ARM: imx/mx25: fix (again) spi device registration typo
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
blobd53ce66daea0ec7a87ff2700f435ba1ee2eb174e
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
102 static inline void timer_set_deferrable(struct timer_list *timer)
104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
107 static inline void
108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 tbase_get_deferrable(timer->base));
114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
117 int rem;
118 unsigned long original = j;
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
128 j += cpu * 3;
130 rem = j % HZ;
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
139 if (rem < HZ/4 && !force_up) /* round down */
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
170 * The return value is the rounded version of the @j parameter.
172 unsigned long __round_jiffies(unsigned long j, int cpu)
174 return round_jiffies_common(j, cpu, false);
176 EXPORT_SYMBOL_GPL(__round_jiffies);
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
196 * The return value is the rounded version of the @j parameter.
198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200 unsigned long j0 = jiffies;
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
220 * The return value is the rounded version of the @j parameter.
222 unsigned long round_jiffies(unsigned long j)
224 return round_jiffies_common(j, raw_smp_processor_id(), false);
226 EXPORT_SYMBOL_GPL(round_jiffies);
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
241 * The return value is the rounded version of the @j parameter.
243 unsigned long round_jiffies_relative(unsigned long j)
245 return __round_jiffies_relative(j, raw_smp_processor_id());
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
261 return round_jiffies_common(j, cpu, true);
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277 unsigned long j0 = jiffies;
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
293 unsigned long round_jiffies_up(unsigned long j)
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
308 unsigned long round_jiffies_up_relative(unsigned long j)
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
327 void set_timer_slack(struct timer_list *timer, int slack_hz)
329 timer->slack = slack_hz;
331 EXPORT_SYMBOL_GPL(set_timer_slack);
333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
370 * Timers are FIFO:
372 list_add_tail(&timer->entry, vec);
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
378 if (timer->start_site)
379 return;
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
386 static void timer_stats_account_timer(struct timer_list *timer)
388 unsigned int flag = 0;
390 if (likely(!timer->start_site))
391 return;
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
399 #else
400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
405 static struct debug_obj_descr timer_debug_descr;
408 * fixup_init is called when:
409 * - an active object is initialized
411 static int timer_fixup_init(void *addr, enum debug_obj_state state)
413 struct timer_list *timer = addr;
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 del_timer_sync(timer);
418 debug_object_init(timer, &timer_debug_descr);
419 return 1;
420 default:
421 return 0;
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
430 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
432 struct timer_list *timer = addr;
434 switch (state) {
436 case ODEBUG_STATE_NOTAVAILABLE:
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
442 if (timer->entry.next == NULL &&
443 timer->entry.prev == TIMER_ENTRY_STATIC) {
444 debug_object_init(timer, &timer_debug_descr);
445 debug_object_activate(timer, &timer_debug_descr);
446 return 0;
447 } else {
448 WARN_ON_ONCE(1);
450 return 0;
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
455 default:
456 return 0;
461 * fixup_free is called when:
462 * - an active object is freed
464 static int timer_fixup_free(void *addr, enum debug_obj_state state)
466 struct timer_list *timer = addr;
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 del_timer_sync(timer);
471 debug_object_free(timer, &timer_debug_descr);
472 return 1;
473 default:
474 return 0;
478 static struct debug_obj_descr timer_debug_descr = {
479 .name = "timer_list",
480 .fixup_init = timer_fixup_init,
481 .fixup_activate = timer_fixup_activate,
482 .fixup_free = timer_fixup_free,
485 static inline void debug_timer_init(struct timer_list *timer)
487 debug_object_init(timer, &timer_debug_descr);
490 static inline void debug_timer_activate(struct timer_list *timer)
492 debug_object_activate(timer, &timer_debug_descr);
495 static inline void debug_timer_deactivate(struct timer_list *timer)
497 debug_object_deactivate(timer, &timer_debug_descr);
500 static inline void debug_timer_free(struct timer_list *timer)
502 debug_object_free(timer, &timer_debug_descr);
505 static void __init_timer(struct timer_list *timer,
506 const char *name,
507 struct lock_class_key *key);
509 void init_timer_on_stack_key(struct timer_list *timer,
510 const char *name,
511 struct lock_class_key *key)
513 debug_object_init_on_stack(timer, &timer_debug_descr);
514 __init_timer(timer, name, key);
516 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
518 void destroy_timer_on_stack(struct timer_list *timer)
520 debug_object_free(timer, &timer_debug_descr);
522 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
524 #else
525 static inline void debug_timer_init(struct timer_list *timer) { }
526 static inline void debug_timer_activate(struct timer_list *timer) { }
527 static inline void debug_timer_deactivate(struct timer_list *timer) { }
528 #endif
530 static inline void debug_init(struct timer_list *timer)
532 debug_timer_init(timer);
533 trace_timer_init(timer);
536 static inline void
537 debug_activate(struct timer_list *timer, unsigned long expires)
539 debug_timer_activate(timer);
540 trace_timer_start(timer, expires);
543 static inline void debug_deactivate(struct timer_list *timer)
545 debug_timer_deactivate(timer);
546 trace_timer_cancel(timer);
549 static void __init_timer(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
553 timer->entry.next = NULL;
554 timer->base = __raw_get_cpu_var(tvec_bases);
555 timer->slack = -1;
556 #ifdef CONFIG_TIMER_STATS
557 timer->start_site = NULL;
558 timer->start_pid = -1;
559 memset(timer->start_comm, 0, TASK_COMM_LEN);
560 #endif
561 lockdep_init_map(&timer->lockdep_map, name, key, 0);
564 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key,
567 void (*function)(unsigned long),
568 unsigned long data)
570 timer->function = function;
571 timer->data = data;
572 init_timer_on_stack_key(timer, name, key);
573 timer_set_deferrable(timer);
575 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
578 * init_timer_key - initialize a timer
579 * @timer: the timer to be initialized
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
584 * init_timer_key() must be done to a timer prior calling *any* of the
585 * other timer functions.
587 void init_timer_key(struct timer_list *timer,
588 const char *name,
589 struct lock_class_key *key)
591 debug_init(timer);
592 __init_timer(timer, name, key);
594 EXPORT_SYMBOL(init_timer_key);
596 void init_timer_deferrable_key(struct timer_list *timer,
597 const char *name,
598 struct lock_class_key *key)
600 init_timer_key(timer, name, key);
601 timer_set_deferrable(timer);
603 EXPORT_SYMBOL(init_timer_deferrable_key);
605 static inline void detach_timer(struct timer_list *timer,
606 int clear_pending)
608 struct list_head *entry = &timer->entry;
610 debug_deactivate(timer);
612 __list_del(entry->prev, entry->next);
613 if (clear_pending)
614 entry->next = NULL;
615 entry->prev = LIST_POISON2;
619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
630 static struct tvec_base *lock_timer_base(struct timer_list *timer,
631 unsigned long *flags)
632 __acquires(timer->base->lock)
634 struct tvec_base *base;
636 for (;;) {
637 struct tvec_base *prelock_base = timer->base;
638 base = tbase_get_base(prelock_base);
639 if (likely(base != NULL)) {
640 spin_lock_irqsave(&base->lock, *flags);
641 if (likely(prelock_base == timer->base))
642 return base;
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base->lock, *flags);
646 cpu_relax();
650 static inline int
651 __mod_timer(struct timer_list *timer, unsigned long expires,
652 bool pending_only, int pinned)
654 struct tvec_base *base, *new_base;
655 unsigned long flags;
656 int ret = 0 , cpu;
658 timer_stats_timer_set_start_info(timer);
659 BUG_ON(!timer->function);
661 base = lock_timer_base(timer, &flags);
663 if (timer_pending(timer)) {
664 detach_timer(timer, 0);
665 if (timer->expires == base->next_timer &&
666 !tbase_get_deferrable(timer->base))
667 base->next_timer = base->timer_jiffies;
668 ret = 1;
669 } else {
670 if (pending_only)
671 goto out_unlock;
674 debug_activate(timer, expires);
676 cpu = smp_processor_id();
678 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
679 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680 cpu = get_nohz_timer_target();
681 #endif
682 new_base = per_cpu(tvec_bases, cpu);
684 if (base != new_base) {
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
692 if (likely(base->running_timer != timer)) {
693 /* See the comment in lock_timer_base() */
694 timer_set_base(timer, NULL);
695 spin_unlock(&base->lock);
696 base = new_base;
697 spin_lock(&base->lock);
698 timer_set_base(timer, base);
702 timer->expires = expires;
703 if (time_before(timer->expires, base->next_timer) &&
704 !tbase_get_deferrable(timer->base))
705 base->next_timer = timer->expires;
706 internal_add_timer(base, timer);
708 out_unlock:
709 spin_unlock_irqrestore(&base->lock, flags);
711 return ret;
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
722 * It is useful for unserialized use of timers.
724 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
726 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
728 EXPORT_SYMBOL(mod_timer_pending);
731 * Decide where to put the timer while taking the slack into account
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
740 static inline
741 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
743 unsigned long expires_limit, mask;
744 int bit;
746 expires_limit = expires;
748 if (timer->slack >= 0) {
749 expires_limit = expires + timer->slack;
750 } else {
751 unsigned long now = jiffies;
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires, now))
755 expires_limit = expires + (expires - now)/256;
757 mask = expires ^ expires_limit;
758 if (mask == 0)
759 return expires;
761 bit = find_last_bit(&mask, BITS_PER_LONG);
763 mask = (1 << bit) - 1;
765 expires_limit = expires_limit & ~(mask);
767 return expires_limit;
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
773 * @expires: new timeout in jiffies
775 * mod_timer() is a more efficient way to update the expire field of an
776 * active timer (if the timer is inactive it will be activated)
778 * mod_timer(timer, expires) is equivalent to:
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
790 int mod_timer(struct timer_list *timer, unsigned long expires)
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
797 if (timer_pending(timer) && timer->expires == expires)
798 return 1;
800 expires = apply_slack(timer, expires);
802 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
804 EXPORT_SYMBOL(mod_timer);
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
815 * mod_timer_pinned(timer, expires) is equivalent to:
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
819 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
821 if (timer->expires == expires && timer_pending(timer))
822 return 1;
824 return __mod_timer(timer, expires, false, TIMER_PINNED);
826 EXPORT_SYMBOL(mod_timer_pinned);
829 * add_timer - start a timer
830 * @timer: the timer to be added
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
842 void add_timer(struct timer_list *timer)
844 BUG_ON(timer_pending(timer));
845 mod_timer(timer, timer->expires);
847 EXPORT_SYMBOL(add_timer);
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
854 * This is not very scalable on SMP. Double adds are not possible.
856 void add_timer_on(struct timer_list *timer, int cpu)
858 struct tvec_base *base = per_cpu(tvec_bases, cpu);
859 unsigned long flags;
861 timer_stats_timer_set_start_info(timer);
862 BUG_ON(timer_pending(timer) || !timer->function);
863 spin_lock_irqsave(&base->lock, flags);
864 timer_set_base(timer, base);
865 debug_activate(timer, timer->expires);
866 if (time_before(timer->expires, base->next_timer) &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = timer->expires;
869 internal_add_timer(base, timer);
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
876 * the timer wheel.
878 wake_up_idle_cpu(cpu);
879 spin_unlock_irqrestore(&base->lock, flags);
881 EXPORT_SYMBOL_GPL(add_timer_on);
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
894 int del_timer(struct timer_list *timer)
896 struct tvec_base *base;
897 unsigned long flags;
898 int ret = 0;
900 timer_stats_timer_clear_start_info(timer);
901 if (timer_pending(timer)) {
902 base = lock_timer_base(timer, &flags);
903 if (timer_pending(timer)) {
904 detach_timer(timer, 1);
905 if (timer->expires == base->next_timer &&
906 !tbase_get_deferrable(timer->base))
907 base->next_timer = base->timer_jiffies;
908 ret = 1;
910 spin_unlock_irqrestore(&base->lock, flags);
913 return ret;
915 EXPORT_SYMBOL(del_timer);
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
924 int try_to_del_timer_sync(struct timer_list *timer)
926 struct tvec_base *base;
927 unsigned long flags;
928 int ret = -1;
930 base = lock_timer_base(timer, &flags);
932 if (base->running_timer == timer)
933 goto out;
935 timer_stats_timer_clear_start_info(timer);
936 ret = 0;
937 if (timer_pending(timer)) {
938 detach_timer(timer, 1);
939 if (timer->expires == base->next_timer &&
940 !tbase_get_deferrable(timer->base))
941 base->next_timer = base->timer_jiffies;
942 ret = 1;
944 out:
945 spin_unlock_irqrestore(&base->lock, flags);
947 return ret;
949 EXPORT_SYMBOL(try_to_del_timer_sync);
951 #ifdef CONFIG_SMP
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
960 * Synchronization rules: Callers must prevent restarting of the timer,
961 * otherwise this function is meaningless. It must not be called from
962 * hardirq contexts. The caller must not hold locks which would prevent
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
967 * The function returns whether it has deactivated a pending timer or not.
969 int del_timer_sync(struct timer_list *timer)
971 #ifdef CONFIG_LOCKDEP
972 unsigned long flags;
974 raw_local_irq_save(flags);
975 local_bh_disable();
976 lock_map_acquire(&timer->lockdep_map);
977 lock_map_release(&timer->lockdep_map);
978 _local_bh_enable();
979 raw_local_irq_restore(flags);
980 #endif
982 * don't use it in hardirq context, because it
983 * could lead to deadlock.
985 WARN_ON(in_irq());
986 for (;;) {
987 int ret = try_to_del_timer_sync(timer);
988 if (ret >= 0)
989 return ret;
990 cpu_relax();
993 EXPORT_SYMBOL(del_timer_sync);
994 #endif
996 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
998 /* cascade all the timers from tv up one level */
999 struct timer_list *timer, *tmp;
1000 struct list_head tv_list;
1002 list_replace_init(tv->vec + index, &tv_list);
1005 * We are removing _all_ timers from the list, so we
1006 * don't have to detach them individually.
1008 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1009 BUG_ON(tbase_get_base(timer->base) != base);
1010 internal_add_timer(base, timer);
1013 return index;
1016 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1017 unsigned long data)
1019 int preempt_count = preempt_count();
1021 #ifdef CONFIG_LOCKDEP
1023 * It is permissible to free the timer from inside the
1024 * function that is called from it, this we need to take into
1025 * account for lockdep too. To avoid bogus "held lock freed"
1026 * warnings as well as problems when looking into
1027 * timer->lockdep_map, make a copy and use that here.
1029 struct lockdep_map lockdep_map = timer->lockdep_map;
1030 #endif
1032 * Couple the lock chain with the lock chain at
1033 * del_timer_sync() by acquiring the lock_map around the fn()
1034 * call here and in del_timer_sync().
1036 lock_map_acquire(&lockdep_map);
1038 trace_timer_expire_entry(timer);
1039 fn(data);
1040 trace_timer_expire_exit(timer);
1042 lock_map_release(&lockdep_map);
1044 if (preempt_count != preempt_count()) {
1045 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1046 fn, preempt_count, preempt_count());
1048 * Restore the preempt count. That gives us a decent
1049 * chance to survive and extract information. If the
1050 * callback kept a lock held, bad luck, but not worse
1051 * than the BUG() we had.
1053 preempt_count() = preempt_count;
1057 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1060 * __run_timers - run all expired timers (if any) on this CPU.
1061 * @base: the timer vector to be processed.
1063 * This function cascades all vectors and executes all expired timer
1064 * vectors.
1066 static inline void __run_timers(struct tvec_base *base)
1068 struct timer_list *timer;
1070 spin_lock_irq(&base->lock);
1071 while (time_after_eq(jiffies, base->timer_jiffies)) {
1072 struct list_head work_list;
1073 struct list_head *head = &work_list;
1074 int index = base->timer_jiffies & TVR_MASK;
1077 * Cascade timers:
1079 if (!index &&
1080 (!cascade(base, &base->tv2, INDEX(0))) &&
1081 (!cascade(base, &base->tv3, INDEX(1))) &&
1082 !cascade(base, &base->tv4, INDEX(2)))
1083 cascade(base, &base->tv5, INDEX(3));
1084 ++base->timer_jiffies;
1085 list_replace_init(base->tv1.vec + index, &work_list);
1086 while (!list_empty(head)) {
1087 void (*fn)(unsigned long);
1088 unsigned long data;
1090 timer = list_first_entry(head, struct timer_list,entry);
1091 fn = timer->function;
1092 data = timer->data;
1094 timer_stats_account_timer(timer);
1096 base->running_timer = timer;
1097 detach_timer(timer, 1);
1099 spin_unlock_irq(&base->lock);
1100 call_timer_fn(timer, fn, data);
1101 spin_lock_irq(&base->lock);
1104 base->running_timer = NULL;
1105 spin_unlock_irq(&base->lock);
1108 #ifdef CONFIG_NO_HZ
1110 * Find out when the next timer event is due to happen. This
1111 * is used on S/390 to stop all activity when a CPU is idle.
1112 * This function needs to be called with interrupts disabled.
1114 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1116 unsigned long timer_jiffies = base->timer_jiffies;
1117 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1118 int index, slot, array, found = 0;
1119 struct timer_list *nte;
1120 struct tvec *varray[4];
1122 /* Look for timer events in tv1. */
1123 index = slot = timer_jiffies & TVR_MASK;
1124 do {
1125 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1126 if (tbase_get_deferrable(nte->base))
1127 continue;
1129 found = 1;
1130 expires = nte->expires;
1131 /* Look at the cascade bucket(s)? */
1132 if (!index || slot < index)
1133 goto cascade;
1134 return expires;
1136 slot = (slot + 1) & TVR_MASK;
1137 } while (slot != index);
1139 cascade:
1140 /* Calculate the next cascade event */
1141 if (index)
1142 timer_jiffies += TVR_SIZE - index;
1143 timer_jiffies >>= TVR_BITS;
1145 /* Check tv2-tv5. */
1146 varray[0] = &base->tv2;
1147 varray[1] = &base->tv3;
1148 varray[2] = &base->tv4;
1149 varray[3] = &base->tv5;
1151 for (array = 0; array < 4; array++) {
1152 struct tvec *varp = varray[array];
1154 index = slot = timer_jiffies & TVN_MASK;
1155 do {
1156 list_for_each_entry(nte, varp->vec + slot, entry) {
1157 if (tbase_get_deferrable(nte->base))
1158 continue;
1160 found = 1;
1161 if (time_before(nte->expires, expires))
1162 expires = nte->expires;
1165 * Do we still search for the first timer or are
1166 * we looking up the cascade buckets ?
1168 if (found) {
1169 /* Look at the cascade bucket(s)? */
1170 if (!index || slot < index)
1171 break;
1172 return expires;
1174 slot = (slot + 1) & TVN_MASK;
1175 } while (slot != index);
1177 if (index)
1178 timer_jiffies += TVN_SIZE - index;
1179 timer_jiffies >>= TVN_BITS;
1181 return expires;
1185 * Check, if the next hrtimer event is before the next timer wheel
1186 * event:
1188 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1189 unsigned long expires)
1191 ktime_t hr_delta = hrtimer_get_next_event();
1192 struct timespec tsdelta;
1193 unsigned long delta;
1195 if (hr_delta.tv64 == KTIME_MAX)
1196 return expires;
1199 * Expired timer available, let it expire in the next tick
1201 if (hr_delta.tv64 <= 0)
1202 return now + 1;
1204 tsdelta = ktime_to_timespec(hr_delta);
1205 delta = timespec_to_jiffies(&tsdelta);
1208 * Limit the delta to the max value, which is checked in
1209 * tick_nohz_stop_sched_tick():
1211 if (delta > NEXT_TIMER_MAX_DELTA)
1212 delta = NEXT_TIMER_MAX_DELTA;
1215 * Take rounding errors in to account and make sure, that it
1216 * expires in the next tick. Otherwise we go into an endless
1217 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1218 * the timer softirq
1220 if (delta < 1)
1221 delta = 1;
1222 now += delta;
1223 if (time_before(now, expires))
1224 return now;
1225 return expires;
1229 * get_next_timer_interrupt - return the jiffy of the next pending timer
1230 * @now: current time (in jiffies)
1232 unsigned long get_next_timer_interrupt(unsigned long now)
1234 struct tvec_base *base = __this_cpu_read(tvec_bases);
1235 unsigned long expires;
1238 * Pretend that there is no timer pending if the cpu is offline.
1239 * Possible pending timers will be migrated later to an active cpu.
1241 if (cpu_is_offline(smp_processor_id()))
1242 return now + NEXT_TIMER_MAX_DELTA;
1243 spin_lock(&base->lock);
1244 if (time_before_eq(base->next_timer, base->timer_jiffies))
1245 base->next_timer = __next_timer_interrupt(base);
1246 expires = base->next_timer;
1247 spin_unlock(&base->lock);
1249 if (time_before_eq(expires, now))
1250 return now;
1252 return cmp_next_hrtimer_event(now, expires);
1254 #endif
1257 * Called from the timer interrupt handler to charge one tick to the current
1258 * process. user_tick is 1 if the tick is user time, 0 for system.
1260 void update_process_times(int user_tick)
1262 struct task_struct *p = current;
1263 int cpu = smp_processor_id();
1265 /* Note: this timer irq context must be accounted for as well. */
1266 account_process_tick(p, user_tick);
1267 run_local_timers();
1268 rcu_check_callbacks(cpu, user_tick);
1269 printk_tick();
1270 #ifdef CONFIG_IRQ_WORK
1271 if (in_irq())
1272 irq_work_run();
1273 #endif
1274 scheduler_tick();
1275 run_posix_cpu_timers(p);
1279 * This function runs timers and the timer-tq in bottom half context.
1281 static void run_timer_softirq(struct softirq_action *h)
1283 struct tvec_base *base = __this_cpu_read(tvec_bases);
1285 hrtimer_run_pending();
1287 if (time_after_eq(jiffies, base->timer_jiffies))
1288 __run_timers(base);
1292 * Called by the local, per-CPU timer interrupt on SMP.
1294 void run_local_timers(void)
1296 hrtimer_run_queues();
1297 raise_softirq(TIMER_SOFTIRQ);
1301 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1302 * without sampling the sequence number in xtime_lock.
1303 * jiffies is defined in the linker script...
1306 void do_timer(unsigned long ticks)
1308 jiffies_64 += ticks;
1309 update_wall_time();
1310 calc_global_load(ticks);
1313 #ifdef __ARCH_WANT_SYS_ALARM
1316 * For backwards compatibility? This can be done in libc so Alpha
1317 * and all newer ports shouldn't need it.
1319 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1321 return alarm_setitimer(seconds);
1324 #endif
1326 #ifndef __alpha__
1329 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1330 * should be moved into arch/i386 instead?
1334 * sys_getpid - return the thread group id of the current process
1336 * Note, despite the name, this returns the tgid not the pid. The tgid and
1337 * the pid are identical unless CLONE_THREAD was specified on clone() in
1338 * which case the tgid is the same in all threads of the same group.
1340 * This is SMP safe as current->tgid does not change.
1342 SYSCALL_DEFINE0(getpid)
1344 return task_tgid_vnr(current);
1348 * Accessing ->real_parent is not SMP-safe, it could
1349 * change from under us. However, we can use a stale
1350 * value of ->real_parent under rcu_read_lock(), see
1351 * release_task()->call_rcu(delayed_put_task_struct).
1353 SYSCALL_DEFINE0(getppid)
1355 int pid;
1357 rcu_read_lock();
1358 pid = task_tgid_vnr(current->real_parent);
1359 rcu_read_unlock();
1361 return pid;
1364 SYSCALL_DEFINE0(getuid)
1366 /* Only we change this so SMP safe */
1367 return current_uid();
1370 SYSCALL_DEFINE0(geteuid)
1372 /* Only we change this so SMP safe */
1373 return current_euid();
1376 SYSCALL_DEFINE0(getgid)
1378 /* Only we change this so SMP safe */
1379 return current_gid();
1382 SYSCALL_DEFINE0(getegid)
1384 /* Only we change this so SMP safe */
1385 return current_egid();
1388 #endif
1390 static void process_timeout(unsigned long __data)
1392 wake_up_process((struct task_struct *)__data);
1396 * schedule_timeout - sleep until timeout
1397 * @timeout: timeout value in jiffies
1399 * Make the current task sleep until @timeout jiffies have
1400 * elapsed. The routine will return immediately unless
1401 * the current task state has been set (see set_current_state()).
1403 * You can set the task state as follows -
1405 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1406 * pass before the routine returns. The routine will return 0
1408 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1409 * delivered to the current task. In this case the remaining time
1410 * in jiffies will be returned, or 0 if the timer expired in time
1412 * The current task state is guaranteed to be TASK_RUNNING when this
1413 * routine returns.
1415 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1416 * the CPU away without a bound on the timeout. In this case the return
1417 * value will be %MAX_SCHEDULE_TIMEOUT.
1419 * In all cases the return value is guaranteed to be non-negative.
1421 signed long __sched schedule_timeout(signed long timeout)
1423 struct timer_list timer;
1424 unsigned long expire;
1426 switch (timeout)
1428 case MAX_SCHEDULE_TIMEOUT:
1430 * These two special cases are useful to be comfortable
1431 * in the caller. Nothing more. We could take
1432 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1433 * but I' d like to return a valid offset (>=0) to allow
1434 * the caller to do everything it want with the retval.
1436 schedule();
1437 goto out;
1438 default:
1440 * Another bit of PARANOID. Note that the retval will be
1441 * 0 since no piece of kernel is supposed to do a check
1442 * for a negative retval of schedule_timeout() (since it
1443 * should never happens anyway). You just have the printk()
1444 * that will tell you if something is gone wrong and where.
1446 if (timeout < 0) {
1447 printk(KERN_ERR "schedule_timeout: wrong timeout "
1448 "value %lx\n", timeout);
1449 dump_stack();
1450 current->state = TASK_RUNNING;
1451 goto out;
1455 expire = timeout + jiffies;
1457 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1458 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1459 schedule();
1460 del_singleshot_timer_sync(&timer);
1462 /* Remove the timer from the object tracker */
1463 destroy_timer_on_stack(&timer);
1465 timeout = expire - jiffies;
1467 out:
1468 return timeout < 0 ? 0 : timeout;
1470 EXPORT_SYMBOL(schedule_timeout);
1473 * We can use __set_current_state() here because schedule_timeout() calls
1474 * schedule() unconditionally.
1476 signed long __sched schedule_timeout_interruptible(signed long timeout)
1478 __set_current_state(TASK_INTERRUPTIBLE);
1479 return schedule_timeout(timeout);
1481 EXPORT_SYMBOL(schedule_timeout_interruptible);
1483 signed long __sched schedule_timeout_killable(signed long timeout)
1485 __set_current_state(TASK_KILLABLE);
1486 return schedule_timeout(timeout);
1488 EXPORT_SYMBOL(schedule_timeout_killable);
1490 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1492 __set_current_state(TASK_UNINTERRUPTIBLE);
1493 return schedule_timeout(timeout);
1495 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1497 /* Thread ID - the internal kernel "pid" */
1498 SYSCALL_DEFINE0(gettid)
1500 return task_pid_vnr(current);
1504 * do_sysinfo - fill in sysinfo struct
1505 * @info: pointer to buffer to fill
1507 int do_sysinfo(struct sysinfo *info)
1509 unsigned long mem_total, sav_total;
1510 unsigned int mem_unit, bitcount;
1511 struct timespec tp;
1513 memset(info, 0, sizeof(struct sysinfo));
1515 ktime_get_ts(&tp);
1516 monotonic_to_bootbased(&tp);
1517 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1519 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1521 info->procs = nr_threads;
1523 si_meminfo(info);
1524 si_swapinfo(info);
1527 * If the sum of all the available memory (i.e. ram + swap)
1528 * is less than can be stored in a 32 bit unsigned long then
1529 * we can be binary compatible with 2.2.x kernels. If not,
1530 * well, in that case 2.2.x was broken anyways...
1532 * -Erik Andersen <andersee@debian.org>
1535 mem_total = info->totalram + info->totalswap;
1536 if (mem_total < info->totalram || mem_total < info->totalswap)
1537 goto out;
1538 bitcount = 0;
1539 mem_unit = info->mem_unit;
1540 while (mem_unit > 1) {
1541 bitcount++;
1542 mem_unit >>= 1;
1543 sav_total = mem_total;
1544 mem_total <<= 1;
1545 if (mem_total < sav_total)
1546 goto out;
1550 * If mem_total did not overflow, multiply all memory values by
1551 * info->mem_unit and set it to 1. This leaves things compatible
1552 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1553 * kernels...
1556 info->mem_unit = 1;
1557 info->totalram <<= bitcount;
1558 info->freeram <<= bitcount;
1559 info->sharedram <<= bitcount;
1560 info->bufferram <<= bitcount;
1561 info->totalswap <<= bitcount;
1562 info->freeswap <<= bitcount;
1563 info->totalhigh <<= bitcount;
1564 info->freehigh <<= bitcount;
1566 out:
1567 return 0;
1570 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1572 struct sysinfo val;
1574 do_sysinfo(&val);
1576 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1577 return -EFAULT;
1579 return 0;
1582 static int __cpuinit init_timers_cpu(int cpu)
1584 int j;
1585 struct tvec_base *base;
1586 static char __cpuinitdata tvec_base_done[NR_CPUS];
1588 if (!tvec_base_done[cpu]) {
1589 static char boot_done;
1591 if (boot_done) {
1593 * The APs use this path later in boot
1595 base = kmalloc_node(sizeof(*base),
1596 GFP_KERNEL | __GFP_ZERO,
1597 cpu_to_node(cpu));
1598 if (!base)
1599 return -ENOMEM;
1601 /* Make sure that tvec_base is 2 byte aligned */
1602 if (tbase_get_deferrable(base)) {
1603 WARN_ON(1);
1604 kfree(base);
1605 return -ENOMEM;
1607 per_cpu(tvec_bases, cpu) = base;
1608 } else {
1610 * This is for the boot CPU - we use compile-time
1611 * static initialisation because per-cpu memory isn't
1612 * ready yet and because the memory allocators are not
1613 * initialised either.
1615 boot_done = 1;
1616 base = &boot_tvec_bases;
1618 tvec_base_done[cpu] = 1;
1619 } else {
1620 base = per_cpu(tvec_bases, cpu);
1623 spin_lock_init(&base->lock);
1625 for (j = 0; j < TVN_SIZE; j++) {
1626 INIT_LIST_HEAD(base->tv5.vec + j);
1627 INIT_LIST_HEAD(base->tv4.vec + j);
1628 INIT_LIST_HEAD(base->tv3.vec + j);
1629 INIT_LIST_HEAD(base->tv2.vec + j);
1631 for (j = 0; j < TVR_SIZE; j++)
1632 INIT_LIST_HEAD(base->tv1.vec + j);
1634 base->timer_jiffies = jiffies;
1635 base->next_timer = base->timer_jiffies;
1636 return 0;
1639 #ifdef CONFIG_HOTPLUG_CPU
1640 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1642 struct timer_list *timer;
1644 while (!list_empty(head)) {
1645 timer = list_first_entry(head, struct timer_list, entry);
1646 detach_timer(timer, 0);
1647 timer_set_base(timer, new_base);
1648 if (time_before(timer->expires, new_base->next_timer) &&
1649 !tbase_get_deferrable(timer->base))
1650 new_base->next_timer = timer->expires;
1651 internal_add_timer(new_base, timer);
1655 static void __cpuinit migrate_timers(int cpu)
1657 struct tvec_base *old_base;
1658 struct tvec_base *new_base;
1659 int i;
1661 BUG_ON(cpu_online(cpu));
1662 old_base = per_cpu(tvec_bases, cpu);
1663 new_base = get_cpu_var(tvec_bases);
1665 * The caller is globally serialized and nobody else
1666 * takes two locks at once, deadlock is not possible.
1668 spin_lock_irq(&new_base->lock);
1669 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1671 BUG_ON(old_base->running_timer);
1673 for (i = 0; i < TVR_SIZE; i++)
1674 migrate_timer_list(new_base, old_base->tv1.vec + i);
1675 for (i = 0; i < TVN_SIZE; i++) {
1676 migrate_timer_list(new_base, old_base->tv2.vec + i);
1677 migrate_timer_list(new_base, old_base->tv3.vec + i);
1678 migrate_timer_list(new_base, old_base->tv4.vec + i);
1679 migrate_timer_list(new_base, old_base->tv5.vec + i);
1682 spin_unlock(&old_base->lock);
1683 spin_unlock_irq(&new_base->lock);
1684 put_cpu_var(tvec_bases);
1686 #endif /* CONFIG_HOTPLUG_CPU */
1688 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1689 unsigned long action, void *hcpu)
1691 long cpu = (long)hcpu;
1692 int err;
1694 switch(action) {
1695 case CPU_UP_PREPARE:
1696 case CPU_UP_PREPARE_FROZEN:
1697 err = init_timers_cpu(cpu);
1698 if (err < 0)
1699 return notifier_from_errno(err);
1700 break;
1701 #ifdef CONFIG_HOTPLUG_CPU
1702 case CPU_DEAD:
1703 case CPU_DEAD_FROZEN:
1704 migrate_timers(cpu);
1705 break;
1706 #endif
1707 default:
1708 break;
1710 return NOTIFY_OK;
1713 static struct notifier_block __cpuinitdata timers_nb = {
1714 .notifier_call = timer_cpu_notify,
1718 void __init init_timers(void)
1720 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1721 (void *)(long)smp_processor_id());
1723 init_timer_stats();
1725 BUG_ON(err != NOTIFY_OK);
1726 register_cpu_notifier(&timers_nb);
1727 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1731 * msleep - sleep safely even with waitqueue interruptions
1732 * @msecs: Time in milliseconds to sleep for
1734 void msleep(unsigned int msecs)
1736 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1738 while (timeout)
1739 timeout = schedule_timeout_uninterruptible(timeout);
1742 EXPORT_SYMBOL(msleep);
1745 * msleep_interruptible - sleep waiting for signals
1746 * @msecs: Time in milliseconds to sleep for
1748 unsigned long msleep_interruptible(unsigned int msecs)
1750 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1752 while (timeout && !signal_pending(current))
1753 timeout = schedule_timeout_interruptible(timeout);
1754 return jiffies_to_msecs(timeout);
1757 EXPORT_SYMBOL(msleep_interruptible);
1759 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1761 ktime_t kmin;
1762 unsigned long delta;
1764 kmin = ktime_set(0, min * NSEC_PER_USEC);
1765 delta = (max - min) * NSEC_PER_USEC;
1766 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1770 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1771 * @min: Minimum time in usecs to sleep
1772 * @max: Maximum time in usecs to sleep
1774 void usleep_range(unsigned long min, unsigned long max)
1776 __set_current_state(TASK_UNINTERRUPTIBLE);
1777 do_usleep_range(min, max);
1779 EXPORT_SYMBOL(usleep_range);