ACPI: thinkpad-acpi: update information on T43 thermal sensor 0xc1
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blobb6572170280fbcdea88a3e45fa44c4d5f12f31ac
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
260 return ret;
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
300 * Now fill in the holes:
302 error = 0;
303 total_len = 0;
306 * Lookup the (hopefully) full range of pages we need.
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
320 page = find_get_page(mapping, index);
321 if (!page) {
323 * Make sure the read-ahead engine is notified
324 * about this failure.
326 handle_ra_miss(mapping, &in->f_ra, index);
329 * page didn't exist, allocate one.
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
335 error = add_to_page_cache_lru(page, mapping, index,
336 GFP_KERNEL);
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
347 unlock_page(page);
350 pages[spd.nr_pages++] = page;
351 index++;
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
364 if (!len)
365 break;
368 * this_len is the max we'll use from this page
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
374 * If the page isn't uptodate, we may need to start io on it
376 if (!PageUptodate(page)) {
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
381 if (flags & SPLICE_F_NONBLOCK)
382 break;
384 lock_page(page);
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
389 * added
391 if (!page->mapping) {
392 unlock_page(page);
393 break;
396 * page was already under io and is now done, great
398 if (PageUptodate(page)) {
399 unlock_page(page);
400 goto fill_it;
404 * need to read in the page
406 error = mapping->a_ops->readpage(in, page);
407 if (unlikely(error)) {
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
414 if (error == AOP_TRUNCATED_PAGE)
415 error = 0;
417 break;
421 * i_size must be checked after ->readpage().
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index == index) {
433 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 if (total_len + loff > isize)
435 break;
437 * force quit after adding this page
439 len = this_len;
440 this_len = min(this_len, loff);
441 loff = 0;
444 fill_it:
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 total_len += this_len;
449 loff = 0;
450 spd.nr_pages++;
451 index++;
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
458 while (page_nr < nr_pages)
459 page_cache_release(pages[page_nr++]);
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
464 return error;
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
474 * Will read pages from given file and fill them into a pipe.
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
480 ssize_t spliced;
481 int ret;
483 ret = 0;
484 spliced = 0;
486 while (len) {
487 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
489 if (ret < 0)
490 break;
491 else if (!ret) {
492 if (spliced)
493 break;
494 if (flags & SPLICE_F_NONBLOCK) {
495 ret = -EAGAIN;
496 break;
500 *ppos += ret;
501 len -= ret;
502 spliced += ret;
505 if (spliced)
506 return spliced;
508 return ret;
511 EXPORT_SYMBOL(generic_file_splice_read);
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
520 struct file *file = sd->file;
521 loff_t pos = sd->pos;
522 int ret, more;
524 ret = buf->ops->pin(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
532 return ret;
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
558 struct file *file = sd->file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 pgoff_t index;
563 int ret;
566 * make sure the data in this buffer is uptodate
568 ret = buf->ops->pin(pipe, buf);
569 if (unlikely(ret))
570 return ret;
572 index = sd->pos >> PAGE_CACHE_SHIFT;
573 offset = sd->pos & ~PAGE_CACHE_MASK;
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
580 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
581 * page.
583 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
585 * If steal succeeds, buf->page is now pruned from the
586 * pagecache and we can reuse it. The page will also be
587 * locked on successful return.
589 if (buf->ops->steal(pipe, buf))
590 goto find_page;
592 page = buf->page;
593 if (add_to_page_cache(page, mapping, index, GFP_KERNEL)) {
594 unlock_page(page);
595 goto find_page;
598 page_cache_get(page);
600 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
601 lru_cache_add(page);
602 } else {
603 find_page:
604 page = find_lock_page(mapping, index);
605 if (!page) {
606 ret = -ENOMEM;
607 page = page_cache_alloc_cold(mapping);
608 if (unlikely(!page))
609 goto out_ret;
612 * This will also lock the page
614 ret = add_to_page_cache_lru(page, mapping, index,
615 GFP_KERNEL);
616 if (unlikely(ret))
617 goto out_release;
621 * We get here with the page locked. If the page is also
622 * uptodate, we don't need to do more. If it isn't, we
623 * may need to bring it in if we are not going to overwrite
624 * the full page.
626 if (!PageUptodate(page)) {
627 if (this_len < PAGE_CACHE_SIZE) {
628 ret = mapping->a_ops->readpage(file, page);
629 if (unlikely(ret))
630 goto out;
632 lock_page(page);
634 if (!PageUptodate(page)) {
636 * Page got invalidated, repeat.
638 if (!page->mapping) {
639 unlock_page(page);
640 page_cache_release(page);
641 goto find_page;
643 ret = -EIO;
644 goto out;
646 } else
647 SetPageUptodate(page);
651 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
652 if (unlikely(ret)) {
653 loff_t isize = i_size_read(mapping->host);
655 if (ret != AOP_TRUNCATED_PAGE)
656 unlock_page(page);
657 page_cache_release(page);
658 if (ret == AOP_TRUNCATED_PAGE)
659 goto find_page;
662 * prepare_write() may have instantiated a few blocks
663 * outside i_size. Trim these off again.
665 if (sd->pos + this_len > isize)
666 vmtruncate(mapping->host, isize);
668 goto out_ret;
671 if (buf->page != page) {
673 * Careful, ->map() uses KM_USER0!
675 char *src = buf->ops->map(pipe, buf, 1);
676 char *dst = kmap_atomic(page, KM_USER1);
678 memcpy(dst + offset, src + buf->offset, this_len);
679 flush_dcache_page(page);
680 kunmap_atomic(dst, KM_USER1);
681 buf->ops->unmap(pipe, buf, src);
684 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
685 if (!ret) {
687 * Return the number of bytes written and mark page as
688 * accessed, we are now done!
690 ret = this_len;
691 mark_page_accessed(page);
692 balance_dirty_pages_ratelimited(mapping);
693 } else if (ret == AOP_TRUNCATED_PAGE) {
694 page_cache_release(page);
695 goto find_page;
697 out:
698 unlock_page(page);
699 out_release:
700 page_cache_release(page);
701 out_ret:
702 return ret;
706 * Pipe input worker. Most of this logic works like a regular pipe, the
707 * key here is the 'actor' worker passed in that actually moves the data
708 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
710 static ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
711 struct file *out, loff_t *ppos, size_t len,
712 unsigned int flags, splice_actor *actor)
714 int ret, do_wakeup, err;
715 struct splice_desc sd;
717 ret = 0;
718 do_wakeup = 0;
720 sd.total_len = len;
721 sd.flags = flags;
722 sd.file = out;
723 sd.pos = *ppos;
725 for (;;) {
726 if (pipe->nrbufs) {
727 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
728 const struct pipe_buf_operations *ops = buf->ops;
730 sd.len = buf->len;
731 if (sd.len > sd.total_len)
732 sd.len = sd.total_len;
734 err = actor(pipe, buf, &sd);
735 if (err <= 0) {
736 if (!ret && err != -ENODATA)
737 ret = err;
739 break;
742 ret += err;
743 buf->offset += err;
744 buf->len -= err;
746 sd.len -= err;
747 sd.pos += err;
748 sd.total_len -= err;
749 if (sd.len)
750 continue;
752 if (!buf->len) {
753 buf->ops = NULL;
754 ops->release(pipe, buf);
755 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
756 pipe->nrbufs--;
757 if (pipe->inode)
758 do_wakeup = 1;
761 if (!sd.total_len)
762 break;
765 if (pipe->nrbufs)
766 continue;
767 if (!pipe->writers)
768 break;
769 if (!pipe->waiting_writers) {
770 if (ret)
771 break;
774 if (flags & SPLICE_F_NONBLOCK) {
775 if (!ret)
776 ret = -EAGAIN;
777 break;
780 if (signal_pending(current)) {
781 if (!ret)
782 ret = -ERESTARTSYS;
783 break;
786 if (do_wakeup) {
787 smp_mb();
788 if (waitqueue_active(&pipe->wait))
789 wake_up_interruptible_sync(&pipe->wait);
790 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
791 do_wakeup = 0;
794 pipe_wait(pipe);
797 if (do_wakeup) {
798 smp_mb();
799 if (waitqueue_active(&pipe->wait))
800 wake_up_interruptible(&pipe->wait);
801 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
804 return ret;
807 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
808 loff_t *ppos, size_t len, unsigned int flags,
809 splice_actor *actor)
811 ssize_t ret;
812 struct inode *inode = out->f_mapping->host;
815 * The actor worker might be calling ->prepare_write and
816 * ->commit_write. Most of the time, these expect i_mutex to
817 * be held. Since this may result in an ABBA deadlock with
818 * pipe->inode, we have to order lock acquiry here.
820 inode_double_lock(inode, pipe->inode);
821 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
822 inode_double_unlock(inode, pipe->inode);
824 return ret;
828 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
829 * @pipe: pipe info
830 * @out: file to write to
831 * @len: number of bytes to splice
832 * @flags: splice modifier flags
834 * Will either move or copy pages (determined by @flags options) from
835 * the given pipe inode to the given file. The caller is responsible
836 * for acquiring i_mutex on both inodes.
839 ssize_t
840 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
841 loff_t *ppos, size_t len, unsigned int flags)
843 struct address_space *mapping = out->f_mapping;
844 struct inode *inode = mapping->host;
845 ssize_t ret;
846 int err;
848 err = remove_suid(out->f_path.dentry);
849 if (unlikely(err))
850 return err;
852 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
853 if (ret > 0) {
854 *ppos += ret;
857 * If file or inode is SYNC and we actually wrote some data,
858 * sync it.
860 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
861 err = generic_osync_inode(inode, mapping,
862 OSYNC_METADATA|OSYNC_DATA);
864 if (err)
865 ret = err;
869 return ret;
872 EXPORT_SYMBOL(generic_file_splice_write_nolock);
875 * generic_file_splice_write - splice data from a pipe to a file
876 * @pipe: pipe info
877 * @out: file to write to
878 * @len: number of bytes to splice
879 * @flags: splice modifier flags
881 * Will either move or copy pages (determined by @flags options) from
882 * the given pipe inode to the given file.
885 ssize_t
886 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
887 loff_t *ppos, size_t len, unsigned int flags)
889 struct address_space *mapping = out->f_mapping;
890 struct inode *inode = mapping->host;
891 ssize_t ret;
892 int err;
894 err = should_remove_suid(out->f_path.dentry);
895 if (unlikely(err)) {
896 mutex_lock(&inode->i_mutex);
897 err = __remove_suid(out->f_path.dentry, err);
898 mutex_unlock(&inode->i_mutex);
899 if (err)
900 return err;
903 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
904 if (ret > 0) {
905 *ppos += ret;
908 * If file or inode is SYNC and we actually wrote some data,
909 * sync it.
911 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
912 mutex_lock(&inode->i_mutex);
913 err = generic_osync_inode(inode, mapping,
914 OSYNC_METADATA|OSYNC_DATA);
915 mutex_unlock(&inode->i_mutex);
917 if (err)
918 ret = err;
922 return ret;
925 EXPORT_SYMBOL(generic_file_splice_write);
928 * generic_splice_sendpage - splice data from a pipe to a socket
929 * @inode: pipe inode
930 * @out: socket to write to
931 * @len: number of bytes to splice
932 * @flags: splice modifier flags
934 * Will send @len bytes from the pipe to a network socket. No data copying
935 * is involved.
938 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
939 loff_t *ppos, size_t len, unsigned int flags)
941 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
944 EXPORT_SYMBOL(generic_splice_sendpage);
947 * Attempt to initiate a splice from pipe to file.
949 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
950 loff_t *ppos, size_t len, unsigned int flags)
952 int ret;
954 if (unlikely(!out->f_op || !out->f_op->splice_write))
955 return -EINVAL;
957 if (unlikely(!(out->f_mode & FMODE_WRITE)))
958 return -EBADF;
960 ret = rw_verify_area(WRITE, out, ppos, len);
961 if (unlikely(ret < 0))
962 return ret;
964 return out->f_op->splice_write(pipe, out, ppos, len, flags);
968 * Attempt to initiate a splice from a file to a pipe.
970 static long do_splice_to(struct file *in, loff_t *ppos,
971 struct pipe_inode_info *pipe, size_t len,
972 unsigned int flags)
974 loff_t isize, left;
975 int ret;
977 if (unlikely(!in->f_op || !in->f_op->splice_read))
978 return -EINVAL;
980 if (unlikely(!(in->f_mode & FMODE_READ)))
981 return -EBADF;
983 ret = rw_verify_area(READ, in, ppos, len);
984 if (unlikely(ret < 0))
985 return ret;
987 isize = i_size_read(in->f_mapping->host);
988 if (unlikely(*ppos >= isize))
989 return 0;
991 left = isize - *ppos;
992 if (unlikely(left < len))
993 len = left;
995 return in->f_op->splice_read(in, ppos, pipe, len, flags);
998 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
999 size_t len, unsigned int flags)
1001 struct pipe_inode_info *pipe;
1002 long ret, bytes;
1003 loff_t out_off;
1004 umode_t i_mode;
1005 int i;
1008 * We require the input being a regular file, as we don't want to
1009 * randomly drop data for eg socket -> socket splicing. Use the
1010 * piped splicing for that!
1012 i_mode = in->f_path.dentry->d_inode->i_mode;
1013 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1014 return -EINVAL;
1017 * neither in nor out is a pipe, setup an internal pipe attached to
1018 * 'out' and transfer the wanted data from 'in' to 'out' through that
1020 pipe = current->splice_pipe;
1021 if (unlikely(!pipe)) {
1022 pipe = alloc_pipe_info(NULL);
1023 if (!pipe)
1024 return -ENOMEM;
1027 * We don't have an immediate reader, but we'll read the stuff
1028 * out of the pipe right after the splice_to_pipe(). So set
1029 * PIPE_READERS appropriately.
1031 pipe->readers = 1;
1033 current->splice_pipe = pipe;
1037 * Do the splice.
1039 ret = 0;
1040 bytes = 0;
1041 out_off = 0;
1043 while (len) {
1044 size_t read_len, max_read_len;
1047 * Do at most PIPE_BUFFERS pages worth of transfer:
1049 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1051 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1052 if (unlikely(ret < 0))
1053 goto out_release;
1055 read_len = ret;
1058 * NOTE: nonblocking mode only applies to the input. We
1059 * must not do the output in nonblocking mode as then we
1060 * could get stuck data in the internal pipe:
1062 ret = do_splice_from(pipe, out, &out_off, read_len,
1063 flags & ~SPLICE_F_NONBLOCK);
1064 if (unlikely(ret < 0))
1065 goto out_release;
1067 bytes += ret;
1068 len -= ret;
1071 * In nonblocking mode, if we got back a short read then
1072 * that was due to either an IO error or due to the
1073 * pagecache entry not being there. In the IO error case
1074 * the _next_ splice attempt will produce a clean IO error
1075 * return value (not a short read), so in both cases it's
1076 * correct to break out of the loop here:
1078 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1079 break;
1082 pipe->nrbufs = pipe->curbuf = 0;
1084 return bytes;
1086 out_release:
1088 * If we did an incomplete transfer we must release
1089 * the pipe buffers in question:
1091 for (i = 0; i < PIPE_BUFFERS; i++) {
1092 struct pipe_buffer *buf = pipe->bufs + i;
1094 if (buf->ops) {
1095 buf->ops->release(pipe, buf);
1096 buf->ops = NULL;
1099 pipe->nrbufs = pipe->curbuf = 0;
1102 * If we transferred some data, return the number of bytes:
1104 if (bytes > 0)
1105 return bytes;
1107 return ret;
1110 EXPORT_SYMBOL(do_splice_direct);
1113 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1114 * location, so checking ->i_pipe is not enough to verify that this is a
1115 * pipe.
1117 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1119 if (S_ISFIFO(inode->i_mode))
1120 return inode->i_pipe;
1122 return NULL;
1126 * Determine where to splice to/from.
1128 static long do_splice(struct file *in, loff_t __user *off_in,
1129 struct file *out, loff_t __user *off_out,
1130 size_t len, unsigned int flags)
1132 struct pipe_inode_info *pipe;
1133 loff_t offset, *off;
1134 long ret;
1136 pipe = pipe_info(in->f_path.dentry->d_inode);
1137 if (pipe) {
1138 if (off_in)
1139 return -ESPIPE;
1140 if (off_out) {
1141 if (out->f_op->llseek == no_llseek)
1142 return -EINVAL;
1143 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1144 return -EFAULT;
1145 off = &offset;
1146 } else
1147 off = &out->f_pos;
1149 ret = do_splice_from(pipe, out, off, len, flags);
1151 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1152 ret = -EFAULT;
1154 return ret;
1157 pipe = pipe_info(out->f_path.dentry->d_inode);
1158 if (pipe) {
1159 if (off_out)
1160 return -ESPIPE;
1161 if (off_in) {
1162 if (in->f_op->llseek == no_llseek)
1163 return -EINVAL;
1164 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1165 return -EFAULT;
1166 off = &offset;
1167 } else
1168 off = &in->f_pos;
1170 ret = do_splice_to(in, off, pipe, len, flags);
1172 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1173 ret = -EFAULT;
1175 return ret;
1178 return -EINVAL;
1182 * Map an iov into an array of pages and offset/length tupples. With the
1183 * partial_page structure, we can map several non-contiguous ranges into
1184 * our ones pages[] map instead of splitting that operation into pieces.
1185 * Could easily be exported as a generic helper for other users, in which
1186 * case one would probably want to add a 'max_nr_pages' parameter as well.
1188 static int get_iovec_page_array(const struct iovec __user *iov,
1189 unsigned int nr_vecs, struct page **pages,
1190 struct partial_page *partial, int aligned)
1192 int buffers = 0, error = 0;
1195 * It's ok to take the mmap_sem for reading, even
1196 * across a "get_user()".
1198 down_read(&current->mm->mmap_sem);
1200 while (nr_vecs) {
1201 unsigned long off, npages;
1202 void __user *base;
1203 size_t len;
1204 int i;
1207 * Get user address base and length for this iovec.
1209 error = get_user(base, &iov->iov_base);
1210 if (unlikely(error))
1211 break;
1212 error = get_user(len, &iov->iov_len);
1213 if (unlikely(error))
1214 break;
1217 * Sanity check this iovec. 0 read succeeds.
1219 if (unlikely(!len))
1220 break;
1221 error = -EFAULT;
1222 if (unlikely(!base))
1223 break;
1226 * Get this base offset and number of pages, then map
1227 * in the user pages.
1229 off = (unsigned long) base & ~PAGE_MASK;
1232 * If asked for alignment, the offset must be zero and the
1233 * length a multiple of the PAGE_SIZE.
1235 error = -EINVAL;
1236 if (aligned && (off || len & ~PAGE_MASK))
1237 break;
1239 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1240 if (npages > PIPE_BUFFERS - buffers)
1241 npages = PIPE_BUFFERS - buffers;
1243 error = get_user_pages(current, current->mm,
1244 (unsigned long) base, npages, 0, 0,
1245 &pages[buffers], NULL);
1247 if (unlikely(error <= 0))
1248 break;
1251 * Fill this contiguous range into the partial page map.
1253 for (i = 0; i < error; i++) {
1254 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1256 partial[buffers].offset = off;
1257 partial[buffers].len = plen;
1259 off = 0;
1260 len -= plen;
1261 buffers++;
1265 * We didn't complete this iov, stop here since it probably
1266 * means we have to move some of this into a pipe to
1267 * be able to continue.
1269 if (len)
1270 break;
1273 * Don't continue if we mapped fewer pages than we asked for,
1274 * or if we mapped the max number of pages that we have
1275 * room for.
1277 if (error < npages || buffers == PIPE_BUFFERS)
1278 break;
1280 nr_vecs--;
1281 iov++;
1284 up_read(&current->mm->mmap_sem);
1286 if (buffers)
1287 return buffers;
1289 return error;
1293 * vmsplice splices a user address range into a pipe. It can be thought of
1294 * as splice-from-memory, where the regular splice is splice-from-file (or
1295 * to file). In both cases the output is a pipe, naturally.
1297 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1298 * not the other way around. Splicing from user memory is a simple operation
1299 * that can be supported without any funky alignment restrictions or nasty
1300 * vm tricks. We simply map in the user memory and fill them into a pipe.
1301 * The reverse isn't quite as easy, though. There are two possible solutions
1302 * for that:
1304 * - memcpy() the data internally, at which point we might as well just
1305 * do a regular read() on the buffer anyway.
1306 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1307 * has restriction limitations on both ends of the pipe).
1309 * Alas, it isn't here.
1312 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1313 unsigned long nr_segs, unsigned int flags)
1315 struct pipe_inode_info *pipe;
1316 struct page *pages[PIPE_BUFFERS];
1317 struct partial_page partial[PIPE_BUFFERS];
1318 struct splice_pipe_desc spd = {
1319 .pages = pages,
1320 .partial = partial,
1321 .flags = flags,
1322 .ops = &user_page_pipe_buf_ops,
1325 pipe = pipe_info(file->f_path.dentry->d_inode);
1326 if (!pipe)
1327 return -EBADF;
1328 if (unlikely(nr_segs > UIO_MAXIOV))
1329 return -EINVAL;
1330 else if (unlikely(!nr_segs))
1331 return 0;
1333 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1334 flags & SPLICE_F_GIFT);
1335 if (spd.nr_pages <= 0)
1336 return spd.nr_pages;
1338 return splice_to_pipe(pipe, &spd);
1341 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1342 unsigned long nr_segs, unsigned int flags)
1344 struct file *file;
1345 long error;
1346 int fput;
1348 error = -EBADF;
1349 file = fget_light(fd, &fput);
1350 if (file) {
1351 if (file->f_mode & FMODE_WRITE)
1352 error = do_vmsplice(file, iov, nr_segs, flags);
1354 fput_light(file, fput);
1357 return error;
1360 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1361 int fd_out, loff_t __user *off_out,
1362 size_t len, unsigned int flags)
1364 long error;
1365 struct file *in, *out;
1366 int fput_in, fput_out;
1368 if (unlikely(!len))
1369 return 0;
1371 error = -EBADF;
1372 in = fget_light(fd_in, &fput_in);
1373 if (in) {
1374 if (in->f_mode & FMODE_READ) {
1375 out = fget_light(fd_out, &fput_out);
1376 if (out) {
1377 if (out->f_mode & FMODE_WRITE)
1378 error = do_splice(in, off_in,
1379 out, off_out,
1380 len, flags);
1381 fput_light(out, fput_out);
1385 fput_light(in, fput_in);
1388 return error;
1392 * Make sure there's data to read. Wait for input if we can, otherwise
1393 * return an appropriate error.
1395 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1397 int ret;
1400 * Check ->nrbufs without the inode lock first. This function
1401 * is speculative anyways, so missing one is ok.
1403 if (pipe->nrbufs)
1404 return 0;
1406 ret = 0;
1407 mutex_lock(&pipe->inode->i_mutex);
1409 while (!pipe->nrbufs) {
1410 if (signal_pending(current)) {
1411 ret = -ERESTARTSYS;
1412 break;
1414 if (!pipe->writers)
1415 break;
1416 if (!pipe->waiting_writers) {
1417 if (flags & SPLICE_F_NONBLOCK) {
1418 ret = -EAGAIN;
1419 break;
1422 pipe_wait(pipe);
1425 mutex_unlock(&pipe->inode->i_mutex);
1426 return ret;
1430 * Make sure there's writeable room. Wait for room if we can, otherwise
1431 * return an appropriate error.
1433 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1435 int ret;
1438 * Check ->nrbufs without the inode lock first. This function
1439 * is speculative anyways, so missing one is ok.
1441 if (pipe->nrbufs < PIPE_BUFFERS)
1442 return 0;
1444 ret = 0;
1445 mutex_lock(&pipe->inode->i_mutex);
1447 while (pipe->nrbufs >= PIPE_BUFFERS) {
1448 if (!pipe->readers) {
1449 send_sig(SIGPIPE, current, 0);
1450 ret = -EPIPE;
1451 break;
1453 if (flags & SPLICE_F_NONBLOCK) {
1454 ret = -EAGAIN;
1455 break;
1457 if (signal_pending(current)) {
1458 ret = -ERESTARTSYS;
1459 break;
1461 pipe->waiting_writers++;
1462 pipe_wait(pipe);
1463 pipe->waiting_writers--;
1466 mutex_unlock(&pipe->inode->i_mutex);
1467 return ret;
1471 * Link contents of ipipe to opipe.
1473 static int link_pipe(struct pipe_inode_info *ipipe,
1474 struct pipe_inode_info *opipe,
1475 size_t len, unsigned int flags)
1477 struct pipe_buffer *ibuf, *obuf;
1478 int ret = 0, i = 0, nbuf;
1481 * Potential ABBA deadlock, work around it by ordering lock
1482 * grabbing by inode address. Otherwise two different processes
1483 * could deadlock (one doing tee from A -> B, the other from B -> A).
1485 inode_double_lock(ipipe->inode, opipe->inode);
1487 do {
1488 if (!opipe->readers) {
1489 send_sig(SIGPIPE, current, 0);
1490 if (!ret)
1491 ret = -EPIPE;
1492 break;
1496 * If we have iterated all input buffers or ran out of
1497 * output room, break.
1499 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1500 break;
1502 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1503 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1506 * Get a reference to this pipe buffer,
1507 * so we can copy the contents over.
1509 ibuf->ops->get(ipipe, ibuf);
1511 obuf = opipe->bufs + nbuf;
1512 *obuf = *ibuf;
1515 * Don't inherit the gift flag, we need to
1516 * prevent multiple steals of this page.
1518 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1520 if (obuf->len > len)
1521 obuf->len = len;
1523 opipe->nrbufs++;
1524 ret += obuf->len;
1525 len -= obuf->len;
1526 i++;
1527 } while (len);
1529 inode_double_unlock(ipipe->inode, opipe->inode);
1532 * If we put data in the output pipe, wakeup any potential readers.
1534 if (ret > 0) {
1535 smp_mb();
1536 if (waitqueue_active(&opipe->wait))
1537 wake_up_interruptible(&opipe->wait);
1538 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1541 return ret;
1545 * This is a tee(1) implementation that works on pipes. It doesn't copy
1546 * any data, it simply references the 'in' pages on the 'out' pipe.
1547 * The 'flags' used are the SPLICE_F_* variants, currently the only
1548 * applicable one is SPLICE_F_NONBLOCK.
1550 static long do_tee(struct file *in, struct file *out, size_t len,
1551 unsigned int flags)
1553 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1554 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1555 int ret = -EINVAL;
1558 * Duplicate the contents of ipipe to opipe without actually
1559 * copying the data.
1561 if (ipipe && opipe && ipipe != opipe) {
1563 * Keep going, unless we encounter an error. The ipipe/opipe
1564 * ordering doesn't really matter.
1566 ret = link_ipipe_prep(ipipe, flags);
1567 if (!ret) {
1568 ret = link_opipe_prep(opipe, flags);
1569 if (!ret) {
1570 ret = link_pipe(ipipe, opipe, len, flags);
1571 if (!ret && (flags & SPLICE_F_NONBLOCK))
1572 ret = -EAGAIN;
1577 return ret;
1580 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1582 struct file *in;
1583 int error, fput_in;
1585 if (unlikely(!len))
1586 return 0;
1588 error = -EBADF;
1589 in = fget_light(fdin, &fput_in);
1590 if (in) {
1591 if (in->f_mode & FMODE_READ) {
1592 int fput_out;
1593 struct file *out = fget_light(fdout, &fput_out);
1595 if (out) {
1596 if (out->f_mode & FMODE_WRITE)
1597 error = do_tee(in, out, len, flags);
1598 fput_light(out, fput_out);
1601 fput_light(in, fput_in);
1604 return error;