powerpc/cpumask: Dynamically allocate cpu_sibling_map and cpu_core_map cpumasks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / arp.c
blob6e747065c2021071d82ba21123c9b87f9c725426
1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
135 static const struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
145 static const struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
155 static const struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
163 const struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
173 struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
222 return -EINVAL;
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
231 static int arp_constructor(struct neighbour *neigh)
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
238 rcu_read_lock();
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
241 rcu_read_unlock();
242 return -EINVAL;
245 neigh->type = inet_addr_type(dev_net(dev), addr);
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
272 #if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292 #endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296 #endif
298 #endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
320 return 0;
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 dst_link_failure(skb);
326 kfree_skb(skb);
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
338 if (!in_dev)
339 return;
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 default:
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
346 break;
347 case 1: /* Restrict announcements of saddr in same subnet */
348 if (!skb)
349 break;
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
354 break;
356 saddr = 0;
357 break;
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
359 break;
362 if (in_dev)
363 in_dev_put(in_dev);
364 if (!saddr)
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
373 #ifdef CONFIG_ARPD
374 neigh_app_ns(neigh);
375 #endif
376 return;
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
381 if (dst_ha)
382 read_unlock_bh(&neigh->lock);
385 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
387 int scope;
389 switch (IN_DEV_ARP_IGNORE(in_dev)) {
390 case 0: /* Reply, the tip is already validated */
391 return 0;
392 case 1: /* Reply only if tip is configured on the incoming interface */
393 sip = 0;
394 scope = RT_SCOPE_HOST;
395 break;
396 case 2: /*
397 * Reply only if tip is configured on the incoming interface
398 * and is in same subnet as sip
400 scope = RT_SCOPE_HOST;
401 break;
402 case 3: /* Do not reply for scope host addresses */
403 sip = 0;
404 scope = RT_SCOPE_LINK;
405 break;
406 case 4: /* Reserved */
407 case 5:
408 case 6:
409 case 7:
410 return 0;
411 case 8: /* Do not reply */
412 return 1;
413 default:
414 return 0;
416 return !inet_confirm_addr(in_dev, sip, tip, scope);
419 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
421 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
422 .saddr = tip } } };
423 struct rtable *rt;
424 int flag = 0;
425 /*unsigned long now; */
426 struct net *net = dev_net(dev);
428 if (ip_route_output_key(net, &rt, &fl) < 0)
429 return 1;
430 if (rt->u.dst.dev != dev) {
431 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
432 flag = 1;
434 ip_rt_put(rt);
435 return flag;
438 /* OBSOLETE FUNCTIONS */
441 * Find an arp mapping in the cache. If not found, post a request.
443 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
444 * even if it exists. It is supposed that skb->dev was mangled
445 * by a virtual device (eql, shaper). Nobody but broken devices
446 * is allowed to use this function, it is scheduled to be removed. --ANK
449 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
451 switch (addr_hint) {
452 case RTN_LOCAL:
453 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
454 memcpy(haddr, dev->dev_addr, dev->addr_len);
455 return 1;
456 case RTN_MULTICAST:
457 arp_mc_map(paddr, haddr, dev, 1);
458 return 1;
459 case RTN_BROADCAST:
460 memcpy(haddr, dev->broadcast, dev->addr_len);
461 return 1;
463 return 0;
467 int arp_find(unsigned char *haddr, struct sk_buff *skb)
469 struct net_device *dev = skb->dev;
470 __be32 paddr;
471 struct neighbour *n;
473 if (!skb_dst(skb)) {
474 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
475 kfree_skb(skb);
476 return 1;
479 paddr = skb_rtable(skb)->rt_gateway;
481 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
482 return 0;
484 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
486 if (n) {
487 n->used = jiffies;
488 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
489 read_lock_bh(&n->lock);
490 memcpy(haddr, n->ha, dev->addr_len);
491 read_unlock_bh(&n->lock);
492 neigh_release(n);
493 return 0;
495 neigh_release(n);
496 } else
497 kfree_skb(skb);
498 return 1;
501 /* END OF OBSOLETE FUNCTIONS */
503 int arp_bind_neighbour(struct dst_entry *dst)
505 struct net_device *dev = dst->dev;
506 struct neighbour *n = dst->neighbour;
508 if (dev == NULL)
509 return -EINVAL;
510 if (n == NULL) {
511 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
512 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
513 nexthop = 0;
514 n = __neigh_lookup_errno(
515 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
516 dev->type == ARPHRD_ATM ? clip_tbl_hook :
517 #endif
518 &arp_tbl, &nexthop, dev);
519 if (IS_ERR(n))
520 return PTR_ERR(n);
521 dst->neighbour = n;
523 return 0;
527 * Check if we can use proxy ARP for this path
529 static inline int arp_fwd_proxy(struct in_device *in_dev,
530 struct net_device *dev, struct rtable *rt)
532 struct in_device *out_dev;
533 int imi, omi = -1;
535 if (rt->u.dst.dev == dev)
536 return 0;
538 if (!IN_DEV_PROXY_ARP(in_dev))
539 return 0;
541 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542 return 1;
543 if (imi == -1)
544 return 0;
546 /* place to check for proxy_arp for routes */
548 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
549 omi = IN_DEV_MEDIUM_ID(out_dev);
550 in_dev_put(out_dev);
552 return (omi != imi && omi != -1);
556 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
558 * RFC3069 supports proxy arp replies back to the same interface. This
559 * is done to support (ethernet) switch features, like RFC 3069, where
560 * the individual ports are not allowed to communicate with each
561 * other, BUT they are allowed to talk to the upstream router. As
562 * described in RFC 3069, it is possible to allow these hosts to
563 * communicate through the upstream router, by proxy_arp'ing.
565 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
567 * This technology is known by different names:
568 * In RFC 3069 it is called VLAN Aggregation.
569 * Cisco and Allied Telesyn call it Private VLAN.
570 * Hewlett-Packard call it Source-Port filtering or port-isolation.
571 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
574 static inline int arp_fwd_pvlan(struct in_device *in_dev,
575 struct net_device *dev, struct rtable *rt,
576 __be32 sip, __be32 tip)
578 /* Private VLAN is only concerned about the same ethernet segment */
579 if (rt->u.dst.dev != dev)
580 return 0;
582 /* Don't reply on self probes (often done by windowz boxes)*/
583 if (sip == tip)
584 return 0;
586 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
587 return 1;
588 else
589 return 0;
593 * Interface to link layer: send routine and receive handler.
597 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
598 * message.
600 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
601 struct net_device *dev, __be32 src_ip,
602 const unsigned char *dest_hw,
603 const unsigned char *src_hw,
604 const unsigned char *target_hw)
606 struct sk_buff *skb;
607 struct arphdr *arp;
608 unsigned char *arp_ptr;
611 * Allocate a buffer
614 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
615 if (skb == NULL)
616 return NULL;
618 skb_reserve(skb, LL_RESERVED_SPACE(dev));
619 skb_reset_network_header(skb);
620 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
621 skb->dev = dev;
622 skb->protocol = htons(ETH_P_ARP);
623 if (src_hw == NULL)
624 src_hw = dev->dev_addr;
625 if (dest_hw == NULL)
626 dest_hw = dev->broadcast;
629 * Fill the device header for the ARP frame
631 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
632 goto out;
635 * Fill out the arp protocol part.
637 * The arp hardware type should match the device type, except for FDDI,
638 * which (according to RFC 1390) should always equal 1 (Ethernet).
641 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
642 * DIX code for the protocol. Make these device structure fields.
644 switch (dev->type) {
645 default:
646 arp->ar_hrd = htons(dev->type);
647 arp->ar_pro = htons(ETH_P_IP);
648 break;
650 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
651 case ARPHRD_AX25:
652 arp->ar_hrd = htons(ARPHRD_AX25);
653 arp->ar_pro = htons(AX25_P_IP);
654 break;
656 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
657 case ARPHRD_NETROM:
658 arp->ar_hrd = htons(ARPHRD_NETROM);
659 arp->ar_pro = htons(AX25_P_IP);
660 break;
661 #endif
662 #endif
664 #ifdef CONFIG_FDDI
665 case ARPHRD_FDDI:
666 arp->ar_hrd = htons(ARPHRD_ETHER);
667 arp->ar_pro = htons(ETH_P_IP);
668 break;
669 #endif
670 #ifdef CONFIG_TR
671 case ARPHRD_IEEE802_TR:
672 arp->ar_hrd = htons(ARPHRD_IEEE802);
673 arp->ar_pro = htons(ETH_P_IP);
674 break;
675 #endif
678 arp->ar_hln = dev->addr_len;
679 arp->ar_pln = 4;
680 arp->ar_op = htons(type);
682 arp_ptr=(unsigned char *)(arp+1);
684 memcpy(arp_ptr, src_hw, dev->addr_len);
685 arp_ptr += dev->addr_len;
686 memcpy(arp_ptr, &src_ip, 4);
687 arp_ptr += 4;
688 if (target_hw != NULL)
689 memcpy(arp_ptr, target_hw, dev->addr_len);
690 else
691 memset(arp_ptr, 0, dev->addr_len);
692 arp_ptr += dev->addr_len;
693 memcpy(arp_ptr, &dest_ip, 4);
695 return skb;
697 out:
698 kfree_skb(skb);
699 return NULL;
703 * Send an arp packet.
705 void arp_xmit(struct sk_buff *skb)
707 /* Send it off, maybe filter it using firewalling first. */
708 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
712 * Create and send an arp packet.
714 void arp_send(int type, int ptype, __be32 dest_ip,
715 struct net_device *dev, __be32 src_ip,
716 const unsigned char *dest_hw, const unsigned char *src_hw,
717 const unsigned char *target_hw)
719 struct sk_buff *skb;
722 * No arp on this interface.
725 if (dev->flags&IFF_NOARP)
726 return;
728 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
729 dest_hw, src_hw, target_hw);
730 if (skb == NULL) {
731 return;
734 arp_xmit(skb);
738 * Process an arp request.
741 static int arp_process(struct sk_buff *skb)
743 struct net_device *dev = skb->dev;
744 struct in_device *in_dev = in_dev_get(dev);
745 struct arphdr *arp;
746 unsigned char *arp_ptr;
747 struct rtable *rt;
748 unsigned char *sha;
749 __be32 sip, tip;
750 u16 dev_type = dev->type;
751 int addr_type;
752 struct neighbour *n;
753 struct net *net = dev_net(dev);
755 /* arp_rcv below verifies the ARP header and verifies the device
756 * is ARP'able.
759 if (in_dev == NULL)
760 goto out;
762 arp = arp_hdr(skb);
764 switch (dev_type) {
765 default:
766 if (arp->ar_pro != htons(ETH_P_IP) ||
767 htons(dev_type) != arp->ar_hrd)
768 goto out;
769 break;
770 case ARPHRD_ETHER:
771 case ARPHRD_IEEE802_TR:
772 case ARPHRD_FDDI:
773 case ARPHRD_IEEE802:
775 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
776 * devices, according to RFC 2625) devices will accept ARP
777 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
778 * This is the case also of FDDI, where the RFC 1390 says that
779 * FDDI devices should accept ARP hardware of (1) Ethernet,
780 * however, to be more robust, we'll accept both 1 (Ethernet)
781 * or 6 (IEEE 802.2)
783 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
784 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
785 arp->ar_pro != htons(ETH_P_IP))
786 goto out;
787 break;
788 case ARPHRD_AX25:
789 if (arp->ar_pro != htons(AX25_P_IP) ||
790 arp->ar_hrd != htons(ARPHRD_AX25))
791 goto out;
792 break;
793 case ARPHRD_NETROM:
794 if (arp->ar_pro != htons(AX25_P_IP) ||
795 arp->ar_hrd != htons(ARPHRD_NETROM))
796 goto out;
797 break;
800 /* Understand only these message types */
802 if (arp->ar_op != htons(ARPOP_REPLY) &&
803 arp->ar_op != htons(ARPOP_REQUEST))
804 goto out;
807 * Extract fields
809 arp_ptr= (unsigned char *)(arp+1);
810 sha = arp_ptr;
811 arp_ptr += dev->addr_len;
812 memcpy(&sip, arp_ptr, 4);
813 arp_ptr += 4;
814 arp_ptr += dev->addr_len;
815 memcpy(&tip, arp_ptr, 4);
817 * Check for bad requests for 127.x.x.x and requests for multicast
818 * addresses. If this is one such, delete it.
820 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
821 goto out;
824 * Special case: We must set Frame Relay source Q.922 address
826 if (dev_type == ARPHRD_DLCI)
827 sha = dev->broadcast;
830 * Process entry. The idea here is we want to send a reply if it is a
831 * request for us or if it is a request for someone else that we hold
832 * a proxy for. We want to add an entry to our cache if it is a reply
833 * to us or if it is a request for our address.
834 * (The assumption for this last is that if someone is requesting our
835 * address, they are probably intending to talk to us, so it saves time
836 * if we cache their address. Their address is also probably not in
837 * our cache, since ours is not in their cache.)
839 * Putting this another way, we only care about replies if they are to
840 * us, in which case we add them to the cache. For requests, we care
841 * about those for us and those for our proxies. We reply to both,
842 * and in the case of requests for us we add the requester to the arp
843 * cache.
846 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
847 if (sip == 0) {
848 if (arp->ar_op == htons(ARPOP_REQUEST) &&
849 inet_addr_type(net, tip) == RTN_LOCAL &&
850 !arp_ignore(in_dev, sip, tip))
851 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
852 dev->dev_addr, sha);
853 goto out;
856 if (arp->ar_op == htons(ARPOP_REQUEST) &&
857 ip_route_input(skb, tip, sip, 0, dev) == 0) {
859 rt = skb_rtable(skb);
860 addr_type = rt->rt_type;
862 if (addr_type == RTN_LOCAL) {
863 int dont_send = 0;
865 if (!dont_send)
866 dont_send |= arp_ignore(in_dev,sip,tip);
867 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
868 dont_send |= arp_filter(sip,tip,dev);
869 if (!dont_send) {
870 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
871 if (n) {
872 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
873 neigh_release(n);
876 goto out;
877 } else if (IN_DEV_FORWARD(in_dev)) {
878 if (addr_type == RTN_UNICAST &&
879 (arp_fwd_proxy(in_dev, dev, rt) ||
880 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
881 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
883 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
884 if (n)
885 neigh_release(n);
887 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
888 skb->pkt_type == PACKET_HOST ||
889 in_dev->arp_parms->proxy_delay == 0) {
890 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
891 } else {
892 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
893 in_dev_put(in_dev);
894 return 0;
896 goto out;
901 /* Update our ARP tables */
903 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
905 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
906 /* Unsolicited ARP is not accepted by default.
907 It is possible, that this option should be enabled for some
908 devices (strip is candidate)
910 if (n == NULL &&
911 (arp->ar_op == htons(ARPOP_REPLY) ||
912 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
913 inet_addr_type(net, sip) == RTN_UNICAST)
914 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
917 if (n) {
918 int state = NUD_REACHABLE;
919 int override;
921 /* If several different ARP replies follows back-to-back,
922 use the FIRST one. It is possible, if several proxy
923 agents are active. Taking the first reply prevents
924 arp trashing and chooses the fastest router.
926 override = time_after(jiffies, n->updated + n->parms->locktime);
928 /* Broadcast replies and request packets
929 do not assert neighbour reachability.
931 if (arp->ar_op != htons(ARPOP_REPLY) ||
932 skb->pkt_type != PACKET_HOST)
933 state = NUD_STALE;
934 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
935 neigh_release(n);
938 out:
939 if (in_dev)
940 in_dev_put(in_dev);
941 consume_skb(skb);
942 return 0;
945 static void parp_redo(struct sk_buff *skb)
947 arp_process(skb);
952 * Receive an arp request from the device layer.
955 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
956 struct packet_type *pt, struct net_device *orig_dev)
958 struct arphdr *arp;
960 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
961 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
962 goto freeskb;
964 arp = arp_hdr(skb);
965 if (arp->ar_hln != dev->addr_len ||
966 dev->flags & IFF_NOARP ||
967 skb->pkt_type == PACKET_OTHERHOST ||
968 skb->pkt_type == PACKET_LOOPBACK ||
969 arp->ar_pln != 4)
970 goto freeskb;
972 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
973 goto out_of_mem;
975 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
977 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
979 freeskb:
980 kfree_skb(skb);
981 out_of_mem:
982 return 0;
986 * User level interface (ioctl)
990 * Set (create) an ARP cache entry.
993 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
995 if (dev == NULL) {
996 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
997 return 0;
999 if (__in_dev_get_rtnl(dev)) {
1000 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1001 return 0;
1003 return -ENXIO;
1006 static int arp_req_set_public(struct net *net, struct arpreq *r,
1007 struct net_device *dev)
1009 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1010 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1012 if (mask && mask != htonl(0xFFFFFFFF))
1013 return -EINVAL;
1014 if (!dev && (r->arp_flags & ATF_COM)) {
1015 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1016 r->arp_ha.sa_data);
1017 if (!dev)
1018 return -ENODEV;
1020 if (mask) {
1021 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1022 return -ENOBUFS;
1023 return 0;
1026 return arp_req_set_proxy(net, dev, 1);
1029 static int arp_req_set(struct net *net, struct arpreq *r,
1030 struct net_device * dev)
1032 __be32 ip;
1033 struct neighbour *neigh;
1034 int err;
1036 if (r->arp_flags & ATF_PUBL)
1037 return arp_req_set_public(net, r, dev);
1039 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1040 if (r->arp_flags & ATF_PERM)
1041 r->arp_flags |= ATF_COM;
1042 if (dev == NULL) {
1043 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1044 .tos = RTO_ONLINK } } };
1045 struct rtable * rt;
1046 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1047 return err;
1048 dev = rt->u.dst.dev;
1049 ip_rt_put(rt);
1050 if (!dev)
1051 return -EINVAL;
1053 switch (dev->type) {
1054 #ifdef CONFIG_FDDI
1055 case ARPHRD_FDDI:
1057 * According to RFC 1390, FDDI devices should accept ARP
1058 * hardware types of 1 (Ethernet). However, to be more
1059 * robust, we'll accept hardware types of either 1 (Ethernet)
1060 * or 6 (IEEE 802.2).
1062 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1063 r->arp_ha.sa_family != ARPHRD_ETHER &&
1064 r->arp_ha.sa_family != ARPHRD_IEEE802)
1065 return -EINVAL;
1066 break;
1067 #endif
1068 default:
1069 if (r->arp_ha.sa_family != dev->type)
1070 return -EINVAL;
1071 break;
1074 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1075 err = PTR_ERR(neigh);
1076 if (!IS_ERR(neigh)) {
1077 unsigned state = NUD_STALE;
1078 if (r->arp_flags & ATF_PERM)
1079 state = NUD_PERMANENT;
1080 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1081 r->arp_ha.sa_data : NULL, state,
1082 NEIGH_UPDATE_F_OVERRIDE|
1083 NEIGH_UPDATE_F_ADMIN);
1084 neigh_release(neigh);
1086 return err;
1089 static unsigned arp_state_to_flags(struct neighbour *neigh)
1091 unsigned flags = 0;
1092 if (neigh->nud_state&NUD_PERMANENT)
1093 flags = ATF_PERM|ATF_COM;
1094 else if (neigh->nud_state&NUD_VALID)
1095 flags = ATF_COM;
1096 return flags;
1100 * Get an ARP cache entry.
1103 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1105 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1106 struct neighbour *neigh;
1107 int err = -ENXIO;
1109 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1110 if (neigh) {
1111 read_lock_bh(&neigh->lock);
1112 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1113 r->arp_flags = arp_state_to_flags(neigh);
1114 read_unlock_bh(&neigh->lock);
1115 r->arp_ha.sa_family = dev->type;
1116 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1117 neigh_release(neigh);
1118 err = 0;
1120 return err;
1123 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1124 struct net_device *dev)
1126 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1127 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1129 if (mask == htonl(0xFFFFFFFF))
1130 return pneigh_delete(&arp_tbl, net, &ip, dev);
1132 if (mask)
1133 return -EINVAL;
1135 return arp_req_set_proxy(net, dev, 0);
1138 static int arp_req_delete(struct net *net, struct arpreq *r,
1139 struct net_device * dev)
1141 int err;
1142 __be32 ip;
1143 struct neighbour *neigh;
1145 if (r->arp_flags & ATF_PUBL)
1146 return arp_req_delete_public(net, r, dev);
1148 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1149 if (dev == NULL) {
1150 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1151 .tos = RTO_ONLINK } } };
1152 struct rtable * rt;
1153 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1154 return err;
1155 dev = rt->u.dst.dev;
1156 ip_rt_put(rt);
1157 if (!dev)
1158 return -EINVAL;
1160 err = -ENXIO;
1161 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1162 if (neigh) {
1163 if (neigh->nud_state&~NUD_NOARP)
1164 err = neigh_update(neigh, NULL, NUD_FAILED,
1165 NEIGH_UPDATE_F_OVERRIDE|
1166 NEIGH_UPDATE_F_ADMIN);
1167 neigh_release(neigh);
1169 return err;
1173 * Handle an ARP layer I/O control request.
1176 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178 int err;
1179 struct arpreq r;
1180 struct net_device *dev = NULL;
1182 switch (cmd) {
1183 case SIOCDARP:
1184 case SIOCSARP:
1185 if (!capable(CAP_NET_ADMIN))
1186 return -EPERM;
1187 case SIOCGARP:
1188 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1189 if (err)
1190 return -EFAULT;
1191 break;
1192 default:
1193 return -EINVAL;
1196 if (r.arp_pa.sa_family != AF_INET)
1197 return -EPFNOSUPPORT;
1199 if (!(r.arp_flags & ATF_PUBL) &&
1200 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1201 return -EINVAL;
1202 if (!(r.arp_flags & ATF_NETMASK))
1203 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1204 htonl(0xFFFFFFFFUL);
1205 rtnl_lock();
1206 if (r.arp_dev[0]) {
1207 err = -ENODEV;
1208 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1209 goto out;
1211 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1212 if (!r.arp_ha.sa_family)
1213 r.arp_ha.sa_family = dev->type;
1214 err = -EINVAL;
1215 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1216 goto out;
1217 } else if (cmd == SIOCGARP) {
1218 err = -ENODEV;
1219 goto out;
1222 switch (cmd) {
1223 case SIOCDARP:
1224 err = arp_req_delete(net, &r, dev);
1225 break;
1226 case SIOCSARP:
1227 err = arp_req_set(net, &r, dev);
1228 break;
1229 case SIOCGARP:
1230 err = arp_req_get(&r, dev);
1231 if (!err && copy_to_user(arg, &r, sizeof(r)))
1232 err = -EFAULT;
1233 break;
1235 out:
1236 rtnl_unlock();
1237 return err;
1240 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1242 struct net_device *dev = ptr;
1244 switch (event) {
1245 case NETDEV_CHANGEADDR:
1246 neigh_changeaddr(&arp_tbl, dev);
1247 rt_cache_flush(dev_net(dev), 0);
1248 break;
1249 default:
1250 break;
1253 return NOTIFY_DONE;
1256 static struct notifier_block arp_netdev_notifier = {
1257 .notifier_call = arp_netdev_event,
1260 /* Note, that it is not on notifier chain.
1261 It is necessary, that this routine was called after route cache will be
1262 flushed.
1264 void arp_ifdown(struct net_device *dev)
1266 neigh_ifdown(&arp_tbl, dev);
1271 * Called once on startup.
1274 static struct packet_type arp_packet_type __read_mostly = {
1275 .type = cpu_to_be16(ETH_P_ARP),
1276 .func = arp_rcv,
1279 static int arp_proc_init(void);
1281 void __init arp_init(void)
1283 neigh_table_init(&arp_tbl);
1285 dev_add_pack(&arp_packet_type);
1286 arp_proc_init();
1287 #ifdef CONFIG_SYSCTL
1288 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1289 #endif
1290 register_netdevice_notifier(&arp_netdev_notifier);
1293 #ifdef CONFIG_PROC_FS
1294 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1296 /* ------------------------------------------------------------------------ */
1298 * ax25 -> ASCII conversion
1300 static char *ax2asc2(ax25_address *a, char *buf)
1302 char c, *s;
1303 int n;
1305 for (n = 0, s = buf; n < 6; n++) {
1306 c = (a->ax25_call[n] >> 1) & 0x7F;
1308 if (c != ' ') *s++ = c;
1311 *s++ = '-';
1313 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1314 *s++ = '1';
1315 n -= 10;
1318 *s++ = n + '0';
1319 *s++ = '\0';
1321 if (*buf == '\0' || *buf == '-')
1322 return "*";
1324 return buf;
1327 #endif /* CONFIG_AX25 */
1329 #define HBUFFERLEN 30
1331 static void arp_format_neigh_entry(struct seq_file *seq,
1332 struct neighbour *n)
1334 char hbuffer[HBUFFERLEN];
1335 int k, j;
1336 char tbuf[16];
1337 struct net_device *dev = n->dev;
1338 int hatype = dev->type;
1340 read_lock(&n->lock);
1341 /* Convert hardware address to XX:XX:XX:XX ... form. */
1342 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1343 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1344 ax2asc2((ax25_address *)n->ha, hbuffer);
1345 else {
1346 #endif
1347 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1348 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1349 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1350 hbuffer[k++] = ':';
1352 if (k != 0)
1353 --k;
1354 hbuffer[k] = 0;
1355 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1357 #endif
1358 sprintf(tbuf, "%pI4", n->primary_key);
1359 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1360 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1361 read_unlock(&n->lock);
1364 static void arp_format_pneigh_entry(struct seq_file *seq,
1365 struct pneigh_entry *n)
1367 struct net_device *dev = n->dev;
1368 int hatype = dev ? dev->type : 0;
1369 char tbuf[16];
1371 sprintf(tbuf, "%pI4", n->key);
1372 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1373 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1374 dev ? dev->name : "*");
1377 static int arp_seq_show(struct seq_file *seq, void *v)
1379 if (v == SEQ_START_TOKEN) {
1380 seq_puts(seq, "IP address HW type Flags "
1381 "HW address Mask Device\n");
1382 } else {
1383 struct neigh_seq_state *state = seq->private;
1385 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1386 arp_format_pneigh_entry(seq, v);
1387 else
1388 arp_format_neigh_entry(seq, v);
1391 return 0;
1394 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1396 /* Don't want to confuse "arp -a" w/ magic entries,
1397 * so we tell the generic iterator to skip NUD_NOARP.
1399 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1402 /* ------------------------------------------------------------------------ */
1404 static const struct seq_operations arp_seq_ops = {
1405 .start = arp_seq_start,
1406 .next = neigh_seq_next,
1407 .stop = neigh_seq_stop,
1408 .show = arp_seq_show,
1411 static int arp_seq_open(struct inode *inode, struct file *file)
1413 return seq_open_net(inode, file, &arp_seq_ops,
1414 sizeof(struct neigh_seq_state));
1417 static const struct file_operations arp_seq_fops = {
1418 .owner = THIS_MODULE,
1419 .open = arp_seq_open,
1420 .read = seq_read,
1421 .llseek = seq_lseek,
1422 .release = seq_release_net,
1426 static int __net_init arp_net_init(struct net *net)
1428 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1429 return -ENOMEM;
1430 return 0;
1433 static void __net_exit arp_net_exit(struct net *net)
1435 proc_net_remove(net, "arp");
1438 static struct pernet_operations arp_net_ops = {
1439 .init = arp_net_init,
1440 .exit = arp_net_exit,
1443 static int __init arp_proc_init(void)
1445 return register_pernet_subsys(&arp_net_ops);
1448 #else /* CONFIG_PROC_FS */
1450 static int __init arp_proc_init(void)
1452 return 0;
1455 #endif /* CONFIG_PROC_FS */
1457 EXPORT_SYMBOL(arp_broken_ops);
1458 EXPORT_SYMBOL(arp_find);
1459 EXPORT_SYMBOL(arp_create);
1460 EXPORT_SYMBOL(arp_xmit);
1461 EXPORT_SYMBOL(arp_send);
1462 EXPORT_SYMBOL(arp_tbl);
1464 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1465 EXPORT_SYMBOL(clip_tbl_hook);
1466 #endif