corrupting the internal tag list.
1037 * queue lock must be held.
1039 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1041 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1046 if (unlikely(tag
>= bqt
->real_max_depth
))
1048 * This can happen after tag depth has been reduced.
1049 * FIXME: how about a warning or info message here?
1053 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1054 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1059 list_del_init(&rq
->queuelist
);
1060 rq
->flags
&= ~REQ_QUEUED
;
1063 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1064 printk(KERN_ERR
"%s: tag %d is missing\n",
1067 bqt
->tag_index
[tag
] = NULL
;
1071 EXPORT_SYMBOL(blk_queue_end_tag
);
1074 * blk_queue_start_tag - find a free tag and assign it
1075 * @q: the request queue for the device
1076 * @rq: the block request that needs tagging
1079 * This can either be used as a stand-alone helper, or possibly be
1080 * assigned as the queue &prep_rq_fn (in which case &struct request
1081 * automagically gets a tag assigned). Note that this function
1082 * assumes that any type of request can be queued! if this is not
1083 * true for your device, you must check the request type before
1084 * calling this function. The request will also be removed from
1085 * the request queue, so it's the drivers responsibility to readd
1086 * it if it should need to be restarted for some reason.
1089 * queue lock must be held.
1091 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1093 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1096 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
1098 "%s: request %p for device [%s] already tagged %d",
1100 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1104 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1105 if (tag
>= bqt
->max_depth
)
1108 __set_bit(tag
, bqt
->tag_map
);
1110 rq
->flags
|= REQ_QUEUED
;
1112 bqt
->tag_index
[tag
] = rq
;
1113 blkdev_dequeue_request(rq
);
1114 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1119 EXPORT_SYMBOL(blk_queue_start_tag
);
1122 * blk_queue_invalidate_tags - invalidate all pending tags
1123 * @q: the request queue for the device
1126 * Hardware conditions may dictate a need to stop all pending requests.
1127 * In this case, we will safely clear the block side of the tag queue and
1128 * readd all requests to the request queue in the right order.
1131 * queue lock must be held.
1133 void blk_queue_invalidate_tags(request_queue_t
*q
)
1135 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1136 struct list_head
*tmp
, *n
;
1139 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1140 rq
= list_entry_rq(tmp
);
1142 if (rq
->tag
== -1) {
1144 "%s: bad tag found on list\n", __FUNCTION__
);
1145 list_del_init(&rq
->queuelist
);
1146 rq
->flags
&= ~REQ_QUEUED
;
1148 blk_queue_end_tag(q
, rq
);
1150 rq
->flags
&= ~REQ_STARTED
;
1151 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1155 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1157 static const char * const rq_flags
[] = {
1178 "REQ_DRIVE_TASKFILE",
1183 "REQ_ORDERED_COLOR",
1186 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1190 printk("%s: dev %s: flags = ", msg
,
1191 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1194 if (rq
->flags
& (1 << bit
))
1195 printk("%s ", rq_flags
[bit
]);
1197 } while (bit
< __REQ_NR_BITS
);
1199 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1201 rq
->current_nr_sectors
);
1202 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1204 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1206 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1207 printk("%02x ", rq
->cmd
[bit
]);
1212 EXPORT_SYMBOL(blk_dump_rq_flags
);
1214 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1216 struct bio_vec
*bv
, *bvprv
= NULL
;
1217 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1218 int high
, highprv
= 1;
1220 if (unlikely(!bio
->bi_io_vec
))
1223 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1224 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1225 bio_for_each_segment(bv
, bio
, i
) {
1227 * the trick here is making sure that a high page is never
1228 * considered part of another segment, since that might
1229 * change with the bounce page.
1231 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1232 if (high
|| highprv
)
1233 goto new_hw_segment
;
1235 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1237 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1239 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1241 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1242 goto new_hw_segment
;
1244 seg_size
+= bv
->bv_len
;
1245 hw_seg_size
+= bv
->bv_len
;
1250 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1251 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1252 hw_seg_size
+= bv
->bv_len
;
1255 if (hw_seg_size
> bio
->bi_hw_front_size
)
1256 bio
->bi_hw_front_size
= hw_seg_size
;
1257 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1263 seg_size
= bv
->bv_len
;
1266 if (hw_seg_size
> bio
->bi_hw_back_size
)
1267 bio
->bi_hw_back_size
= hw_seg_size
;
1268 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1269 bio
->bi_hw_front_size
= hw_seg_size
;
1270 bio
->bi_phys_segments
= nr_phys_segs
;
1271 bio
->bi_hw_segments
= nr_hw_segs
;
1272 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1276 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1279 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1284 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1291 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1297 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1300 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1301 blk_recount_segments(q
, bio
);
1302 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1303 blk_recount_segments(q
, nxt
);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1307 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1317 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1319 struct bio_vec
*bvec
, *bvprv
;
1321 int nsegs
, i
, cluster
;
1324 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1327 * for each bio in rq
1330 rq_for_each_bio(bio
, rq
) {
1332 * for each segment in bio
1334 bio_for_each_segment(bvec
, bio
, i
) {
1335 int nbytes
= bvec
->bv_len
;
1337 if (bvprv
&& cluster
) {
1338 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1341 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1343 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1346 sg
[nsegs
- 1].length
+= nbytes
;
1349 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1350 sg
[nsegs
].page
= bvec
->bv_page
;
1351 sg
[nsegs
].length
= nbytes
;
1352 sg
[nsegs
].offset
= bvec
->bv_offset
;
1357 } /* segments in bio */
1363 EXPORT_SYMBOL(blk_rq_map_sg
);
1366 * the standard queue merge functions, can be overridden with device
1367 * specific ones if so desired
1370 static inline int ll_new_mergeable(request_queue_t
*q
,
1371 struct request
*req
,
1374 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1376 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1377 req
->flags
|= REQ_NOMERGE
;
1378 if (req
== q
->last_merge
)
1379 q
->last_merge
= NULL
;
1384 * A hw segment is just getting larger, bump just the phys
1387 req
->nr_phys_segments
+= nr_phys_segs
;
1391 static inline int ll_new_hw_segment(request_queue_t
*q
,
1392 struct request
*req
,
1395 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1396 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1398 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1399 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1400 req
->flags
|= REQ_NOMERGE
;
1401 if (req
== q
->last_merge
)
1402 q
->last_merge
= NULL
;
1407 * This will form the start of a new hw segment. Bump both
1410 req
->nr_hw_segments
+= nr_hw_segs
;
1411 req
->nr_phys_segments
+= nr_phys_segs
;
1415 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1418 unsigned short max_sectors
;
1421 if (unlikely(blk_pc_request(req
)))
1422 max_sectors
= q
->max_hw_sectors
;
1424 max_sectors
= q
->max_sectors
;
1426 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1427 req
->flags
|= REQ_NOMERGE
;
1428 if (req
== q
->last_merge
)
1429 q
->last_merge
= NULL
;
1432 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1433 blk_recount_segments(q
, req
->biotail
);
1434 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1435 blk_recount_segments(q
, bio
);
1436 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1437 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1438 !BIOVEC_VIRT_OVERSIZE(len
)) {
1439 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1442 if (req
->nr_hw_segments
== 1)
1443 req
->bio
->bi_hw_front_size
= len
;
1444 if (bio
->bi_hw_segments
== 1)
1445 bio
->bi_hw_back_size
= len
;
1450 return ll_new_hw_segment(q
, req
, bio
);
1453 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1456 unsigned short max_sectors
;
1459 if (unlikely(blk_pc_request(req
)))
1460 max_sectors
= q
->max_hw_sectors
;
1462 max_sectors
= q
->max_sectors
;
1465 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1466 req
->flags
|= REQ_NOMERGE
;
1467 if (req
== q
->last_merge
)
1468 q
->last_merge
= NULL
;
1471 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1472 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1473 blk_recount_segments(q
, bio
);
1474 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1475 blk_recount_segments(q
, req
->bio
);
1476 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1477 !BIOVEC_VIRT_OVERSIZE(len
)) {
1478 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1481 if (bio
->bi_hw_segments
== 1)
1482 bio
->bi_hw_front_size
= len
;
1483 if (req
->nr_hw_segments
== 1)
1484 req
->biotail
->bi_hw_back_size
= len
;
1489 return ll_new_hw_segment(q
, req
, bio
);
1492 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1493 struct request
*next
)
1495 int total_phys_segments
;
1496 int total_hw_segments
;
1499 * First check if the either of the requests are re-queued
1500 * requests. Can't merge them if they are.
1502 if (req
->special
|| next
->special
)
1506 * Will it become too large?
1508 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1511 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1512 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1513 total_phys_segments
--;
1515 if (total_phys_segments
> q
->max_phys_segments
)
1518 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1519 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1520 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1522 * propagate the combined length to the end of the requests
1524 if (req
->nr_hw_segments
== 1)
1525 req
->bio
->bi_hw_front_size
= len
;
1526 if (next
->nr_hw_segments
== 1)
1527 next
->biotail
->bi_hw_back_size
= len
;
1528 total_hw_segments
--;
1531 if (total_hw_segments
> q
->max_hw_segments
)
1534 /* Merge is OK... */
1535 req
->nr_phys_segments
= total_phys_segments
;
1536 req
->nr_hw_segments
= total_hw_segments
;
1541 * "plug" the device if there are no outstanding requests: this will
1542 * force the transfer to start only after we have put all the requests
1545 * This is called with interrupts off and no requests on the queue and
1546 * with the queue lock held.
1548 void blk_plug_device(request_queue_t
*q
)
1550 WARN_ON(!irqs_disabled());
1553 * don't plug a stopped queue, it must be paired with blk_start_queue()
1554 * which will restart the queueing
1556 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1559 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1560 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1563 EXPORT_SYMBOL(blk_plug_device
);
1566 * remove the queue from the plugged list, if present. called with
1567 * queue lock held and interrupts disabled.
1569 int blk_remove_plug(request_queue_t
*q
)
1571 WARN_ON(!irqs_disabled());
1573 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1576 del_timer(&q
->unplug_timer
);
1580 EXPORT_SYMBOL(blk_remove_plug
);
1583 * remove the plug and let it rip..
1585 void __generic_unplug_device(request_queue_t
*q
)
1587 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1590 if (!blk_remove_plug(q
))
1595 EXPORT_SYMBOL(__generic_unplug_device
);
1598 * generic_unplug_device - fire a request queue
1599 * @q: The &request_queue_t in question
1602 * Linux uses plugging to build bigger requests queues before letting
1603 * the device have at them. If a queue is plugged, the I/O scheduler
1604 * is still adding and merging requests on the queue. Once the queue
1605 * gets unplugged, the request_fn defined for the queue is invoked and
1606 * transfers started.
1608 void generic_unplug_device(request_queue_t
*q
)
1610 spin_lock_irq(q
->queue_lock
);
1611 __generic_unplug_device(q
);
1612 spin_unlock_irq(q
->queue_lock
);
1614 EXPORT_SYMBOL(generic_unplug_device
);
1616 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1619 request_queue_t
*q
= bdi
->unplug_io_data
;
1622 * devices don't necessarily have an ->unplug_fn defined
1628 static void blk_unplug_work(void *data
)
1630 request_queue_t
*q
= data
;
1635 static void blk_unplug_timeout(unsigned long data
)
1637 request_queue_t
*q
= (request_queue_t
*)data
;
1639 kblockd_schedule_work(&q
->unplug_work
);
1643 * blk_start_queue - restart a previously stopped queue
1644 * @q: The &request_queue_t in question
1647 * blk_start_queue() will clear the stop flag on the queue, and call
1648 * the request_fn for the queue if it was in a stopped state when
1649 * entered. Also see blk_stop_queue(). Queue lock must be held.
1651 void blk_start_queue(request_queue_t
*q
)
1653 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1656 * one level of recursion is ok and is much faster than kicking
1657 * the unplug handling
1659 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1661 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1664 kblockd_schedule_work(&q
->unplug_work
);
1668 EXPORT_SYMBOL(blk_start_queue
);
1671 * blk_stop_queue - stop a queue
1672 * @q: The &request_queue_t in question
1675 * The Linux block layer assumes that a block driver will consume all
1676 * entries on the request queue when the request_fn strategy is called.
1677 * Often this will not happen, because of hardware limitations (queue
1678 * depth settings). If a device driver gets a 'queue full' response,
1679 * or if it simply chooses not to queue more I/O at one point, it can
1680 * call this function to prevent the request_fn from being called until
1681 * the driver has signalled it's ready to go again. This happens by calling
1682 * blk_start_queue() to restart queue operations. Queue lock must be held.
1684 void blk_stop_queue(request_queue_t
*q
)
1687 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1689 EXPORT_SYMBOL(blk_stop_queue
);
1692 * blk_sync_queue - cancel any pending callbacks on a queue
1696 * The block layer may perform asynchronous callback activity
1697 * on a queue, such as calling the unplug function after a timeout.
1698 * A block device may call blk_sync_queue to ensure that any
1699 * such activity is cancelled, thus allowing it to release resources
1700 * the the callbacks might use. The caller must already have made sure
1701 * that its ->make_request_fn will not re-add plugging prior to calling
1705 void blk_sync_queue(struct request_queue
*q
)
1707 del_timer_sync(&q
->unplug_timer
);
1710 EXPORT_SYMBOL(blk_sync_queue
);
1713 * blk_run_queue - run a single device queue
1714 * @q: The queue to run
1716 void blk_run_queue(struct request_queue
*q
)
1718 unsigned long flags
;
1720 spin_lock_irqsave(q
->queue_lock
, flags
);
1724 * Only recurse once to avoid overrunning the stack, let the unplug
1725 * handling reinvoke the handler shortly if we already got there.
1727 if (!elv_queue_empty(q
)) {
1728 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1730 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1733 kblockd_schedule_work(&q
->unplug_work
);
1737 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1739 EXPORT_SYMBOL(blk_run_queue
);
1742 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1743 * @q: the request queue to be released
1746 * blk_cleanup_queue is the pair to blk_init_queue() or
1747 * blk_queue_make_request(). It should be called when a request queue is
1748 * being released; typically when a block device is being de-registered.
1749 * Currently, its primary task it to free all the &struct request
1750 * structures that were allocated to the queue and the queue itself.
1753 * Hopefully the low level driver will have finished any
1754 * outstanding requests first...
1756 void blk_cleanup_queue(request_queue_t
* q
)
1758 struct request_list
*rl
= &q
->rq
;
1760 if (!atomic_dec_and_test(&q
->refcnt
))
1764 elevator_exit(q
->elevator
);
1769 mempool_destroy(rl
->rq_pool
);
1772 __blk_queue_free_tags(q
);
1774 kmem_cache_free(requestq_cachep
, q
);
1777 EXPORT_SYMBOL(blk_cleanup_queue
);
1779 static int blk_init_free_list(request_queue_t
*q
)
1781 struct request_list
*rl
= &q
->rq
;
1783 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1784 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1786 init_waitqueue_head(&rl
->wait
[READ
]);
1787 init_waitqueue_head(&rl
->wait
[WRITE
]);
1789 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1790 mempool_free_slab
, request_cachep
, q
->node
);
1798 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1800 return blk_alloc_queue_node(gfp_mask
, -1);
1802 EXPORT_SYMBOL(blk_alloc_queue
);
1804 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1808 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1812 memset(q
, 0, sizeof(*q
));
1813 init_timer(&q
->unplug_timer
);
1814 atomic_set(&q
->refcnt
, 1);
1816 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1817 q
->backing_dev_info
.unplug_io_data
= q
;
1821 EXPORT_SYMBOL(blk_alloc_queue_node
);
1824 * blk_init_queue - prepare a request queue for use with a block device
1825 * @rfn: The function to be called to process requests that have been
1826 * placed on the queue.
1827 * @lock: Request queue spin lock
1830 * If a block device wishes to use the standard request handling procedures,
1831 * which sorts requests and coalesces adjacent requests, then it must
1832 * call blk_init_queue(). The function @rfn will be called when there
1833 * are requests on the queue that need to be processed. If the device
1834 * supports plugging, then @rfn may not be called immediately when requests
1835 * are available on the queue, but may be called at some time later instead.
1836 * Plugged queues are generally unplugged when a buffer belonging to one
1837 * of the requests on the queue is needed, or due to memory pressure.
1839 * @rfn is not required, or even expected, to remove all requests off the
1840 * queue, but only as many as it can handle at a time. If it does leave
1841 * requests on the queue, it is responsible for arranging that the requests
1842 * get dealt with eventually.
1844 * The queue spin lock must be held while manipulating the requests on the
1847 * Function returns a pointer to the initialized request queue, or NULL if
1848 * it didn't succeed.
1851 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1852 * when the block device is deactivated (such as at module unload).
1855 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1857 return blk_init_queue_node(rfn
, lock
, -1);
1859 EXPORT_SYMBOL(blk_init_queue
);
1862 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1864 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1870 if (blk_init_free_list(q
))
1874 * if caller didn't supply a lock, they get per-queue locking with
1878 spin_lock_init(&q
->__queue_lock
);
1879 lock
= &q
->__queue_lock
;
1882 q
->request_fn
= rfn
;
1883 q
->back_merge_fn
= ll_back_merge_fn
;
1884 q
->front_merge_fn
= ll_front_merge_fn
;
1885 q
->merge_requests_fn
= ll_merge_requests_fn
;
1886 q
->prep_rq_fn
= NULL
;
1887 q
->unplug_fn
= generic_unplug_device
;
1888 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1889 q
->queue_lock
= lock
;
1891 blk_queue_segment_boundary(q
, 0xffffffff);
1893 blk_queue_make_request(q
, __make_request
);
1894 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1896 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1897 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1902 if (!elevator_init(q
, NULL
)) {
1903 blk_queue_congestion_threshold(q
);
1907 blk_cleanup_queue(q
);
1909 kmem_cache_free(requestq_cachep
, q
);
1912 EXPORT_SYMBOL(blk_init_queue_node
);
1914 int blk_get_queue(request_queue_t
*q
)
1916 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1917 atomic_inc(&q
->refcnt
);
1924 EXPORT_SYMBOL(blk_get_queue
);
1926 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1928 if (rq
->flags
& REQ_ELVPRIV
)
1929 elv_put_request(q
, rq
);
1930 mempool_free(rq
, q
->rq
.rq_pool
);
1933 static inline struct request
*
1934 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1935 int priv
, gfp_t gfp_mask
)
1937 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1943 * first three bits are identical in rq->flags and bio->bi_rw,
1944 * see bio.h and blkdev.h
1949 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1950 mempool_free(rq
, q
->rq
.rq_pool
);
1953 rq
->flags
|= REQ_ELVPRIV
;
1960 * ioc_batching returns true if the ioc is a valid batching request and
1961 * should be given priority access to a request.
1963 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1969 * Make sure the process is able to allocate at least 1 request
1970 * even if the batch times out, otherwise we could theoretically
1973 return ioc
->nr_batch_requests
== q
->nr_batching
||
1974 (ioc
->nr_batch_requests
> 0
1975 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1979 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1980 * will cause the process to be a "batcher" on all queues in the system. This
1981 * is the behaviour we want though - once it gets a wakeup it should be given
1984 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1986 if (!ioc
|| ioc_batching(q
, ioc
))
1989 ioc
->nr_batch_requests
= q
->nr_batching
;
1990 ioc
->last_waited
= jiffies
;
1993 static void __freed_request(request_queue_t
*q
, int rw
)
1995 struct request_list
*rl
= &q
->rq
;
1997 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1998 clear_queue_congested(q
, rw
);
2000 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2001 if (waitqueue_active(&rl
->wait
[rw
]))
2002 wake_up(&rl
->wait
[rw
]);
2004 blk_clear_queue_full(q
, rw
);
2009 * A request has just been released. Account for it, update the full and
2010 * congestion status, wake up any waiters. Called under q->queue_lock.
2012 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2014 struct request_list
*rl
= &q
->rq
;
2020 __freed_request(q
, rw
);
2022 if (unlikely(rl
->starved
[rw
^ 1]))
2023 __freed_request(q
, rw
^ 1);
2026 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2028 * Get a free request, queue_lock must be held.
2029 * Returns NULL on failure, with queue_lock held.
2030 * Returns !NULL on success, with queue_lock *not held*.
2032 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2035 struct request
*rq
= NULL
;
2036 struct request_list
*rl
= &q
->rq
;
2037 struct io_context
*ioc
= NULL
;
2038 int may_queue
, priv
;
2040 may_queue
= elv_may_queue(q
, rw
, bio
);
2041 if (may_queue
== ELV_MQUEUE_NO
)
2044 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2045 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2046 ioc
= current_io_context(GFP_ATOMIC
);
2048 * The queue will fill after this allocation, so set
2049 * it as full, and mark this process as "batching".
2050 * This process will be allowed to complete a batch of
2051 * requests, others will be blocked.
2053 if (!blk_queue_full(q
, rw
)) {
2054 ioc_set_batching(q
, ioc
);
2055 blk_set_queue_full(q
, rw
);
2057 if (may_queue
!= ELV_MQUEUE_MUST
2058 && !ioc_batching(q
, ioc
)) {
2060 * The queue is full and the allocating
2061 * process is not a "batcher", and not
2062 * exempted by the IO scheduler
2068 set_queue_congested(q
, rw
);
2072 * Only allow batching queuers to allocate up to 50% over the defined
2073 * limit of requests, otherwise we could have thousands of requests
2074 * allocated with any setting of ->nr_requests
2076 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2080 rl
->starved
[rw
] = 0;
2082 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2086 spin_unlock_irq(q
->queue_lock
);
2088 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
2089 if (unlikely(!rq
)) {
2091 * Allocation failed presumably due to memory. Undo anything
2092 * we might have messed up.
2094 * Allocating task should really be put onto the front of the
2095 * wait queue, but this is pretty rare.
2097 spin_lock_irq(q
->queue_lock
);
2098 freed_request(q
, rw
, priv
);
2101 * in the very unlikely event that allocation failed and no
2102 * requests for this direction was pending, mark us starved
2103 * so that freeing of a request in the other direction will
2104 * notice us. another possible fix would be to split the
2105 * rq mempool into READ and WRITE
2108 if (unlikely(rl
->count
[rw
] == 0))
2109 rl
->starved
[rw
] = 1;
2115 * ioc may be NULL here, and ioc_batching will be false. That's
2116 * OK, if the queue is under the request limit then requests need
2117 * not count toward the nr_batch_requests limit. There will always
2118 * be some limit enforced by BLK_BATCH_TIME.
2120 if (ioc_batching(q
, ioc
))
2121 ioc
->nr_batch_requests
--;
2130 * No available requests for this queue, unplug the device and wait for some
2131 * requests to become available.
2133 * Called with q->queue_lock held, and returns with it unlocked.
2135 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2140 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2143 struct request_list
*rl
= &q
->rq
;
2145 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2146 TASK_UNINTERRUPTIBLE
);
2148 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2151 struct io_context
*ioc
;
2153 __generic_unplug_device(q
);
2154 spin_unlock_irq(q
->queue_lock
);
2158 * After sleeping, we become a "batching" process and
2159 * will be able to allocate at least one request, and
2160 * up to a big batch of them for a small period time.
2161 * See ioc_batching, ioc_set_batching
2163 ioc
= current_io_context(GFP_NOIO
);
2164 ioc_set_batching(q
, ioc
);
2166 spin_lock_irq(q
->queue_lock
);
2168 finish_wait(&rl
->wait
[rw
], &wait
);
2174 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2178 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2180 spin_lock_irq(q
->queue_lock
);
2181 if (gfp_mask
& __GFP_WAIT
) {
2182 rq
= get_request_wait(q
, rw
, NULL
);
2184 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2186 spin_unlock_irq(q
->queue_lock
);
2188 /* q->queue_lock is unlocked at this point */
2192 EXPORT_SYMBOL(blk_get_request
);
2195 * blk_requeue_request - put a request back on queue
2196 * @q: request queue where request should be inserted
2197 * @rq: request to be inserted
2200 * Drivers often keep queueing requests until the hardware cannot accept
2201 * more, when that condition happens we need to put the request back
2202 * on the queue. Must be called with queue lock held.
2204 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2206 if (blk_rq_tagged(rq
))
2207 blk_queue_end_tag(q
, rq
);
2209 elv_requeue_request(q
, rq
);
2212 EXPORT_SYMBOL(blk_requeue_request
);
2215 * blk_insert_request - insert a special request in to a request queue
2216 * @q: request queue where request should be inserted
2217 * @rq: request to be inserted
2218 * @at_head: insert request at head or tail of queue
2219 * @data: private data
2222 * Many block devices need to execute commands asynchronously, so they don't
2223 * block the whole kernel from preemption during request execution. This is
2224 * accomplished normally by inserting aritficial requests tagged as
2225 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2226 * scheduled for actual execution by the request queue.
2228 * We have the option of inserting the head or the tail of the queue.
2229 * Typically we use the tail for new ioctls and so forth. We use the head
2230 * of the queue for things like a QUEUE_FULL message from a device, or a
2231 * host that is unable to accept a particular command.
2233 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2234 int at_head
, void *data
)
2236 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2237 unsigned long flags
;
2240 * tell I/O scheduler that this isn't a regular read/write (ie it
2241 * must not attempt merges on this) and that it acts as a soft
2244 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2248 spin_lock_irqsave(q
->queue_lock
, flags
);
2251 * If command is tagged, release the tag
2253 if (blk_rq_tagged(rq
))
2254 blk_queue_end_tag(q
, rq
);
2256 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2257 __elv_add_request(q
, rq
, where
, 0);
2259 if (blk_queue_plugged(q
))
2260 __generic_unplug_device(q
);
2263 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2266 EXPORT_SYMBOL(blk_insert_request
);
2269 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2270 * @q: request queue where request should be inserted
2271 * @rq: request structure to fill
2272 * @ubuf: the user buffer
2273 * @len: length of user data
2276 * Data will be mapped directly for zero copy io, if possible. Otherwise
2277 * a kernel bounce buffer is used.
2279 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2280 * still in process context.
2282 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2283 * before being submitted to the device, as pages mapped may be out of
2284 * reach. It's the callers responsibility to make sure this happens. The
2285 * original bio must be passed back in to blk_rq_unmap_user() for proper
2288 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2291 unsigned long uaddr
;
2295 if (len
> (q
->max_hw_sectors
<< 9))
2300 reading
= rq_data_dir(rq
) == READ
;
2303 * if alignment requirement is satisfied, map in user pages for
2304 * direct dma. else, set up kernel bounce buffers
2306 uaddr
= (unsigned long) ubuf
;
2307 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2308 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2310 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2313 rq
->bio
= rq
->biotail
= bio
;
2314 blk_rq_bio_prep(q
, rq
, bio
);
2316 rq
->buffer
= rq
->data
= NULL
;
2322 * bio is the err-ptr
2324 return PTR_ERR(bio
);
2327 EXPORT_SYMBOL(blk_rq_map_user
);
2330 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2331 * @q: request queue where request should be inserted
2332 * @rq: request to map data to
2333 * @iov: pointer to the iovec
2334 * @iov_count: number of elements in the iovec
2337 * Data will be mapped directly for zero copy io, if possible. Otherwise
2338 * a kernel bounce buffer is used.
2340 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2341 * still in process context.
2343 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2344 * before being submitted to the device, as pages mapped may be out of
2345 * reach. It's the callers responsibility to make sure this happens. The
2346 * original bio must be passed back in to blk_rq_unmap_user() for proper
2349 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2350 struct sg_iovec
*iov
, int iov_count
)
2354 if (!iov
|| iov_count
<= 0)
2357 /* we don't allow misaligned data like bio_map_user() does. If the
2358 * user is using sg, they're expected to know the alignment constraints
2359 * and respect them accordingly */
2360 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2362 return PTR_ERR(bio
);
2364 rq
->bio
= rq
->biotail
= bio
;
2365 blk_rq_bio_prep(q
, rq
, bio
);
2366 rq
->buffer
= rq
->data
= NULL
;
2367 rq
->data_len
= bio
->bi_size
;
2371 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2374 * blk_rq_unmap_user - unmap a request with user data
2375 * @bio: bio to be unmapped
2376 * @ulen: length of user buffer
2379 * Unmap a bio previously mapped by blk_rq_map_user().
2381 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2386 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2387 bio_unmap_user(bio
);
2389 ret
= bio_uncopy_user(bio
);
2395 EXPORT_SYMBOL(blk_rq_unmap_user
);
2398 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2399 * @q: request queue where request should be inserted
2400 * @rq: request to fill
2401 * @kbuf: the kernel buffer
2402 * @len: length of user data
2403 * @gfp_mask: memory allocation flags
2405 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2406 unsigned int len
, gfp_t gfp_mask
)
2410 if (len
> (q
->max_hw_sectors
<< 9))
2415 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2417 return PTR_ERR(bio
);
2419 if (rq_data_dir(rq
) == WRITE
)
2420 bio
->bi_rw
|= (1 << BIO_RW
);
2422 rq
->bio
= rq
->biotail
= bio
;
2423 blk_rq_bio_prep(q
, rq
, bio
);
2425 rq
->buffer
= rq
->data
= NULL
;
2430 EXPORT_SYMBOL(blk_rq_map_kern
);
2433 * blk_execute_rq_nowait - insert a request into queue for execution
2434 * @q: queue to insert the request in
2435 * @bd_disk: matching gendisk
2436 * @rq: request to insert
2437 * @at_head: insert request at head or tail of queue
2438 * @done: I/O completion handler
2441 * Insert a fully prepared request at the back of the io scheduler queue
2442 * for execution. Don't wait for completion.
2444 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2445 struct request
*rq
, int at_head
,
2448 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2450 rq
->rq_disk
= bd_disk
;
2451 rq
->flags
|= REQ_NOMERGE
;
2453 elv_add_request(q
, rq
, where
, 1);
2454 generic_unplug_device(q
);
2457 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2460 * blk_execute_rq - insert a request into queue for execution
2461 * @q: queue to insert the request in
2462 * @bd_disk: matching gendisk
2463 * @rq: request to insert
2464 * @at_head: insert request at head or tail of queue
2467 * Insert a fully prepared request at the back of the io scheduler queue
2468 * for execution and wait for completion.
2470 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2471 struct request
*rq
, int at_head
)
2473 DECLARE_COMPLETION(wait
);
2474 char sense
[SCSI_SENSE_BUFFERSIZE
];
2478 * we need an extra reference to the request, so we can look at
2479 * it after io completion
2484 memset(sense
, 0, sizeof(sense
));
2489 rq
->waiting
= &wait
;
2490 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2491 wait_for_completion(&wait
);
2500 EXPORT_SYMBOL(blk_execute_rq
);
2503 * blkdev_issue_flush - queue a flush
2504 * @bdev: blockdev to issue flush for
2505 * @error_sector: error sector
2508 * Issue a flush for the block device in question. Caller can supply
2509 * room for storing the error offset in case of a flush error, if they
2510 * wish to. Caller must run wait_for_completion() on its own.
2512 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2516 if (bdev
->bd_disk
== NULL
)
2519 q
= bdev_get_queue(bdev
);
2522 if (!q
->issue_flush_fn
)
2525 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2528 EXPORT_SYMBOL(blkdev_issue_flush
);
2530 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2532 int rw
= rq_data_dir(rq
);
2534 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2538 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2540 disk_round_stats(rq
->rq_disk
);
2541 rq
->rq_disk
->in_flight
++;
2546 * add-request adds a request to the linked list.
2547 * queue lock is held and interrupts disabled, as we muck with the
2548 * request queue list.
2550 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2552 drive_stat_acct(req
, req
->nr_sectors
, 1);
2555 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2558 * elevator indicated where it wants this request to be
2559 * inserted at elevator_merge time
2561 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2565 * disk_round_stats() - Round off the performance stats on a struct
2568 * The average IO queue length and utilisation statistics are maintained
2569 * by observing the current state of the queue length and the amount of
2570 * time it has been in this state for.
2572 * Normally, that accounting is done on IO completion, but that can result
2573 * in more than a second's worth of IO being accounted for within any one
2574 * second, leading to >100% utilisation. To deal with that, we call this
2575 * function to do a round-off before returning the results when reading
2576 * /proc/diskstats. This accounts immediately for all queue usage up to
2577 * the current jiffies and restarts the counters again.
2579 void disk_round_stats(struct gendisk
*disk
)
2581 unsigned long now
= jiffies
;
2583 if (now
== disk
->stamp
)
2586 if (disk
->in_flight
) {
2587 __disk_stat_add(disk
, time_in_queue
,
2588 disk
->in_flight
* (now
- disk
->stamp
));
2589 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2594 EXPORT_SYMBOL_GPL(disk_round_stats
);
2597 * queue lock must be held
2599 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2601 struct request_list
*rl
= req
->rl
;
2605 if (unlikely(--req
->ref_count
))
2608 elv_completed_request(q
, req
);
2610 req
->rq_status
= RQ_INACTIVE
;
2614 * Request may not have originated from ll_rw_blk. if not,
2615 * it didn't come out of our reserved rq pools
2618 int rw
= rq_data_dir(req
);
2619 int priv
= req
->flags
& REQ_ELVPRIV
;
2621 BUG_ON(!list_empty(&req
->queuelist
));
2623 blk_free_request(q
, req
);
2624 freed_request(q
, rw
, priv
);
2628 EXPORT_SYMBOL_GPL(__blk_put_request
);
2630 void blk_put_request(struct request
*req
)
2632 unsigned long flags
;
2633 request_queue_t
*q
= req
->q
;
2636 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2637 * following if (q) test.
2640 spin_lock_irqsave(q
->queue_lock
, flags
);
2641 __blk_put_request(q
, req
);
2642 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2646 EXPORT_SYMBOL(blk_put_request
);
2649 * blk_end_sync_rq - executes a completion event on a request
2650 * @rq: request to complete
2651 * @error: end io status of the request
2653 void blk_end_sync_rq(struct request
*rq
, int error
)
2655 struct completion
*waiting
= rq
->waiting
;
2658 __blk_put_request(rq
->q
, rq
);
2661 * complete last, if this is a stack request the process (and thus
2662 * the rq pointer) could be invalid right after this complete()
2666 EXPORT_SYMBOL(blk_end_sync_rq
);
2669 * blk_congestion_wait - wait for a queue to become uncongested
2670 * @rw: READ or WRITE
2671 * @timeout: timeout in jiffies
2673 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2674 * If no queues are congested then just wait for the next request to be
2677 long blk_congestion_wait(int rw
, long timeout
)
2681 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2683 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2684 ret
= io_schedule_timeout(timeout
);
2685 finish_wait(wqh
, &wait
);
2689 EXPORT_SYMBOL(blk_congestion_wait
);
2692 * Has to be called with the request spinlock acquired
2694 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2695 struct request
*next
)
2697 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2703 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2706 if (rq_data_dir(req
) != rq_data_dir(next
)
2707 || req
->rq_disk
!= next
->rq_disk
2708 || next
->waiting
|| next
->special
)
2712 * If we are allowed to merge, then append bio list
2713 * from next to rq and release next. merge_requests_fn
2714 * will have updated segment counts, update sector
2717 if (!q
->merge_requests_fn(q
, req
, next
))
2721 * At this point we have either done a back merge
2722 * or front merge. We need the smaller start_time of
2723 * the merged requests to be the current request
2724 * for accounting purposes.
2726 if (time_after(req
->start_time
, next
->start_time
))
2727 req
->start_time
= next
->start_time
;
2729 req
->biotail
->bi_next
= next
->bio
;
2730 req
->biotail
= next
->biotail
;
2732 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2734 elv_merge_requests(q
, req
, next
);
2737 disk_round_stats(req
->rq_disk
);
2738 req
->rq_disk
->in_flight
--;
2741 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2743 __blk_put_request(q
, next
);
2747 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2749 struct request
*next
= elv_latter_request(q
, rq
);
2752 return attempt_merge(q
, rq
, next
);
2757 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2759 struct request
*prev
= elv_former_request(q
, rq
);
2762 return attempt_merge(q
, prev
, rq
);
2767 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2769 req
->flags
|= REQ_CMD
;
2772 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2774 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2775 req
->flags
|= REQ_FAILFAST
;
2778 * REQ_BARRIER implies no merging, but lets make it explicit
2780 if (unlikely(bio_barrier(bio
)))
2781 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2784 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2785 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2786 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2787 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2788 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2789 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2790 req
->waiting
= NULL
;
2791 req
->bio
= req
->biotail
= bio
;
2792 req
->ioprio
= bio_prio(bio
);
2793 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2794 req
->start_time
= jiffies
;
2797 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2799 struct request
*req
;
2800 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2801 unsigned short prio
;
2804 sector
= bio
->bi_sector
;
2805 nr_sectors
= bio_sectors(bio
);
2806 cur_nr_sectors
= bio_cur_sectors(bio
);
2807 prio
= bio_prio(bio
);
2809 rw
= bio_data_dir(bio
);
2810 sync
= bio_sync(bio
);
2813 * low level driver can indicate that it wants pages above a
2814 * certain limit bounced to low memory (ie for highmem, or even
2815 * ISA dma in theory)
2817 blk_queue_bounce(q
, &bio
);
2819 spin_lock_prefetch(q
->queue_lock
);
2821 barrier
= bio_barrier(bio
);
2822 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2827 spin_lock_irq(q
->queue_lock
);
2829 if (unlikely(barrier
) || elv_queue_empty(q
))
2832 el_ret
= elv_merge(q
, &req
, bio
);
2834 case ELEVATOR_BACK_MERGE
:
2835 BUG_ON(!rq_mergeable(req
));
2837 if (!q
->back_merge_fn(q
, req
, bio
))
2840 req
->biotail
->bi_next
= bio
;
2842 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2843 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2844 drive_stat_acct(req
, nr_sectors
, 0);
2845 if (!attempt_back_merge(q
, req
))
2846 elv_merged_request(q
, req
);
2849 case ELEVATOR_FRONT_MERGE
:
2850 BUG_ON(!rq_mergeable(req
));
2852 if (!q
->front_merge_fn(q
, req
, bio
))
2855 bio
->bi_next
= req
->bio
;
2859 * may not be valid. if the low level driver said
2860 * it didn't need a bounce buffer then it better
2861 * not touch req->buffer either...
2863 req
->buffer
= bio_data(bio
);
2864 req
->current_nr_sectors
= cur_nr_sectors
;
2865 req
->hard_cur_sectors
= cur_nr_sectors
;
2866 req
->sector
= req
->hard_sector
= sector
;
2867 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2868 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2869 drive_stat_acct(req
, nr_sectors
, 0);
2870 if (!attempt_front_merge(q
, req
))
2871 elv_merged_request(q
, req
);
2874 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2881 * Grab a free request. This is might sleep but can not fail.
2882 * Returns with the queue unlocked.
2884 req
= get_request_wait(q
, rw
, bio
);
2887 * After dropping the lock and possibly sleeping here, our request
2888 * may now be mergeable after it had proven unmergeable (above).
2889 * We don't worry about that case for efficiency. It won't happen
2890 * often, and the elevators are able to handle it.
2892 init_request_from_bio(req
, bio
);
2894 spin_lock_irq(q
->queue_lock
);
2895 if (elv_queue_empty(q
))
2897 add_request(q
, req
);
2900 __generic_unplug_device(q
);
2902 spin_unlock_irq(q
->queue_lock
);
2906 bio_endio(bio
, nr_sectors
<< 9, err
);
2911 * If bio->bi_dev is a partition, remap the location
2913 static inline void blk_partition_remap(struct bio
*bio
)
2915 struct block_device
*bdev
= bio
->bi_bdev
;
2917 if (bdev
!= bdev
->bd_contains
) {
2918 struct hd_struct
*p
= bdev
->bd_part
;
2919 const int rw
= bio_data_dir(bio
);
2921 p
->sectors
[rw
] += bio_sectors(bio
);
2924 bio
->bi_sector
+= p
->start_sect
;
2925 bio
->bi_bdev
= bdev
->bd_contains
;
2929 static void handle_bad_sector(struct bio
*bio
)
2931 char b
[BDEVNAME_SIZE
];
2933 printk(KERN_INFO
"attempt to access beyond end of device\n");
2934 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2935 bdevname(bio
->bi_bdev
, b
),
2937 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2938 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2940 set_bit(BIO_EOF
, &bio
->bi_flags
);
2944 * generic_make_request: hand a buffer to its device driver for I/O
2945 * @bio: The bio describing the location in memory and on the device.
2947 * generic_make_request() is used to make I/O requests of block
2948 * devices. It is passed a &struct bio, which describes the I/O that needs
2951 * generic_make_request() does not return any status. The
2952 * success/failure status of the request, along with notification of
2953 * completion, is delivered asynchronously through the bio->bi_end_io
2954 * function described (one day) else where.
2956 * The caller of generic_make_request must make sure that bi_io_vec
2957 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2958 * set to describe the device address, and the
2959 * bi_end_io and optionally bi_private are set to describe how
2960 * completion notification should be signaled.
2962 * generic_make_request and the drivers it calls may use bi_next if this
2963 * bio happens to be merged with someone else, and may change bi_dev and
2964 * bi_sector for remaps as it sees fit. So the values of these fields
2965 * should NOT be depended on after the call to generic_make_request.
2967 void generic_make_request(struct bio
*bio
)
2971 int ret
, nr_sectors
= bio_sectors(bio
);
2974 /* Test device or partition size, when known. */
2975 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2977 sector_t sector
= bio
->bi_sector
;
2979 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2981 * This may well happen - the kernel calls bread()
2982 * without checking the size of the device, e.g., when
2983 * mounting a device.
2985 handle_bad_sector(bio
);
2991 * Resolve the mapping until finished. (drivers are
2992 * still free to implement/resolve their own stacking
2993 * by explicitly returning 0)
2995 * NOTE: we don't repeat the blk_size check for each new device.
2996 * Stacking drivers are expected to know what they are doing.
2999 char b
[BDEVNAME_SIZE
];
3001 q
= bdev_get_queue(bio
->bi_bdev
);
3004 "generic_make_request: Trying to access "
3005 "nonexistent block-device %s (%Lu)\n",
3006 bdevname(bio
->bi_bdev
, b
),
3007 (long long) bio
->bi_sector
);
3009 bio_endio(bio
, bio
->bi_size
, -EIO
);
3013 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3014 printk("bio too big device %s (%u > %u)\n",
3015 bdevname(bio
->bi_bdev
, b
),
3021 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3025 * If this device has partitions, remap block n
3026 * of partition p to block n+start(p) of the disk.
3028 blk_partition_remap(bio
);
3030 ret
= q
->make_request_fn(q
, bio
);
3034 EXPORT_SYMBOL(generic_make_request
);
3037 * submit_bio: submit a bio to the block device layer for I/O
3038 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3039 * @bio: The &struct bio which describes the I/O
3041 * submit_bio() is very similar in purpose to generic_make_request(), and
3042 * uses that function to do most of the work. Both are fairly rough
3043 * interfaces, @bio must be presetup and ready for I/O.
3046 void submit_bio(int rw
, struct bio
*bio
)
3048 int count
= bio_sectors(bio
);
3050 BIO_BUG_ON(!bio
->bi_size
);
3051 BIO_BUG_ON(!bio
->bi_io_vec
);
3054 mod_page_state(pgpgout
, count
);
3056 mod_page_state(pgpgin
, count
);
3058 if (unlikely(block_dump
)) {
3059 char b
[BDEVNAME_SIZE
];
3060 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3061 current
->comm
, current
->pid
,
3062 (rw
& WRITE
) ? "WRITE" : "READ",
3063 (unsigned long long)bio
->bi_sector
,
3064 bdevname(bio
->bi_bdev
,b
));
3067 generic_make_request(bio
);
3070 EXPORT_SYMBOL(submit_bio
);
3072 static void blk_recalc_rq_segments(struct request
*rq
)
3074 struct bio
*bio
, *prevbio
= NULL
;
3075 int nr_phys_segs
, nr_hw_segs
;
3076 unsigned int phys_size
, hw_size
;
3077 request_queue_t
*q
= rq
->q
;
3082 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3083 rq_for_each_bio(bio
, rq
) {
3084 /* Force bio hw/phys segs to be recalculated. */
3085 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3087 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3088 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3090 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3091 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3093 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3094 pseg
<= q
->max_segment_size
) {
3096 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3100 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3101 hseg
<= q
->max_segment_size
) {
3103 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3110 rq
->nr_phys_segments
= nr_phys_segs
;
3111 rq
->nr_hw_segments
= nr_hw_segs
;
3114 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3116 if (blk_fs_request(rq
)) {
3117 rq
->hard_sector
+= nsect
;
3118 rq
->hard_nr_sectors
-= nsect
;
3121 * Move the I/O submission pointers ahead if required.
3123 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3124 (rq
->sector
<= rq
->hard_sector
)) {
3125 rq
->sector
= rq
->hard_sector
;
3126 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3127 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3128 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3129 rq
->buffer
= bio_data(rq
->bio
);
3133 * if total number of sectors is less than the first segment
3134 * size, something has gone terribly wrong
3136 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3137 printk("blk: request botched\n");
3138 rq
->nr_sectors
= rq
->current_nr_sectors
;
3143 static int __end_that_request_first(struct request
*req
, int uptodate
,
3146 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3150 * extend uptodate bool to allow < 0 value to be direct io error
3153 if (end_io_error(uptodate
))
3154 error
= !uptodate
? -EIO
: uptodate
;
3157 * for a REQ_BLOCK_PC request, we want to carry any eventual
3158 * sense key with us all the way through
3160 if (!blk_pc_request(req
))
3164 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3165 printk("end_request: I/O error, dev %s, sector %llu\n",
3166 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3167 (unsigned long long)req
->sector
);
3170 if (blk_fs_request(req
) && req
->rq_disk
) {
3171 const int rw
= rq_data_dir(req
);
3173 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3176 total_bytes
= bio_nbytes
= 0;
3177 while ((bio
= req
->bio
) != NULL
) {
3180 if (nr_bytes
>= bio
->bi_size
) {
3181 req
->bio
= bio
->bi_next
;
3182 nbytes
= bio
->bi_size
;
3183 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3184 bio_endio(bio
, nbytes
, error
);
3188 int idx
= bio
->bi_idx
+ next_idx
;
3190 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3191 blk_dump_rq_flags(req
, "__end_that");
3192 printk("%s: bio idx %d >= vcnt %d\n",
3194 bio
->bi_idx
, bio
->bi_vcnt
);
3198 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3199 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3202 * not a complete bvec done
3204 if (unlikely(nbytes
> nr_bytes
)) {
3205 bio_nbytes
+= nr_bytes
;
3206 total_bytes
+= nr_bytes
;
3211 * advance to the next vector
3214 bio_nbytes
+= nbytes
;
3217 total_bytes
+= nbytes
;
3220 if ((bio
= req
->bio
)) {
3222 * end more in this run, or just return 'not-done'
3224 if (unlikely(nr_bytes
<= 0))
3236 * if the request wasn't completed, update state
3239 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3240 bio_endio(bio
, bio_nbytes
, error
);
3241 bio
->bi_idx
+= next_idx
;
3242 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3243 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3246 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3247 blk_recalc_rq_segments(req
);
3252 * end_that_request_first - end I/O on a request
3253 * @req: the request being processed
3254 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3255 * @nr_sectors: number of sectors to end I/O on
3258 * Ends I/O on a number of sectors attached to @req, and sets it up
3259 * for the next range of segments (if any) in the cluster.
3262 * 0 - we are done with this request, call end_that_request_last()
3263 * 1 - still buffers pending for this request
3265 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3267 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3270 EXPORT_SYMBOL(end_that_request_first
);
3273 * end_that_request_chunk - end I/O on a request
3274 * @req: the request being processed
3275 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3276 * @nr_bytes: number of bytes to complete
3279 * Ends I/O on a number of bytes attached to @req, and sets it up
3280 * for the next range of segments (if any). Like end_that_request_first(),
3281 * but deals with bytes instead of sectors.
3284 * 0 - we are done with this request, call end_that_request_last()
3285 * 1 - still buffers pending for this request
3287 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3289 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3292 EXPORT_SYMBOL(end_that_request_chunk
);
3295 * splice the completion data to a local structure and hand off to
3296 * process_completion_queue() to complete the requests
3298 static void blk_done_softirq(struct softirq_action
*h
)
3300 struct list_head
*cpu_list
;
3301 LIST_HEAD(local_list
);
3303 local_irq_disable();
3304 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3305 list_splice_init(cpu_list
, &local_list
);
3308 while (!list_empty(&local_list
)) {
3309 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3311 list_del_init(&rq
->donelist
);
3312 rq
->q
->softirq_done_fn(rq
);
3316 #ifdef CONFIG_HOTPLUG_CPU
3318 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3322 * If a CPU goes away, splice its entries to the current CPU
3323 * and trigger a run of the softirq
3325 if (action
== CPU_DEAD
) {
3326 int cpu
= (unsigned long) hcpu
;
3328 local_irq_disable();
3329 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3330 &__get_cpu_var(blk_cpu_done
));
3331 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3339 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3340 .notifier_call
= blk_cpu_notify
,
3343 #endif /* CONFIG_HOTPLUG_CPU */
3346 * blk_complete_request - end I/O on a request
3347 * @req: the request being processed
3350 * Ends all I/O on a request. It does not handle partial completions,
3351 * unless the driver actually implements this in its completionc callback
3352 * through requeueing. Theh actual completion happens out-of-order,
3353 * through a softirq handler. The user must have registered a completion
3354 * callback through blk_queue_softirq_done().
3357 void blk_complete_request(struct request
*req
)
3359 struct list_head
*cpu_list
;
3360 unsigned long flags
;
3362 BUG_ON(!req
->q
->softirq_done_fn
);
3364 local_irq_save(flags
);
3366 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3367 list_add_tail(&req
->donelist
, cpu_list
);
3368 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3370 local_irq_restore(flags
);
3373 EXPORT_SYMBOL(blk_complete_request
);
3376 * queue lock must be held
3378 void end_that_request_last(struct request
*req
, int uptodate
)
3380 struct gendisk
*disk
= req
->rq_disk
;
3384 * extend uptodate bool to allow < 0 value to be direct io error
3387 if (end_io_error(uptodate
))
3388 error
= !uptodate
? -EIO
: uptodate
;
3390 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3391 laptop_io_completion();
3393 if (disk
&& blk_fs_request(req
)) {
3394 unsigned long duration
= jiffies
- req
->start_time
;
3395 const int rw
= rq_data_dir(req
);
3397 __disk_stat_inc(disk
, ios
[rw
]);
3398 __disk_stat_add(disk
, ticks
[rw
], duration
);
3399 disk_round_stats(disk
);
3403 req
->end_io(req
, error
);
3405 __blk_put_request(req
->q
, req
);
3408 EXPORT_SYMBOL(end_that_request_last
);
3410 void end_request(struct request
*req
, int uptodate
)
3412 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3413 add_disk_randomness(req
->rq_disk
);
3414 blkdev_dequeue_request(req
);
3415 end_that_request_last(req
, uptodate
);
3419 EXPORT_SYMBOL(end_request
);
3421 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3423 /* first three bits are identical in rq->flags and bio->bi_rw */
3424 rq
->flags
|= (bio
->bi_rw
& 7);
3426 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3427 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3428 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3429 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3430 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3431 rq
->buffer
= bio_data(bio
);
3433 rq
->bio
= rq
->biotail
= bio
;
3436 EXPORT_SYMBOL(blk_rq_bio_prep
);
3438 int kblockd_schedule_work(struct work_struct
*work
)
3440 return queue_work(kblockd_workqueue
, work
);
3443 EXPORT_SYMBOL(kblockd_schedule_work
);
3445 void kblockd_flush(void)
3447 flush_workqueue(kblockd_workqueue
);
3449 EXPORT_SYMBOL(kblockd_flush
);
3451 int __init
blk_dev_init(void)
3455 kblockd_workqueue
= create_workqueue("kblockd");
3456 if (!kblockd_workqueue
)
3457 panic("Failed to create kblockd\n");
3459 request_cachep
= kmem_cache_create("blkdev_requests",
3460 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3462 requestq_cachep
= kmem_cache_create("blkdev_queue",
3463 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3465 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3466 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3469 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3471 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3472 #ifdef CONFIG_HOTPLUG_CPU
3473 register_cpu_notifier(&blk_cpu_notifier
);
3476 blk_max_low_pfn
= max_low_pfn
;
3477 blk_max_pfn
= max_pfn
;
3483 * IO Context helper functions
3485 void put_io_context(struct io_context
*ioc
)
3490 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3492 if (atomic_dec_and_test(&ioc
->refcount
)) {
3493 if (ioc
->aic
&& ioc
->aic
->dtor
)
3494 ioc
->aic
->dtor(ioc
->aic
);
3495 if (ioc
->cic
&& ioc
->cic
->dtor
)
3496 ioc
->cic
->dtor(ioc
->cic
);
3498 kmem_cache_free(iocontext_cachep
, ioc
);
3501 EXPORT_SYMBOL(put_io_context
);
3503 /* Called by the exitting task */
3504 void exit_io_context(void)
3506 unsigned long flags
;
3507 struct io_context
*ioc
;
3509 local_irq_save(flags
);
3511 ioc
= current
->io_context
;
3512 current
->io_context
= NULL
;
3514 task_unlock(current
);
3515 local_irq_restore(flags
);
3517 if (ioc
->aic
&& ioc
->aic
->exit
)
3518 ioc
->aic
->exit(ioc
->aic
);
3519 if (ioc
->cic
&& ioc
->cic
->exit
)
3520 ioc
->cic
->exit(ioc
->cic
);
3522 put_io_context(ioc
);
3526 * If the current task has no IO context then create one and initialise it.
3527 * Otherwise, return its existing IO context.
3529 * This returned IO context doesn't have a specifically elevated refcount,
3530 * but since the current task itself holds a reference, the context can be
3531 * used in general code, so long as it stays within `current` context.
3533 struct io_context
*current_io_context(gfp_t gfp_flags
)
3535 struct task_struct
*tsk
= current
;
3536 struct io_context
*ret
;
3538 ret
= tsk
->io_context
;
3542 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3544 atomic_set(&ret
->refcount
, 1);
3545 ret
->task
= current
;
3546 ret
->set_ioprio
= NULL
;
3547 ret
->last_waited
= jiffies
; /* doesn't matter... */
3548 ret
->nr_batch_requests
= 0; /* because this is 0 */
3551 tsk
->io_context
= ret
;
3556 EXPORT_SYMBOL(current_io_context
);
3559 * If the current task has no IO context then create one and initialise it.
3560 * If it does have a context, take a ref on it.
3562 * This is always called in the context of the task which submitted the I/O.
3564 struct io_context
*get_io_context(gfp_t gfp_flags
)
3566 struct io_context
*ret
;
3567 ret
= current_io_context(gfp_flags
);
3569 atomic_inc(&ret
->refcount
);
3572 EXPORT_SYMBOL(get_io_context
);
3574 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3576 struct io_context
*src
= *psrc
;
3577 struct io_context
*dst
= *pdst
;
3580 BUG_ON(atomic_read(&src
->refcount
) == 0);
3581 atomic_inc(&src
->refcount
);
3582 put_io_context(dst
);
3586 EXPORT_SYMBOL(copy_io_context
);
3588 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3590 struct io_context
*temp
;
3595 EXPORT_SYMBOL(swap_io_context
);
3600 struct queue_sysfs_entry
{
3601 struct attribute attr
;
3602 ssize_t (*show
)(struct request_queue
*, char *);
3603 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3607 queue_var_show(unsigned int var
, char *page
)
3609 return sprintf(page
, "%d\n", var
);
3613 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3615 char *p
= (char *) page
;
3617 *var
= simple_strtoul(p
, &p
, 10);
3621 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3623 return queue_var_show(q
->nr_requests
, (page
));
3627 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3629 struct request_list
*rl
= &q
->rq
;
3631 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3632 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3633 q
->nr_requests
= BLKDEV_MIN_RQ
;
3634 blk_queue_congestion_threshold(q
);
3636 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3637 set_queue_congested(q
, READ
);
3638 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3639 clear_queue_congested(q
, READ
);
3641 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3642 set_queue_congested(q
, WRITE
);
3643 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3644 clear_queue_congested(q
, WRITE
);
3646 if (rl
->count
[READ
] >= q
->nr_requests
) {
3647 blk_set_queue_full(q
, READ
);
3648 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3649 blk_clear_queue_full(q
, READ
);
3650 wake_up(&rl
->wait
[READ
]);
3653 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3654 blk_set_queue_full(q
, WRITE
);
3655 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3656 blk_clear_queue_full(q
, WRITE
);
3657 wake_up(&rl
->wait
[WRITE
]);
3662 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3664 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3666 return queue_var_show(ra_kb
, (page
));
3670 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3672 unsigned long ra_kb
;
3673 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3675 spin_lock_irq(q
->queue_lock
);
3676 if (ra_kb
> (q
->max_sectors
>> 1))
3677 ra_kb
= (q
->max_sectors
>> 1);
3679 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3680 spin_unlock_irq(q
->queue_lock
);
3685 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3687 int max_sectors_kb
= q
->max_sectors
>> 1;
3689 return queue_var_show(max_sectors_kb
, (page
));
3693 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3695 unsigned long max_sectors_kb
,
3696 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3697 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3698 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3701 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3704 * Take the queue lock to update the readahead and max_sectors
3705 * values synchronously:
3707 spin_lock_irq(q
->queue_lock
);
3709 * Trim readahead window as well, if necessary:
3711 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3712 if (ra_kb
> max_sectors_kb
)
3713 q
->backing_dev_info
.ra_pages
=
3714 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3716 q
->max_sectors
= max_sectors_kb
<< 1;
3717 spin_unlock_irq(q
->queue_lock
);
3722 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3724 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3726 return queue_var_show(max_hw_sectors_kb
, (page
));
3730 static struct queue_sysfs_entry queue_requests_entry
= {
3731 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3732 .show
= queue_requests_show
,
3733 .store
= queue_requests_store
,
3736 static struct queue_sysfs_entry queue_ra_entry
= {
3737 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3738 .show
= queue_ra_show
,
3739 .store
= queue_ra_store
,
3742 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3743 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3744 .show
= queue_max_sectors_show
,
3745 .store
= queue_max_sectors_store
,
3748 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3749 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3750 .show
= queue_max_hw_sectors_show
,
3753 static struct queue_sysfs_entry queue_iosched_entry
= {
3754 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3755 .show
= elv_iosched_show
,
3756 .store
= elv_iosched_store
,
3759 static struct attribute
*default_attrs
[] = {
3760 &queue_requests_entry
.attr
,
3761 &queue_ra_entry
.attr
,
3762 &queue_max_hw_sectors_entry
.attr
,
3763 &queue_max_sectors_entry
.attr
,
3764 &queue_iosched_entry
.attr
,
3768 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3771 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3773 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3774 struct request_queue
*q
;
3776 q
= container_of(kobj
, struct request_queue
, kobj
);
3780 return entry
->show(q
, page
);
3784 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3785 const char *page
, size_t length
)
3787 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3788 struct request_queue
*q
;
3790 q
= container_of(kobj
, struct request_queue
, kobj
);
3794 return entry
->store(q
, page
, length
);
3797 static struct sysfs_ops queue_sysfs_ops
= {
3798 .show
= queue_attr_show
,
3799 .store
= queue_attr_store
,
3802 static struct kobj_type queue_ktype
= {
3803 .sysfs_ops
= &queue_sysfs_ops
,
3804 .default_attrs
= default_attrs
,
3807 int blk_register_queue(struct gendisk
*disk
)
3811 request_queue_t
*q
= disk
->queue
;
3813 if (!q
|| !q
->request_fn
)
3816 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3817 if (!q
->kobj
.parent
)
3820 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3821 q
->kobj
.ktype
= &queue_ktype
;
3823 ret
= kobject_register(&q
->kobj
);
3827 ret
= elv_register_queue(q
);
3829 kobject_unregister(&q
->kobj
);
3836 void blk_unregister_queue(struct gendisk
*disk
)
3838 request_queue_t
*q
= disk
->queue
;
3840 if (q
&& q
->request_fn
) {
3841 elv_unregister_queue(q
);
3843 kobject_unregister(&q
->kobj
);
3844 kobject_put(&disk
->kobj
);